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Abstract— Real-world face super-resolution (SR) is a highly
ill-posed image restoration task. The fully-cycled Cycle-GAN
architecture is widely employed to achieve promising perfor-
mance on face SR, but is prone to produce artifacts upon
challenging cases in real-world scenarios, since joint participation
in the same degradation branch will impact final performance
due to huge domain gap between real-world and synthetic LR
ones obtained by generators. To better exploit the powerful
generative capability of GAN for real-world face SR, in this
paper, we establish two independent degradation branches in
the forward and backward cycle-consistent reconstruction pro-
cesses, respectively, while the two processes share the same
restoration branch. Our Semi-Cycled Generative Adversarial
Networks (SCGAN) is able to alleviate the adverse effects of
the domain gap between the real-world LR face images and
the synthetic LR ones, and to achieve accurate and robust face
SR performance by the shared restoration branch regularized
by both the forward and backward cycle-consistent learning
processes. Experiments on two synthetic and two real-world
datasets demonstrate that, our SCGAN outperforms the state-
of-the-art methods on recovering the face structures/details and
quantitative metrics for real-world face SR. The code will be
publicly released at https://github.com/HaoHou-98/SCGAN.

Index Terms— Real-world face super-resolution, semi-cycled
architecture, cycle-consistent generative adversarial networks.

I. INTRODUCTION

FACE is of central importance for human identity recog-
nition. The low-resolution (LR) face images captured by
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camera sensors would largely degrade the corresponding iden-
tity information. Face super-resolution (SR) aims to estimate
high-resolution (HR) face images from LR ones, to improve
the image quality and performance of subsequent identity
recognition tasks [1], [2], [3]. This task is very challenging
upon complex real-world scenarios, where the degradation
kernel is usually unknown. Traditional face SR methods can
be roughly divided into local patch-based methods [4], [5], [6],
global image-based methods [7], [8], [9], and hybrid methods
taking advantage of global image consistency and local patch
sparsity [10], [11], [12], [13]. However, these hand-crafted
methods could hardly achieve satisfactory results upon diverse
real-world scenarios [14].

Recently, the powerful learning capability of deep convolu-
tional neural networks (CNNs) has been extensively exploited
for face SR [16], [17], [18], [19], [20]. These discriminative
CNNs mainly learn a direct enhancing mapping function
between pairs of LR and HR face images. For objective
evaluation, the LR face images are usually degraded by
synthetic downsampling kernels from the HR ones. However,
since it is difficult to obtain the corresponding HR face
images for the real-world LR ones, the discriminative CNNs
suffer from a huge performance gap between synthetic and
practical degradation for real-world face SR. To this end,
several methods [21], [22], [23] align LR face images with
unpaired HR face images with the same identity. However,
face alignment is often challenged by the insufficiently trained
face SR models, due to short of HR face images in practical
scenarios.

Compared to the discriminative competitors, generative
CNNs like Generative Adversarial Networks (GANs) [24]
are employed in [21], [25], [26], [27], [28], and [14]
to perform blind face SR with complex degradations.
To deal with unknown real-world degradation, several
generative CNNs [15], [29], [30], [31] further implement
unsupervised face SR by resorting to the insight of cycle-
consistency developed for the unpaired image translation
tasks [32]. LRGAN [15] is a representative work to uti-
lize the cycle learning scheme [32] for real-world face SR,
introducing a “learning-to-degrade” branch and a “learning-
to-SR” branch to perform face image degradation and SR,
respectively. However, since unpaired LR and HR face
images suffer from a considerable gap on identity infor-
mation, the two branches in LRGAN are consistent only
for the HR face images and could hardly preserve well
the face details and identity information of the LR face
images.
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Fig. 1. Comparison of LRGAN [15] and our SCGAN on blind real-world
face SR. We perform ×4 real-world face SR on 16 × 16 LR face images to
obtain 64×64 HR ones. 1-st row: a real-world group photo crawled from the
internet that suffers from complex and unknown degradation. 2-nd row: the
LR face images from the photo. 3-rd row: the face SR results of LRGAN [15].
4-th row: the SR results by our SCGAN.

Since the unpaired LR and HR face images suffer from
uncertain relationship, employing a directional framework [15]
or a fully-cycled bidirectional one [32] is not sufficient to
simultaneously preserve the identity information of the LR and
HR face images in real-world scenarios. To better alleviate the
domain gap between unpaired LR and HR face images, in this
paper, we introduce a Semi-Cycled Generative Adversarial
Network (SCGAN) for real-world face SR, by extending the
bidirectional cycle consistency scheme in [32] to a more flex-
ible version. Specifically, we propose to learn three generative
branches, instead of two in [32] and [15], for real-world HR
and LR face image reconstructions: 1) a “learning-to-degrade”
branch to obtain synthetic LR face images by degrading the
HR ones, 2) a “learning-to-SR” branch to obtain the SR images
by restoring the synthetic and real-world LR face images, and
3) another “learning-to-degrade” branch to degrade the SR
images restored from the real-world LR images. Different from
CycleGAN [32], our SCGAN is only coupled at the middle
“learning-to-SR” branch, while learning the cycle consistency
of LR and HR face image reconstructions by individual
branches. For example, in Figure 1, we compare the real-world
face SR performance between LRGAN [15] and our SCGAN.
The real-world LR face images with severe degradation could
hardly be restored by LRGAN to recover the identity structure
and details. However, our SCGAN, benefited from the semi-
cycle consistency insight, well preserves both aspects for
face SR.

