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Abstract001

Temporal question-answer (QA) is an estab-002
lished method to assess temporal reasoning in003
large language models (LLMs). Expected an-004
swers are often numeric (e.g., dates or dura-005
tions), yet the model responses are evaluated006
like regular text with exact match (EM), un-007
able to distinguish small from large errors. In008
this investigative work, we frame temporal QA009
as a numerical estimation task to assess the010
shortcomings of EM. We introduce TempAn-011
swerQA, a benchmark distilled from Test of012
Time and TempTabQA, where all questions re-013
quire a numerical temporal answer, allowing014
us to evaluate models beyond EM. We used the015
forecasting metrics symmetric mean absolute016
percentage error (sMAPE) and mean absolute017
scaled error (MASE). With sMAPE, we found018
that error size and EM are decoupled. Mod-019
els with low EM still had low sMAPE (both020
20%), and some models had high sMAPE de-021
spite high EM. Scaling errors by the deviance022
of the ground truth data with MASE reshuf-023
fles model rankings compared to EM, revealing024
gaps in models’ understanding of temporal do-025
main knowledge, especially when trained with026
synthetic data. Lastly, the models’ most fre-027
quent error was to deviate only ±1 from the028
ground truth. sMAPE and MASE, unlike EM,029
adequately weight these errors. Our findings030
underscore the need for specialised metrics for031
temporal QA tasks 1.032

1 Introduction033

Time is an inherent part of the real world, and034

reasoning about it is essential for intelligent be-035

haviour (Xiong et al., 2024). As such, temporal036

reasoning is crucial in many domains, including037

high-stakes areas such as logistics (Li et al., 2023),038

finance (Wu et al., 2023), and medicine (Blease039

et al., 2024), which increases the stakes for ade-040

quate evaluation. Question-answering (QA) bench-041

marks are a well-established method to perform042

1Code and data will be made publicly available

Exact match

Q1: How many hours before an anaesthesia with
Halothane should you stop taking Levodopa?
A1: 8 Model A: 8 ✓ Model B: 24 ✗

Q2: What is the absolute time difference between Andi
and Lee in hours given Andi is in EST(-0500)
and Lee is in PST(-0800)?
A2: 3 Model A: 5 ✗ Model B: 3 ✓

Conclusion Model A and B tie on exact match rate.

Temporal difference

Q1: 8 24

Expected

Model A Model B

Q2: 3 5

Expected

Model B
Model A

Conclusion Model A has a smaller error than Model B.

Figure 1: Exemplary performance evaluation of two
models comparing exact match and temporal difference.
Both models have an exact match of 50%, but Model B
has a greater temporal difference than Model A.

this evaluation, and the binary string-matching met- 043

ric exact match (EM) is widely used to assess their 044

effectiveness (Wang and Zhao, 2024; Wei et al., 045

2023). 046

However, while it is prevalent, EM does not con- 047

sider the continuous nature of time. As illustrated 048

in Fig. 1, EM considers Model A and Model B to 049

be tied, despite Model A’s error being much smaller 050

(∆2h) than Model B’s (∆8h). Although there are 051

popular continuous alternatives, such as ROUGE, 052

METEOR (Gupta et al., 2023) and F1 (Gruber et al., 053

2024), they collapse to binary scores when tempo- 054

ral answers consist solely of digits. Therefore, cur- 055

rent benchmarks suffer from a mismatch between 056

evaluation and deployment risk (Fig 1). This work 057

aims to solve this mismatch by exploring metrics 058
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better suited to the temporal nature of the task.059

