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ABSTRACT

Since the development of self-supervised visual representation learning from con-
trastive learning to masked image modeling (MIM), there is no significant dif-
ference in essence, that is, how to design proper pretext tasks for vision dictio-
nary look-up. MIM recently dominates this line of research with state-of-the-
art performance on vision Transformers (ViTs), where the core is to enhance the
patch-level visual context capturing of the network via denoising auto-encoding
mechanism. Rather than tailoring image tokenizers with extra training stages as
in previous works, we unleash the great potential of contrastive learning on de-
noising auto-encoding and introduce a pure MIM method, ConMIM, to produce
simple intra-image inter-patch contrastive constraints as the sole learning objec-
tives for masked patch prediction. We further strengthen the denoising mecha-
nism with asymmetric designs, including image perturbations and model progress
rates, to improve the network pre-training. ConMIM-pretrained models with var-
ious scales achieve competitive results on downstream image classification, se-
mantic segmentation, object detection, and instance segmentation tasks, e.g., on
ImageNet-1K classification, we achieve 83.9% top-1 accuracy with ViT-Small and
85.3% with ViT-Base without extra data for pre-training. Code will be available
at https://github.com/TencentARC/ConMIM.

1 INTRODUCTION

The great success of self-supervised learning in natural language processing (NLP) tasks, e.g., BERT
(Devlin et al., 2019) and GPT (Radford et al., 2018; 2019), has sparked several revolutions in visual
representation learning, during which the development of vision dictionary look-up is the most crit-
ical. In the age of convolutional neural networks (CNNs) (He et al., 2016; Krizhevsky et al., 2012),
prominent works (He et al., 2020; Chen et al., 2020) perform self-supervised learning with a pretext
task of instance-level dictionary look-up via contrastive learning as demonstrated in Figure 1(a).
With the advent of vision Transformers (ViTs) (Dosovitskiy et al., 2021), the gap between vision
and NLP tasks has been further narrowed since the introduction of patch-level dictionary look-up
via masked image modeling in a pioneer work BEiT (Bao et al., 2022) (see Figure 1(b)).

The introduction of masked image modeling (Bao et al., 2022), inspired by masked language mod-
eling (Devlin et al., 2019) in NLP tasks, ushers in a new fad for self-supervised learning using vision
Transformers (Dosovitskiy et al., 2021), i.e., a portion of vision tokens are randomly masked and
then recovered by the Transformer network being trained. Concurrent works (Dong et al., 2021;
Li et al., 2022; Wei et al., 2022) make efforts to design patch-level dictionaries, image tokenizers
in other words, to build proper learning objectives (i.e., vision token ids) for masked image mod-
eling. Though advanced results can be achieved, the off-the-shelf image tokenizers, e.g., discrete
VAE (Ramesh et al., 2021) used in BEiT (Bao et al., 2022), depend on extra training stages and data
knowledge, rendering an inflexible two-stage pre-training paradigm.

We would like to call for a revisit of the superiority of masked image modeling over contrastive learn-
ing on self-supervised learning with vision Transformers. Since they are essentially both designed
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Figure 1: Conventional contrastive learning methods (e.g., MoCo (He et al., 2020), SimCLR (Chen
et al., 2020)) and masked image modeling methods (e.g., BEiT (Bao et al., 2022), PeCo (Dong et al.,
2021)) both perform the pretext task of vision dictionary look-up, where the superiority of the latter
ones lie in the patch-level denoising auto-encoding mechanism to enable fine-grained visual context
understanding of vision Transformers (Dosovitskiy et al., 2021). We introduce to cast masked image
modeling as denoising contrastive learning to avoid the extra training stages of image tokenizer,
rendering a flexible, simple and effective pre-training paradigm.

towards vision dictionary look-up, the key difference lies in the patch-level denoising auto-encoding
mechanism in masked image modeling, which encourages the network’s capability to capture fine-
grained visual context and semantics. As for the auto-encoding objective, we do not have to inten-
tionally discretize the continuous visual signals as words in NLP tasks to cast the masked prediction
as a classification task. Instead, we can give full play to the wisdom of contrastive learning, which
has good capability to structure the visual space with semantically meaningful representations. To
this end, we introduce a new pre-training method for masked image modeling, namely, ConMIM, to
get rid of extra tokenizing networks by revitalizing contrastive learning, as shown in Figure 1(c).

Our ConMIM casts masked patch prediction in self-supervised image pre-training as denoising con-
trastive learning. The corrupted input with a large proportion of patches masked is fed into the
encoder, a plain vision Transformer in general. The encoder learns to recover the representations
of the masked patches, which are predicted by feeding the full input into the encoder. The training
objective is formed by an intra-image inter-patch contrastive loss. To be specific, patch representa-
tions of a full input image build a dynamic dictionary, and patches from the same positions as the
masked ones of the corrupted input serve as their positive keys, respectively. The remaining ones
from different positions but in a same image are the negative keys. To further improve the network
via a stronger denoising auto-encoding mechanism, we introduce asymmetric designs in ConMIM
training, including asymmetric image perturbations and asymmetric model progress rates. We adopt
a strong augmentation for the full input while a weak augmentation for the corrupted input. For the
image encoder, the slowly progressing momentum encoder (He et al., 2020) is employed for the full
input to embed more challenging but semantically consistent learning targets.

We perform self-supervised learning with ConMIM on ImageNet (Deng et al., 2009), and then
fine-tune the pre-trained vision Transformers with various scales on image classification, semantic
segmentation, object detection and instance segmentation. Unlike those employ large models with
super-scale extra data knowledge, ConMIM excels especially at small-scale architectures, which
render a more challenging task for effective pre-training as well as a more practical task in real-
world applications. With a vanilla ViT-Small model, we achieve 83.9% top-1 accuracy using only
ImageNet-1K, suggesting that useful knowledge is exploited from data. This significantly outper-
forms the baseline BEiT (Bao et al., 2022) and the comparable MIM methods without tokenizers
(e.g., MAE (He et al., 2022), iBOT (Zhou et al., 2022)) due to the stronger semantic structured reg-
ularization in ConMIM. Other than the promising results, we would like to draw public attention to
unleash the great potential of “outdated” contrastive learning in visual representation learning.

