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Abstract

Temporal question-answer (QA) is an estab-
lished method to assess temporal reasoning in
large language models (LLMs). Expected an-
swers are often numeric (e.g., dates or dura-
tions), yet the model responses are evaluated
like regular text with exact match (EM), un-
able to distinguish small from large errors. In
this investigative work, we frame temporal QA
as a numerical estimation task to assess the
shortcomings of EM. We introduce TempAn-
swerQA, a benchmark distilled from 7est of
Time and TempTabQA, where all questions re-
quire a numerical temporal answer, allowing
us to evaluate models beyond EM. We used the
forecasting metrics symmetric mean absolute
percentage error (SMAPE) and mean absolute
scaled error (MASE). With sMAPE, we found
that error size and EM are decoupled. Mod-
els with low EM still had low sMAPE (both
20%), and some models had high sMAPE de-
spite high EM. Scaling errors by the deviance
of the ground truth data with MASE reshuf-
fles model rankings compared to EM, revealing
gaps in models’ understanding of temporal do-
main knowledge, especially when trained with
synthetic data. Lastly, the models’ most fre-
quent error was to deviate only £1 from the
ground truth. SMAPE and MASE, unlike EM,
adequately weight these errors. Our findings
underscore the need for specialised metrics for
temporal QA tasks '.

1 Introduction

Time is an inherent part of the real world, and
reasoning about it is essential for intelligent be-
haviour (Xiong et al., 2024). As such, temporal
reasoning is crucial in many domains, including
high-stakes areas such as logistics (Li et al., 2023),
finance (Wu et al., 2023), and medicine (Blease
et al., 2024), which increases the stakes for ade-
quate evaluation. Question-answering (QA) bench-
marks are a well-established method to perform
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Exact match

Q1: How many hours before an anaesthesia with
Halothane should you stop taking Levodopa?
Al: 8 Model A: 8 Model B: 24 X

Q2: What is the absolute time difference between Andi
and Lee in hours given Andi is in EST(-0500)
and Lee is in PST(-0800)?

A2:3 Model A: 5 Model B: 3

Conclusion Model A and B tie on exact match rate.

Temporal difference
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v
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Conclusion Model A has a smaller error than Model B.

Figure 1: Exemplary performance evaluation of two
models comparing exact match and temporal difference.
Both models have an exact match of 50%, but Model B
has a greater temporal difference than Model A.

this evaluation, and the binary string-matching met-
ric exact match (EM) is widely used to assess their
effectiveness (Wang and Zhao, 2024; Wei et al.,
2023).

However, while it is prevalent, EM does not con-
sider the continuous nature of time. As illustrated
in Fig. 1, EM considers Model A and Model B to
be tied, despite Model A’s error being much smaller
(A2h) than Model B’s (A8h). Although there are
popular continuous alternatives, such as ROUGE,
METEOR (Gupta et al., 2023) and F1 (Gruber et al.,
2024), they collapse to binary scores when tempo-
ral answers consist solely of digits. Therefore, cur-
rent benchmarks suffer from a mismatch between
evaluation and deployment risk (Fig 1). This work
aims to solve this mismatch by exploring metrics



better suited to the temporal nature of the task.

Exploring continuous alternatives to EM allows
us to differentiate between small and large errors.
Beyond that, continuous metrics are more adequate
to assess temporal reasoning for two more reasons.
First, studies by Jack Lindsey et al. (2025) and
Khodja et al. (2025) demonstrate that LLMs tend
to approximate the answer to a (temporal) arith-
metic task. Relying solely on EM risks undervalu-
ing models that approximate correct answers well.
Second, answers to temporal questions can be am-
biguous, such as calculating a person’s age using
only their birth year, where two answers with a dif-
ference of 1 year could be true(Khodja et al., 2025).
This ambiguity is called transition times. With EM
alone, we cannot distinguish relevant errors from
transition time ambiguities.

We frame temporal QA as a numerical estima-
tion task and borrow two scale-free error metrics
from forecasting to evaluate LLMs beyond EM.
The first is the symmetric mean absolute percent-
age error (SMAPE) (Tofallis, 2014), which mea-
sures the percentage error of the model predic-
tions. The second is the mean absolute scaled error
(MASE) (Hyndman and Koehler, 2006). This met-
ric scales errors by a sensible baseline derived from
the benchmark data and thus aims to measure the
models’ temporal domain knowledge.

Our contributions can be summarised as follows:

1. We sample QA pairs from recent temporal
benchmarks composed solely of questions re-
quiring temporal answers to explore the limita-
tions of EM. Augmenting questions with meta-
data allows us to transform model responses
into time-aware objects, enabling evaluation
using regression-based metrics.

2. Our evaluation with the regression-based met-
ric SMAPE reveals that relative errors do not
increase much even for very low EM (both
~20 %). At the same time, it reveals outliers,
that is, models with large relative errors de-
spite a high EM. EM and sMAPE produced
similar but not identical model rankings, mak-
ing it a crucial addition to identifying robust
models that made more minor errors.

3. Scaling errors by the deviance of the ground
truth data using MASE assesses the tempo-
ral domain knowledge of the models. MASE
produces different model rankings than EM,
lowering the ranking of models trained on

synthetic data. MASE reveals that models can
achieve high EM and sMAPE and still make
errors that exceed what we expect, given suffi-
cient temporal domain knowledge.