Exploring continuous alternatives to EM allows060

us to differentiate between small and large errors.061

Beyond that, continuous metrics are more adequate062

to assess temporal reasoning for two more reasons.063

First, studies by Jack Lindsey et al. (2025) and064

Khodja et al. (2025) demonstrate that LLMs tend065

to approximate the answer to a (temporal) arith-066

metic task. Relying solely on EM risks undervalu-067

ing models that approximate correct answers well.068

Second, answers to temporal questions can be am-069

biguous, such as calculating a person’s age using070

only their birth year, where two answers with a dif-071

ference of 1 year could be true(Khodja et al., 2025).072

This ambiguity is called transition times. With EM073

alone, we cannot distinguish relevant errors from074

transition time ambiguities.075

We frame temporal QA as a numerical estima-076

tion task and borrow two scale-free error metrics077

from forecasting to evaluate LLMs beyond EM.078

The first is the symmetric mean absolute percent-079

age error (sMAPE) (Tofallis, 2014), which mea-080

sures the percentage error of the model predic-081

tions. The second is the mean absolute scaled error082

(MASE) (Hyndman and Koehler, 2006). This met-083

ric scales errors by a sensible baseline derived from084

the benchmark data and thus aims to measure the085

models’ temporal domain knowledge.086

Our contributions can be summarised as follows:087

1. We sample QA pairs from recent temporal088

benchmarks composed solely of questions re-089

quiring temporal answers to explore the limita-090

tions of EM. Augmenting questions with meta-091

data allows us to transform model responses092

into time-aware objects, enabling evaluation093

using regression-based metrics.094

2. Our evaluation with the regression-based met-095

ric sMAPE reveals that relative errors do not096

increase much even for very low EM (both097

∼20 %). At the same time, it reveals outliers,098

that is, models with large relative errors de-099

spite a high EM. EM and sMAPE produced100

similar but not identical model rankings, mak-101

ing it a crucial addition to identifying robust102

models that made more minor errors.103

3. Scaling errors by the deviance of the ground104

truth data using MASE assesses the tempo-105

ral domain knowledge of the models. MASE106

produces different model rankings than EM,107

lowering the ranking of models trained on108

synthetic data. MASE reveals that models can 109

achieve high EM and sMAPE and still make 110

errors that exceed what we expect, given suffi- 111

cient temporal domain knowledge. 112

4. Finally, by treating errors numerically, we 113

show that many model predictions are off by 114

only ±1, caused by transition times (e.g., de- 115

termining someone’s age based only on the 116

birth year). Furthermore, MASE shows that 117

the error magnitude was not symmetric to the 118

sign and that errors with a positive sign are 119

much larger (> 0). Our findings underscore 120

the need for a specialised evaluation proce- 121

dure for temporal QA tasks and the inade- 122

quacy of using EM alone. 123

2 Related work 124

2.1 Temporal QA benchmarks 125

Generally speaking, Temporal QA aims to evaluate 126

a model’s understanding of time. Prior work often 127

thematises the numeric nature of this task. The 128

seminal QA benchmark TempQuestions by Jia et al. 129

(2018) defined temporal questions as those that 130

have a temporal expression (e.g. “three weeks”), 131

a temporal signal (e.g. “before”) or expect a tem- 132

poral answer (“When...”). The latter indicates that 133

the expected answer needs to be a measure of time. 134

Tan et al. (2023) proposed categorising temporal 135

questions into increasingly more complex levels of 136

temporal understanding, namely those with a time- 137

time, time-event, and event-event relation between 138

question and answer. Again, this highlights how 139

the numeric properties of time play a central role 140

in temporal QA. Furthermore, temporal reasoning 141

capabilities were often linked to mathematical rea- 142

soning skills (Su et al., 2024b; Yuan et al., 2023; 143

Fatemi et al., 2024; Wang and Zhao, 2024). While 144

there is consensus on the numeric properties of 145

time, there exist. 146

2.2 Evaluation challenges in temporal QA 147

All benchmarks mentioned above either use token- 148

level binary metrics or EM for evaluation. In one 149

instance, ROGUE and METEOR were also used 150

(Gupta et al., 2023). 151

Non-binary evaluations were conducted in some 152

instances. Tan et al. (2023) and Wang et al. (2025) 153

measured the mean absolute error for a selection of 154

temporal arithmetic tasks. However, this measure 155

cannot be compared across temporal resolutions 156

(days vs. years). Tan et al. (2023) also measured 157
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trend accuracy, recognising that temporal errors are158

directional. Since this metric is binary, it does not159