2 RELATED WORK

Self-supervised learning via vision dictionary look-up. The pretext task of contrastive learning
(Chen et al., 2020; He et al., 2020; Caron et al., 2020) dominates self-supervised visual pre-training
in the era of CNNs. Contrastive learning methods generally perform instance-level dictionary look-
up. The anchors are pulled closer to their positive keys at the same time pushing away from the
negative keys. The establishment of vision dictionaries is critical for the contrast regularization.
For example, the seminal work MoCo (He et al., 2020) builds the vision dictionary with a first-
in-first-out queue, driven by a momentum encoder. The concurrent work SimCLR (Chen et al.,
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2020) uses a large batch size to enlarge the dictionary with more negative keys. SwAV (Caron
et al., 2020) further introduces an online clustering algorithm in an unsupervised manner, and the
cluster assignments serve for the dictionary keys. Despite the great achievements with CNNs, these
methods are gradually abandoned with the introduction of ViTs (Dosovitskiy et al., 2021) due to the
lack of inductive bias, which requires stronger supervision for better pre-training performance.

Researchers attempt to reproduce the success of masked language modeling (Devlin et al., 2019) in
self-supervised learning of ViTs via patch-level dictionary look-up. Specifically, BEiT (Bao et al.,
2022) introduces a new pretext task, namely, masked image modeling, for visual pre-training. They
tokenize high-dimensional images into discrete vision tokens by a discrete VAE (Ramesh et al.,
2021) to establish a static patch-level dictionary as in NLP tasks. A proportion of image patches are
randomly masked, the backbone network is then trained to recover the vision token ids of the masked
patches, rendering a denoising mechanism. Follow-up works make efforts to further improve the
static dictionaries, e.g., mc-BEiT (Li et al., 2022) introduces eased and refined dictionaries with
multiple choices. PeCo (Dong et al., 2021) proposes to produce perceptual-aware keys in the patch-
level dictionary. Though promising results, these methods all require extra training stages and even
extra data for obtaining a proper image tokenizer.

We would also like to mention and thank the classic denoising auto-encoding methods (Vincent
et al., 2010; Seung, 1997). Though they did not mask patches in Transformer, these pilot works on
auto-encoding and emphasized reconstruction have well inspired the deep learning community.

Tokenizer-free masked image modeling (MIM) methods. There are other recent works that cast
MIM as a pixel-level reconstruction task (e.g., MAE (He et al., 2022)) or a self-distillation task (e.g.,
iBOT (Zhou et al., 2022)) rather than dictionary look-up. However, they fail to achieve competitive
results using the same training epochs and perform especially unsatisfactorily on small-scale archi-
tectures due to the weak regression constraints (see Appendix B.4). Moreover, iBOT is not a pure
MIM method as it heavily depends on the vanilla DINO (Caron et al., 2021) loss (i.e., the global
self-distillation loss on [CLS] tokens). It actually conducts MIM on top of DINO and argues that
MIM alone hardly captures visual semantics. However, we would like to clarify that it is actually
due to the improper MIM constraints. Contrastive learning is proven to be good at structuring the
visual space but does not been successfully employed in MIM before. We propose a flexible pure
MIM method without extra dependencies, including offline tokenizer or global discrimination loss.

Dense contrast vs. denoising contrast. There are some previous works on contrastive learning
devoted to taking local feature representations into consideration, e.g., DenseCL (Wang et al., 2021).
Though the form of InfoNCE (Van den Oord et al., 2018) is similar, they show significant differ-
ences from our ConMIM in both motivation and method design. They focus on how to learn better
pre-trained weights for dense downstream tasks, e.g., object detection and segmentation, but hardly
encourage the patch-level visual context reasoning as it is a contrastive-only task, showing inferior
performance on ViT pre-training. Moreover, DenseCL depends on the global discrimination loss to
ensure correct local correspondences and needs to carefully balance the global and local constraints.
Such a chicken-and-egg problem can be seamlessly addressed in our well-designed denoising mech-
anism, including both the masking operation and the asymmetric designs. See Appendix B.4.1 for
experimental comparisons. There are also some concurrent works (Tao et al., 2022; Huang et al.,
2022) that study contrastive learning in MIM. ConMIM is conducted independently with them.

3 PRELIMINARIES

The pretraining-and-then-finetuning paradigm has been proven to be effective for visual representa-
tion learning and various downstream tasks, where self-supervised pre-training is the most popular.
Since there are no ground-truth annotations available, the design of pretext tasks is critical to the
pre-training performance. Though driven by various motivations and progressing architectures (He
et al., 2016; Dosovitskiy et al., 2021), the pretext task of visual self-supervised learning is essentially
to perform vision dictionary look-up, inspired by the success of NLP tasks.

3.1 CONTRASTIVE LEARNING: INSTANCE-LEVEL VISION DICTIONARY LOOK-UP

From the perspective of vision dictionary look-up, prominent contrastive learning methods establish
instance-level vision dictionaries via a fixed-length queue (He et al., 2020) or batch-wise samples
(Chen et al., 2020). The keys in the dictionary are dynamically updated as pre-training proceeds.
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Figure 2: Our ConMIM performs the masked patch prediction with denoising contrast, coupling
with two asymmetric designs to achieve state-of-the-art performance on self-supervised image pre-
training. The slowly progressing vision Transformer is a snapshot of the backbone network under
training, and we do not require any off-the-shelf image tokenizers. The training objective of denois-
ing contrastive loss performs a patch-level look-up from dynamic vision dictionaries and enhances
the network’s capability to capture more fine-grained visual context.

Given an image x, its feature representation is encoded by feeding it into the backbone network, i.e.,
f(x). An InfoNCE loss (Van den Oord et al., 2018) is employed to regularize this representation,
bringing it closer to its positive key k+ while staying away from negative keys, denoted as

Lcon(x) = − log
exp (⟨f(x), k+⟩/τ)∑K
i=1 exp (⟨f(x), ki⟩/τ)

, (1)

where ⟨·, ·⟩ is the cosine similarity measured by the dot product between two L2-normalized features,
τ is the temperature hyper-parameter, k is the dynamic key, and K is the dictionary size. Generally,
the positive key is built by another view of the same instance (Tian et al., 2020), e.g., different image
augmentations.

3.2 MASKED IMAGE MODELING: PATCH-LEVEL VISION DICTIONARY LOOK-UP

With the popularity of Transformer architectures (Dosovitskiy et al., 2021) in computer vision tasks,
the pretext task of masked image modeling gradually dominates visual representation learning. It
randomly masks a large percentage of image patches and trains the backbone network to recover
the token ids of corrupted image via more fine-grained patch-level vision dictionary look-up. The
dictionary is generally static and pre-defined by an off-the-shelf image tokenizer (Ramesh et al.,
2021; Esser et al., 2021), which converts continuous visual signals into discrete keys. For example,
in the seminal work BEiT (Bao et al., 2022), a pre-learned discrete VAE is adopted as the tokenizer.
The masked patch prediction is then cast as a classification task with cross-entropy loss,

Lmim(x) = Ej∈M [− log p(yj |f(x̂)j)] , (2)

where M denotes the set of masked patch indices, x̂ is the corrupted image after randomly masking,
yj is the positive key index in the patch-level dictionary, and p(·|·) indicates the probability that
correctly identifies the recovered patch f(x̂)j with a patch index of j.