4. Finally, by treating errors numerically, we
show that many model predictions are off by
only £1, caused by transition times (e.g., de-
termining someone’s age based only on the
birth year). Furthermore, MASE shows that
the error magnitude was not symmetric to the
sign and that errors with a positive sign are
much larger (> 0). Our findings underscore
the need for a specialised evaluation proce-
dure for temporal QA tasks and the inade-
quacy of using EM alone.

2 Related work
2.1 Temporal QA benchmarks

Generally speaking, Temporal QA aims to evaluate
a model’s understanding of time. Prior work often
thematises the numeric nature of this task. The
seminal QA benchmark TempQuestions by Jia et al.
(2018) defined temporal questions as those that
have a temporal expression (e.g. “three weeks”),
a temporal signal (e.g. “before”) or expect a tem-
poral answer (“When...”). The latter indicates that
the expected answer needs to be a measure of time.
Tan et al. (2023) proposed categorising temporal
questions into increasingly more complex levels of
temporal understanding, namely those with a time-
time, time-event, and event-event relation between
question and answer. Again, this highlights how
the numeric properties of time play a central role
in temporal QA. Furthermore, temporal reasoning
capabilities were often linked to mathematical rea-
soning skills (Su et al., 2024b; Yuan et al., 2023;
Fatemi et al., 2024; Wang and Zhao, 2024). While
there is consensus on the numeric properties of
time, there exist.

2.2 Evaluation challenges in temporal QA

All benchmarks mentioned above either use token-
level binary metrics or EM for evaluation. In one
instance, ROGUE and METEOR were also used
(Gupta et al., 2023).

Non-binary evaluations were conducted in some
instances. Tan et al. (2023) and Wang et al. (2025)
measured the mean absolute error for a selection of
temporal arithmetic tasks. However, this measure
cannot be compared across temporal resolutions
(days vs. years). Tan et al. (2023) also measured



trend accuracy, recognising that temporal errors are
directional. Since this metric is binary, it does not
detect directional biases.

Evaluations of models that prevent errors in med-
ication directions are less informative because the
metrics do not consider the numeric nature of time
(Pais et al., 2024). In another application setting,
Zhang et al. (2025) mitigated this issue using a tem-
poral version of the F1 score, which considers only
temporal entities. This score is valid for longer
texts but not if answers consist of only digits, as in
our setting.

A review by Su et al. (2024a) shows that a grow-
ing body of work in temporal QA focuses on knowl-
edge graphs. They often aim to retrieve the correct
answer from graphs. Retrieval is evaluated differ-
ently from free text, so the concerns raised in this
work do not apply here.

2.3 Transitional times

The necessity of investigating error magnitudes
has been shown before. Khodja et al. (2025)
showed that the models have a significantly higher
log-likelihood for answers constituting transitional
times (errors of +1) than for the correct answer.
They hypothesised that transitional dates are more
prevalent in the models’ training data since events
tend to be mentioned more often around their start
and end. However, the log-likelihood of answers is
not available for closed-source models.

Fatemi et al. (2024) also observed a higher pro-
portion of errors equal to £1 in duration questions
and speculated that models may approximate the
answers well but fail in the final arithmetic compu-
tation. Despite these findings, no alternative to EM
has been proposed. We, therefore, see an urgent
need to investigate model errors on a continuous
scale.

3 Methods and data

3.1 Dataset creation

Existing temporal QA benchmarks expect a mix of
free text and temporal answers. “Who won the Os-
car for best actor in 2024?” is a temporal question,
but its answer is not. “When was Oppenheimer
released?”, on the other hand, expects a temporal
answer. Currently, no QA dataset expects only (nu-
meric) temporal answers. We classify an answer
as a temporal answer if it is a date or a duration
(including age). To fill this gap, we sampled a QA
dataset that expects only temporal answers, which

. Temporal — Answer
Question Answer
answer format
How many years did Art
Carney work as an actor 54 v # years

starting from 1939?

Barbara
Isaac

Who was the spouse
of Art Carney in 1970?

Table 1: Example of labelling results for TempAn-
swerQA. Questions from TTQA and ToT expecting a
temporal answer (date or duration) were retained. The
expected answer format was added to facilitate parsing
answers as numeric objects. Newly created columns are
in italics.

we will refer to as TempAnswerQA. Tab. 1 contains
an example of the dataset.

The dataset should reflect current benchmarks
and, therefore, should include stand-alone ques-
tions, questions that require context, real-world
questions, and synthetic ones. The latter has be-
come increasingly relevant for combating leakage
into LLMs’ training data. Two datasets, Test of
Time (ToT) and TempTabQA (TTQA), meet these
requirements 2.

ToT (Fatemi et al., 2024) is a synthetic QA
benchmark for temporal reasoning. It consists of
two subsets. One is the arithmetic subset, which
has a real-world focus and contains questions that
require time-related computations. The other is
the semantic subset, which asks questions related
to a randomly generated graph that assesses the
model’s understanding of temporal semantic and
logical reasoning.

The enhanced version of TTQA evaluates a
model’s ability to answer temporal questions over
semi-structured Wikipedia tables (Deng et al.,
2024). The authors split the dataset to mitigate
data leakage problems into a head and tail dataset,
where the latter consists of less frequented tables.