detect directional biases.160

Evaluations of models that prevent errors in med-161

ication directions are less informative because the162

metrics do not consider the numeric nature of time163

(Pais et al., 2024). In another application setting,164

Zhang et al. (2025) mitigated this issue using a tem-165

poral version of the F1 score, which considers only166

temporal entities. This score is valid for longer167

texts but not if answers consist of only digits, as in168

our setting.169

A review by Su et al. (2024a) shows that a grow-170

ing body of work in temporal QA focuses on knowl-171

edge graphs. They often aim to retrieve the correct172

answer from graphs. Retrieval is evaluated differ-173

ently from free text, so the concerns raised in this174

work do not apply here.175

2.3 Transitional times176

The necessity of investigating error magnitudes177

has been shown before. Khodja et al. (2025)178

showed that the models have a significantly higher179

log-likelihood for answers constituting transitional180

times (errors of ±1) than for the correct answer.181

They hypothesised that transitional dates are more182

prevalent in the models’ training data since events183

tend to be mentioned more often around their start184

and end. However, the log-likelihood of answers is185

not available for closed-source models.186

Fatemi et al. (2024) also observed a higher pro-187

portion of errors equal to ±1 in duration questions188

and speculated that models may approximate the189

answers well but fail in the final arithmetic compu-190

tation. Despite these findings, no alternative to EM191

has been proposed. We, therefore, see an urgent192

need to investigate model errors on a continuous193

scale.194

3 Methods and data195

3.1 Dataset creation196

Existing temporal QA benchmarks expect a mix of197

free text and temporal answers. “Who won the Os-198

car for best actor in 2024?” is a temporal question,199

but its answer is not. “When was Oppenheimer200

released?”, on the other hand, expects a temporal201

answer. Currently, no QA dataset expects only (nu-202

meric) temporal answers. We classify an answer203

as a temporal answer if it is a date or a duration204

(including age). To fill this gap, we sampled a QA205

dataset that expects only temporal answers, which206

Question Answer Temporal
answer

Answer
format

How many years did Art
Carney work as an actor
starting from 1939?

54 ✓ # years

Who was the spouse
of Art Carney in 1970?

Barbara
Isaac ✗ –

Table 1: Example of labelling results for TempAn-
swerQA. Questions from TTQA and ToT expecting a
temporal answer (date or duration) were retained. The
expected answer format was added to facilitate parsing
answers as numeric objects. Newly created columns are
in italics.

we will refer to as TempAnswerQA. Tab. 1 contains 207

an example of the dataset. 208

The dataset should reflect current benchmarks 209

and, therefore, should include stand-alone ques- 210

tions, questions that require context, real-world 211

questions, and synthetic ones. The latter has be- 212

come increasingly relevant for combating leakage 213

into LLMs’ training data. Two datasets, Test of 214

Time (ToT) and TempTabQA (TTQA), meet these 215

requirements 2. 216

ToT (Fatemi et al., 2024) is a synthetic QA 217

benchmark for temporal reasoning. It consists of 218

two subsets. One is the arithmetic subset, which 219

has a real-world focus and contains questions that 220

require time-related computations. The other is 221

the semantic subset, which asks questions related 222

to a randomly generated graph that assesses the 223

model’s understanding of temporal semantic and 224

logical reasoning. 225

The enhanced version of TTQA evaluates a 226

model’s ability to answer temporal questions over 227

semi-structured Wikipedia tables (Deng et al., 228

2024). The authors split the dataset to mitigate 229

data leakage problems into a head and tail dataset, 230

where the latter consists of less frequented tables. 231

We manually extracted questions that require a 232

temporal answer, which leaves us with 1103 QA 233

pairs for the head subset of TTQA and 634 for the 234

tail subset. For ToT, we extracted 1016 QA pairs 235

for the arithmetic subset and 681 for the semantic 236

subset. In total, we have 3434 QA pairs. Addition- 237

ally, we annotated the required temporal unit for 238

each question, i.e. if the answer is a date or a tem- 239

poral measure in years, months, days, minutes, or 240

seconds. We picked the higher temporal resolution 241

2Both have CC-BY-4.0
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ToT

Temporal
unit

Count

# seconds 411
Date 328
# years 229
# days 100
# months 50
# minutes 38

TTQA

Temporal
unit

Count

# years 1194
yyyy 305
# days 94
# months 85
Date 59

Table 2: The number of questions per temporal unit of
the answer. Answers can be either a duration measured
as a number of <temporal unit>, a full date or a date
with only the year (yyyy).

