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Abstract
Multi-objective optimization problems arise
widely in various fields. In practice, multi-
objective optimization is generally solved by
heuristics with tunable parameters that are highly
application-specific. Tuning parameters based on
real-world instances (a.k.a. algorithm configura-
tion) are generally empirical without theoretical
guarantees. In this work, we establish the theo-
retical foundation of data-driven multi-objective
optimization through the lens of machine learn-
ing theory. We provide generalization guarantees
on selecting parameters for multi-objective opti-
mization algorithms based on sampled problem
instances. Moreover, if the performance metric
of the algorithm is the Pareto volume, we can
PAC-learn the approximately optimal configura-
tion in polynomial time. We apply our framework
to various algorithms, including approximation
algorithms, local search, and linear programming.
Experiments on multiple problems verify our theo-
retical findings.

1. Introduction
Multi-objective optimization problems arise widely in var-
ious fields, including operations research (Herzel et al.,
2021), machine learning (Sener & Koltun, 2018), and de-
sign automation (Chen & Young, 2020). A multi-objective
optimization problem may involve multiple contradictory
objectives that require simultaneous optimization. There-
fore, a best-of-all-world solution that is optimal for every
objective may not exist. Algorithm designers instead seek a
trade-off between multiple objectives.

A notion of optimality for multi-objective optimization is
the so-called Pareto optimality. However, computing the
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exact set of Pareto-optimal solutions is generally intractable
for most multi-objective optimization problems, since the
optimal Pareto set may contain an exponential number of
solutions. In practice, heuristic algorithms are often applied
to tackle multi-objective optimization. For example, approx-
imation algorithms (Ravi & Goemans, 1996; Chen & Young,
2020) are designed to simultaneously approximate multiple
objectives. Another widely used heuristic is the weighted
sum method, e.g., turning a two-objective optimization prob-
lem maxx(c1(x), c2(x)) into a single-objective one by opti-
mizing a convex combination of objectives,

max
x

(1− ρ) · c1(x) + ρ · c2(x),

where 0 ≤ ρ ≤ 1.

However, both approximation algorithms and the weighted
sum method contain tunable parameters. An approximation
algorithm (Ravi & Goemans, 1996; Chen & Young, 2020)
may contain parameters to balance the approximation ratio
of different objectives. The weighted sum method also re-
quires setting the weight ρ. The user may select a parameter
configuration to optimize the algorithmic performance, or
even select multiple configurations to form a solution port-
folio to provide more decision options. The selection of pa-
rameters significantly impacts the algorithmic performance.
There is usually no universal best configuration, and the user
needs to tune the parameters based on application-specific
problem instances carefully. Many algorithm configuration
methods (Schede et al., 2022) are proposed to automatically
select parameters with good performances. Researchers
even apply neural networks (Li et al., 2021) to predict good
parameters for multi-objective optimization.

Although multi-objective optimization algorithms are
widely used in practice, the theoretical foundation of pa-
rameter selection is limited. In this work, we study the prob-
lem of algorithm configuration for multi-objective optimiza-
tion through the lens of machine learning theory. Recently,
there has been a growing interest in the sample complex-
ity of learning algorithm parameters for a given applica-
tion domain, a.k.a., data-driven algorithm design (Balcan,
2020). Concretely, there is a probabilistic distribution over
instances of a multi-objective optimization problem. Given
a training set sampled from this distribution, the learning
algorithm selects one or multiple parameters that optimize
the algorithmic performance from a parameterized family
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using empirical risk minimization. We aim to provide gen-
eralization guarantees (a.k.a., sample complexity bounds)
that bound the number of required samples to guarantee the
performance difference to be small enough between training
samples and the real distribution.

1.1. Main results

We summarize the contributions of this work as follows.

The first theoretical framework for data-driven multi-
objective optimization. We establish a general framework
for data-driven multi-objective optimization algorithms. Pre-
vious work (Gupta & Roughgarden, 2017; Balcan et al.,
2018a; 2021a; Sakaue & Oki, 2022) on data-driven algo-
rithm design shows that many parameterized algorithms,
especially combinatorial algorithms, exhibit a piecewise
structural property. The same structure also arises in multi-
objective optimization algorithms. We present a general
theorem that bounds the sample complexity of parameter-
ized multi-objective optimization algorithms with respect to
the complexity of the piecewise structure.

We also discuss how to efficiently learn the parameter from
training samples (a.k.a., empirical risk minimization): If the
performance metric function is the Pareto (hyper-)volume,
we can

(
1− 1

e

)
-approximately PAC-learn the optimal pa-

rameter in polynomial time by exploiting the submodular
property of the Pareto volume. We further show that the
approximation ratio is tight assuming P ̸= NP.

Sample complexity bounds of learning configurations for
various algorithms. We apply our general framework to
various multi-objective optimization algorithms, including
approximation algorithms (shallow-light Steiner trees and
bi-criterion minimum spanning trees), local search (vanilla
local search and simulated annealing), and linear program-
ming (general LPs and Markov decision processes).

For local search and linear programs, we find that a technical
challenge is that the complexities of the piecewise structures
may be exponentially large in the worst case, leading to poly-
nomial sample complexity with respect to the problem size.
We can overcome this barrier by conducting a beyond-worst-
case analysis. The main idea is to use smoothed analysis.
If the problem instance distribution contains a small noise,
we can reduce the number of pieces in performance metric
functions to polynomial size, thus leading to logarithmic
sample complexity bounds.

Table 1 gives an overview of our sample complexity results.
As an extension, we also discuss the application of machine
learning models in predicting parameters in Appendix D.

Empirical verifications of theoretical bounds. We verify
our theoretical findings with experimental results. We show
that the empirical risk minimization algorithm on shallow-

Table 1. An overview of sample complexity results for parame-
terized multi-objective optimization, where k is the number of
parameters and ε is the generalization error.

Problem Worst-case Smoothed

Shallow-light trees Õ(k · ε−2) N/A
Bi-criterion MSTs Õ(k · ε−2) N/A

Local search Õ(k · T · ε−2) Õ(k · ε−2)

Simulated annealing Õ(k · T · ε−2) Õ(k · ε−2)

General linear programs Õ(k · n · ε−2) Õ(k · ε−2)

Markov decision processes Õ(k · |S| · ε−2) Õ(k · ε−2)

light trees indeed improves the Pareto volume metric of
multi-objective optimization. We also compute the number
of pieces in the piecewise structure on two algorithms, local
search for VLSI circuit partitioning and a resource-gathering
Markov decision process. We find that, in practice, the
intrinsic complexity of the performance metric function is
indeed small, thus leading to small generalization bounds.
This shows that the smoothed analysis setting is reasonable.

1.2. Organization

The rest of this paper is organized as follows: Section 2
introduces basic notations and the problem formulation of
this work. Section 3 presents the general framework of
sample complexity analysis for data-driven multi-objective
optimization algorithms. In Sections 4, 5, and 6, we apply
our framework to approximation algorithms, local search,
and linear programs, respectively. Section 7 provides em-
pirical verifications of our results. Finally, we conclude this
paper and discuss directions for future work in Section 8.

A comparison with related work is discussed in Appendix A.
Preliminaries are introduced in Appendix B. Technical
proofs are given in Appendix C. Appendix D discusses some
extensions of our framework. Appendix E supplements the
detailed experimental settings.

2. Notations and Problem Formulation
Notations. We use Õ(f(n)) = f(n) · poly log n to sup-
press logarithmic factors. We also use [n] to denote the
set {1, 2, . . . , n} and I(·) to denote the indicator function.
Preliminary notations for multi-objective optimization is
omitted to Appendix B.1.

Problem formulation. Given a multi-objective optimiza-
tion problem Π, we use I to denote the set of possible
problem instances that the algorithm takes as input. We
assume there is an unknown, domain-specific probabilistic
distribution D over I.

We have an algorithm A to solve problem Π parameterized
by ρ ∈ P . Suppose the problem Π has d optimization
objectives, we useA : P ×I → Rd

+ to denote the objective
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vector of algorithmA’s output on a particular instance I ∈ I
with parameter ρ ∈ P .

The aim of algorithm configuration is to select k param-
eters P = (ρ1, . . . , ρk) ∈ Pk for A with good per-
formance in expectation over the distribution D. Sup-
pose the outputs of algorithm A are A(ρ1, I), . . . ,A(ρk, I)
using parameters ρ1, . . . , ρk on an instance I . We use
u(P, I) : Pk × I → [0, H] to denote a performance met-
ric for A(ρ1, I), . . . ,A(ρk, I), where H is a constant1 that
upper bounds the performance metric. For example, the
performance metric can be the Pareto volume Vol (see Defi-
nition B.1). We aim to maximize the expected performance
of A, i.e., maxP∈Pk(EI∼D[u(P, I)]).

We provide generalization guarantees (a.k.a., sample com-
plexity bounds) for learning the parameters P . Given m
training data I1, . . . , Im ∈ I that are independently sampled
from D, a generalization guarantee bounds the difference
between the average performance on training data and the
expected performance on D. We use the idea of uniform
convergence from statistical learning theory. Uniform con-
vergence provides generalization guarantees for any choice
of parameters P ∈ Pk. Therefore, it is independent of the
learning algorithm.

Definition 2.1 (Uniform convergence). The parameter-
ized algorithm A has generalization error ε(m, δ), if
for any distribution D over X , with probability at least
1 − δ over m i.i.d. samples I1, . . . , Im ∼ D, we have∣∣∣∣( 1

m

∑m
i=1 u(P, Ii)

)
− EI∼D[u(P, I)]

∣∣∣∣ ≤ ε, for any P ∈

Pk. The least number of samples m(ε, δ) that ensures such
a guarantee is called the sample complexity of u(P, I) on
distribution D.

We are also interested in providing guarantees for the
complete learning procedure. Given m training data
I1, . . . , Im, we use an empirical risk minimization algorithm
to solve maxP∈Pk

1
m

∑m
i=1 u(P, Ii). By uniform conver-

gence bounds, the learned P is probably approximately
correct (PAC) for the optimal parameter.