We manually extracted questions that require a
temporal answer, which leaves us with 1103 QA
pairs for the head subset of TTQA and 634 for the
tail subset. For ToT, we extracted 1016 QA pairs
for the arithmetic subset and 681 for the semantic
subset. In total, we have 3434 QA pairs. Addition-
ally, we annotated the required temporal unit for
each question, i.e. if the answer is a date or a tem-
poral measure in years, months, days, minutes, or
seconds. We picked the higher temporal resolution

2Both have CC-BY-4.0



ToT TTQA
Temp.oral Count Temp.oral Count
unit unit

# seconds 411  #years 1194
Date 328  yyyy 305
# years 229  #days 94
# days 100  # months 85
# months 50 Date 59
# minutes 38

Table 2: The number of questions per temporal unit of
the answer. Answers can be either a duration measured
as a number of <temporal unit>, a full date or a date
with only the year (yyyy).

if the answer contained a mix of units, for exam-
ple, seconds if the answer was formatted as HH:SS.
Lastly, we annotated the expected answer format
to allow parsing the answer numerically as inte-
gers, timedelta, or datetime objects in Python.
Tab. 2 lists the number of temporal answer units
per dataset.

3.2 Regression-based metrics for temporal
QA

Metrics used to evaluate QA benchmarks are de-
signed for text and, therefore, do not capture the
size and direction of the error for temporal answers.
Specifically, minor errors due to transitional times
are indistinguishable from significant errors. Tem-
pAnswerQA’s expected answers all have numerical
representation, which allows us to use regression-
based metrics for evaluation.

There are a few considerations that we need to
make before selecting metrics. We need to select
(1) an aggregation technique that avoids errors of
different signs cancelling each other out, (2) decide
whether we want to weight errors, (3) how to sum-
marise errors, and lastly, ensure that (4) errors will
be comparable across different units, e.g., years
and seconds.

We selected metrics using absolute errors to
avoid the cancellation of errors of different signs.
We decided against weighting errors by squaring
or taking their logarithm since this impedes inter-
pretation, and we lack justifications. Errors can
be summarised using the mean or median. How-
ever, the median resulted in many scores of Os or
100s for EM and sMAPE. Therefore, we pick the
mean. Lastly, we must select a scale-free metric to
compare errors across units (e.g. relative errors).

SMAPE is scale-free and uses absolute errors. It
is bound between 0 and 100 and has a higher sym-
metry between negative and positive errors than
its precursor, the mean absolute percentage error.
SMAPE cannot be easily compared between exper-
iments as its denominator contains model predic-
tions and expected values. It is defined as:

1 " — s
sMAPE — 200% > s = wil.
no = il + 19l

where n is the number of QA pairs, y is the ex-
pected temporal answer, and  is the predicted tem-
poral answer. If an answer is not parsable, sMAPE
18 defined as 100%, and if the numerator and de-
nominator are 0, we define it as 0%.

A subset of answers are dates whose percentage
error is not defined (Tab. 2). Therefore, we also
consider MASE. It fulfils our requirements and is
defined for dates. MASE measures the absolute
errors scaled by the mean absolute deviation of
the dataset. MASE is also considered superior to
most forecasting metrics and is used in the well-
known Makridakis forecasting challenge (Makri-
dakis et al., 2022). It is defined as:

1~ |9 — vil
MASE = — —_
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where Y is the average of the expected values.
Instead of using all data to calculate Y, we use a
temporal unit-specific Y,. Some of the answers
have a bimodal distribution. The answers with
the temporal unit years in ToT have a peak for
the answers < 100 and a peak around 2000. The
mean is not representative in this case. To resolve
this issue, we performed clustering with a setting
that allowed our model also to return one cluster
(unimodally distributed). The results and model
settings are in the Appendix E.

The intuition behind MASE is that the answers
in this dataset are not uniformly distributed. With
sufficient domain knowledge, the correct answer
can be estimated. When answering how old some-
one is, for example, we expect the answer to not
exceed 100 by much. Without human annotation,
MASE can capture these expected values from the
dataset.

Another class of metrics measures semantic
similarity. BERTScore (Zhang et al., 2020) is a
widespread implementation of such a metric. How-
ever, it cannot distinguish between small and large



differences between integers (Appendix F), so we
did not consider it.

3.3 Models and prompts

Similarly to previous work, we used a selection of
open-source models for our experiments, namely
Phi-4-mini, Phi-4 (Abdin et al., 2024), Llama-
3.1-8B, Llama-3.3-70B (Grattafiori et al., 2024),
Qwen2.5-7B, and Qwen2.5-14B (Qwen et al.,
2025). The model settings are in the Appendix
(B). Since evaluation relied on parsing answers into
time-aware objects, we selected instruction-tuned
models for better instruction-following capabilities.
We considered using Timo, a temporal Llama 2
model by Su et al., but its context window was too
small for some questions.

TTQA and ToT come with their own set of (user)
prompts, which we adopted to use chat templates
without any other modifications. Our selection of
small models had difficulties following instructions
otherwise. We moved the formatting instructions
to the system prompt. These were especially impor-
tant for ToT, where answers needed to be JSONs.
Examples were presented as turns between the as-
sistant and user in the case of few-shot prompting.
Both adjustments improved instruction following.
Furthermore, models produced valid JSONs more
often when ending the prompt with an assistant
turn, appending the beginning of the required JSON
and removing generation prompts (see Appendices
C and D for prompts and B for small experiments
justifying chat templates and different generation
strategies).

4 Experiments and results

We conducted our experiments based on these six
selected models of different sizes with and without
few-shot prompting on the sampled dataset Tem-
pAnswerQA. Its questions expect temporal answers
that can be assessed in a regression-like fashion.
Our experiments aim to answer the following ques-
tions:

RQ1: Is the binary metric EM enough to evaluate
LLM:s on temporal QA benchmarks expecting
temporal answers?