4 MASKED IMAGE MODELING WITH DENOISING CONTRAST

Despite that existing contrastive learning and masked image modeling methods optimize the back-
bone network towards different training objectives (i.e., InfoNCE loss and cross-entropy loss), they
both attempt to learn discriminative visual representations via dictionary look-up. Two key factors
lead to the state-of-the-art performance of masked image modeling. (1) More fine-grained super-
vision from instance-level to patch-level benefits the vision Transformer architecture known for its
data-hungry properties. (2) The denoising auto-encoding mechanism, formed by the masking-and-
then-predicting paradigm, encourages the capability of the backbone network to capture contextu-
alized representations. Though promising results are achieved by existing masked image modeling
methods (Bao et al., 2022; Li et al., 2022; He et al., 2022), they either require extra training stages to
establish static vision dictionaries with offline image tokenizers or lack powerful MIM constraints.
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To this end, we call for a revitalization of contrastive learning, which has good capability to struc-
ture the latent space for self-supervised representation learning. A new self-supervised pre-training
method, ConMIM, is introduced to perform pure masked image modeling with denoising contrastive
objectives while eliminating the dependence on pre-learned image tokenizers, as shown in Figure 2.

Patch-level dynamic dictionary. We build dynamic patch-level dictionaries to form the learning
targets for masked patch prediction on-the-fly. Specifically, during each training iteration, the full
input image x is fed into the backbone network to embed the patch feature representations, serving
as keys in the dynamic dictionary, i.e., {f(x)i|Ki=1} where i is the patch index, K is the dictionary
size as well as the total number of patches within an image (e.g., K = 196 keys for a 224 × 224
image with a patch size of 16× 16). Without the loss of representation discriminativeness, we build
separate dictionaries for each image, that is, only operate patch-level dictionary look-up within each
image. We discuss this design in Sec. 5.4.2 with ablation studies using a larger or smaller dictionary
size, where inferior results are achieved and require extra computational overhead.

Denoising contrastive objective. The corrupted image, x̂, is then fed into the backbone network,
and we denote the encoded patch feature representation of a certain masked patch as f(x̂)j , j ∈ M.
The backbone network is trained to denoise the corrupted image and recover the masked patches
through visual context reasoning. The masked patch recovery is regularized by a patch-level dictio-
nary look-up in the form of an InfoNCE loss (Van den Oord et al., 2018),

Lconmim(x) = Ej∈M

[
− log

exp (⟨f(x̂)j , sg[f(x)j ]⟩/τ)∑K
i=1 exp (⟨f(x̂)j , sg[f(x)i]⟩/τ)

]
, (3)

where sg[·] indicates stop-gradient operation. We only backpropagate the gradients of the corrupted
inputs f(x̂) because backpropagating the gradients of the full input f(x) may lead to information
leakage and useless denoising. With the above training objectives, the backbone network is encour-
aged to better capture the visual context and learns to encode local discriminative representations.

Asymmetric design. As patches (e.g., 16×16) are small-scale inputs with less useful information
and highly redundant semantics, we need to make the pre-training task more challenging to improve
the backbone network. Towards this goal, the recent work MAE (He et al., 2022) proposes to mask
a large proportion of patches. In our work, besides the large proportion of patch dropout, we further
introduce two asymmetric designs to enable a stronger denoising regularization during pre-training.

(1) Asymmetric image perturbations. We adopt different data augmentations for the full input image
x and the corrupted image x̂ before feeding into the backbone network. To be specific, we utilize
stronger augmentations for the full input image referring to contrastive learning methods (Chen et al.,
2020), including random flip, resize, crop, color distort, Gaussian blur, and solarization. And we
only use basic augmentations for the corrupted image referring to masked image modeling methods
(Bao et al., 2022), including random flip, resize, and crop. Note that we use the same flip, resize
and crop operations for paired inputs in order to keep the patch positions consistent. We discuss
the alternative options in Sec. 5.4.3. We observe that it is sub-optimal to use strong augmentations
for corrupted images, and the reason might be the too difficult pretext task to regularize, i.e., the
backbone network needs to recover the strong-augmented corrupted input towards the full input
targets with asymmetric perturbations.

(2) Asymmetric model progress rates. We employ different model progress rates of the backbone
network for embedding the corrupted input and full input to avoid information leakage. We use the
in-training network i.e., the one optimized by loss backpropagation for the corrupted input while
using its momentum updated version for the full input. The momentum encoder (He et al., 2020) is
known as a slowly progressing model that can encode more challenging but semantically consistent
key feature representations for building dictionaries. Specifically, we denote the model parameters
of the backbone f(·) as θ and the model parameters of the momentum updated one as θ̃. The
momentum encoder is updated via θ̃ = (1 − α)θ + αθ̃ in each iteration, where α ∈ [0, 1] is the
momentum coefficient. Larger coefficients indicate slower model progress.

Pre-training setup. ConMIM pre-training is conducted on the training set of ImageNet-1K (Deng
et al., 2009) dataset in a self-supervised manner. We utilize ViT-S/16, ViT-B/16 and ViT-L/16 (Doso-
vitskiy et al., 2021) as the backbone networks. Following MoCo v3 (Chen* et al., 2021), we use a
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Method Arch. #Epochs Acc.
scratch ViT-B/16 - 81.8
MoCo v3 ViT-B/16 600 83.2
DINO ViT-B/16 1600 82.8
BEiT ViT-B/16 300 82.9
ConMIM ViT-B/16 300 83.5
iBOT ViT-B/16 600 82.0
BEiT ViT-B/16 800 83.2
MAE ViT-B/16 800 83.3
ConMIM ViT-B/16 800 83.7
SimMIM ViT-B/16 800 83.8
MAE ViT-B/16 1600 83.6
iBOT ViT-B/16 1600 84.0
scratch† ViT-B/16 - 83.1
BEiT† ViT-B/16 800 84.6
ConMIM† ViT-B/16 800 85.3
MAE† ViT-B/16 1600 84.9
iBOT† ViT-B/16 1600 85.0

Table 1: Top-1 accuracy (%) on ImageNet-
1K (Deng et al., 2009) classification using
ViT-Base (Dosovitskiy et al., 2021). All the
models use only ImageNet-1K with a resolu-
tion of 2242 for pre-training. (†) The resolu-
tion of 3842 is used for fine-tuning. We fol-
low the same 3842 fine-tuning setup of BEiT
(Bao et al., 2022), i.e., after fine-tuning with
2242, another 10% epochs are further used
for fine-tuning on 3842.