Definition 2.2 (PAC-learning). A learning algorithm
(α, β, δ)-PAC-learns the (approximate) optimal parameter,
if given m i.i.d. samples from D, with probability at least
1− δ, the learning algorithm finds k parameters P such that

EI∼D[u(P, I)] ≥ α · max
P∗∈Pk

EI∼D[u(P
∗, I)]− β,

for some 0 < α ≤ 1 and β > 0.
1This assumption is standard in previous work of data-driven

algorithm design (Gupta & Roughgarden, 2017), and is indeed
reasonable. Although the performance metric may depend on the
problem size, we can always normalize the metric and consider the
relative performance, given a fixed problem instance distribution.

We omit basic tools of statistical learning theory for proving
sample complexity bounds to Appendix B.2.

3. General Framework for Sample Complexity
3.1. Uniform convergence

In our main results, we consider the simple case that the
problem has only 2 objectives, and hence the algorithm gen-
erally has only one real parameter. We discuss the extension
to more than 2 objectives in Section D.

We study the setting where the performance of the algo-
rithm has a piecewise-constant structure with respect to
the parameters. This structure widely appears in many op-
timization algorithms, including greedy heuristics (Gupta
& Roughgarden, 2017), branch-and-bound (Balcan et al.,
2018a), dynamic programming (Balcan et al., 2021a), A*
search (Sakaue & Oki, 2022), etc. Formally, the piecewise-
constant structure is defined as follows.

Definition 3.1 (Piecewise-constant algorithm). For any
problem instance I , we can partition the parameter space
P ⊆ R into t intervals, such that in each interval, the output
of the algorithm A(·, I) is a constant function.

Theorem 3.2. Given m i.i.d. training samples I1, . . . , Im
from the instance distribution D, with probability at least
1 − δ, for any set of k parameters P = (ρ1, . . . , ρk) ∈

Pk, we have
∣∣∣∣( 1

m

∑m
i=1 u(P, Ii)

)
− EI∼D[u(P, I)]

∣∣∣∣ =

O

(√
1

m

(
k log t+ log 1

δ

))
.

Equivalently, this generalization guarantee can be presented
using the language of sample complexity: For any ε > 0
and 0 < δ < 1, m = Ω

(
1
ε2 (k log t+ log δ−1)

)
samples

are sufficient to ensure that with probability 1− δ, the gen-
eralization error is at most ε. This theorem can be proved
by classic pseudo-dimension techniques.

However, as we will show in the following sections, the
number of pieces t can be exponential with respect to the
problem size. This gives a polynomial bound on the sample
complexity (or generalization gap). To overcome this barrier,
we apply smoothed analysis. In practice, worst-case bounds
are generally loose. These bounds are seldom tight since
random noises appear in real-world instances. Smoothed
analysis assumes the instance distribution D is not arbitrary,
but a distribution of smoothed instances.

Concretely, to sample an instance I , we first sample a
smoothed instance Ĩ from some distribution D̃. A smoothed
instance is an instance with a small random perturbation,
i.e., a probabilistic distribution. Then, we obtain instance
I by sampling the random perturbation from Ĩ . We set a
smoothness parameter κ to evaluate the randomness of the
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perturbation. (As κ goes from 1 to +∞, our analysis inter-
polates between average-case and worst-case analysis.) In
this setting, the number of pieces t is a random variable with
respect to Ĩ . We can also obtain generalization guarantees
by upper bounds on EI∼Ĩ [t] for any smoothed instance Ĩ .
Since t is a random variable, we can no longer use pseudo-
dimension. Instead, we consider a smoothed version of
Rademacher complexity and apply Massart’s lemma.

Theorem 3.3. Given m i.i.d. instances I1, . . . , Im where
Ii ∼ Ĩi and Ĩi ∼ D̃ from a smoothed instance distribu-
tion D̃ for each i ∈ [m], with probability at least 1 − δ,
for any set of k parameters P = (ρ1, . . . , ρk) ∈ Pk,

we have
∣∣∣∣( 1

m

∑m
i=1 u(P, Ii)

)
− EĨ∼D̃ EI∼Ĩ [u(P, I)]

∣∣∣∣ =
O

(√
1

m

(
k logEI∼Ĩ [t] + k logm+ log 1

δ

))
.

3.2. Empirical risk minimization for Pareto volume

We also study the problem of empirical risk minimization
to learn the optimal parameters. If the performance metric
function u is the Pareto volume Vol (see Appendix B.1), i.e.,
u(P, I) = Vol({A(ρ1, I), . . . ,A(ρk, I)}), we can approxi-
mately PAC-learn k parameters P ∈ Pk by exploiting the
submodular property of the Pareto volume.

Definition 3.4. A set function f : 2S → R is submodular,
if for any T1 ⊆ T2 ⊆ S, and any x ∈ S \ T2, we have
f(T1 ∪ {x})− f(T1) ≥ f(T2 ∪ {x})− f(T2).

Lemma 3.5. Let S = {u1, . . . , un} be a set of objective
vectors. The function Vol : 2S → [0, H], which maps a
subset T ⊆ S to the Pareto volume of T , is monotone and
submodular.

Therefore, we can use the folklore
(
1− 1

e

)
-approximation

algorithm for submodular maximization to perform empir-
ical risk minimization. Let I1, . . . , Im denote the training
samples from instance distribution D. Empirical risk mini-
mization finds k parameters P = (ρ1, . . . , ρk) to maximize
the empirical Pareto volume, i.e.,

max
P∈Pk

1

m

m∑
i=1

Vol({A(ρ1, Ii), . . . ,A(ρk, Ii)}). (1)

Theorem 3.6. Given m i.i.d. samples from the instance
distribution D, and suppose for any instance I , we have an
oracle to compute each piece ofA(·, I). There exists a learn-
ing algorithm that finds k parameters P = (ρ1, . . . , ρk)
that

(
1− 1

e , ε, δ
)
-PAC-learns the optimal parameter using

m = O( 1
ε2 (k log t+ log δ−1)) samples in poly(m, t) time.

Note that a similar result also holds in the smoothed analysis
setting by taking an expectation. In practice, the oracle can
be implemented by, e.g., performing a binary search on the
parameter space. See Appendix E for details.

On the negative side, we show that (1− 1
e )-approximation

is the best bound we can achieve assuming P ̸= NP by
making a reduction from maximum k-set-cover.

Theorem 3.7. The empirical risk minimization problem (1)
cannot be (1− 1

e + ε)-approximated in poly(m, t) time for
any ε > 0, unless P = NP.

4. Applications to Approximation Algorithms
We first apply our framework to approximation algorithms.
We consider two approximation heuristics that are of practi-
cal values in VLSI design and network optimization.

4.1. Shallow-light Steiner trees

Given a weighted and undirected graph G = (V,E) with a
set of terminals S ⊆ V and a root r ∈ S, a Steiner tree of
G is a sub-tree that inter-connects S with root r. For any
sub-graph G′ ⊆ G, let dG′(u, v) denote the shortest path
distance between u and v on G′, and w(G′) denote the total
edge weight of G′.

In the shallow-light Steiner tree (SLT) problem (Chen &
Young, 2020), the objective is to construct a Steiner tree
that simultaneously minimizes the total weight and the path
length from the root r to each terminal in S. We say a Steiner
tree T is α-shallow, if dT (r, s) ≤ α·dG(r, s) for each s ∈ S,
and is β-light, if w(T ) ≤ β · w(T ∗), where T ∗ is a Steiner
tree with the minimum total weight (a.k.a., the minimum
Steiner tree). Our goal is to find (α, β)-SLTs minimizing
both α and β. An SLT is an interpolation between the
minimum Steiner tree and the shortest path tree.

A direct application of SLTs is the construction of timing-
driven routing trees for VLSI design. In VLSI design, we
consider rectilinear routing on a 2D plane, i.e., SLTs in
metric space (R2, ∥·∥1). (In fact, our results can be extended
to the general case (Rd, ∥ · ∥p) for any d, p ≥ 1.)

Chen & Young (2020) propose a practical heuristic, namely
SALT, for constructing rectilinear SLTs. For a parameter
ρ ≥ 0, it obtains a (1 + ρ, 2 + ⌈log 2

ρ⌉)-SLT. However, this
bound is generally loose in practice. It is important to tune
the value of ρ to obtain a tighter Pareto curve. We study the
problem of tuning the parameter ρ of SALT.

The SALT algorithm is described as follows: The algo-
rithm begins by calling a heuristic (Chu & Wong, 2008) to
obtain an approximate Steiner minimum tree T0. It then
performs a depth-first search on T0. During the search pro-
cess, the distance dist(v) from the root to each point v on
T0 is maintained. Whenever a node v is accessed such
that dist(v) > (1 + ρ) · ∥r − v∥1 (which induces shallow-
ness larger than 1 + ρ), we call v a breakpoint and update
dist(v) = ∥r − v∥1. After the search, a shortest path tree is
reconstructed for all breakpoints by calling a heuristic by
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Córdova & Lee (1994). The algorithm finally post-optimizes
the tree by performing some safe refinements.

Let A(ρ, I) be the output of SALT on an instance I with
the parameter ρ, we have the following lemma.

Lemma 4.1. For any SLT instance I , we can partition
[0,+∞) into at most n2 intervals, such that in each interval,
A(·, I) is constant.

This lemma can be proved by counting the values of ρ that
affect the breakpoints. This gives a sample complexity
bound by Theorem 3.2.

Corollary 4.2. Let u(·, I) denote any performance metric
function for SLT instance I . The sample complexity of u for
SALT is Õ

(
k
ε2

)
.

4.2. Bi-criterion minimum spanning trees

Given an undirected graph G = (V,E) with each edge e ∈
E associated with two positive weights w1(e) and w2(e),
we consider the problem of bi-criterion minimum spanning
trees, i.e., constructing spanning trees T such that the total
weights (W1(T ),W2(T )) = (

∑
e∈T w1(e),

∑
e∈T w2(e))

are both minimized. Ravi & Goemans (1996) consider the
budget-constrained version of this problem, and propose a
(1, 2)-approximation algorithm. Concretely, given a bud-
get constraint W̄2, the algorithm considers the following
problem,

min
xe

∑
e∈E

w1(e) · xe,

s.t
∑
e∈E

w2(e) · xe ≤ W̄2,

xe ∈ {0, 1}, ∀ e ∈ E,

{e |xe = 1, e ∈ E} forms a spanning tree.