RQ2: Can regression-based metrics help improve
our understanding of LLMs’ performance on
QA tasks expecting a temporal answer?

RQ3: What advantages do we have in using
regression-based metrics compared to EM?

4.1 Exact match does not capture error
magnitudes

EM does not differentiate between small and large
errors, that is, their error magnitudes. Wrong pre-
dictions (EM = 0) can have vastly different values
for sMAPE. For example, two models with EM of
80% could have SsMAPE of 1% and 20%, respec-
tively. The lower the EM rate, the wider the range
of values that sSMAPE can assume. Appendix A
contains an illustration of this relationship.

Model predictions on the TempAnswerQA
dataset evaluated by EM and sMAPE are shown in
Fig. 2. According to EM, Llama-3.3-70B is the best
model. Phi-4 and then Qwen2.5-14B closely follow
it. Smaller models follow thereafter. The range of
EM is large with values as low as 20% for Llama-
3.1-8B, Qwen2.5-7B, and Phi-4-mini. SMAPE val-
ues, on the other hand, span a shorter range be-
tween models and data splits (up to 40%) than in
the EM dimension (15-80%). sMAPE changes
the model ranking, placing Qwen2.5-14B in the
first place. It is also the model with the narrow-
est 95% confidence interval. All models, except
Qwen?2.5-14B, have outliers hovering around 40%.
For example, Llama-3.3-70B failed severely in an-
swering how many days the Ingenuity took to get
to Mars. Due to an arithmetic mistake, it answered
0.057 days. The expected answer is 418 days.

Qwen2.5-14B, which has increased mathemat-
ical capabilities and improved understanding of
structured data, overtakes Llama-3.3-70B when
evaluated with SsMAPE. The findings also show
that larger models performed better, equivalent to
the EM results. If errors produce non-linear costs
and low errors are more desired than a high EM,
Qwen?2.5-14B should be preferred over Llama-3.3-
70B. The results in tabular form are in Appendix G.

4.2 Tolerable error magnitudes depend on the
task difficulty

MASE was introduced as a metric superior to other
regression-based metrics and is the gold standard
in forecasting. Unlike sSMAPE, it can also be ap-
plied to dates. Its main property is that it scales the
prediction errors by the difficulty of the problem,
which is relevant because answers in the TempAn-
swerQA are not arbitrarily distributed and benefit
from temporal domain knowledge. For example,
a subset of questions is related to the time zone.
The maximum time difference between time zones
is 26 hours. Models with this knowledge should
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Figure 2: Model ranking by sSMAPE and EM. Blue dots represent the mean score, and bars around it the 95%
confidence interval. Grey dots are individual runs with and without few-shot prompting on all splits of ToT and
TTQA. Arrows indicate a rank change from EM to sMAPE. It is green if it improves, red if it decreases, and black

if it stays the same.

not produce errors larger than that. Without human
annotation for acceptable error ranges, MASE can
extract it from the data instead.

Model predictions on the TempAnswerQA
dataset evaluated by EM and MASE are shown
in Fig. 3. All models had a MASE greater than 1,
meaning their mean absolute error was higher than
the mean absolute deviance of the dataset stratified
by the temporal answer unit per data split. Al-
though experiments with SMAPE and EM ranked
larger models higher and SsMAPE showed the ad-
vantage of Qwen2.5-14B being trained in mathe-
matical tasks and structured data, MASE draws a
different picture. Llama-3.1-8B’s rank dramatically
increases from the last to the second place. Scaling
errors is relevant, as the relative size does not reveal
if an error is significant. Qwen2.5-7B, for exam-
ple, when asked which year Jenson Button (racing
driver) won his first championship, answered with
2018. The expected answer is 2009, which leads
to a scaled error of 5.12. Athlete’s careers are rela-
tively short-lived, making a 9-year error striking.

Llama-3.1-8B is the only model that was not
trained on synthetic data. MASE captures domain
knowledge, and we hypothesise that the synthetic
data on which Qwen and Phi were trained distort
the models’ temporal domain knowledge. The tab-
ular results are in the Appendix G.

4.3 Scaled errors produce different rankings,
percentage errors do not

EM is a gold standard metric for evaluating LLMs
on QA benchmarks. Therefore, it is necessary to

compare SMAPE and MASE with EM. We used
Spearman’s rank correlation coefficient to compare
model rankings across metrics, and the results are
shown in Fig. 4a and Fig. 4b.

EM had a high rank correlation with SMAPE for
both datasets, ToT (-0.82) and TTQA (-0.92). It
was negative because a higher EM is better, while a
lower SsMAPE is better. The correlation was much
lower between MASE and EM, with values around
0.4 for both datasets.

Considering the high agreement in the ranking
between both metrics, but knowing that SMAPE is
more affected by outliers by definition, which is
also observable in Fig. 2, we find that SMAPE is a
crucial addition to EM for model evaluation if error
magnitude matters. Since it does not produce sig-
nificantly different model ranks, interpreting EM
and sMAPE in tandem is easier.

MASE produced different model ranks. This
is unsurprising since, unlike SMAPE, the same er-
ror magnitude will scale differently depending on
the task. MASE is, therefore, more strict if data
deviance is low. Scaling errors for time-zone or
age-related questions are such instances. Datasets
are most likely designed to span reasonable time
periods. If not, clustering should help make MASE
more reliable. However, further verification, ide-
ally by humans, is required.