Method Arch. #Epochs Acc.
scratch ViT-S/16 - 79.8
MoCo v3 ViT-S/16 600 81.4
DINO ViT-S/16 1600 81.5
BEiT ViT-S/16 300 81.3
ConMIM ViT-S/16 300 82.0
iBOT ViT-S/16 600 81.5
SimMIM ViT-S/16 800 80.1
MAE ViT-S/16 800 80.9
iBOT ViT-S/16 3200 82.3
ConMIM† ViT-S/16 300 83.9

Table 2: Top-1 accuracy (%) on ImageNet-
1K classification using ViT-Small.

Method Arch. #Epochs Acc.
scratch ViT-L/16 - 82.6
MoCo v3 ViT-L/16 600 84.1
MAE ViT-L/16 400 84.3
ConMIM ViT-L/16 400 84.6
BEiT ViT-L/16 800 85.2
MAE ViT-L/16 800 85.2
ConMIM ViT-L/16 800 85.2
iBOT ViT-L/16 1000 84.8
ConMIM ViT-L/16 1600 85.5
MAE ViT-L/16 1600 85.9
BEiT† ViT-L/16 800 86.3
ConMIM† ViT-L/16 800 86.3
ConMIM† ViT-L/16 1600 86.5

Table 3: Top-1 accuracy (%) on ImageNet-
1K classification using ViT-Large.

3-layer projection head on top of the backbone network for pre-training and discard it when trans-
ferring to downstream tasks. The input images are all resized to 224 × 224 and the patch size is
set to 16 × 16. We follow the masking strategy of MAE (He et al., 2022), i.e., 75% patches are
randomly masked. The learning rate is set to 5e-4, with a warmup of 10 epochs, and cosine learning
rate decay. The temperature τ is set to 0.1 and the momentum coefficient α is initially set to 0.996
with a cosine scheduler. ViT-B/16 and ViT-L/16 are pre-trained for 800 epochs in total and ViT-S/16
is pre-trained for 300 epochs if not specified. The other hyper-parameters are mostly the same as
BEiT (Bao et al., 2022). More implementation details can be found in Appendix A.

5 EXPERIMENTS

We evaluate the models pre-trained by our ConMIM on different downstream tasks, including image
classification on ImageNet-1K (Deng et al., 2009) (Sec. 5.1), semantic segmentation on ADE20K
(Zhou et al., 2017) (Sec. 5.2), object detection and instance segmentation on COCO (Lin et al.,
2014) (Sec. 5.3). We further discuss the key components in ConMIM pre-training via ablation
studies in Sec. 5.4, the scalability on larger dataset in Sec. 5.5, and the running time in Sec. 5.6.
Hyper-parameter details can be found in Appendix A.1 and analysis in Appendix B.1.

5.1 IMAGE CLASSIFICATION

We test our ConMIM by fine-tuning the pre-trained models on ImageNet-1K (Deng et al., 2009)
classification, which contains 1.3M images out of 1K classes in total. We mostly follow the fine-
tuning setup of BEiT (Bao et al., 2022). To be specific, we use 100 epochs with a warm-up of 20
epochs, and a layer decay of 0.65 for ViT-Base fine-tuning. 200 epochs with a warm-up of 5 epochs
and a layer decay of 0.8 for ViT-Small fine-tuning. 50 epochs with a warm-up of 5 epochs and a
layer decay of 0.75 for ViT-Large fine-tuning. We illustrate the evaluation results in Tables 1,2,3.
We observe that models with pre-trained weights overwhelmingly outperform the ones trained from
scratch by DeiT (Touvron et al., 2021), demonstrating the significance of self-supervised visual
representation learning. Compared to the pioneering work of masked image modeling, BEiT (Bao
et al., 2022), we consistently outperform it when fine-tuning on ViT-Base and ViT-Small models
with both image resolutions of 224 × 224 and 384 × 384. Moreover, we do not require any extra
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Methods Arch. #Ep. mIOU

BEiT‡ ViT-S/16 300 46.3
ConMIM‡ ViT-S/16 300 47.7
scratch ViT-B/16 - 45.3
MoCo v3 ViT-B/16 600 47.2
BEiT ViT-B/16 800 45.6
ConMIM ViT-B/16 800 46.0
DINO ViT-B/16 1600 46.8
MAE ViT-B/16 1600 48.1
iBOT ViT-B/16 1600 50.0
BEiT‡ ViT-B/16 800 47.7
ConMIM‡ ViT-B/16 800 49.8
MAE‡ ViT-B/16 1600 48.0
scratch ViT-L/16 - 49.9
MoCo v3 ViT-L/16 600 49.1
BEiT‡ ViT-L/16 800 53.3
ConMIM‡ ViT-L/16 800 53.7
MAE ViT-L/16 1600 53.6

Table 4: Semantic segmentation on
ADE20K (Zhou et al., 2017) in terms of
mIOU (%). “#Ep.” means the number of
pre-trained epochs. (‡) Transferring after
intermediate fine-tuning on ImageNet-1K
(Deng et al., 2009), which is a common
practice of BERT (Devlin et al., 2019).

Methods Arch. #Ep. APbox APmask

scratch ViT-S/16 - 43.1 38.8
MAE ViT-S/16 800 38.9 35.6
ConMIM‡ ViT-S/16 300 45.8 41.0
MAE‡ ViT-S/16 800 41.5 37.8
SimMIM‡ ViT-S/16 800 43.0 38.7
scratch ViT-B/16 - 46.5 41.7
MoCo v3 ViT-B/16 600 47.3 42.2
BEiT ViT-B/16 800 47.4 42.1
ConMIM ViT-B/16 800 47.8 42.5
SimMIM ViT-B/16 800 48.7 43.2
DINO ViT-B/16 1600 47.6 42.3
iBOT ViT-B/16 1600 48.3 42.7
MAE ViT-B/16 1600 48.0 43.0
BEiT‡ ViT-B/16 800 48.2 43.3
SimMIM‡ ViT-B/16 800 48.4 43.5
ConMIM‡ ViT-B/16 800 48.7 43.6
MAE‡ ViT-B/16 1600 47.8 42.9

Table 5: Object detection and instance segmentation
on COCO (Lin et al., 2014) in terms of APbox (%)
and APmask (%). We tune the optimal learning rate
for each model following (He et al., 2022). (‡) With
intermediate fine-tuning on ImageNet.

tokenizing networks as in BEiT, realizing more efficient and flexible one-stage pre-training. MAE
(He et al., 2022) and iBOT (Zhou et al., 2022) cast masked image modeling as reconstruction or
distillation tasks rather than vision dictionary look-up. As we discussed before, they require more
training epochs for optimal performance as the regularization of regression loss is much more eased
than the contrastive loss. Such flaws are especially evident in the performance of small-scale models.