Let W ∗
1 be the optimal weight of this problem. The Ravi-

Goemans algorithm finds a spanning tree with total weights
(W1,W2) such that W1 ≤ W ∗

1 and W2 ≤ 2W̄2 in almost-
linear time. Note that Ravi-Goemans cannot find a solution
T that exactly satisfies the constraint W2(T ) ≤ W̄2. To
balance W1(T ) and W2(T ), we need to carefully tune the
value of W̄2. In the following, we consider the problem of
learning parameters W̄2 for Ravi-Goemans.

The algorithm can be described as follows: Prune all edges
with w2(e) > W̄2. Let

L(z) = min
spanning tree x

∑
e∈E

(w1(e) + w2(e) · z)xe − W̄2 · z

denote the Lagrangian function of the problem. The al-
gorithm solves the Lagrangian relaxation maxz≥0 L(z).
Let z∗ denote the optimal solution. The algorithm finds
the spanning tree T with the least

∑
e∈T w2(e) such that∑

e∈T w2(e) ≥ W̄2. See Figure 1 for an illustration.

𝑊1

slope = 𝑊2 −𝑊2

𝑧∗

𝐿(𝑧)

Figure 1. An illustration of Goemans-Ravi algorithm.

Let A(ρ, I) denote the output of Goemans-Ravi on an in-
stance I with W̄2 equal to ρ, we have the following lemma.

Lemma 4.3. For any instance I , A(·, I) is a piecewise-
constant function with at most O(|V |2) pieces.

Corollary 4.4. Let u(·, I) denote any performance met-
ric function for bicriterion MST instance I . The sample
complexity of u for Goemans-Ravi is Õ

(
k
ε2

)
.

5. Applications to Local Search
5.1. Vanilla local search

In this section, we consider multi-objective optimization
using local search algorithms. Local search, as well as
its variant, simulated annealing, is widely used in various
combinatorial optimization problems. If the problem has
multiple objectives, the most natural and popular method
is to optimize a weighted sum of the objectives. Such ex-
amples include Sechen & Sangiovanni-Vincentelli (1986),
Chen et al. (2008), Yu et al. (2022), etc.

We define the following general model for local search: Let
S denote the states of the search algorithm. (Note that |S|
can be very large, e.g., exponential in the problem size.)
Each state S ∈ S has a set of neighbors N(S) ⊆ S \ {S}.
We use n to denote the maximum number of neighbors
for all states S. Each state S is also associated with two
costs c1(S), c2(S). Without loss of generality, we assume
c1(S), c2(S) ∈ [0, 1]. We use a weighted sum method to
find a state Ŝ such that c(Ŝ) = (1− ρ) · c1(Ŝ) + ρ · c2(Ŝ)
is minimized.

We consider the standard local search algorithm by Johnson
et al. (1988). Initially, the local search algorithm starts from
an arbitrary but fixed state S0 ∈ S. For each iteration t ∈
[T ], the algorithm enumerates the neighbors of the current
state S, and finds S′ ∈ N(S) with the minimal c(S′). If
c(S′) ≤ c(S), let S ← S′. Otherwise, the algorithm stops.
Notice that a local search algorithm may converge after an
exponential number of iterations. Thus, we define T , an
upper bound of the iteration number. If the algorithm does
not converge, we directly output the state S after iteration
T , which is a technique generally applied in practice.
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LetD be a distribution of problem instances,A(ρ, I) denote
the output of the local search algorithm using parameter ρ
on instance I , and u(P, I) denote the performance metric.
We have the following lemma.

Lemma 5.1. For any instance I , we can partition [0, 1] into
at most (n+ 1)T intervals, such that A(·, I) is constant in
each interval. Moreover, there exists an instance such that
the number of pieces is at least nΩ(T ).

By Theorem 3.2, this gives a sample complexity bound
of Õ

(
kT
ε2

)
. We cannot further improve this bound using

Theorem 3.2 since Lemma 5.1 also gives an asymptotically
tight lower bound.

However, we can overcome this barrier using smoothed
analysis. The philosophy of smoothed analysis is that the
instances in practice always contain some randomness so
that the worst case almost never exists.

We say a real random variable is κ-bounded, if its probability
density function is upper bounded by κ. For example, a
uniform distribution over an interval of length 1/κ is κ-
bounded. We call an instance κ-smoothed, if the costs c1(S)
and c2(S) are sampled individually and independently from
κ-bounded distributions on [0, 1] for each S ∈ S . Therefore,
a κ-smoothed instance is an instance distribution such that
the costs are perturbed with a small random noise.

Using smoothed analysis, we can reduce the number of
pieces to polynomial size, leading to an Õ

(
k
ε2

)
sample

complexity. The key proof technique is that, due to the
random noise, the discontinuities produced in each iteration
are (poly(T, n) · κ)-bounded. Thus, if the length of a piece
is small, in the next iteration, it will not produce new pieces
in expectation as much as in the worst case. By an induction
on the iteration number, we show a polynomial upper bound
on the expected number of pieces.

Theorem 5.2. Let D̃ be a distribution over κ-smoothed
local search instances. The sample complexity of u on D̃ is
Õ
(

k
ε2

)
.

5.2. Simulated annealing

Simulated annealing (SA) is a variant of the local search
method, which has gained great success in many practical
problems. We extend our sample complexity results for
multi-objective local search to simulated annealing.

We consider the following simulated annealing algorithm:

1. Initialize the state S ← S0 for some arbitrary but fixed
S0 and t← 1. Mark S0 as visited.

2. Randomly sample a state S′ ∈ N(S), and compute
∆ = c(S)− c(S′).

3. If S′ is not visited, mark S′ as visited and with proba-
bility min{exp(∆/τt), 1}, set S ← S′ (where τt > 0

for any t ∈ [T ] is the temperature of the algorithm).
4. Let t← t+ 1. If t < T , goto Step 2.

Note that we assume the algorithm does not access any
state twice. We make this assumption to provide enough
probabilistic independence to make the smoothed analysis
possible. This assumption is not very strong since the prob-
lem state is usually high-dimensional in practice, and the
algorithm seldom repetitively accesses a state.

Since simulated annealing is a randomized algorithm, we
also make the following assumption for simplicity of analy-
sis. We assume the randomness of the algorithm is prede-
termined as part of the input. Concretely, in Step 2 of the
algorithm, for each pair of state S and iteration t, we assume
the sample S′ = sample(S, t) ∈ N(S) is fixed as we vary
the value of ρ. In Step 3, the algorithm accepts the new state
by checking whether prob(t) ≤ min{exp(∆/τt), 1} where
prob(t) is uniformly sampled over [0, 1] for t = 1, . . . , T
before executing the algorithm. Now, an instance I is in
the form of (inst, sample(·, ·), prob(·)), where inst denotes
the local search problem instance, and sample, prob denote
the randomness of the algorithm. Then, the distribution is
a joint distribution over problem instances and algorithmic
randomness. This formulation is reasonable, since in prac-
tice, for an instance I in the training set, we cannot obtain
the expected performance of the algorithm on I , but rather
observe the performance of the algorithm on I for some
random seed. Thus, we can regard the random seed coming
from the instance distribution.

Let D be a joint distribution over instances and algorithmic
randomness, A(ρ, I) denote the output of the algorithm
using parameter ρ on I , and u(P, I) denote the performance
metric. Using a similar analysis to Lemma 5.1, the worst-
case sample complexity is also Õ

(
kT
ε2

)
, and we can reduce

the bound by smoothed analysis.
Theorem 5.3. The sample complexity of u for κ-smoothed
simulated annealing is Õ

(
k
ε2

)
.

6. Applications to Linear Programming
6.1. General LP

Another application of our framework is multi-objective
linear programs. Consider the following problem,

max
x

cT · x, s.t. Ax ≤ b,

where x ∈ Rn, A ∈ Rr×n, b ∈ Rr, and c = (1 − ρ) · c1 +
ρ · c2 ∈ Rn is the convex combination of two objectives c1
and c2. Let A(ρ, I) denote the output on instance I with
parameter ρ. Let u(P, I) denote a metric function on multi-
objective LP instance I with ρ ∈ P = {ρ1, . . . , ρk}. We
study the sample complexity of tuning P to optimize the
metric EI [u(·, I)].
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𝑐1𝑥

𝑐2𝑥

Projection

Shadow path

Figure 2. An illustration of shadow path (blue) and its projection
to the (cT1x, c

T
2x) plane.

The sample complexity of u(·, I) for multi-objective LPs
is Õ

(
kn
ε2

)
. This is obvious since the number of pieces for

A(·, I) is upper bounded by the number of vertices of the
polyhedron Q = {x |Ax ≤ b}, which is O(rn).

We can also use smoothed analysis to improve the worst-
case sample complexity bound. Let Q[c] denote the face of
Q maximizing cTx. We aim to bound the smoothed number
of faces Q[c] as ρ varies from zero to one. This is the same
as the shadow path of Q, which is proposed in previous
work studying the smoothed complexity of the Simplex
method for LPs. We can hence apply off-the-shelf results of
shadow paths to obtain sample complexity bounds.

Definition 6.1 (Shadow path). Let Q ⊆ Rn be a polyhe-
dron. Given two vectors c1, c2 ∈ Rn, there exists a unique
sequence of faces Q(c1, c2) = (v0, e1, v1, . . . , el, vl) of Q,
and a sequence 0 = ρ0 < ρ1 < · · · < ρl < ρl+1 = 1 such
that (1) for 1 ≤ i ≤ l, ei = Q[(1 − ρi)c1 + ρic2]; (2) for
0 ≤ i ≤ l and ρ ∈ (ρi, ρi+1), vi = Q[(1− ρ)c1 + ρc2]; (3)
for 1 ≤ i ≤ l − 1, vi = ei ∩ ei+1. Q(c1, c2) is called the
shadow path of Q with respect to c1, c2 (see Figure 2).

Under random perturbations, we have dim ei = 1 for 1 ≤
i ≤ l almost surely. Therefore, without loss of generality,
the shadow path is indeed a “path” where {vi} are vertices
and {ei} are edges.

To illustrate the optimization objectives, we can project
the shadow path to the plane by mapping each point x ∈
Q(c1, c2) to (cT1x, c

T
2x). This results in a concave curve and

we use slope(ei) to denote the slope of ei after projection.

Spielman & Teng (2004) study the shadow path size of the
smoothed LP model, max cTx, (A + Â)x ≤ b + b̂, where
the rows of (A, b) are normalized with l2 norms at most 1,
and each entry of Â, b̂ is an independent Gaussian noise2

with zero mean and 1/κ2 variance.