4.4 Transitional times and error directions

Casting answers into time-aware objects allows
us to investigate raw errors, helping us identify
tiny errors (+/-1) due to transitional times and their
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Figure 3: Model ranking by MASE and EM. Blue dots represent the mean score, and bars around it the 95%
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Figure 4: Spearman rank correlation between metrics
on all experiments (models x prompts) per dataset.

direction.

Transitional times most often involve questions
asking for durations. In the following, we will
measure whether an error |e| = 1 appeared more
often than others and if it appeared more often in
questions asking for durations.

Indeed, our analysis reveals that an absolute error
of 1 is the most common in both datasets (Tab. 3).
For ToT, the share of absolute errors equal to 1 is
11.62%. For TTQA, it is 49.49%. This finding
is striking because the number of unique errors is
infinite.

Next, we verified whether errors equal to |e| = 1
occurred more often for duration-related questions.
We divide the dataset by the type of question de-
fined by the authors of ToT and the answer format

ToT TTQA
Share Share

le]  Count (%) le]  Count (%)
1 1002 11.62 1 1853  49.49
2 446 5.17 2 250 6.68
4 344 3.99 3 159 4.25
3 258 2.99 4 128 3.42
5 208 241 6 117 3.12

Table 3: Five most frequent absolute errors per dataset
over all experiments (models x prompts) with number
of occurrences and relative share in percent. Note that
models performed better on TTQA, therefore, the share
of errors with |e| = 1 is so high.

for the dataset TTQA. Tab. 4 shows that the types
of questions are evenly distributed within ToT. The
share of question types where |e| = 1 is vastly dif-
ferent. RelationDuration and Duration questions
tremendously increased their share. Trick ques-
tions doubled as well. The Trick setup confused
LLMs to decide whether to ex- or include either
the start and end dates for a duration calculation.

Due to a lack of question-type labels in TTQA,
we used the expected answer format instead. Tab. 5
compares the share of questions by answer format
for all data and when the errors are equal to |e| = 1.
The TTQA dataset contains many more duration-
related questions than ToT. Therefore, the increase
in share is not as prominent as in ToT, but it is
striking that all non-duration answers have a signif-
icantly smaller share among the questions where



Question Type Share (%)

all data  where |e| =1
MultiOP 20.57 4.99
EventAtWhatTime 20.15 4.59
RelationDuration 19.98 32.14
AddSubtract 14.73 16.57
Duration 11.79 18.96
Trick 6.89 22.36
Timezone 5.89 0.40

Table 4: Share of question types in ToT dataset com-
pared by share of question types where prediction error
is 1 (Je| = 1) over all experiments (models x prompts).

Answer Format Share (%)

all data  where |e| =1
# years 68.74 81.27
yyyy 17.56 5.56
# days 541 7.34
# months 4.89 5.40
%B %d, %Y 3.40 0.43

Table 5: Share of answer formats in TTQA dataset
compared by share of answer formats where prediction
error is 1 (Je| = 1) over all experiments (models x
prompts).

the error is |e| = 1.

Finally, we investigate whether model errors
have a directional bias. In Tab 6, we see that
sMAPE is similar for positive and negative errors.
This is not the case for MASE. Positive errors pro-
duced much higher MASE. This difference is pro-
nounced for the TTQA dataset. In the ToT dataset,
the difference in the standard deviation is more no-
ticeable. This insight is relevant to applications
where the cost of errors is not symmetric with re-
spect to direction.

5 Conclusion

This work extended existing benchmarks by eval-
vating LLMs on questions expecting a temporal
answer. Furthermore, we showed that the gold-
standard metric EM does not capture all relevant

SMAPE MASE

Dataset  Error (+std) (+std)
ToT neg. 24.73 (31.21) 1.40 (7.09)
Ppos. 21.60 (29.26) 3.98 (40.82)
TTQA neg. 22.83 (30.42) 0.55 (1.09)

pos.  29.32(31.72)  48.09 (334.80)

Table 6: SMAPE and MASE including their standard
deviation where error is either strictly positive or nega-
tive per dataset.

information, namely error magnitude and direction.

To this end, we used SMAPE and MASE, two
regression-based metrics that captured properties in
the prediction errors of the models that EM did not.
SMAPE was relatively low, even if EM was low.
This suggests that models may have an understand-
ing of the correct answer. Qwen2.5-14B, which
was trained on structured data and mathematical
reasoning, performed best according to SsMAPE,
overtaking Llama-3.3-70B, the best model accord-
ing to EM. Both Llama models performed the best
according to MASE; they were the only models not
trained on synthetic data, suggesting that their tem-
poral domain knowledge is higher and synthetic
data distorts this knowledge.

Answers to duration-related questions can be
ambiguous due to transitional times, leading to two
answers being correct with a difference of just 1.
This leads to an inflation of errors equal to +1.
SMAPE and MASE are continuous metrics and
thus provide a more balanced evaluation than EM.

Lastly, we could show that MASE and sMAPE
are valuable additions to EM. sMAPE ranks models
similar to EM, making it a good choice to use in
tandem with EM while offering more insight into
the model’s robustness in producing small errors.
MASE ranks models significantly differently. It
attempts to scale errors by prior domain knowledge
about the correct answer and, unlike SMAPE, will
identify outliers not only by its relative error but
relative to the difficulty of the task. Without human-
annotated data, MASE is a viable alternative to
measure prior temporal knowledge.