5.2 SEMANTIC SEGMENTATION

We evaluate ConMIM on the downstream semantic segmentation using ADE20K (Zhou et al., 2017)
benchmark, which consists of 25K images of 150 semantic categories. We use the evaluation metric,
mean intersection over union (mIOU), for reference. We use UperNet (Xiao et al., 2018) and adopt
the same setup as BEiT (Bao et al., 2022). Images are resized to 512× 512 as input, and the model
is fine-tuned for 160K iterations in total. We also use intermediate fine-tuning to fully exploit the
potential of the pre-trained models following BEiT (Bao et al., 2022), i.e., first fine-tuning the pre-
trained models on ImageNet-1K classification and then transferring to ADE20K. The results are
shown in Table 4. We consistently surpass the baseline BEiT with significant improvements, e.g.,
our 49.8% vs. BEiT’s 47.7% on ViT-Base. Moreover, our ConMIM using ViT-Small even achieves
comparable performance with BEiT using ViT-Base, i.e., 47.7%. Models pre-trained by masked
image modeling generally achieve better performance on segmentation than the ones pre-trained by
conventional contrastive learning, e.g., MoCo v3 (Chen* et al., 2021).

5.3 OBJECT DETECTION AND INSTANCE SEGMENTATION

For object detection and instance segmentation, we fine-tune Mask R-CNN (He et al., 2017) end-to-
end on COCO (Lin et al., 2014). We follow the implementation of (Li et al., 2021) and reproduce
all the results in Table 5 since (Li et al., 2021) is still close-source. To tame quadratic complexity
with self-attention, most attention blocks in the ViT backbone are replaced with windowed blocks
except for four global blocks to perform cross-window interaction. Four up/down-sample modules
are evenly placed with ViT to produce pyramid features required by FPN (Lin et al., 2017). The
training recipes keep the same with (Li et al., 2021). An input image is resized to 1024× 1024 and
augmented by large scale jitter (Ghiasi et al., 2021), with a resize scale of [0.1, 2.0]. We fine-tune
the pre-trained models for 25 epochs using an AdamW (Loshchilov & Hutter, 2017) optimizer with
a weight decay of 0.1 and cosine learning rate scheduler. All experiments are performed under the
same settings, except for the learning rate is specifically tuned for each model, which strictly follows
(He et al., 2022) in order to keep fair comparisons as it exploits the potential of each pre-trained
method. We achieve much better performance than MAE (He et al., 2022) on ViT-Small.
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Models ImageNet Acc.
DeiT-B (training from scratch) 81.8
MoCo v3 (conventional contrastive learning) 83.2
ConMIM (Ours) 83.51

denoising patch-level contrast → vanilla instance-level contrast 82.26 (-1.25%)
denoising patch-level contrast → vanilla patch-level contrast fail

Table 6: Ablation studies on the effect of denoising auto-encoding mechanism.

5.4 ABLATION STUDIES

We discuss component design in ConMIM through ablation studies. All the experiments in this
section are conducted using ViT-B/16 (Dosovitskiy et al., 2021) pre-trained for 300 epochs, and we
report the top-1 classification accuracy after fine-tuning on ImageNet-1K (Deng et al., 2009).

5.4.1 ANALYSIS OF DENOISING AUTO-ENCODING MECHANISM

The denoising auto-encoding mechanism is critical to the success of masked image modeling, where
the fine-grained patch-level supervision and the masking-and-the-predicting paradigm are the two
key factors. We conduct ablation studies in Table 6 to analyze their effect. (1) We remove the en-
tire denoising auto-encoding mechanism from ConMIM, i.e., using average local tokens to perform
vanilla instance-level contrastive loss, significant performance drops (-1.25%) are observed. Such
a result is even worse than MoCo v3 (Chen* et al., 2021), the state-of-the-art method for conven-
tional contrastive learning. See the visualization in Appendix B.2 for more intuitive comparisons.
(2) When only discarding the masking strategy while keeping patch-level contrast, the experiment
totally fails due to the trivial information leakage with semantically repetitive patches.

5.4.2 ANALYSIS OF PATCH-LEVEL DYNAMIC DICTIONARY

Models ImageNet Acc.
DeiT-B (training from scratch) 81.8
ConMIM (Ours) 83.51

more: intra-image negative keys → intra-gpu negative keys 82.60 (-0.91%)
fewer: intra-image negative keys → filtered intra-image negative keys 83.12 (-0.39%)

Table 7: Ablation studies on the dictionary size of ConMIM.

ConMIM performs masked image modeling towards the objective of an intra-image inter-patch con-
trastive loss, i.e., the dictionary is built individually for each image. The size of the dictionary has
effects on the regularization of negative keys. We discuss such a design by either expanding the
dictionary or reducing it, as shown in Table 7. (1) We expand the dictionary by gathering other
images’ keys on the same GPU. Performance drops are observed. The reason might be that the keys
from the same image share similar domains and serve as hard negatives for each other. Gathering
more negatives from other domains actually ease the regularization. (2) Although patches within
the same images can act as hard negatives, they might also be noisy negatives as patches are highly
semantically redundant, e.g., patches from different positions may carry similar patterns. So we try
to filter them by excluding negative keys that are highly similar to the anchor patch in the latent
space. Slight accuracy decreases are shown, indicating that we may exclude some valuable hard
negatives. We acknowledge that, although ConMIM can achieve the state-of-the-art results to date,
there should be room for further refinement in dictionary design. Further studies are called for.