Theorem 6.2 (Spielman & Teng (2004)). The expected size
of any shadow path for Q = {x | (A + Â)x ≤ b + b̂} is
upper bounded by poly(n, r, κ).

2The Gaussian distribution N (0, κ−2) is κ
2π

-bounded. Sadly,
current results of smoothed analysis for linear programs only hold
for particular distributions, such as Gaussian or Laplacian noises.

Corollary 6.3. The sample complexity for smoothed multi-
objective linear programs is Õ

(
k
ε2

)
.

6.2. Special LP: Markov decision processes

The smoothed shadow path bound for general linear pro-
grams requires Gaussian noises on all coefficient entries. We
can relax the smoothed analysis model if the linear program
has a special structure.

In the following, we study multi-objective Markov deci-
sion processes (MDPs), which can be formulated as a spe-
cial kind of linear programming. MDP is the fundamental
model for reinforcement learning and stochastic optimiza-
tion. An MDP consists of the following components: A set
of states S, a set of actions A, a transition probability map
P[St+1 |St, At], a reward function R : S × A → [−1, 1],
and a discount factor γ ∈ (0, 1). We aim to find a policy
π : S → A to maximize the expected accumulated reward
using π. For the case of multi-objective MDPs, a natural
approach is to optimize the weighted sum of multiple reward
functions, e.g., Goldie & Mirhoseini (2020) and Yang et al.
(2023).

It is well-known that MDPs can be solved by linear pro-
gramming (Bertsekas & Tsitsiklis, 1996):

min
V

∑
s∈S

d(s) · V (s),

s.t. V (s) ≥ R(s, a) + γ
∑
s′∈S

P[s′ | s, a]V (s′),

∀ s ∈ S, a ∈ A.

Here, V is the value of Bellman’s equation, and d can be in-
terpreted as a distribution over S such that

∑
s∈S d(s) = 1.

Then, the objective is equal to the total expected accumu-
lated reward if the initial state is sampled from this dis-
tribution. Since the optimal policy is independent of the
initial state, we can set d as an arbitrary positive vector. For
simplicity of analysis, we set d(s) = 1/|S|, i.e., a uniform
distribution over S.

To define a multi-objective MDP, we assume the reward
function R(s, a) = (1−ρ) ·R1(s, a)+ρ ·R2(s, a) for 0 ≤
ρ ≤ 1. We aim to learn a set of k values of ρ to maximize
the performance metric u. In the worst case, an upper bound
for the sample complexity of u(·, I) is Õ(k|S|ε−2), since
there are at most |A||S| choices of the policy. Thus, we
can partition [0, 1] into at most |A||S| intervals such that the
optimal policy is constant for ρ in each interval.

Now, we consider the smoothed analysis setting. We assume
that the rewards R1(s, a) and R2(s, a) for each pair (s, a)
are sampled independently from κ-bounded distributions
over [−1, 1]. Such instances are called κ-smoothed.
Theorem 6.4. The sample complexity for κ-smoothed multi-
objective MDPs is Õ

(
k
ε2

)
.
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To apply the shadow path method, we instead consider the
dual problem of the MDP:

max
µ

∑
s∈S

∑
a∈A

R(s, a) · µ(s, a),

s.t.
∑
a∈A

µ(s, a) = d(s) + γ
∑
s′∈S

∑
a∈A

P[s | s′, a]µ(s′, a),

µ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

Lemma 6.5. The expected size of the shadow path of
the κ-smoothed dual MDP problem is upper bounded by
O
(

|S|2|A|κ
1−γ

)
.

Theorem 6.4 is a direct corollary of Lemma 6.5. The main
proof technique is to observe that for each vi on the shadow
path, there exists some (s, a) such that µ(s, a) = 0 for vi
and µ(s, a) > 0 for vi+1. We show that the contribution
of such (s, a) to slope(ei+1) is O(|S|κ/(1− γ))-bounded,
thus leading to a polynomial bound in expectation.
Remark 6.6. Although we prove a polynomial bound for
the shadow path size of MDPs in the smoothed setting, we
are unable to prove a super-polynomial lower bound in the
worst case. Note that the classic policy iteration method is
known to solve MDPs in polynomial time (Ye, 2011). It is
possible that the shadow path size is also polynomial in the
worst case. We left such analysis as future work.

7. Experiments
In this section, we perform empirical verifications of our the-
oretical results. Due to the page limit, we omit the detailed
experimental settings to Appendix E.

7.1. Generalization bounds

First, we verify the effectiveness of smoothed analysis in
our sample complexity analysis. We evaluate the generaliza-
tion bound on local search and Markov decision processes.
For local search, we consider the VLSI circuit partitioning
problem (Hu et al., 2022). For MDP, we consider a resource-
gathering problem in previous work on multi-objective rein-
forcement learning (Barrett & Narayanan, 2008).

We tune the parameter ρ of the weighted sum method, and
compute the maximum number of pieces in the piecewise
structure of the solution found by the algorithm. We report
the maximum number of pieces over problem instances of
a particular size. We also report the generalization error.
Since the performance metric may depend on the specific
application, we simply compute the maximum gap of two
objectives averaged on training and evaluation instances.
Note that the generalization error depends on the range of
the objective. We normalize the objective by the maximum
value among data sets to make the error between [0, 1].
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Figure 3. The number of discontinuities in the piecewise structure
(red) and the generalization error (blue) for local search (left) and
MDPs (right).

Table 2. The Pareto volume of learned parameters for SALT. Our
empirical risk minimization algorithm achieves larger Pareto vol-
umes, compared with the vanilla geometric series setting in SALT.

k ERM (ours) Vanilla SALT k ERM (ours) Vanilla SALT

1 0.1157 0.0159 7 0.1618 0.1233
2 0.1338 0.0206 8 0.1625 0.1399
3 0.1487 0.0374 9 0.1632 0.1511
4 0.1529 0.0557 10 0.1636 0.1573
5 0.1559 0.0782 11 0.1638 0.1610
6 0.1607 0.1030 12 0.1639 0.1626

The results are illustrated in Figure 3. The problem size
denotes the number of nodes (for circuit partitioning) and
the number of rows and columns of the grid environment
(for MDP). Although in the worst case, the number of pieces
may be exponential in the problem size, the empirical re-
sults show that the number of pieces grows mildly. This
indicates that the worst-case behavior does not appear in
practice and our smoothed analysis matches experiments.
As a consequence, the generalization error is also small.

7.2. Optimizing Pareto volume

Then, we experimentally show that the empirical risk mini-
mization algorithm in Section 3.2 can optimize the Pareto
volume of learned parameters. We conduct experiments
on shallow-light Steiner tree benchmarks from real-world
VLSI designs.

The original implementation of SALT uses a simple heuris-
tic that selects the values of ρ from a geometric series. We
compare our method with this baseline. Let k denote the
number of learned parameters. The result is listed in Ta-
ble 2. The empirical risk minimization algorithm obtains
larger Pareto volume for the shallowness-lightness curve,
especially when k is small. This indicates the strength of
an empirical risk minimization algorithm in tuning a multi-
objective optimization algorithm.

8. Conclusion
This work studies the sample complexity of data-driven
algorithm configuration for multi-objective optimization al-
gorithms. We present sample complexity bounds for several
applications, in which the algorithmic behavior exhibits a
piecewise-constant structure.
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Our work suggests several directions for future research.
First, as discussed in Section D.2, can we extend the
smoothed analysis to the case of more than 2 objectives? We
conjecture that a smoothed sample complexity of Õ(kdε−2)
is possible for d objectives. Second, can we extend the sam-
ple complexity bound for MDPs to environments beyond
tabular cases, e.g., MDPs with continuous features? Finally,
can we prove sample complexity bounds for branch-and-
bound solvers of integer linear programs? The analysis will
be much harder since the algorithm solves a relaxed linear
program on each search tree node.
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A. Related Work
In the following, we briefly survey related work to ours, and discuss comparisons with them.

Data-driven algorithm design. Gupta & Roughgarden (2017) initially establish the framework of data-driven algorithm
design, where both statistical learning and online learning settings are considered. For statistical learning, this framework
has been applied to learning branch policies for branch-and-bound (Balcan et al., 2018a), learning cuts for branch-and-
cut (Balcan et al., 2022; Cheng et al., 2024), parameter tuning for string alignment and mechanism design (Balcan et al.,
2021a), learning embeddings for A* search (Sakaue & Oki, 2022), data-driven numerical linear algebra (Bartlett et al., 2022),
tuning decision tree models (Balcan & Sharma, 2024), to name a few. For online learning, this framework has been applied
to tuning greedy heuristics (Gupta & Roughgarden, 2017; Balcan et al., 2018b), tuning clustering algorithms (Balcan et al.,
2020a), tuning linear system solvers (Khodak et al., 2024), etc. Our work focuses on statistical learning of multi-objective
optimization algorithms.

Our main technical tool is smoothed analysis, which reduces the intrinsic complexity of the parameterized multi-objective
optimization algorithm family. Note that smoothed analysis is also applied in online learning of data-driven algorithm
design (Gupta & Roughgarden, 2017; Balcan et al., 2018b) (i.e., the dispersion property in Balcan et al. (2018b)). In fact,
their regret bounds can be turned into statistical ones by applying online-to-batch results. However, we emphasize that
our method is different from dispersion. Dispersion is proposed to overcome the impossibility of no-regret online learning
for worst-case instances. For a family of parameterized algorithms with K discontinuities in the piecewise structure, the
dispersion property says that these K discontinuities do not concentrate tightly in the smoothed analysis setting, and thus
no-regret online learning is possible by making a discretization-based method. However, the dispersion property does not
present tools for bounding the number of discontinuities K. Our work shows that the number of discontinuities in the
piecewise structure can be greatly reduced (i.e., from exponential to polynomial) using smoothed analysis. Therefore, our
technique is orthogonal to dispersion.

Balcan et al. (2020b) also propose a method to reduce the intrinsic complexity of the piecewise structures. They use a
surrogate function with a simpler structure to approximate the original performance metric function. This approach yields a
data-dependent numerical bound for the generalization error. In contrast, our work considers asymptotic bounds without
accessing the concrete training data.