if the answer contained a mix of units, for exam-242

ple, seconds if the answer was formatted as HH:SS.243

Lastly, we annotated the expected answer format244

to allow parsing the answer numerically as inte-245

gers, timedelta, or datetime objects in Python.246

Tab. 2 lists the number of temporal answer units247

per dataset.248

3.2 Regression-based metrics for temporal249

QA250

Metrics used to evaluate QA benchmarks are de-251

signed for text and, therefore, do not capture the252

size and direction of the error for temporal answers.253

Specifically, minor errors due to transitional times254

are indistinguishable from significant errors. Tem-255

pAnswerQA’s expected answers all have numerical256

representation, which allows us to use regression-257

based metrics for evaluation.258

There are a few considerations that we need to259

make before selecting metrics. We need to select260

(1) an aggregation technique that avoids errors of261

different signs cancelling each other out, (2) decide262

whether we want to weight errors, (3) how to sum-263

marise errors, and lastly, ensure that (4) errors will264

be comparable across different units, e.g., years265

and seconds.266

We selected metrics using absolute errors to267

avoid the cancellation of errors of different signs.268

We decided against weighting errors by squaring269

or taking their logarithm since this impedes inter-270

pretation, and we lack justifications. Errors can271

be summarised using the mean or median. How-272

ever, the median resulted in many scores of 0s or273

100s for EM and sMAPE. Therefore, we pick the274

mean. Lastly, we must select a scale-free metric to275

compare errors across units (e.g. relative errors).276

sMAPE is scale-free and uses absolute errors. It 277

is bound between 0 and 100 and has a higher sym- 278

metry between negative and positive errors than 279

its precursor, the mean absolute percentage error. 280

sMAPE cannot be easily compared between exper- 281

iments as its denominator contains model predic- 282

tions and expected values. It is defined as: 283

sMAPE =
100%

n

n∑
i=1

|ŷi − yi|
|yi|+ |ŷ|

,

where n is the number of QA pairs, y is the ex- 284

pected temporal answer, and ŷ is the predicted tem- 285

poral answer. If an answer is not parsable, sMAPE 286

is defined as 100%, and if the numerator and de- 287

nominator are 0, we define it as 0%. 288

A subset of answers are dates whose percentage 289

error is not defined (Tab. 2). Therefore, we also 290

consider MASE. It fulfils our requirements and is 291

defined for dates. MASE measures the absolute 292

errors scaled by the mean absolute deviation of 293

the dataset. MASE is also considered superior to 294

most forecasting metrics and is used in the well- 295

known Makridakis forecasting challenge (Makri- 296

dakis et al., 2022). It is defined as: 297

MASE =
1

n

n∑
i=1

|ŷi − yi|
|yi − Ȳu|

,

where Ȳ is the average of the expected values. 298

Instead of using all data to calculate Ȳ , we use a 299

temporal unit-specific Ȳu. Some of the answers 300

have a bimodal distribution. The answers with 301

the temporal unit years in ToT have a peak for 302

the answers < 100 and a peak around 2000. The 303

mean is not representative in this case. To resolve 304

this issue, we performed clustering with a setting 305

that allowed our model also to return one cluster 306

(unimodally distributed). The results and model 307

settings are in the Appendix E. 308

The intuition behind MASE is that the answers 309

in this dataset are not uniformly distributed. With 310

sufficient domain knowledge, the correct answer 311

can be estimated. When answering how old some- 312

one is, for example, we expect the answer to not 313

exceed 100 by much. Without human annotation, 314

MASE can capture these expected values from the 315

dataset. 316

Another class of metrics measures semantic 317

similarity. BERTScore (Zhang et al., 2020) is a 318

widespread implementation of such a metric. How- 319

ever, it cannot distinguish between small and large 320

4



differences between integers (Appendix F), so we321

did not consider it.322

3.3 Models and prompts323

Similarly to previous work, we used a selection of324

open-source models for our experiments, namely325

Phi-4-mini, Phi-4 (Abdin et al., 2024), Llama-326

3.1-8B, Llama-3.3-70B (Grattafiori et al., 2024),327

Qwen2.5-7B, and Qwen2.5-14B (Qwen et al.,328

2025). The model settings are in the Appendix329

(B). Since evaluation relied on parsing answers into330

time-aware objects, we selected instruction-tuned331

models for better instruction-following capabilities.332

We considered using Timo, a temporal Llama 2333

model by Su et al., but its context window was too334

small for some questions.335

TTQA and ToT come with their own set of (user)336

prompts, which we adopted to use chat templates337

without any other modifications. Our selection of338

small models had difficulties following instructions339

otherwise. We moved the formatting instructions340

to the system prompt. These were especially impor-341

tant for ToT, where answers needed to be JSONs.342

Examples were presented as turns between the as-343

sistant and user in the case of few-shot prompting.344

Both adjustments improved instruction following.345

Furthermore, models produced valid JSONs more346

often when ending the prompt with an assistant347

turn, appending the beginning of the required JSON348

and removing generation prompts (see Appendices349

C and D for prompts and B for small experiments350

justifying chat templates and different generation351

strategies).352

4 Experiments and results353

We conducted our experiments based on these six354

selected models of different sizes with and without355

few-shot prompting on the sampled dataset Tem-356

pAnswerQA. Its questions expect temporal answers357

that can be assessed in a regression-like fashion.358

Our experiments aim to answer the following ques-359

tions:360

RQ1: Is the binary metric EM enough to evaluate361

LLMs on temporal QA benchmarks expecting362

temporal answers?363

RQ2: Can regression-based metrics help improve364

our understanding of LLMs’ performance on365

QA tasks expecting a temporal answer?366

RQ3: What advantages do we have in using367

regression-based metrics compared to EM?368

4.1 Exact match does not capture error 369

magnitudes 370

EM does not differentiate between small and large 371

errors, that is, their error magnitudes. Wrong pre- 372

dictions (EM = 0) can have vastly different values 373

for sMAPE. For example, two models with EM of 374

80% could have sMAPE of 1% and 20%, respec- 375

tively. The lower the EM rate, the wider the range 376

of values that sMAPE can assume. Appendix A 377

contains an illustration of this relationship. 378

Model predictions on the TempAnswerQA 379

dataset evaluated by EM and sMAPE are shown in 380

Fig. 2. According to EM, Llama-3.3-70B is the best 381

model. Phi-4 and then Qwen2.5-14B closely follow 382

it. Smaller models follow thereafter. The range of 383

EM is large with values as low as 20% for Llama- 384

3.1-8B, Qwen2.5-7B, and Phi-4-mini. sMAPE val- 385

ues, on the other hand, span a shorter range be- 386

tween models and data splits (up to 40%) than in 387

the EM dimension (15-80%). sMAPE changes 388

the model ranking, placing Qwen2.5-14B in the 389

first place. It is also the model with the narrow- 390

est 95% confidence interval. All models, except 391

Qwen2.5-14B, have outliers hovering around 40%. 392

For example, Llama-3.3-70B failed severely in an- 393

swering how many days the Ingenuity took to get 394

to Mars. Due to an arithmetic mistake, it answered 395

0.057 days. The expected answer is 418 days. 396

Qwen2.5-14B, which has increased mathemat- 397

ical capabilities and improved understanding of 398

structured data, overtakes Llama-3.3-70B when 399

evaluated with sMAPE. The findings also show 400

that larger models performed better, equivalent to 401

the EM results. If errors produce non-linear costs 402

and low errors are more desired than a high EM, 403

Qwen2.5-14B should be preferred over Llama-3.3- 404

70B. The results in tabular form are in Appendix G. 405

4.2 Tolerable error magnitudes depend on the 406

task difficulty 407

MASE was introduced as a metric superior to other 408

regression-based metrics and is the gold standard 409

in forecasting. Unlike sMAPE, it can also be ap- 410

plied to dates. Its main property is that it scales the 411

prediction errors by the difficulty of the problem, 412

which is relevant because answers in the TempAn- 413

swerQA are not arbitrarily distributed and benefit 414

from temporal domain knowledge. For example, 415

a subset of questions is related to the time zone. 416

The maximum time difference between time zones 417

is 26 hours. Models with this knowledge should 418
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Exact Match (↑)

Llama-3.3-70B

Phi-4

Qwen2.5-14B

Qwen2.5-7B

Phi-4-mini

Llama-3.1-8B

0 20 40 60 80 100

sMAPE (↓)

Qwen2.5-14B

Llama-3.3-70B

Phi-4

Qwen2.5-7B

Phi-4-mini

Llama-3.1-8B

splits × prompts
Mean ± 95% CI

Figure 2: Model ranking by sMAPE and EM. Blue dots represent the mean score, and bars around it the 95%
confidence interval. Grey dots are individual runs with and without few-shot prompting on all splits of ToT and
TTQA. Arrows indicate a rank change from EM to sMAPE. It is green if it improves, red if it decreases, and black
if it stays the same.