5.4.3 ANALYSIS OF ASYMMETRIC DESIGNS

Models ImageNet Acc.
DeiT-B (training from scratch) 81.8
ConMIM (Ours) 83.51

w/o asymmetric image perturbations, use stronger one 83.41 (-0.10%)
w/o asymmetric image perturbations, use basic one 83.35 (-0.16%)
w/ asymmetric image perturbations but switch 82.62 (-0.89%)
w/o asymmetric model progress rates 81.53 (-1.98%)

Table 8: Ablation studies on the effect of asymmetric designs.
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We introduce two asymmetric designs in ConMIM to enable a stronger denoising auto-encoding
mechanism during pre-training. We discuss their effects in Table 8. (1) Asymmetric image pertur-
bations. We use a stronger augmentation for the full input while the basic one for the corrupted image
in ConMIM. We try to remove such asymmetric augmentation design and find slight performance
drops when using either the stronger one or the basic one for both inputs. More significant perfor-
mance drops can be observed when directly switching their augmentations. We draw a seemingly
counterintuitive conclusion versus conventional contrastive learning. However, it is actually con-
sistent with the theoretical analysis in (Wang et al., 2022b) that the in-training (source) network of
contrastive learning requires high variance of input distribution, where the masking strategy already
introduces much higher variance than the full input for the momentum (target) network. Further
applying stronger augmentation for the corrupted input may lead to a too difficult pretraining task
for the network to regularize, similar to the findings in MAE (He et al., 2022). (2) Asymmetric
model progress rates. We use a slowly progressing momentum model of the backbone network to
embed more challenging but semantically consistent key representations. Such a design is important
to avoid information leakage caused by feeding the full input (target) into the same model. When
removing it, noticeable accuracy decreases are shown, i.e., -1.98%, even worse than DeiT baseline.

5.5 UNCURATED PRE-TRAINING DATA

We would like to see if ConMIM scales well to larger uncurated datasets. Referring to SLIP (Mu
et al., 2021), we pre-train on YFCC15M (Thomee et al., 2016), which is about 12 times larger than
ImageNet-1k. See the results below in Table 9, ConMIM surpasses both SLIP (using language super-
vision) and MAE (a comparable pure MIM method) on ViT-B/16, further verifying the effectiveness
and scalability of our ConMIM in real-world applications.

Method Arch. #Epochs (YFCC15M) ImageNet Acc.
SLIP ViT-B/16 50 82.9%
MAE ViT-B/16 40 83.0%
ConMIM ViT-B/16 40 83.3%

Table 9: Scalability on larger uncurated data.

5.6 RUNNING TIME

We measure the running time per epoch based on the anchor BEiT (Bao et al., 2022) in Table 10.
BEiT requires an additional tokenizer (Ramesh et al., 2021), whose training time is not included
here. Note that iBOT (2-view) needs to switch two views and four forward passes in total, and BEiT
and ConMIM are 1-view method without switching. MAE is more efficient but achieves inferior
performance than our ConMIM. Considering the effectiveness and flexibility, a slightly increasing
time over BEiT is acceptable.

Method Setup Time per epoch
MAE 1-view, 1-pass 0.35×
BEiT 1-view, 2-pass 1.0× (w/ extra tokenizer)
ConMIM 1-view, 2-pass 1.05×
iBOT 2-view, 4-pass 1.40×
iBOT (default) (2+10)-view, 14-pass 2.15×

Table 10: Running time statistics.

6 CONCLUSION AND DISCUSSION

We first propose to perform masked image modeling (MIM) with denoising contrast, a simple and
flexible pure MIM method with advanced downstream performance. Besides the technical contribu-
tion, we would like to emphasize our intriguing insights and potential broader impacts. We are the
first to indicate that MIM and contrastive learning both essentially perform vision dictionary look-up
and analyze the key factors that make MIM more effective on ViTs, i.e., the fine-grained patch-level
constraints and denoising auto-encoding mechanism. More importantly, we hope our work, revital-
izing contrastive learning when MIM dominates, would well motivate the community to conduct an
objective and comprehensive study of two lines of pre-training methods, and further inspire NLP
and multimodal research. Reproducibility is declared in Appendix A, more experimental results in
Appendix B, and limitations in Appendix C.
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A REPRODUCIBILITY

We adopt 16 A100 GPUs for pre-training (32 A100 GPUs for ViT-L/16). ViT-S/16 requires less than
1 day for 300 epochs, ViT-B/16 requires around 3 days for 800 epochs and ViT-L/16 requires around
5 days for 800 epochs. A fluctuation within ±0.1% accuracy may be observed on classification when
pre-training multiple times with distinct random seeds (use 0 in default).

A.1 HYPER-PARAMETERS

Configuration ViT-S/16 ViT-B/16 ViT-L/16
Layers 12 12 24
Hidden size 384 768 1024
Attention heads 6 12 16
Attention head size 64
Patch size 16× 16
Training epochs 300 800 800
Batch size 2048
Adam ϵ 1e-8
Adam β (0.9, 0.98)
Peak learning rate 5e-4
Minimal learning rate 1e-5
Learning rate schedule Cosine
Warmup epochs 10
Initial momentum coefficient α 0.996
Maximal momentum coefficient α 1
Momentum coefficient schedule Cosine
Temperature τ 0.1
Stoch. depth 0.1 None None
Gradient clipping 3 3 1
Dropout None
Weight decay 0.05
Masking patch size 16 32 32
Basic Data Augment RandomResizeAndCrop

Strong Data Augment ColorJitter(0.4,0.4,0.2,0.1),
GaussianBlur(0.1), Solarization(0.2)

Input resolution 224× 224

Table 11: Hyper-parameters for ConMIM pre-training on ImageNet-1K.

Configuration ViT-S/16 ViT-B/16 ViT-L/16
Peak learning rate {1e-3,2e-3,3e-3,4e-3,5e-3}
Batch size 1024
Fine-tuning epochs 200 100 50
Warmup epochs 5 20 5
Layer-wise learning rate decay 0.8 0.65 0.75
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Minimal learning rate 1e-6
Learning rate schedule Cosine
Repeated Aug None
Weight decay 0.05
Label smoothing 0.1
Dropout None
Gradient clipping None
Stoch. depth 0.1 0.1 0.2
Erasing prob. 0.25
Input resolution 224× 224 or 384× 384
Rand Augment 9/0.5
Mixup prob. 0.8
Cutmix prob. 1.0
Color jitter 0.4

Table 12: Hyper-parameters for fine-tuning ConMIM on ImageNet-1K classification.
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Configuration ViT-S/16 ViT-B/16 ViT-L/16
Peaking learning rate {1e-5,3e-5,5e-5,7e-5}
Fine-tuning steps 160K
Batch size 16
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Layer-wise learning rate decay 0.9 0.9 0.95
Minimal learning rate 0
Learning rate schedule Linear
Warmup steps 1500
Dropout None
Stoch. depth 0.1
Weight decay 0.05
Input resolution 512× 512
Position embedding Relative
Position embedding interpolate Bilinear

Table 13: Hyper-parameters for fine-tuning ConMIM on ADE20K semantic segmentation.