6 Outlook

More work is required to verify the benefit of
regression-based metrics. This can be achieved
through either a separate dataset or by human pref-
erence. Specifically, other approaches for scaling
errors for MASE should be considered. Small
SMAPE suggests that models have a good under-
standing of the problem but have problems dealing
with numbers. Tool calling is an interesting next
step in assessing whether the low performance is
due to arithmetic miscalculations rather than insuf-
ficient temporal reasoning capabilities.

7 Limitations

There are answers in both datasets that are temporal,
but we did not include them because they are not
trivially evaluable. These include date and time



ranges, multiple answers, or frequencies such as
“every first Monday of the month”. The latter is
related to absolute times and dates, which have a
bounded error. For example, if we ask in which
month Christmas is celebrated, the maximal error
is 11 months, while for other answers in the dataset,
the error can be arbitrarily large in theory.

Both regression-based metrics are not defined
for all answers. Either because the answer is not
parsable in the case of MASE, or because the an-
swer is a date or a time (SMAPE). This shortcoming
needs to be addressed.

MASE was scaled by each subset of both
datasets and the expected temporal unit of the an-
swer. Although this approach makes the reasonable
assumption that the authors of the paper produced
problems that are similar within a subset and that
the expected temporal unit is enough indication
to capture similar kind of problems, this may not
always hold. Clustering could potentially unravel
such questions into more representative clusters,
but this approach does not hold up to a hand-crafted
dataset where the mean absolute deviance is neatly
justified for each question.
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Figure 5: EM does not capture error magnitude. The
possible variance in error magnitude (measured by
SMAPE) is higher the lower EM is.

A sMAPE intuition

If amodel’s answer is wrong, the answer’s error can
range from a tiny relative error up to an infinitely
large one. The lower EM, the higher the sMAPE
can be in a model. In other words, models with
the same EM can spread wider, and the lower EM
is, the better SMAPE is at discriminating model
performance. Fig. 5 illustrates this. If we assume
that for all wrong predictions that a model makes,
the minimum error measured by SsMAPE is 1%,
25%, and 50%, the figure shows the range of values
that a model can still score with respect to SMAPE
for all possible values of EM.

B Model settings

All our models were accessed via Hugging Face
using the transformers Python library at version
4.49.0 (Wolf et al., 2020). We used the default
settings for each model in our experiments. For
text generation, we used the settings in Tab. 7. We
used a mix of GPUs to run our experiments, includ-
ing GeForce 3090s and 4090s, and two A100s in
parallel to run inference for Llama-3.3-70B. GPU
hours required to run inference on Llama-3.3-70B
required approximately 24 hours. Experiments
with smaller models took 1-3 hours per run. At
least as many GPU hours across GPUs were used
to run small experiments or test code.

The evaluation of ToT depends on the models
that produce parsable JSONs. Therefore, we ex-
perimented with setting either add_generation_-
prompt or continue_final_message to true in
Hugging Face. The first appends an assistant to-
ken to our messages, if available, indicating an

11

End of

Dataset Max. new token
sequence tokens
ToT 512 No
TTQA 512 Yes
Table 7: Generation settings.
Model # Parsing rrrors
add generation continue
prompt final message

Llama-3.1-8B 0/50 2/50
Qwen2.5-7B 4/50 0/50
Phi-4-mini 13/50 1/50

Table 8: Number of parsable JSONs per model for differ-
ent generation strategies tested on 50 randomly selected
questions from the semantic split of ToT.

answer. The latter does not do this, prompting
the models to continue their messages. The result-
ing prompts can be seen in the Appendix D. To
test when JSON formatting was more successful,
we randomly sampled 50 questions from the se-
mantic split of ToT and compared the number of
correctly parsed JSONs. The results are in Tab. 8.
Setting continue_final_message produced less
parsing errors (3 over three models) than add_ge-
neration_prompt (17 over three models).

The evaluation of TTQA also depended on the
correct format of the output. Specifically, models
needed to place their answer after the string “Final
Answer:”. We observed a low amount of correct
formatting and thus experimented with transferring
prompts into a chat template. The correct output
formatting was compared between the original and
the prompts translated into chat templates. We
tested the models’ instruction following on the tail
split of the TTQA dataset. The results are shown in
Tab 9. Qwen and Phi improved their instruction fol-
lowing, with Qwen almost doubling it from 44.52
t0 99.56%. Llama has a slight decrease when using
chat templates from 81.98% to 74.40%.

C TTQA prompts

In the following, we list the TTQA prompts used
for this work. We compare the prompts originally
used by Deng et al. (2024) and our adaption to
make use of chat templates. For brevity, we re-
placed some turns in the few-shot example with
. Furthermore, we did not use the original
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Correct output format (%)

Model
Original prompt With
chat template
Llama-3.1-8B 81.98 74.40
Qwen2.5-7B 44.52 99.56
Phi-4-mini 94.76 99.38

Table 9: Number of answers containing expected string
“Final Answer:” in their response for each model on the
head split of the TTQA dataset. Percentage was calcu-
lated based on slightly varying numbers of questions
as experiments were conducted at different steps in the
labelling process.

questions, tables, or answers below but replaced
them with placeholders enclosed by “<>.

C.1 TTQA zero-shot prompt

User prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".
Each table-question pair is presented as
a table (identified by "Table:") followed
by a question (identified by "Q:"). Tables
are presented in a linear format, with
columns separated by tabs, rows separated
by newlines, and subsections separated by
double newlines. If necessary, assume the
current date is December, 2022.