not produce errors larger than that. Without human419

annotation for acceptable error ranges, MASE can420

extract it from the data instead.421

Model predictions on the TempAnswerQA422

dataset evaluated by EM and MASE are shown423

in Fig. 3. All models had a MASE greater than 1,424

meaning their mean absolute error was higher than425

the mean absolute deviance of the dataset stratified426

by the temporal answer unit per data split. Al-427

though experiments with sMAPE and EM ranked428

larger models higher and sMAPE showed the ad-429

vantage of Qwen2.5-14B being trained in mathe-430

matical tasks and structured data, MASE draws a431

different picture. Llama-3.1-8B’s rank dramatically432

increases from the last to the second place. Scaling433

errors is relevant, as the relative size does not reveal434

if an error is significant. Qwen2.5-7B, for exam-435

ple, when asked which year Jenson Button (racing436

driver) won his first championship, answered with437

2018. The expected answer is 2009, which leads438

to a scaled error of 5.12. Athlete’s careers are rela-439

tively short-lived, making a 9-year error striking.440

Llama-3.1-8B is the only model that was not441

trained on synthetic data. MASE captures domain442

knowledge, and we hypothesise that the synthetic443

data on which Qwen and Phi were trained distort444

the models’ temporal domain knowledge. The tab-445

ular results are in the Appendix G.446

4.3 Scaled errors produce different rankings,447

percentage errors do not448

EM is a gold standard metric for evaluating LLMs449

on QA benchmarks. Therefore, it is necessary to450

compare sMAPE and MASE with EM. We used 451

Spearman’s rank correlation coefficient to compare 452

model rankings across metrics, and the results are 453

shown in Fig. 4a and Fig. 4b. 454

EM had a high rank correlation with sMAPE for 455

both datasets, ToT (-0.82) and TTQA (-0.92). It 456

was negative because a higher EM is better, while a 457

lower sMAPE is better. The correlation was much 458

lower between MASE and EM, with values around 459

0.4 for both datasets. 460

Considering the high agreement in the ranking 461

between both metrics, but knowing that sMAPE is 462

more affected by outliers by definition, which is 463

also observable in Fig. 2, we find that sMAPE is a 464

crucial addition to EM for model evaluation if error 465

magnitude matters. Since it does not produce sig- 466

nificantly different model ranks, interpreting EM 467

and sMAPE in tandem is easier. 468

MASE produced different model ranks. This 469

is unsurprising since, unlike sMAPE, the same er- 470

ror magnitude will scale differently depending on 471

the task. MASE is, therefore, more strict if data 472

deviance is low. Scaling errors for time-zone or 473

age-related questions are such instances. Datasets 474

are most likely designed to span reasonable time 475

periods. If not, clustering should help make MASE 476

more reliable. However, further verification, ide- 477

ally by humans, is required. 478

4.4 Transitional times and error directions 479

Casting answers into time-aware objects allows 480

us to investigate raw errors, helping us identify 481

tiny errors (+/-1) due to transitional times and their 482
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Figure 3: Model ranking by MASE and EM. Blue dots represent the mean score, and bars around it the 95%
confidence interval. Grey dots are individual runs with and without few-shot prompting on all splits of ToT and
TTQA. Arrows indicate a rank change from EM to MASE. It is green if it improves, red if it decreases, and black if
it stays the same.

EM MASE
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A
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(a) TTQA correlations

EM MASE

M
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sM

A
PE

-0.39

-0.82 0.65

(b) ToT correlations

Figure 4: Spearman rank correlation between metrics
on all experiments (models × prompts) per dataset.

direction.483

Transitional times most often involve questions484

asking for durations. In the following, we will485

measure whether an error |e| = 1 appeared more486

often than others and if it appeared more often in487

questions asking for durations.488

Indeed, our analysis reveals that an absolute error489

of 1 is the most common in both datasets (Tab. 3).490

For ToT, the share of absolute errors equal to 1 is491

11.62%. For TTQA, it is 49.49%. This finding492

is striking because the number of unique errors is493

infinite.494

Next, we verified whether errors equal to |e| = 1495

occurred more often for duration-related questions.496

We divide the dataset by the type of question de-497

fined by the authors of ToT and the answer format498

ToT

|e| Count Share
(%)

1 1002 11.62
2 446 5.17
4 344 3.99
3 258 2.99
5 208 2.41

TTQA

|e| Count Share
(%)

1 1853 49.49
2 250 6.68
3 159 4.25
4 128 3.42
6 117 3.12

Table 3: Five most frequent absolute errors per dataset
over all experiments (models × prompts) with number
of occurrences and relative share in percent. Note that
models performed better on TTQA, therefore, the share
of errors with |e| = 1 is so high.

for the dataset TTQA. Tab. 4 shows that the types 499

of questions are evenly distributed within ToT. The 500

share of question types where |e| = 1 is vastly dif- 501

ferent. RelationDuration and Duration questions 502

tremendously increased their share. Trick ques- 503

tions doubled as well. The Trick setup confused 504

LLMs to decide whether to ex- or include either 505

the start and end dates for a duration calculation. 506

Due to a lack of question-type labels in TTQA, 507

we used the expected answer format instead. Tab. 5 508

compares the share of questions by answer format 509

for all data and when the errors are equal to |e| = 1. 510

The TTQA dataset contains many more duration- 511

related questions than ToT. Therefore, the increase 512

in share is not as prominent as in ToT, but it is 513

striking that all non-duration answers have a signif- 514

icantly smaller share among the questions where 515
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Question Type Share (%)

all data where |e| = 1

MultiOP 20.57 4.99
EventAtWhatTime 20.15 4.59
RelationDuration 19.98 32.14
AddSubtract 14.73 16.57
Duration 11.79 18.96
Trick 6.89 22.36
Timezone 5.89 0.40

Table 4: Share of question types in ToT dataset com-
pared by share of question types where prediction error
is 1 (|e| = 1) over all experiments (models × prompts).

Answer Format Share (%)

all data where |e| = 1

# years 68.74 81.27
yyyy 17.56 5.56
# days 5.41 7.34
# months 4.89 5.40
%B %d, %Y 3.40 0.43

Table 5: Share of answer formats in TTQA dataset
compared by share of answer formats where prediction
error is 1 (|e| = 1) over all experiments (models ×
prompts).

the error is |e| = 1.516

Finally, we investigate whether model errors517

have a directional bias. In Tab 6, we see that518

sMAPE is similar for positive and negative errors.519

This is not the case for MASE. Positive errors pro-520

duced much higher MASE. This difference is pro-521

nounced for the TTQA dataset. In the ToT dataset,522

the difference in the standard deviation is more no-523

ticeable. This insight is relevant to applications524

where the cost of errors is not symmetric with re-525

spect to direction.526

5 Conclusion527

This work extended existing benchmarks by eval-528

uating LLMs on questions expecting a temporal529

answer. Furthermore, we showed that the gold-530

standard metric EM does not capture all relevant531

Dataset Error sMAPE
(±std)

MASE
(±std)

ToT neg. 24.73 (31.21) 1.40 (7.09)
pos. 21.60 (29.26) 3.98 (40.82)

TTQA neg. 22.83 (30.42) 0.55 (1.09)
pos. 29.32 (31.72) 48.09 (334.80)

Table 6: sMAPE and MASE including their standard
deviation where error is either strictly positive or nega-
tive per dataset.