Configuration ViT-S/16 ViT-B/16
Fine-tuning epochs 25
Peaking learning rate 1e-4
Learning rate decay cosine
Adam ϵ 1e-8
Adam β (0.9, 0.999)
Dropout None
Stoch. depth 0.1
Weight decay 0.1
Batch size 64
Input size 1024× 1024
Position embedding Abs. + Rel.
Augmentation LSJ(0.1, 2.0)

Table 14: Hyper-parameters for fine-tuning ConMIM on COCO object detection and instance seg-
mentation.

A.2 PSEUDOCODE

Algorithm 1 Pseudocode of ConMIM pre-training in a PyTorch-like style.

# f: backbone encoder, e.g., vit-base model
# t: temperature, \tau in the paper
# m: momentum, \alpha in the paper

f_slow.params = f.params # initialize
for (x, mask) in loader: # load a mini-batch x with N samples

# image preprocess with asymmetric perturbations
x = aug_basic(x) # share same basic aug for paired inputs
x_full = aug_strong(x)
x_corrupted = x*(1-mask)+mask_token.expand_as(x)*mask # randomly mask 75% patches

# build patch-level dynamic dictionaries with asymmetric models
with torch.no_grad():

keys = f_slow(x_full) # NxKxD, K is the number of patches
feats = f(x_corrupted) # NxKxD

# dictionary look-up with denoising contrastive loss (Eq.(3))
sim = bmm(feats.view(N,K,D), keys.view(N,D,K)).view(-1,K) # (NxK)xK
labels = range(K).repeat(N) # (NxK)
mask = mask.view(-1) # (NxK)
loss = CrossEntropyLoss(sim[mask]/t, labels[mask])

# update model
loss.backward()
update(f.params)
f_slow.params = (1-m)*f.params+m*f_slow.params

bmm: batch matrix multiplication
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B EXPERIMENTS (CONT.)

B.1 HYPER-PARAMETER ANALYSIS

Strategy Ratio Acc.

Block

40% 82.12
60% 83.20
75% 83.11
90% 82.63

Random
60% 82.52
75% 83.51
90% 83.04

Table 15: Discuss different
masking strategies and ratios.

temperature τ Acc.
0.05 82.55
0.07 83.03
0.1 83.51
0.15 83.32
0.2 83.35

Table 16: Discuss tempera-
ture hyper-parameter in de-
noising contrastive loss.

momentum α Acc.
0.99 83.11
0.996 83.51
0.999 83.31

Table 17: Discuss momentum
coefficient in the slowly pro-
gressing model.

Masking ratio. The fine-tuning results on ImageNet using different masking strategies and ratios
are shown in Table 15. Randomly masking at a ratio of 75% achieves the optimal performance.

Temperature. We discuss the effect of temperature hyper-parameter in our denoising contrastive
loss (Eq. (3)), as illustrated in Table 16. τ = 0.1 achieves the optimal performance empirically. We
use this setup for both ViT-Small and ViT-Base.

Momentum. The fine-tuning accuracy on ImageNet using our ConMIM with different values of
initial momentum coefficient is shown in Table 17. ConMIM is actually not sensitive to this hyper-
parameter and we adopt 0.996 in all experiments for optimal performance.

B.2 VISUALIZATIONS

(a)

(b)

Figure 3: Visualize the self-attention map between [CLS] token and local tokens of the pre-trained
ViT-B/16 (Dosovitskiy et al., 2021) model on ImageNet-1K (Deng et al., 2009), where (a) indi-
cates ConMIM pretraining and (b) indicates the vanilla instance-level contrastive pre-training. Self-
attention maps out of 12 attention heads are averaged. It can be observed that ConMIM-pretrained
models are much more locally discriminative and aware of the visual context.
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1 2 3

54

(a) (b) (c)

Figure 4: Visualize the dynamic dictionary composed of patches. The dictionary in ConMIM prop-
erly provides positive keys with similar semantics while the baseline tokenizer is vulnerable to var-
ious low-level changes. (a) The query patch from ImageNet validation set. (b) Top-ranked patches
retrieved by ConMIM-pretrained model. (c) Patches out of the same ID (#1813) tokenized by dVAE
(Ramesh et al., 2021) in baseline BEiT (Bao et al., 2022).

B.3 PARTIAL FINE-TUNING

Linear probing is inapplicable to evaluate pure MIM methods which are not designed towards lin-
early separable instance features. MIM pre-training aims to pursue better pre-trained weights and
strong but non-linear features that complement downstream tasks. Linear probing fails to properly
measure such properties according to MAE (He et al., 2022) and is also abandoned by BEiT (Bao
et al., 2022). For a more comprehensive evaluation, we study partial fine-tuning (a middle ground
between linear probing and fully fine-tuning) on ConMIM. As illustrated in Figure 5, fine-tuning a
few blocks can achieve accuracy close to full fine-tuning.

Figure 5: Partial fine-tuning of ConMIM-pretrained ViT-B/16 model.

B.4 DISCUSSION WITH RELATED WORKS

B.4.1 COMPARE TO IBOT AND DENSECL

As iBOT (Zhou et al., 2022) is also a tokenizer-free method, someone considers ConMIM a variant
of iBOT with DenseCL (Wang et al., 2021) loss. We would like to clarify that our ConMIM develops
more proper constraints for pure MIM rather than a trivial combination of iBOT and DenseCL,
motivated as follows.

Although iBOT abandons the offline tokenizer, it heavily depends on the vanilla DINO loss (i.e.,
the global self-distillation loss on [CLS] tokens). It actually conducts MIM on top of DINO and
fails without the vanilla DINO loss. As an evidence, in Tab. 9 of iBOT’s original paper, the fine-
tuning accuracy of ViT-S/16 significantly degrades from 81.5% to 79.4% (DeiT-S achieves 79.8%)
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Method #Views # Pretrain Epochs ViT-S/16 ViT-B/16
iBOT 2 300 81.5 82.0
DenseCL 1 300 81.4 81.9
ConMIM 1 300 82.0 83.5

Table 18: System-level comparison with iBOT (Zhou et al., 2022) and DenseCL (Wang et al.,
2021). The results are reported on ImageNet-1K classification in terms of top-1 accuracy (%).
iBOT switches 2 standard views for double loss calculating while ConMIM does not.

when removing the vanilla DINO loss. iBOT paper argues that MIM alone hardly captures visual
semantics. However, we would like to claim that it is mainly due to the weak patch-level self-
distillation loss as MIM constraints in iBOT rather than the issue of pure MIM.