Finally, we remark that smoothed analysis is also applied to interpolate between distributional and adversarial settings of
classic learning problems, such as online prediction (e.g., Rakhlin et al. (2011)). Our technique is different from classic
learning problems since our analysis focuses on the combinatorial structure of multi-objective optimization algorithm
configuration.

Algorithm configuration for multi-objective optimization. Algorithm configuration is concerned with the problem of
searching parameter configurations of a parameterized algorithm. Several work (Zhang et al., 2015; Blot et al., 2016; 2019;
Xue et al., 2022; Yu et al., 2024; Wang et al., 2025) have been devoted to algorithm configuration with multiple objectives.
We refer readers to a comprehensive survey of algorithm configuration (Schede et al., 2022). These work are generally
empirical, and the theoretical foundation of multi-objective algorithm configuration is lacking.

Machine learning for multi-objective optimization. Previous work also explores the integration of machine learning
techniques into multi-objective optimization. Zhao et al. (2022) combine learning models with Monte-Carlo tree search to
improve multi-objective black-box optimization algorithms. Zhang et al. (2023) consider modeling the Pareto set using
neural networks. These work are different from ours since we focus on tuning the parameter of multi-objective optimization
algorithms.

Smoothed analysis of algorithms. Smoothed analysis is proposed by Spielman & Teng (2004) to explain the efficiency of
the Simplex method for linear programs in practice. They show that, with a small Gaussian noise on the linear programming
instance, the expected time complexity of Simplex is polynomial, breaking the exponential lower bound in worst-case
analysis. Smoothed analysis has then been applied to go beyond worst-case analysis of many algorithms.

A related work to ours is due to Röglin & Teng (2009), which shows that a multi-objective binary integer program has only
a polynomial number of Pareto-optimal solutions under smoothed analysis. However, their work is different from ours: (1)
They consider the optimal Pareto solution set of the problem, while we focus on the behavior of algorithms (which may not
produce optimal solutions); (2) Their analysis focuses on binary integer programs, while our framework can be applied to
other problems.
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B. Preliminaries
In this section, we introduce preliminaries on multi-objective optimization and statistical learning theory, which serve as
fundamental tools for our analysis. We refer readers to, e.g., Mohri et al. (2018) for more details of learning theory.

B.1. Preliminaries on multi-objective optimization

For a maximization problem3 with d objectives, we use an objective vector o ∈ Rd
+ to denote the d objectives of a solution.

An objective vector o is said to be dominated by another o′ if oi ≤ o′i for any 1 ≤ i ≤ d. We use o ⪯ o′ to denote
domination.
Definition B.1 (Pareto volume). For a set of solutions S =

{
o(1), . . . , o(n)

}
, the Pareto volume Vol(S) is the (hyper-)volume

of the set that contains points dominated by at least one point in S, i.e.,

Vol(S) =

∫
o∈Rd

+

I(∃ o′ ∈ S, o ⪯ o′)do.

B.2. Preliminaries on learning theory

Definition B.2 (VC- and pseudo-dimension). Let H denote a set of functions from some domain X to R. A finite set
S = {x1, . . . , xm} ⊆ X is shattered byH, if there exist witnesses r1, . . . , rm such that, for each of the 2m subsets T ⊆ S,
there exists h ∈ H such that h(xi) > ri if and only if xi ∈ T . The pseudo-dimension Pdim(H) is the cardinality of the
largest subset of X shattered byH. Specially, if h ∈ H are binary functions (h : X→ {−1, 1}), the pseudo-dimension is
also called the VC-dimension VCdim(H).

By definition, we have the following fact.
Fact B.3. Let H be a function class from some domain X to R, and H′ = {h′ |h′ : (x, r) 7→ sgn(h(x)− r), h ∈ H, x ∈
X, r ∈ R}. Then, we have VCdim(H) = Pdim(H′).
Lemma B.4 (Sauer). Let H be a function class from some domain X to {1,−1} with VCdim(H) = d. For any S =
{x1, . . . , xm} ⊆ X, we have

|{(h(x1), . . . , h(xm)) |h ∈ H}| ≤
d∑

i=0

(
m

i

)
= O(md).

Definition B.5 (Rademacher complexity). LetH denote a set of functions from some domain X to [0, H]. The empirical
Rademacher complexity ofH for a finite set S = {x1, . . . , xm} ⊆ X is

R̂S(H) = Eσ∼{−1,1}m

[
sup
h∈H

1

m

m∑
i=1

σih(xi)

]
,

where each σi is independently and uniformly sampled from {−1, 1}. The Rademacher complexity of H is RD(H) =
ES∼Dm [R̂S(H)] where each xi ∈ S is independently sampled from some distribution D.
Lemma B.6 (Massart). For a function classH from X to [0, H], and S = {x1, . . . , xm} ⊆ X, we have

R̂S(H) ≤ H

√
2 log |A|

m
,

where A = {(h(x1), . . . , h(xm)) |h ∈ H} is the set of all possible values of h ∈ H on S.
Theorem B.7 (Uniform convergence). Given m i.i.d. samples S = {x1, . . . , xm} from a distribution D, for any δ ∈ (0, 1),
with probability at least 1− δ, for any h ∈ H, we have∣∣∣∣∣ 1m

m∑
i=1

h(xi)− Ex∼D[h(x)]

∣∣∣∣∣ ≤ O(1) ·

(
complexity(H) +H

√
1

m
log

1

δ

)
,

where complexity(H) is the Rademacher complexityRD(H), the empirical Rademacher complexity R̂S(H), or a pseudo-

dimension-based term H
√

Pdim(H)
m .

3For minimization problems, we can transform it into a maximization problem by selecting a baseline with objectives (o∗1, . . . , o∗d),
and consider the Pareto volume of (o∗1 − o1, . . . , o

∗
d − od) for objectives (o1, . . . , od).

13
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C. Omitted Proofs
C.1. Proofs in Section 3.1

Proof of Theorem 3.2. Let U = {u(P, ·) |P ∈ Pk}. By Theorem B.7, it suffices to bound the pseudo-dimension
Pdim(U) = O(k log t).

Suppose Pdim(U) = m. Let S = {I1, . . . , Im} be m instances that can be shattered by U and r1, . . . , rm ∈ R be the
witnesses. For every S′ ⊆ S, there exists PS′ ∈ Pk such that Ii ∈ S′ if and only if u(P, Ii) > ri. Let M = {PS′ |S′ ⊆ S}
and |M | = 2m.

By Definition 3.1, the parameter space P can be partitioned into t intervals such that in each interval, A(·, I) is constant.
Combining the intervals for m instances, we can partition P into m · t intervals such that the function is constant on
all m instances. Since P ∈ Pk, the vector (u(P, I1), . . . , u(P, Im)) can take at most (mt)k values. Therefore, we have
2m = |M | ≤ (mt)k. Solving for m yields m = O(k log t).

Proof of Theorem 3.3. For simplicity, we use EI∼D̃[·] to denote EĨ∼D̃EI∼Ĩ [·]. Given instances I[m] = {I1, . . . , Im}, let
R̂I[m]

(U) = Eσ

[
supP∈Pk

1
m

∑m
i=1 σiu(P, Ii)

]
be the empirical Rademacher complexity of U = {u(P, ·) |P ∈ Pk}. Let

R(U) = EI[m]∼D̃m [R̂I[m]
(U)] be the Rademacher complexity. Our goal is to bound the Rademacher complexity of U .

Notice that
R(U) = E

Ĩ[m]∼D̃m
E

I[m]∼Ĩ[m]

[R̂I[m]
(U)] ≤ sup

Ĩ[m]

E
I[m]∼Ĩ[m]

[R̂I[m]
(U)].

For any m smoothed instances Ĩ1, . . . , Ĩm, we define the smoothed empirical Rademacher complexity as R̃Ĩ[m]
(U) =

EI[m]∼Ĩ[m]
[R̂I[m]

(U)]. Combining the t intervals for each instances, and considering the choice of k parameters, we have∑m
i=1 u(P, Ii) takes at most (mt)k values. By Massart’s lemma, we have

R̃Ĩ[m]
(U) ≤ O(1) · E

I[m]∼Ĩ[m]

[√
log((mt)k)

m

]

= O(1) · E
I[m]∼Ĩ[m]

[√
k(log t+ logm)

m

]
≤ O(1) ·

√
k(logEI∼Ĩ [t] + logm)

m
,

where the last inequality is due to Jensen’s inequality. This yields the desired result by Theorem B.7.

C.2. Proofs in Section 3.2

Proof of Lemma 3.5. It is obvious that Vol is monotone. We only prove the submodularity. For any T1 ⊆ T2 ⊆ S, and
u0 ∈ S \ T2, we have

(Vol(T1 ∪ {u0})− Vol(T1))− (Vol(T2 ∪ {u0})− Vol(T2))

=

∫
u

(I((∀u′ ∈ T1, u ⪯̸ u′) ∧ (u ⪯ u0))− I((∀u′ ∈ T2, u ⪯̸ u′) ∧ (u ⪯ u0)))du

=

∫
u

I((∀u′ ∈ T1, u ⪯̸ u′) ∧ (∃u′ ∈ T2 \ T1, u ⪯ u′) ∧ (u ⪯ u0))du

≥ 0,

which satisfies Definition 3.4.

Proof of Theorem 3.6. Since A(ρ, I) is piecewise-constant, it suffices to consider selecting ρ from at most t ·m pieces.
Note that the average of Vol is also monotone and submodular. We can use the greedy algorithm to approximately maximize
the empirical Pareto volume.

Fact C.1 (Wolsey & Nemhauser (1999)). The greedy algorithm that selects k elements to maximize a monotone and
submodular function yields (1− 1

e )-approximation to the optimal solution.

14
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Let P ∗ denote the optimal set of parameters that maximize EI∼D[u(P, I)], P̂ ∗ denote the optimal solution to problem (1),
and P̂ denote the solution found by the greedy algorithm in Fact C.1. We have, with probability at least 1− δ,

EI∼D[u(P̂ , I)] ≥ 1

m

m∑
i=1

u(P̂ , Ii)−O

(√
1

m
(k log t+ log δ−1)

)

≥
(
1− 1

e

)
· 1
m

m∑
i=1

u(P̂ ∗, Ii)−O

(√
1

m
(k log t+ log δ−1)

)

≥
(
1− 1

e

)
· 1
m

m∑
i=1

u(P ∗, Ii)−O

(√
1

m
(k log t+ log δ−1)

)

≥
(
1− 1

e

)
· EI∼D[u(P

∗, I)]−
(
2− 1

e

)
·O

(√
1

m
(k log t+ log δ−1)

)
,

which is the desired result by plugging in m. The first and the last inequality comes from Theorem 3.2, the second inequality
comes from Fact C.1, and the third inequality is due to the optimality of P̂ ∗.