information, namely error magnitude and direction. 532

To this end, we used sMAPE and MASE, two 533

regression-based metrics that captured properties in 534

the prediction errors of the models that EM did not. 535

sMAPE was relatively low, even if EM was low. 536

This suggests that models may have an understand- 537

ing of the correct answer. Qwen2.5-14B, which 538

was trained on structured data and mathematical 539

reasoning, performed best according to sMAPE, 540

overtaking Llama-3.3-70B, the best model accord- 541

ing to EM. Both Llama models performed the best 542

according to MASE; they were the only models not 543

trained on synthetic data, suggesting that their tem- 544

poral domain knowledge is higher and synthetic 545

data distorts this knowledge. 546

Answers to duration-related questions can be 547

ambiguous due to transitional times, leading to two 548

answers being correct with a difference of just 1. 549

This leads to an inflation of errors equal to ±1. 550

sMAPE and MASE are continuous metrics and 551

thus provide a more balanced evaluation than EM. 552

Lastly, we could show that MASE and sMAPE 553

are valuable additions to EM. sMAPE ranks models 554

similar to EM, making it a good choice to use in 555

tandem with EM while offering more insight into 556

the model’s robustness in producing small errors. 557

MASE ranks models significantly differently. It 558

attempts to scale errors by prior domain knowledge 559

about the correct answer and, unlike sMAPE, will 560

identify outliers not only by its relative error but 561

relative to the difficulty of the task. Without human- 562

annotated data, MASE is a viable alternative to 563

measure prior temporal knowledge. 564

6 Outlook 565

More work is required to verify the benefit of 566

regression-based metrics. This can be achieved 567

through either a separate dataset or by human pref- 568

erence. Specifically, other approaches for scaling 569

errors for MASE should be considered. Small 570

sMAPE suggests that models have a good under- 571

standing of the problem but have problems dealing 572

with numbers. Tool calling is an interesting next 573

step in assessing whether the low performance is 574

due to arithmetic miscalculations rather than insuf- 575

ficient temporal reasoning capabilities. 576

7 Limitations 577

There are answers in both datasets that are temporal, 578

but we did not include them because they are not 579

trivially evaluable. These include date and time 580

8



ranges, multiple answers, or frequencies such as581

“every first Monday of the month”. The latter is582

related to absolute times and dates, which have a583

bounded error. For example, if we ask in which584

month Christmas is celebrated, the maximal error585

is 11 months, while for other answers in the dataset,586

the error can be arbitrarily large in theory.587

Both regression-based metrics are not defined588

for all answers. Either because the answer is not589

parsable in the case of MASE, or because the an-590

swer is a date or a time (sMAPE). This shortcoming591

needs to be addressed.592

MASE was scaled by each subset of both593

datasets and the expected temporal unit of the an-594

swer. Although this approach makes the reasonable595

assumption that the authors of the paper produced596

problems that are similar within a subset and that597

the expected temporal unit is enough indication598

to capture similar kind of problems, this may not599

always hold. Clustering could potentially unravel600

such questions into more representative clusters,601

but this approach does not hold up to a hand-crafted602

dataset where the mean absolute deviance is neatly603

justified for each question.604
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Figure 5: EM does not capture error magnitude. The
possible variance in error magnitude (measured by
sMAPE) is higher the lower EM is.

A sMAPE intuition766

If a model’s answer is wrong, the answer’s error can767

range from a tiny relative error up to an infinitely768

large one. The lower EM, the higher the sMAPE769

can be in a model. In other words, models with770

the same EM can spread wider, and the lower EM771

is, the better sMAPE is at discriminating model772

performance. Fig. 5 illustrates this. If we assume773

that for all wrong predictions that a model makes,774

the minimum error measured by sMAPE is 1%,775

25%, and 50%, the figure shows the range of values776

that a model can still score with respect to sMAPE777

for all possible values of EM.778

B Model settings779

All our models were accessed via Hugging Face780

using the transformers Python library at version781

4.49.0 (Wolf et al., 2020). We used the default782

settings for each model in our experiments. For783

text generation, we used the settings in Tab. 7. We784

used a mix of GPUs to run our experiments, includ-785

ing GeForce 3090s and 4090s, and two A100s in786

parallel to run inference for Llama-3.3-70B. GPU787

hours required to run inference on Llama-3.3-70B788

required approximately 24 hours. Experiments789

with smaller models took 1-3 hours per run. At790

least as many GPU hours across GPUs were used791

to run small experiments or test code.792

The evaluation of ToT depends on the models793

that produce parsable JSONs. Therefore, we ex-794

perimented with setting either add_generation_-795

prompt or continue_final_message to true in796

Hugging Face. The first appends an assistant to-797

ken to our messages, if available, indicating an798

Dataset Max. new token
End of

sequence tokens

ToT 512 No
TTQA 512 Yes

Table 7: Generation settings.

Model
# Parsing rrrors

add generation
prompt

continue
final message

Llama-3.1-8B 0/50 2/50
Qwen2.5-7B 4/50 0/50
Phi-4-mini 13/50 1/50

Table 8: Number of parsable JSONs per model for differ-
ent generation strategies tested on 50 randomly selected
questions from the semantic split of ToT.

answer. The latter does not do this, prompting 799

the models to continue their messages. The result- 800

ing prompts can be seen in the Appendix D. To 801

test when JSON formatting was more successful, 802

we randomly sampled 50 questions from the se- 803

mantic split of ToT and compared the number of 804

correctly parsed JSONs. The results are in Tab. 8. 805

Setting continue_final_message produced less 806

parsing errors (3 over three models) than add_ge- 807

neration_prompt (17 over three models). 808

The evaluation of TTQA also depended on the 809

correct format of the output. Specifically, models 810

needed to place their answer after the string “Final 811

Answer:”. We observed a low amount of correct 812

formatting and thus experimented with transferring 813

prompts into a chat template. The correct output 814

formatting was compared between the original and 815

the prompts translated into chat templates. We 816

tested the models’ instruction following on the tail 817

split of the TTQA dataset. The results are shown in 818

Tab 9. Qwen and Phi improved their instruction fol- 819

lowing, with Qwen almost doubling it from 44.52 820

to 99.56%. Llama has a slight decrease when using 821

chat templates from 81.98% to 74.40%. 822

C TTQA prompts 823

In the following, we list the TTQA prompts used 824

for this work. We compare the prompts originally 825

used by Deng et al. (2024) and our adaption to 826

make use of chat templates. For brevity, we re- 827

placed some turns in the few-shot example with 828

“. . . ”. Furthermore, we did not use the original 829
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Model
Correct output format (%)

Original prompt
With

chat template

Llama-3.1-8B 81.98 74.40
Qwen2.5-7B 44.52 99.56
Phi-4-mini 94.76 99.38

Table 9: Number of answers containing expected string
“Final Answer:” in their response for each model on the
head split of the TTQA dataset. Percentage was calcu-
lated based on slightly varying numbers of questions
as experiments were conducted at different steps in the
labelling process.

questions, tables, or answers below but replaced830

them with placeholders enclosed by “<>”.831

C.1 TTQA zero-shot prompt832

User prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".
Each table-question pair is presented as
a table (identified by "Table:") followed
by a question (identified by "Q:"). Tables
are presented in a linear format, with
columns separated by tabs, rows separated
by newlines, and subsections separated by
double newlines. If necessary, assume the
current date is December, 2022.