Compared to the regression regularization in self-distillation loss, contrastive learning is proven to be
good at structuring the visual space, e.g., MoCo v3 (83.2%, 600ep) beats DINO (82.8%, 1600ep) on
ViT-B/16. It is natural to exploit contrastive learning in a pure MIM pretraining method for capturing
discriminative visual semantics, but unfortunately, it has never been explored before. We are the first
to study it, and introduce a simple and flexible pure MIM method without extra dependencies (e.g.,
offline tokenizer or global discrimination loss).

DenseCL shows significant differences from our ConMIM in both motivation and method design
except for the form of infoNCE (note that infoNCE is widely used for distinct purposes). DenseCL
still depends on the global discrimination loss to ensure correct local correspondences and needs
to carefully balance the global and local constraints (see Sec. 3.4 of its original paper). Such a
chicken-and-egg problem can be seamlessly addressed in our denoising mechanism, including both
the masking operation and the asymmetric designs. Moreover, DenseCL hardly encourages the
patch-level visual context reasoning as it is a contrastive-only task.

We further provide system-level comparisons in Table 18. For a fair comparison, we retrain iBOT
without multi-crop augmentation (but keeping 2 views) using its official code and re-implement
DenseCL on ViT architectures. Our ConMIM achieves the optimal performance on both ViT-S/16
and ViT-B/16 architectures.

B.4.2 COMPARE TO MAE

MAE is a pure MIM method without tokenizer. It casts masked image modeling as a per-pixel
denoising reconstruction task with an ℓ1 regression loss. The contrastive constraints in ConMIM
provide stronger semantic structured regularization than the pixel-level reconstruction loss in MAE,
leading to better results with fewer epochs. Moreover, ConMIM is effective especially on small-scale
architectures, e.g., ViT-S/16, indicating the necessity of good visual semantic structured constraints
on less powerful models. The experimental comparisons are found in Table 19. MAE is trained for
1600 epochs in default and we retrain it using its official code for 800 epochs.

Method Arch. # Pretrain Epochs Acc.
MAE ViT-S/16 800 80.9
ConMIM ViT-S/16 300 82.0
MAE ViT-B/16 800 83.3
ConMIM ViT-B/16 800 83.7

Table 19: Compare to MAE (He et al., 2022). The results are reported on ImageNet-1K classification
in terms of top-1 accuracy (%). Also see the comparison on YFCC15M in Sec. 5.5 of main paper.

B.5 ANALYSIS OF KEY COMPONENTS

On the importance of each component. There are three main components in ConMIM: denoising
contrastive loss, asymmetric image perturbations, and asymmetric model progress rates. (a) When
changing denoising contrastive loss to conventional BEiT loss (classification over token ids), the
design of asymmetric image perturbations does not work anymore (see Table 20), and the design
of asymmetric model progress rates is inapplicable since the full image encoder in BEiT is a fixed
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Aug. for corrupted image Aug. for full image BEiT ConMIM
weak weak 82.9 (default) 83.4
strong strong 82.9 83.4
strong weak 82.7 82.6
weak strong 82.9 83.5 (default)

Table 20: Analysis of asymmetric perturbations using ViT-B/16 pre-trained for 300 epochs. The re-
sults are reported on ImageNet-1K classification in terms of top-1 accuracy (%). We observe a sim-
ilar trend within two methods. Using symmetric perturbations for two views (weak*2 or strong*2)
receives identical results within each method, which makes sense as the degree of perturbations for
denoising doesn’t change. We use asymmetric perturbations to strengthen the denoising mechanism
in ConMIM, however, the optimal setup “weak+strong” for ConMIM doesn’t work on BEiT since
the full image encoder in BEiT is a fixed dVAE, which has certain robustness without training.

dVAE rather than an in-training network. (b) When changing asymmetric image perturbations
into symmetric ones at the same time keeping the other two components consistent, slight perfor-
mance drops are found with either strong or weak symmetric perturbations. Though the performance
is not optimal, the pretraining is still valid as it outperforms DeiT (training from scratch). See Table
8 of our main paper. (c) When abandoning asymmetric model progress rates, the pre-training does
not work since the results are even worse than DeiT. The reason might be the shortcut reconstruction
with the information leakage. See Table 8 of our main paper.

To conclude, the importance ranking of the three components is denoising contrastive loss > asym-
metric model progress rates > asymmetric image perturbations. The denoising contrast is our
main method and the asymmetric model progress rates make it works. The asymmetric image per-
turbations bring extra gains.

Intuitions of component design. As analyzed in (Xie et al., 2022), the pretraining task of masked
image modeling encourages diverse attention learning in all layers of the Transformer architecture,
and introduces locality inductive bias into the patch level. Such properties can also be considered
as improving the patch/local uniformity, whereas the contrastive objectives are proven to be good
at it (Wang & Isola, 2020). Intuitively, the training objective “per-patch (8192-class) classification
in BEiT vs. per-patch contrastive in ConMIM” is similar to conventional “1000-class classification
in ImageNet supervised pretraining vs. instance-level contrastive in self-supervised pretraining”. In
short, we properly reformulate the MIM task with contrastive objectives to enhance diverse atten-
tion in vision Transformers with improved uniformity of patch distributions. As for the asymmetric
components, (Wang et al., 2022b) demonstrates that the source network (in-training network up-
dated by loss backpropagation) favors stronger perturbations that introduce high variance into the
data distribution. The masking strategy introduces much higher variance than the full input for the
momentum (target) network, corroborating the theoretical analysis in (Wang et al., 2022b).

C LIMITATIONS

The current version of ConMIM has the following limitations. (1) The intra-image inter-patch con-
trastive loss may carry some noise as there may exist semantically repetitive patches. (2) We need
twice forward operation in each iteration for encoding the full input and corrupted image. If we
can reduce such operations to one time, we can save more computation for faster pre-training. (3)
ConMIM achieves better performance on downstream detection and segmentation after intermedi-
ate fine-tuning. Although it is a common practice in NLP tasks (Devlin et al., 2019), it would still
limit the wide range of applications for ConMIM. In future work, we would like to try to address
the above limitations, investigate other asymmetric designs for ConMIM, scale up the pre-trained
models, and apply ConMIM on multimodal tasks (Ge et al., 2022; Wang et al., 2022a) to exploit its
potential in universal representation learning.
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