Table:
<TABLE>
<QUESTION>

A: Let’s think step by step.
Assistant:

C.2 TTQA zero-shot prompt as chat template

System prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".

Each table-question pair is presented as a
table (identified by "Table:") followed by
a question (identified by "Q:"). Tables are
presented in a linear format, with columns
separated by tabs, rows separated by new-
lines, and subsections separated by double
newlines. If necessary, assume the current
date is December, 2022.

User prompt:

Table:

<TABLE>
<QUESTION>

A: Let’s think step by step.
Assistant:

C.3 TTQA few-shot prompt

User prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".
Each table-question pair is presented as
a table (identified by "Table:") followed
by a question (identified by "Q:"). Tables
are presented in a linear format, with
columns separated by tabs, rows separated
by newlines, and subsections separated by
double newlines. If necessary, assume the
current date is December, 2022.

Here is an example that follows these
instructions. Answer the provided questions
in a similar format:

Table:
<TABLE, SHOT 1>
Q: <QUESTION, SHOT 1>

A: <ANSWER, SHOT 1>

<TABLE, SHOT 3>
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Q: <QUESTION, SHOT 3>

A: <QUESTION, SHOT 3>

Table:
<TABLE>
<QUESTION>

A: Let’s think step by step.
Assistant:

C4 TTQA few-shot prompt as chat template

System prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".
Each table-question pair is presented as
a table (identified by "Table:") followed
by a question (identified by "Q:"). Tables
are presented in a linear format, with
columns separated by tabs, rows separated
by newlines, and subsections separated by
double newlines. If necessary, assume the
current date is December, 2022.

Here is an example that follows these
instructions. Answer the provided questions
in a similar format:

User prompt

Table:

<TABLE, SHOT 1>

Q: <QUESTION, SHOT 1>

A:
Assistant prompt: <ANSWER, SHOT 1>

User prompt:

Table:

<TABLE, SHOT 3>

Q: <QUESTION, SHOT 3>

A:

13

Assistant prompt: <ANSWER, SHOT 3>
User prompt:

Table:

<TABLE>

<QUESTION>

A: Let’s think step by step.
Assistant:

D ToT prompts

In the following, we list the ToT prompts used for
this work. We compare the prompts originally used
by Fatemi et al. (2024) and our adaption to make
use of chat templates.

A few-shot version of the prompts was con-
structed by modifying existing questions. The chat
template was filled as in C.4, where examples were
presented as turns between the user and the assis-
tant. In the case of the semantic subset, the graph
information was included in the system prompt.
The generation prompt was removed, and the assis-
tant prompt was pre-filled.

D.1 ToT zero-shot prompt

User prompt: Natalie and Chris were born
on 2004-Feb-18 and 2004-Dec-30 respec-
tively. When Chris was 991 days old, how
old was Natalie in days? Return your answer
as a JSON like: JSON = {""explanation"":
<your step by step solution>, ""
<num_days>}

Assistant:

answer .

D.2 ToT zero-shot prompt as chat template

System prompt: Return your answer as a
JSON like: JSON = {"explanation": <your
step by step solution>, "answer": <num_-
days>}

User prompt: Natalie and Chris were born
on 2004-Feb-18 and 2004-Dec-30 respec-
tively. When Chris was 991 days old, how
old was Natalie in days?

Assistant: JSON = {"explanation":

E Cluster results

MASE required the mean answer per temporal unit
of the answer and the split of each dataset. Clus-



Expected Predicted BERTScore

1 1 1.0000
1 2 0.9998
1 10 0.9992
1 100 0.9987

Table 10: BERTScore for some predictions. Scores
were rounded to the last four digits.

tering did not affect the TTQA data. ToT, however,
exhibited some bimodality, which was identified
by the clustering algorithm. The distribution of
the answers per split and temporal unit for TTQA
is shown in Fig. 6 and Fig.7. ToT’s answer dis-
tribution for the arithmetic split before and after
clustering can be found in Fig. 8 and Fig. 9 respec-
tively and in Fig. 10 for the semantic split.

Clustering was performed using sklearn’s HDB-
SCAN (hierarchical density-based spatial cluster-
ing of applications with noise) model. The mini-
mum cluster size was set to 30% to avoid too small
clusters. The model was allowed to produce single
clusters. All other settings were set to default. We
used version 1.6.1 of scikit-learn (Pedregosa
etal., 2011).

F BERTScore

We did not consider similarity-based metrics as
they tend to return high similarity for digits, regard-
less of how close they are to each other, as can be
seen in Tab. 10.

G Results extended

Results in tabular form are listed in Tab. 12 for ToT
and in Tab. 11 for TTQA. Fig. 11 contains a scatter
plot with the results comparing EM and sMAPE
and Fig. 12.