========================
Table:

<TABLE>

<QUESTION>

A: Let’s think step by step.
Assistant:

833

C.2 TTQA zero-shot prompt as chat template834

System prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".

835

Each table-question pair is presented as a
table (identified by "Table:") followed by
a question (identified by "Q:"). Tables are
presented in a linear format, with columns
separated by tabs, rows separated by new-
lines, and subsections separated by double
newlines. If necessary, assume the current
date is December, 2022.
User prompt:
Table:

<TABLE>

<QUESTION>

A: Let’s think step by step.
Assistant:

836

C.3 TTQA few-shot prompt 837

User prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".
Each table-question pair is presented as
a table (identified by "Table:") followed
by a question (identified by "Q:"). Tables
are presented in a linear format, with
columns separated by tabs, rows separated
by newlines, and subsections separated by
double newlines. If necessary, assume the
current date is December, 2022.

Here is an example that follows these
instructions. Answer the provided questions
in a similar format:

========================
Table:

<TABLE, SHOT 1>

Q: <QUESTION, SHOT 1>

A: <ANSWER, SHOT 1>

========================
...
<TABLE, SHOT 3>

838
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Q: <QUESTION, SHOT 3>

A: <QUESTION, SHOT 3>

========================

Table:

<TABLE>

<QUESTION>

A: Let’s think step by step.
Assistant:

839

C.4 TTQA few-shot prompt as chat template840

System prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".
Each table-question pair is presented as
a table (identified by "Table:") followed
by a question (identified by "Q:"). Tables
are presented in a linear format, with
columns separated by tabs, rows separated
by newlines, and subsections separated by
double newlines. If necessary, assume the
current date is December, 2022.

Here is an example that follows these
instructions. Answer the provided questions
in a similar format:
User prompt
Table:

<TABLE, SHOT 1>

Q: <QUESTION, SHOT 1>

A:
Assistant prompt: <ANSWER, SHOT 1>
...
User prompt:
Table:
<TABLE, SHOT 3>

Q: <QUESTION, SHOT 3>

A:
841

Assistant prompt: <ANSWER, SHOT 3>
User prompt:
Table:

<TABLE>

<QUESTION>

A: Let’s think step by step.
Assistant:

842

D ToT prompts 843

In the following, we list the ToT prompts used for 844

this work. We compare the prompts originally used 845

by Fatemi et al. (2024) and our adaption to make 846

use of chat templates. 847

A few-shot version of the prompts was con- 848

structed by modifying existing questions. The chat 849

template was filled as in C.4, where examples were 850

presented as turns between the user and the assis- 851

tant. In the case of the semantic subset, the graph 852

information was included in the system prompt. 853

The generation prompt was removed, and the assis- 854

tant prompt was pre-filled. 855

D.1 ToT zero-shot prompt 856

User prompt: Natalie and Chris were born
on 2004-Feb-18 and 2004-Dec-30 respec-
tively. When Chris was 991 days old, how
old was Natalie in days? Return your answer
as a JSON like: JSON = {""explanation"":
<your step by step solution>, ""answer"":
<num_days>}
Assistant:

857

D.2 ToT zero-shot prompt as chat template 858

System prompt: Return your answer as a
JSON like: JSON = {"explanation": <your
step by step solution>, "answer": <num_-
days>}
User prompt: Natalie and Chris were born
on 2004-Feb-18 and 2004-Dec-30 respec-
tively. When Chris was 991 days old, how
old was Natalie in days?
Assistant: JSON = {"explanation":

859

E Cluster results 860

MASE required the mean answer per temporal unit 861

of the answer and the split of each dataset. Clus- 862
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Expected Predicted BERTScore

1 1 1.0000
1 2 0.9998
1 10 0.9992
1 100 0.9987

Table 10: BERTScore for some predictions. Scores
were rounded to the last four digits.