Proof of Theorem 3.7. Proof by reduction from maximum k-set-cover. The max k-cover problem is defined as follows:
Given a universe U = {a1, . . . , am}, t subsets S1, . . . , St ⊆ U , and an integer k. We aim to select k sets from S1, . . . , St,
such that the union of the k sets has maximum cardinality.

Theorem C.2 (Theorem 5.3 of Feige (1998)). For any ε > 0, max k-cover cannot be approximated in polynomial time
within a ratio of (1− 1

e + ε), unless P = NP.

Given a max k-cover instance, we construct an instance of problem (1). Each element in the universe corresponds to a
training sample Ii. The algorithm A(·, Ii) contains t pieces, and we let the partition of pieces be the same for each sample
xi. In piece j of Ii, if ai ∈ Sj , we let A(·, Ii) = (1, 1) (i.e., with Pareto volume 1). Otherwise, we let A(·, Ii) = (0, 0) (i.e.,
with Pareto volume 0). Therefore, selecting k subsets from S1, . . . , St is equivalent to selecting k pieces to maximize the
Pareto volume. Since the reduction preserves the approximation ratio, our result follows from Theorem C.2.

C.3. Proofs in Section 4

Proof of Lemma 4.1. As the value of ρ varies from 0 to +∞, the output of SALT changes as some point v becomes or is no
longer a breakpoint. Such discontinuities happen as ρ = dist(v)

∥r−v∥1
− 1. Fix the point v. The value of ∥r − v∥1 is a constant,

and the distance from the root r to v on the tree dist(v) is in the form of ∥r − v′∥1 + dT (v
′, v) for some v′ ∈ S, where

dT (v
′, v) is the distance between v′ and v on the initial Steiner minimum tree. Therefore, dist(v) can take at most n− 1

values. Combining the breakpoints for each v ∈ S, the number of discontinuities is at most n(n− 1) + 1 ≤ n2.

Proof of Lemma 4.3. It is easy to notice that the behavior of the algorithm is fixed if z∗ is fixed (see Figure 1). Therefore, it
suffices to consider the number of pieces of L(z) (the red segments in Figure 1).

The following property is crucial to our analysis.

Lemma C.3 (Lemma 3.2 of Ravi & Goemans (1996)). Suppose T and T ′ are two spanning trees corresponding to two
adjacent segments of L(z). Then, T and T ′ differ by only a single edge swap (i.e., there exist e ∈ T and e′ ∈ T such that
T ′ = (T − e) ∪ e′).

Let T1, . . . , Tn denote the spanning tree that minimizes L(z) as z varies from 0 to +∞. We use (ei, e
′
i) ∈ E2 to denote the

edge swap between Ti and Ti+1 in Lemma C.3 for i ∈ [n− 1]. We claim that each pair of edges (e, e′) ∈ E2 only appears
at most once in {(ei, e′i) | i ∈ [n− 1]}.

Proof by contradiction. Suppose there exist i ̸= j such that (ei, e′i) = (ej , e
′
j). We consider the intersection point

of W1 + W2 · z for Ti, Ti+1 and Tj , Tj+1. The line W1(Ti) + W2(Ti) · z intersects W1(Ti+1) + W2(Ti+1) · z at
z = |W1(Ti)−W1(Ti+1)|

|W2(Ti)−W2(Ti+1)| =
|w1(ei)+w1(e

′
i)|

|w2(ei)+w2(e′i)|
. Similarly, W1(Tj) +W2(Tj) · z also intersects W1(Tj+1) +W2(Tj+1) · z at
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λ1
λ1 + λ2

Figure 4. The discontinuity point of local search for two states S and S′.

z =
|w1(ej)+w1(e

′
j)|

|w2(ej)+w2(e′j)|
. Both points have the same z coordinate. However, it is impossible that Ti, Ti+1, Tj , Tj+1 all lie on the

minimum segments of L(z). This is a contradiction.

C.4. Proof of Lemma 5.1

Proof. (Upper bound.) Proof by induction. We claim that after iteration t, the algorithmic behavior is piecewise-constant
with at most (n+ 1)t pieces.

Initially, t = 0, and there is only one interval [0, 1]. Suppose our claim holds for iteration t, and consider the next iteration
t + 1. Fix an interval [a, b] from the total of (n + 1)t sub-intervals after iteration t. If ρ ∈ [a, b], after t iterations, the
algorithm finds a fixed state S, and explores the neighborhood N(S). Consider the weighted sum of costs for states in
N(S). The cost c(S′) = (1− ρ) · c1(S′) + ρ · c2(S′) for each S′ ∈ {S} ∪N(S) is a linear function with respect to ρ. In
iteration t+ 1, the algorithm finds the state S′ with the least cost c(S′). (If c(S) is the minimum, the algorithm terminates,
and no more sub-intervals are created.) Note that the minimum of n+ 1 lines is a piecewise-linear function with at most
n + 1 pieces. Therefore, the interval [a, b] is divided into at most n + 1 sub-intervals such that in each sub-interval the
algorithmic behavior is fixed in iteration t+ 1. Combining the sub-intervals for each interval [a, b] yields a total of at most
(n+ 1) · (n+ 1)t = (n+ 1)t+1 sub-intervals for iteration t+ 1, which is the desired result.

(Lower bound.) We construct the instance as follows. The states and the neighborhood relations form a rooted tree. The root
is the initial state S0, and the tree is a full (n− 1)-ary tree with depth T . Each non-leaf node has n− 1 children.

The cost of the root is c1(S0) = c2(S0) = 1, and corresponds to the whole interval [0, 1]. We recursively set the costs of
each node. Suppose a node p corresponding to state S and interval [a, b] is not a leaf, and c1(S) = C1, c2(S) = C2. We let
the n− 1 children p1, . . . , pn−1 of p correspond to states S1, . . . , Sn−1, respectively.

Let ∆ = b−a
n−1 and γ > 0 be a real number to be determined later. We set c2(Si) = C2− (n− i) ·γ for any i ∈ [n−1]. Then,

we set c1(S1) = C1 − γ(a+∆)
1−a−∆ , c1(S2) = c1(S1) − γ(a+2∆)

1−a−2∆ , · · · , c1(Sn−1) = c1(Sn−2) − γ(a+(n−1)∆)
1−a−(n−1)∆ . We can let γ

small enough such that c1(Sn−1) > 0 and c2(S1) > 0. It is easy to verify that the solution of (1− ρ) · c1(Si)+ ρ · c2(Si) =
(1 − ρ) · c1(Si+1) + ρ · c2(Si+1) is ρ = a + i∆. Since C1 > c1(S1) > · · · > c1(Sn−1) and c2(S1) < c2(S2) < · · · <
c2(Sn−1) < C2, we have p1, . . . , pn−1 correspond to intervals [a, a+∆], [a+∆, a+ 2∆], . . . , [b−∆, b], respectively.

Therefore, the tree has a total of (n− 1)T leaves, and each leaf corresponds to an interval of length 1/(n− 1)T . This gives
the (n− 1)T ≥ nT/2 = nΩ(T ) lower bound.

C.5. Proof of Theorem 5.2

To prove Theorem 5.2, we first prove a few lemmas. We fix a smoothed instance Ĩ and I ∼ Ĩ . Let E(α) denote the event
that A(α, I) = A(ρ, I) for any ρ ∈ [0, α). That is to say, if E(α) happens, we only need to consider ρ ∈ [α, 1]. The value
of α is to be determined later.

Lemma C.4. For any α < 0.5, we have PI [E(α)] ≥ 1− 2(n+ 1)2Tκα.

Proof. Let Et(α) denote the event that the behavior of the local search algorithm is fixed for ρ ∈ [0, α] in the t-th iteration.
We first bound the probability P[Et(α)].

Fix t ∈ [T ] and consider the iteration t. Let Si denote the state after iteration i (i ∈ [t]). By the principle of deferred
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decisions, we assume the costs c(S′) for any S′ ∈ Spast are fixed, where Spast = ∪t−1
i=0(N(Si) ∪ {Si}) contains the states

the algorithm has already accessed. Notice that any state S′ ∈ Spast satisfies c(S′) ≥ c(St−1). Let Snext = {S′ |S′ ∈
N(St−1), S

′ /∈ Spast}. In iteration t, the algorithm chooses the state S′ ∈ Snext with the minimal cost c(S′) and updates the
state. Therefore, the behavior of the algorithm changes as ρ passes a discontinuity point satisfying c(S) = c(S′), i.e.,

(1− ρ) · c1(S) + ρ · c2(S) = (1− ρ) · c1(S′) + ρ · c2(S′), (2)

for some S, S′ ∈ {St} ∪ Snext, S ̸= S′. If ρ ∈ [0, 1], the discontinuity point is ρ = λ1

λ1+λ2
, where λ1 = |c1(S)− c1(S

′)|,
and λ2 = |c2(S)− c2(S

′)| (see Figure 4). If ρ ∈ [0, α], we have 0 ≤ λ1 ≤ α
1−α · λ2 ≤ 2α. Since λ1 is 2κ-bounded (due to

the absolute value), we have P[Et(α)] ≥ 1− 2(n+ 1)2ακ using an union bound over choices of S, S′.

Finally, we consider the variance of t. A union bound over t = 1, . . . , T gives P[E(α)] ≥ 1− 2(n+ 1)2Tακ.

Lemma C.5. For a κ-smoothed instance Ĩ and I ∼ Ĩ , we can partition [α, 1] into #int intervals, such that in each interval,

A(·, I) is fixed. We have EI [#int] = O
(

n2Tκ
α2

)
.

Proof. We bound the expectation of the interval number by induction. Let #inti denote the number of intervals in [α, 1]
after iteration i. Similarly to Lemma C.4, we fix t ∈ [T ] and consider the iteration t. We follow the notations St,Spast,Snext
as in the proof of Lemma C.4.