EM is defined for all pairs QA, sMAPE and
MASE not. sMAPE is not defined for dates or
times. Since it has a maximum value, namely
100%, it is defined even if the answer of the model
is not parsable. MASE does not have this property
as it has no upper bound. Instead, it is defined for
dates and times. Tab. 14 lists the number of QA
pairs in the ToT dataset for which either metric is
defined, and Tab. 13 does the same for the TTQA
dataset.
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Figure 6: Distribution of the expected answers by temporal unit of the answer for the head split of the TTQA dataset.
Answers were transformed into numeric form. In the case of dates, they were converted into timestamps.
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Figure 7: Distribution of the expected answers by temporal unit of the answer for the tail split of the TTQA dataset.
Answers were transformed into numeric form. In the case of dates, they were converted into timestamps.
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Figure 8: Distribution of the expected answers by temporal unit of the answer for the arithmetic split of the ToT
dataset. Answers were transformed into numeric form. In the case of dates, they were converted into timestamps.
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Figure 9: Distribution of the expected answers by temporal unit of the answer for the arithmetic split of the ToT
dataset. If answers were clustered, clusters are highlighted by different colours. Answers were transformed into
numeric form. In the case of dates, they were converted into timestamps.
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Figure 10: Distribution of the expected answers by temporal unit of the answer for the semantic split of the ToT
dataset. Left is the raw distribution, and on the right is the distribution after clustering. Answers were transformed
into numeric form. In the case of dates, they were converted into timestamps. If

Split  Model Prompting EM (1) sMAPE (J) MASE ()
head Llama-3.1-8B  few shot 75.34 17.02 0.50
zero shot 63.37 33.11 0.25

Llama-3.3-70B  few shot 83.71 6.58 0.20

zero shot 74.62 20.59 0.17

Phi-4-mini few shot 77.05 7.03 0.52

zero shot 73.09 12.65 7.45

Phi-4 few shot 79.39 6.13 0.34

zero shot 61.30 29.36 0.29

Qwen2.5-7B few shot 79.12 7.77 4.47

zero shot 77.77 8.05 0.91

Qwen2.5-14B  few shot 81.73 4.28 0.63

zero shot 76.33 9.21 3.91

tail Llama-3.1-8B few shot 69.10 18.52 1.17
zero shot 57.14 36.29 1.66

Llama-3.3-70B  few shot 79.19 7.50 0.19

zero shot 66.30 22.51 8.72

Phi-4-mini few shot 70.81 8.89 8.87

zero shot 70.34 14.04 27.06

Phi-4 few shot 77.48 7.96 10.53

zero shot 61.18 29.58 11.41

Qwen2.5-7B few shot 73.29 8.20 2.03

zero shot 70.81 10.62 23.05

Qwen2.5-14B  few shot 80.12 4.89 0.17

zero shot 73.60 8.60 16.09

Table 11: Model performance on the TTQA subset. The best performance per metric and split is bold.
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Split Model Prompting EM (1) sMAPE (J) MASE ()

arithmetic Llama-3.1-8B few shot 20.57 23.66 2.23
zero shot 14.47 35.80 2.03

Llama-3.3-70B few shot 49.70 10.54 0.15
zero shot 41.34 13.53 0.37

Phi-4-mini few shot 26.38 21.19 1.00
zero shot 19.59 38.37 3.47

Phi-4 few shot 55.71 7.12 0.17
zero shot 58.56 9.03 0.16

Qwen2.5-7B few shot 31.00 20.85 1.06
zero shot 25.30 34.11 0.46

Qwen2.5-14B  few shot 43.21 9.21 0.71
zero shot 44.00 10.88 0.52

semantic  Llama-3.1-8B  few shot 72.69 10.43 1.18
zero shot 67.11 14.19 11.34

Llama-3.3-70B  few shot 89.43 4.61 0.11
zero shot 90.16 6.09 0.19

Phi-4-mini few shot 65.64 10.54 1.04
zero shot 56.68 17.64 1.27

Phi-4 few shot 83.55 4.01 0.32
zero shot 80.32 6.39 0.46

Qwen2.5-7B few shot 63.00 8.47 1.19
zero shot 59.32 11.57 1.27

Qwen2.5-14B  few shot 72.98 8.79 0.50
zero shot 67.99 11.72 0.61

Table 12: Model performance on the ToT subset. The best performance per metric and split is bold.

# of defined errors
Model Prompting EM sMAPE MASE

Llama-3.1-8B  Few shot 1737 1373 1530
Zero shot 1737 1373 1225
Llama-3.3-70B  Few shot 1737 1373 1667
Zero shot 1737 1373 1417

Phi-4-mini Few shot 1737 1373 1722
Zero shot 1737 1373 1668
Phi-4 Few shot 1737 1373 1680

Zero shot 1737 1373 1341
Qwen2.5-7B Few shot 1737 1373 1706
Zero shot 1737 1373 1708
Qwen2.5-14B  Few shot 1737 1373 1727
Zero shot 1737 1373 1700

Table 13: Number of QA-pairs of the TTQA dataset for which each metric is defined. EM is defined for each
question. sSMAPE is not defined for dates and is set to 100% if errors are not parsable. MASE is defined for all
questions but is not defined if the model’s answer is not parsable.
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# of defined errors

Model Prompting EM sMAPE MASE
Llama-3.1-8B  Few shot 1697 1369 1575
Zero shot 1697 1369 1527
Llama-3.3.70B  Few shot 1697 1369 1581
Zero shot 1697 1369 1524
Phi-4-mini Few shot 1697 1369 1618
Zero shot 1697 1369 1438
Phi-4 Few shot 1697 1369 1640
Zero shot 1697 1369 1595
Qwen2.5-7B Few shot 1697 1369 1600
Zero shot 1697 1369 1499
Qwen2.5-14B  Few shot 1697 1369 1660
Zero shot 1697 1369 1648

Table 14: Number of QA-pairs of the ToT dataset for which each metric is defined. EM is defined for each question.
SMAPE is not defined for dates and is set to 100% if errors are not parsable. MASE is defined for all questions but

not defined if the model’s answer is not parsable.
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Figure 11: Comparison of performance measured by SsSMAPE and EM.
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Figure 12: Comparison of performance measured by MASE and EM.
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