tering did not affect the TTQA data. ToT, however,863

exhibited some bimodality, which was identified864

by the clustering algorithm. The distribution of865

the answers per split and temporal unit for TTQA866

is shown in Fig. 6 and Fig.7. ToT’s answer dis-867

tribution for the arithmetic split before and after868

clustering can be found in Fig. 8 and Fig. 9 respec-869

tively and in Fig. 10 for the semantic split.870

Clustering was performed using sklearn’s HDB-871

SCAN (hierarchical density-based spatial cluster-872

ing of applications with noise) model. The mini-873

mum cluster size was set to 30% to avoid too small874

clusters. The model was allowed to produce single875

clusters. All other settings were set to default. We876

used version 1.6.1 of scikit-learn (Pedregosa877

et al., 2011).878

F BERTScore879

We did not consider similarity-based metrics as880

they tend to return high similarity for digits, regard-881

less of how close they are to each other, as can be882

seen in Tab. 10.883

G Results extended884

Results in tabular form are listed in Tab. 12 for ToT885

and in Tab. 11 for TTQA. Fig. 11 contains a scatter886

plot with the results comparing EM and sMAPE887

and Fig. 12.888

EM is defined for all pairs QA, sMAPE and889

MASE not. sMAPE is not defined for dates or890

times. Since it has a maximum value, namely891

100%, it is defined even if the answer of the model892

is not parsable. MASE does not have this property893

as it has no upper bound. Instead, it is defined for894

dates and times. Tab. 14 lists the number of QA895

pairs in the ToT dataset for which either metric is896

defined, and Tab. 13 does the same for the TTQA897

dataset.898
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Figure 6: Distribution of the expected answers by temporal unit of the answer for the head split of the TTQA dataset.
Answers were transformed into numeric form. In the case of dates, they were converted into timestamps.
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Figure 7: Distribution of the expected answers by temporal unit of the answer for the tail split of the TTQA dataset.
Answers were transformed into numeric form. In the case of dates, they were converted into timestamps.
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Figure 8: Distribution of the expected answers by temporal unit of the answer for the arithmetic split of the ToT
dataset. Answers were transformed into numeric form. In the case of dates, they were converted into timestamps.
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Figure 9: Distribution of the expected answers by temporal unit of the answer for the arithmetic split of the ToT
dataset. If answers were clustered, clusters are highlighted by different colours. Answers were transformed into
numeric form. In the case of dates, they were converted into timestamps.
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Figure 10: Distribution of the expected answers by temporal unit of the answer for the semantic split of the ToT
dataset. Left is the raw distribution, and on the right is the distribution after clustering. Answers were transformed
into numeric form. In the case of dates, they were converted into timestamps. If

Split Model Prompting EM (↑) sMAPE (↓) MASE (↓)

head Llama-3.1-8B few shot 75.34 17.02 0.50
zero shot 63.37 33.11 0.25

Llama-3.3-70B few shot 83.71 6.58 0.20
zero shot 74.62 20.59 0.17

Phi-4-mini few shot 77.05 7.03 0.52
zero shot 73.09 12.65 7.45

Phi-4 few shot 79.39 6.13 0.34
zero shot 61.30 29.36 0.29

Qwen2.5-7B few shot 79.12 7.77 4.47
zero shot 77.77 8.05 0.91

Qwen2.5-14B few shot 81.73 4.28 0.63
zero shot 76.33 9.21 3.91

tail Llama-3.1-8B few shot 69.10 18.52 1.17
zero shot 57.14 36.29 1.66

Llama-3.3-70B few shot 79.19 7.50 0.19
zero shot 66.30 22.51 8.72

Phi-4-mini few shot 70.81 8.89 8.87
zero shot 70.34 14.04 27.06

Phi-4 few shot 77.48 7.96 10.53
zero shot 61.18 29.58 11.41

Qwen2.5-7B few shot 73.29 8.20 2.03
zero shot 70.81 10.62 23.05

Qwen2.5-14B few shot 80.12 4.89 0.17
zero shot 73.60 8.60 16.09

Table 11: Model performance on the TTQA subset. The best performance per metric and split is bold.
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Split Model Prompting EM (↑) sMAPE (↓) MASE (↓)

arithmetic Llama-3.1-8B few shot 20.57 23.66 2.23
zero shot 14.47 35.80 2.03

Llama-3.3-70B few shot 49.70 10.54 0.15
zero shot 41.34 13.53 0.37

Phi-4-mini few shot 26.38 21.19 1.00
zero shot 19.59 38.37 3.47

Phi-4 few shot 55.71 7.12 0.17
zero shot 58.56 9.03 0.16

Qwen2.5-7B few shot 31.00 20.85 1.06
zero shot 25.30 34.11 0.46

Qwen2.5-14B few shot 43.21 9.21 0.71
zero shot 44.00 10.88 0.52

semantic Llama-3.1-8B few shot 72.69 10.43 1.18
zero shot 67.11 14.19 11.34

Llama-3.3-70B few shot 89.43 4.61 0.11
zero shot 90.16 6.09 0.19

Phi-4-mini few shot 65.64 10.54 1.04
zero shot 56.68 17.64 1.27

Phi-4 few shot 83.55 4.01 0.32
zero shot 80.32 6.39 0.46

Qwen2.5-7B few shot 63.00 8.47 1.19
zero shot 59.32 11.57 1.27

Qwen2.5-14B few shot 72.98 8.79 0.50
zero shot 67.99 11.72 0.61

Table 12: Model performance on the ToT subset. The best performance per metric and split is bold.

# of defined errors

Model Prompting EM sMAPE MASE

Llama-3.1-8B Few shot 1737 1373 1530
Zero shot 1737 1373 1225

Llama-3.3-70B Few shot 1737 1373 1667
Zero shot 1737 1373 1417

Phi-4-mini Few shot 1737 1373 1722
Zero shot 1737 1373 1668

Phi-4 Few shot 1737 1373 1680
Zero shot 1737 1373 1341

Qwen2.5-7B Few shot 1737 1373 1706
Zero shot 1737 1373 1708

Qwen2.5-14B Few shot 1737 1373 1727
Zero shot 1737 1373 1700

Table 13: Number of QA-pairs of the TTQA dataset for which each metric is defined. EM is defined for each
question. sMAPE is not defined for dates and is set to 100% if errors are not parsable. MASE is defined for all
questions but is not defined if the model’s answer is not parsable.
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# of defined errors

Model Prompting EM sMAPE MASE

Llama-3.1-8B Few shot 1697 1369 1575
Zero shot 1697 1369 1527

Llama-3.3.70B Few shot 1697 1369 1581
Zero shot 1697 1369 1524

Phi-4-mini Few shot 1697 1369 1618
Zero shot 1697 1369 1438

Phi-4 Few shot 1697 1369 1640
Zero shot 1697 1369 1595

Qwen2.5-7B Few shot 1697 1369 1600
Zero shot 1697 1369 1499

Qwen2.5-14B Few shot 1697 1369 1660
Zero shot 1697 1369 1648

Table 14: Number of QA-pairs of the ToT dataset for which each metric is defined. EM is defined for each question.
sMAPE is not defined for dates and is set to 100% if errors are not parsable. MASE is defined for all questions but
not defined if the model’s answer is not parsable.
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Figure 11: Comparison of performance measured by sMAPE and EM.
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Figure 12: Comparison of performance measured by MASE and EM.
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