Before iteration t, there are #intt−1 intervals. Each interval Q ⊆ [α, 1] is divided into at most (n+ 1)2 sub-intervals if the
value of ρ satisfying (2) lies in Q. As shown in the proof of Lemma C.4, the value of the discontinuity point ρ = λ1

λ1+λ2

(Figure 4), where λ1 and λ2 are random variables with support on [0, 1] and probability density at most 2κ. By the principle
of deferred decisions, we fix the value of λ1. We claim that the probability density of the discontinuity point ρ is at most
O(κα−2), due to the following claim.

Claim C.6. If a real random variable X has density at most κ, and Y = z/(X + z′) satisfies Y ≥ α > 0 almost surely.
Then, Y has density at most O(|z|α−2κ).

Proof. Let pX(x) and pY (y) denote the probability density function of X and Y . We have X = g(Y ) = z/Y − z′.
Therefore, pY (y) = pX(g(y)) · |g′(y)| ≤ κ · |z|y2 ≤ |z|κ

α2 , which is the desired result.

Suppose the length of interval Q is l. In expectation, Q produces at most O(ln2κα−2) new sub-intervals. Combining all
intervals Q, the total number of new intervals after iteration t in expectation is at most O

(
n2κα−2

)
.

Therefore, we have E[#intt] = E[#intt−1] +O
(
n2κα−2

)
, which means E[#int] = O

(
n2Tκ
α2

)
.

Now we are ready to prove Theorem 5.2. The general idea is to show that with high probability, the event E(α) happens for
all m instances. The total number of possible values for

∑m
i=1 u(P, Ii) is upper bounded by (m ·#int)k, which gives an

Õ(
√
k/m) bound for the smoothed Rademacher complexity.

Proof of Theorem 5.2. Given m κ-smoothed instances Ĩ1, . . . , Ĩm, we aim to bound the smoothed Rademacher complexity
R̃Ĩ[m]

(U), where U denotes the function class {u([ρ1, . . . , ρk], ·) | 0 ≤ ρi ≤ 1}.

By Lemma C.4 and a union bound over m instances, we have with probability at least 1− 2m(n+ 1)2Tκα,

m∑
i=1

u([ρ1, . . . , ρk], Ii) =

m∑
i=1

u([α, . . . , α], Ii), ∀ 0 ≤ ρ1, . . . , ρk ≤ α. (3)

Then, it suffices to consider ρ ∈ [α, 1]. We use E[m] to denote the event that (3) happens. To make the probability that E[m]

happens high enough, we set α = 1
m(n+1)2T 2κ . Therefore, we have P[E[m]] ≥ 1− 1

T . We also have E[#int] = O(n6T 5κ3),

which is exponentially smaller than the worst-case nO(T ) bound. This gives a high-probability logarithmic generalization
error bound.
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Let #int[0,1] denote the total number of intervals for ρ ∈ [0, 1]. By Massart’s lemma, we have

R̃Ĩ[m]
(U) ≤ O(1) · E

[√
k log(m ·#int[0,1])

m

]

≤ O(1) ·

(
E

[√
k log(m ·#int)

m

∣∣∣∣∣ E[m]

]
P(E[m]) + E

[√
k log(m ·#int[0,1])

m

∣∣∣∣∣ Ē[m]

]
P(Ē[m])

)
.

Recall that in the worst-case, #int[0,1] ≤ (n+ 1)T . Since P[E[m]] > 1− 1
T , we have

R̃Ĩ[m]
(U) ≤ O(1) ·

(
E

[√
k log(m ·#int)

m

∣∣∣∣∣ E[m]

]
+

√
kT log(mn)

m
· 1
T

)

≤ O(1) ·

(
E

[√
k log(m ·#int)

m

]
+

√
k log(mn)

Tm

)

≤ O(1) ·

(√
k log(m · E[#int])

m
+

√
k log(mn)

Tm

)

≤ O

(√
k

m
(log T + log n+ log κ+ logm)

)
= Õ

(√
k

m

)
.

The second inequality is due to

E[X | E[m]] =
E[X · I(E[m])]

P[E[m]]
≤ 1

1− 1/T
· E[X] ≤

(
1 +O

(
1

T

))
· E[X]

for any random variable X . The third inequality is due to Jensen’s inequality for concave functions.

C.6. Proof of Theorem 5.3

Proof. The proof is similar to Theorem 5.2. Fix a smoothed instance Ĩ and I ∼ Ĩ . Let E(α) denote the event that
A(α, I) = A(ρ, I) for any ρ ∈ [0, α). Let #intt denote the number of intervals after iteration i. Initially, #int0 = 1. We
study the recursion on #intt.

For any t ∈ [T ], let S denote the state after iteration t and S′ be the sampled neighbor. If S′ has not been visited, the
behavior of the algorithm changes as ρ passes a discontinuity satisfying

exp

(
(1− ρ) · c1(S) + ρ · c2(S)− (1− ρ) · c1(S′)− ρ · c2(S′)

τt

)
= prob(t).

Let λ1 = c1(S
′)− c1(S), λ2 = c2(S

′)− c2(S). Solving for ρ yields

ρ =
τt · log prob(t) + λ1

λ1 − λ2
.

Lemma C.7. PI [E(α)] ≥ 1− 4Tκα.

Proof. Note that since 0 ≤ c1(S), c2(S) ≤ 1 for any S, we have

τt log prob(t) = (1− ρ) · c1(S) + ρ · c2(S)− (1− ρ) · c1(S′)− ρ · c2(S′) ∈ [−1, 1]

as long as ρ ∈ [0, 1].

Since |λ1 − λ2| ≤ 2, we have ρ > α as long as |τt · log prob(t) + λ1| > 2α. Since λ1 is κ-bounded, we have
P[|τt · log prob(t) + λ1| ≤ 2α] ≤ 4ακ. A union bound over t = 1, . . . , T proves Lemma C.7.
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Lemma C.8. We can partition [α, 1] into #int intervals, such that A(·, I) is constant in each interval. We have EI [#int] =
O
(
Tκ
α2

)
.

Proof. Let #intt denote the number of intervals in [α, 1] after iteration t. By Claim C.6, the probability density of
ρ on [α, 1] is at most O(κα−2). Thus, the expected number of new intervals for iteration t is at most O(κα−2), i.e.,
E[#intt] = E[#intt−1] +O(κα−2). Solving the recurrence on t shows that E[#int] = O(Tκα−2).

Therefore, following the proof of Theorem 5.2, we can bound the smoothed Rademacher complexity by Õ(
√

k/m) similarly
and obtain the desired result.

C.7. Proof of Lemma 6.5

Proof. To prove this lemma, we first introduce a few notations. We use Q to denote the polyhedron of the dual MDP. Let
Q(R1, R2) = (v0, e1, v1, . . . , el, vl) denote the shadow path of Q. Moreover, we use Qs,a = {µ |µ ∈ P, µ(s, a) = 0} to
denote the polyhedron P , but fixing µ(s, a) = 0. We also use Qs,a(R1, R2) = (vs,a0 , es,a1 , . . . , vs,als,a

) to denote the shadow
path of P s,a.

The following claim can be easily verified.

Claim C.9. The optimal solution to the dual MDP is µ∗(s, a) =
∑

t≥0 γ
tP[St = s,At = a], where P[St = s,At = a]

denotes the probability of St = s and At = a at time t with the initial state S0 following P[S0 = s] = d(s) and the policy
being the optimal policy π∗.

By Claim C.9, for each state s, the optimal solution µ∗(s, a) = 0 if a ̸= π∗(s), since the optimal policy π∗ : S → A is
deterministic. (Note that in the smoothed analysis setting, the optimal policy is unique with probability 1.) Given a solution
µ, we use inactive(µ) = {(s, a) |µ(s, a) = 0} to denote the set of actions that is not used by the corresponding policy
πµ : s 7→ argmaxa µ(s, a).

Suppose the optimal solution moves from vi to vi+1 through ei as ρ increases. There must exist some action (s, a) such that
(s, a) ∈ inactive(vi) and (s, a) /∈ inactive(vi+1) by Claim C.9. Thus, we have

|Q(R1, R2)| ≤
l−1∑
i=0

∑
s∈S

∑
a∈A

I[(s, a) ∈ inactive(vi) ∧ (s, a) /∈ inactive(vi+1)]. (4)

Interchange the order of summations and fix a pair of (s, a). We bound the expectation of
∑l−1

i=0 I[(s, a) ∈ inactive(vi) ∧
(s, a) /∈ inactive(vi+1)].

Since vi−1, ei, vi, ei+1, vi+1 are on the shadow path Q(R1, R2) (assuming 1 ≤ i < l), we have slope(ei) > slope(ei+1).
If (s, a) ∈ inactive(vi), then, vi ∈ P s,a, i.e., vi is also on the shadow path Qs,a(R1, R2). Suppose vs,aj = vi for some j.
Note that Qs,a ⊆ Q, we have slope(es,aj ) ≥ slope(ei) and slope(ei+1) ≥ slope(es,aj+1). Thus, we have

I[(s, a) ∈ inactive(vi) ∧ (s, a) /∈ inactive(vi+1)] ≤ I[vi ∈ P s,a ∧ slope(es,aj ) ≥ slope(ei+1) ≥ slope(es,aj+1)].

Plugging this bound into (4) yields

|Q(R1, R2)| ≤
∑
s∈S

∑
a∈A

2 +

ls,a−1∑
j=1

I[slope(ei+1) ∈ [slope(es,aj+1), slope(e
s,a
j )]]

 , (5)

where ei+1 depends on j. Note that P s,a fixes µ(s, a) = 0. Therefore, the interval [slope(es,aj+1), slope(e
s,a
j )] does not

depend on the value of R1(s, a) and R2(s, a). By the principle of deferred decisions, we fix the reward on actions other
than (s, a) and consider the randomness of R1(s, a) and R2(s, a). Note that

slope(ei+1) =
⟨R2, vi⟩ − ⟨R2, vi+1⟩
⟨R1, vi⟩ − ⟨R1, vi+1⟩

,
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where ⟨R,µ⟩ =
∑

s,a R(s, a)µ(s, a) is the inner product. Let µ and µ′ denote the solution of vi and vi+1, respectively.
Recall that µ(s, a) = 0 and µ′(s, a) ≥ 0. We can hence represent slope(ei+1) as

µ′(s, a) ·R2(s, a) + deterministic term
µ′(s, a) ·R1(s, a) + deterministic term

.

Note that we set d(s) = 1/|S| for any s ∈ S. By Claim C.9, we have µ′(s, a) ≥ 1/|S|. Since R2(s, a) is κ-bounded,
and the absolute value of the denominator is upper bounded by O(1/(1 − γ)), we claim that the probability density of
slope(ei+1) is upper bounded by O

(
|S|κ
1−γ

)
. Therefore, taking the expectation of (5) yields

E|Q(R1, R2)| ≤ O(1) ·
∑
s∈S

∑
a∈A

2 +

ls,a−1∑
j=1

(slope(es,aj )− slope(es,aj+1)) ·
|S|κ
1− γ


≤ O(1) ·

∑
s∈S

∑
a∈A

(
O(1) +

|S|κ
1− γ

· (slope(es,a0 )− slope(es,als,a
))

)
.

By symmetry, we can break the shadow path into two parts. The slopes of the segments in the first part lie in [−1, 0), and
the ones in the second part lie in (−∞,−1). The expected sizes of the two parts are asymptotically equivalent since we can
swap R1 and R2 without loss of generality. Therefore, we assume slope(es,a0 )− slope(es,als,a

) ≤ 1. We thus have

E|Q(R1, R2)| ≤ O

(
|S|2|A|κ
1− γ

)
,

which is the desired bound.

D. Extensions of our Framework
D.1. Feature-based parameter predictor

A natural extension of algorithm configuration is to train a machine learning model to predict the algorithm parameter
based on the features of the instance. Balcan et al. (2021b) present generalization bounds for selecting parameters from a
portfolio of finite algorithm configurations. Cheng et al. (2024) study the sample complexity of predicting parameters using
neural networks. In the following, we extend our framework for multi-objective optimization to the setting of predicting k
parameters using any PAC-learnable (i.e., with finite pseudo-dimension) machine learning models.

Let D be a distribution of (maybe smoothed) instances, A(ρ, I) be the output of the algorithm with parameter ρ on instance
I , and u(P, I) be the performance metric for a set P = {ρ1, . . . , ρk} of parameter values of ρ. Instead of directly learning
P , we learn a predictor pred(θ, I) : Θ×I → Pk to predict P . For example, if k = 1 and xI is the feature vector of instance
I , we may choose a linear model pred : (θ, I) 7→ θTxI to predict the parameter ρ. We study the sample complexity of
learning θ ∈ Θ for performance metric u(pred(·, I), I). We assume the prediction model has a finite pseudo-dimension so
that sample complexity bounds are possible: Let pred(θ, I) = (pred1(θ, I), . . . , predk(θ, I)) be the predicted parameters.
We assume Pdim ({predi(θ, ·) | θ ∈ Θ}) ≤ d for any i ∈ [k].

Theorem D.1. Suppose A(·, I) is piecewise-constant with at most or in expectation t pieces (in worst- or smoothed-case).

The sample complexity of u(pred(·, I), I) is Õ
(

kd log t
ε2

)
.

Proof. Fix an instance I . With a little abuse of notations, we use I to denote either an instance or a sample from a smoothed
instance. By definition, we can partition the parameter space P into t intervals, such that the algorithmic behavior is fixed on
I in each interval. Let ρ0 < ρ1 < · · · < ρt denote the terminals of these intervals. Let sgn(predi(θ, I)− ρj) denote the sign
of predi(θ, I)− ρj for some 1 ≤ i ≤ k, 1 ≤ j < t. As we vary the prediction model parameter θ, u(pred(·, I), I) is fixed if

Φ = (sgn(predi(θ, I)− ρj))1≤i≤k, 1≤j<t ∈ {−1, 1}kt

is fixed due to the piecewise-constant structure of A. Since the pseudo-dimension of predi is at most d, by Fact B.3, the
VC-dimension of {sgn(predi(θ, I)− ρj) | θ ∈ Θ} is also at most d. Therefore, by Sauer’s lemma, the number of values of
Φ is at most O(tkd).
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Now, we vary the fixed instance I . Given m instances, the number of values of

(sgn(predi(θ, Il)− ρj))1≤i≤k, 1≤j≤t·m,1≤l≤m

is at most O((mt)kd). Here, ρj denotes the union of all interval terminals for m instances. Using Massart’s lemma, we

obtain that the Rademacher complexity is at most O
(√

kd log(mt)
m

)
. This proves the desired result.

D.2. Extension to more than two objectives

Previous results focus on learning configurations for multi-objective optimization problems with two objectives. Now, we
consider the case of three or more objectives. We show that we can prove similar worst-case sample complexity bounds. For
example, we have the following result for local search.

Theorem D.2. Suppose D is a distribution over local search instances with d objectives c1, . . . , cd. We use local search to
optimize the weighted sum objective c =

∑d
i=1 ρi · ci, with

∑d
i=1 ρi = 1. Let A(ρ, I) denote the result on instance I with

parameter ρ = (ρ1, . . . , ρd). The sample complexity of u(·, I) is Õ
(
kdT
ε2

)
.

Proof. Fix an instance I . Since each state has at most n neighbors, there are at most nT trajectories of the state in T local
search iterations.

Fix a trajectory S0, S1, . . . , ST , where Si denote the state after iteration i. We show that the set of parameters ρ lie in the
union of T · n half-spaces. For each t = 1, . . . , T , the algorithm selects St ∈ N(St−1) in iteration t if and only if for any
S′ ∈ {St−1} ∪N(St) \ {St}, we have

d∑
i=1

ρi · ci(S′) ≤
d∑

i=1

ρi · ci(St),

which is a half-space with respect to ρ. Altogether, there are T · n half-spaces. Combining the half-spaces for nT different
trajectories yields a total number of TnT+1.

Now, we vary the instance I . Given m instances I1, . . . , Im, there are at most mTnT+1 half-spaces partitioning the
simplex ∆ = {ρ |

∑d
i=1 ρi = 1} such that in each region, A(ρ, Ii) is fixed for any i ∈ [m]. Note that t half-spaces in Rd

partition the space into at most O(td) sub-regions. Therefore, we can partition ∆k into at most O((mTnT+1)kd) regions
such that u(P, Ii) is fixed for any i ∈ [m]. Similar to the proof of Theorem 3.2, this yields a pseudo-dimension bound
Pdim(U) = O(kdT log n), thus leading to Õ

(
kdT
ε2

)
sample complexity.

Similar results also hold for simulated annealing and linear programs. However, the smoothed analysis technique cannot be
directly extended to 3 or more objectives. The reason is that in the 2-objective case, we can directly bound the probability
that a discontinuity point lies in a length-l interval by O(poly(κ) · l). However, this approach does not work for a multi-
dimensional space. Even if a set of half-spaces are close to each other, the (hyper-)volume of the union of half-spaces can be
large. We left the smoothed analysis of multi-dimensional parameter spaces to future work.

E. Details of Experiments
In this section, we present the implementation details of our experiments in Section 7.

Local search. We consider the VLSI circuit partitioning problem for 3D chips (Hu et al., 2022). Given a circuit netlist
(represented by a hypergraph), we aim to partition the netlist into two parts. The first and second parts correspond to the top
and bottom dies, respectively. If a net (i.e., a hyperedge in the hypergraph) crosses both dies, a cross-die terminal is required
to connect both dies. We need to minimize the number of terminals (corresponding to the routability and the cost of the
chip), as well as the total wirelength after circuit placement (corresponding to the performance of the chip).

A direct method for circuit partitioning is local search. We initialize an arbitrary partition, and improve the solution by
locally moving a cell (i.e., a node in the hypergraph) from the current die to the other. We optimize a weighted sum of
both objectives, where the number of terminals can be directly computed and the total wirelength is evaluated by running
a VLSI placer. Notice that VLSI placers (e.g., Lin et al. (2019)) are randomized algorithms, and the outcomes of the
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wirelength naturally contain random perturbations. This shows that the smoothed analysis setting is indeed reasonable. In
our experiments, we fix the random seed of the placer to make the placement result deterministic.

We evaluate the generalization guarantee for local search on ICCAD-22 benchmark (Hu et al., 2022). Since the benchmark
consists of only several testcases, we randomly sample subgraphs of the original circuit to obtain instances with various
sizes.

Markov decision processes. We consider a resource-gathering Markov decision process in previous work on multi-objective
reinforcement learning (Barrett & Narayanan, 2008). The environment is a grid graph with a home base. The agent starts
from the home base, gathers resources in the environment, and takes them back to the home. There are multiple kinds
of resources, R1, R2, etc. If the agent reaches a grid node with resource Ri, it picks up one unit of Ri. The agent can
simultaneously carry at most one unit for each kind of resource. When the agent reaches the home base, it gets one reward
for each kind of resource it carries. Some grid nodes have enemies. If the agent passes a node with enemies, with a particular
probability, it receives a penalty, loses the resources it carries, and is reset to the home base. The objective is to maximize
the reward and minimize the penalty.

We set the discount factor γ = 0.9, and find the optimal policy by optimizing a weighted sum of the reward and the penalty.
We randomly synthesize the environment with different sizes to test the generalization ability. We synthesize 100 instances
for each problem size (since finding all pieces is time-consuming), with 50 being the training set, and the rest being the test
set.

For both local search and MDP, we compute the number of pieces in the piecewise-constant structure. To compute this
number, starting from ρ = 0, we use binary search to find the next value of ρ such that the algorithm outcome varies until
ρ = 1.

Shallow-light trees. The open-source code of SALT (Chen & Young, 2020) and the ICCAD-15 benchmark (Kim & Hu,
2015) for timing-driven VLSI placement are used. The ICCAD-15 benchmark consists of 9.9 × 106 shallow-light tree
instances, in which about 4.8× 104 instances are large-degree instances, i.e., with more than 32 nodes. The experiments are
conducted on large-degree instances, since the tradeoff between shallowness and lightness is not significant for small-degree
nets. We randomly select 80% nets as the training set and the rest as the test set. We learn a set of parameter values ρ to
optimize the Pareto volume of shallowness and lightness.

Let α and β denote the shallowness and lightness of a solution. Since the shallow-light tree is a minimization problem, we
define the Pareto volume as the area of domination for (αFLUTE − α, βCL − β), where αFLUTE and βCL are baselines for
single-objective Steiner trees in the original paper (Chen & Young, 2020).
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