In summary, our contributions are mainly three-fold:
• We develop a novel Semi-Cycled architecture to

exploit GANs for real-world face super-resolution. Our
proposed Semi-Cycled GANs (SCGAN) well mitigate
adverse effects of the degradation gap between real-world
LR face images and synthetic ones, resulting in better
preservation of identity and detailed information.

• We study in-depth the roles of adversarial loss, pixel
loss, and cycle-consistency loss in our SCGAN for face
image super-resolution. The adversarial loss reduces the
domain gap between the HR images and those outputs by
our SCGAN, and the pixel loss enriches the contextual
details of the SR results, while the cycle-consistency loss
helps to preserve the structural information.

• Experiments on five benchmark datasets show that our
SCGAN outperforms the state-of-the-art methods
quantitatively and qualitatively on real-world face SR.
Application on downstream vision tasks of face detection,
face verification and face landmark detection further
validates the effectiveness of our SCGAN on face SR.

The rest of this paper is organized as follows. In §II,
we summarize the related works. In §III, we introduce our
SCGAN for real-world face SR. In §IV, experiments on
benchmark datasets are conducted to evaluate the performance
of different face SR methods. §V concludes this paper.

II. RELATED WORK

A. Human Face Super-Resolution

Human face super-resolution (SR) aims to obtain visual-
pleasing high-resolution (HR) face images from the low-
resolution ones [33], [34]. Early face SR methods [4], [5], [6],
[35], [36], [37] utilize hand-craft image priors and degradation
models. For instance, Baker and Kanade [35] utilized Gaus-
sian image pyramids for face SR, while Gunturk et al. [36]
presented a Bayesian model for face SR from a global image-
level perspective. To well recover local details, the methods
in [4], [6], and [5] tackle the face SR by patch-wise modeling.
Neighborhood embedding [6] is a representative work in this
direction. Later, the methods of [10], [11], [12], [37], and [13]
have been developed for face SR to simultaneously preserve
local details and global structures. However, these methods do
not perform well upon complex real-world cases.

Recent methods [16], [17], [18], [19], [20] employ
deep convolutional neural networks (CNNs) for face SR.
RBPNet [19] employs iterative back projection to directly
learn the mapping from LR to HR face images. SPAR-
Net [18] integrates the spatial attention mechanism into
their framework to improve the representation ability of the
network. WaSRNet [20] transforms the face image domain
into the wavelet coefficient domain to preserve more details.
Lu et al. [38] proposed a hybrid approach based on a global
upsampling network and a local enhancement network to
jointly enhance the facial contours and local details. The
Residual Attribute Attention Network [39] employs a multi-
block cascaded structure to extract pixel-level representation
and semantic-level identification information from LR face
images and restores high-resolution images via efficient feature
fusion. The Facial Attribute Capsule Network [40] converts
the extracted LR face image features into a set of facial
attribute capsules by the proposed capsule generation block
and utilizes the facial attribute information from both semantic
space and probability space to generate the corresponding HR
results. However, since they are trained on synthetic images,
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these discriminative learning based methods cannot be well
generalized to real-world scenarios.

Generative models like Generative Adversarial Networks
(GANs) [24] have achieved remarkable progress on face
SR [15], [29], [30], [31], [43]. URDGN [44] is among the
first work in this direction, but sensitive to the LR face images
with large face rotations or poses. To alleviate this problem,
Super-FAN [45] locates the key points of faces via heat map
regression to deal with faces in different angles and poses,
which needs large-scale annotations of face landmarks for
model training. LRGAN [15] is an unsupervised face SR
network by utilizing the architecture of cycle consistency [32].
But this method only exploits the consistency within the
HR face images while ignoring the consistency within the
LR ones. PULSE [27] often loses spatial information and
identity consistency of face images, by randomly sampling the
low-dimensional latent codes. The methods of GLEAN [46],
GFPGAN [28], and GPEN [14] utilize a pre-trained Style-
GAN [47] model for face SR, but show limited performance
on LR face images with severe degradation. In this work,
we propose to learn three forward or backward mappings,
i.e., two independent “learning-to-degrade” branches and one
shared “learning-to-SR” branch, which are semi-cycled to
maintain the consistency of both the HR and LR face image
reconstructions.

B. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [24] have been
widely utilized in unsupervised computer vision tasks with
great success [15], [29], [30], [31], [32], [43], [48], [49], [50],
[51], [52], [53]. InfoGAN [48] learns explainable feature rep-
resentation by decomposing the input noise vector into incom-
pressible noise and latent codes, to control semantic features
of the generated images. Conditional GAN (cGAN) [49] adds
to the original GAN an extra training supervision, achieving
great success on image translation tasks [50], [51]. With the
insight of cycle consistency, the methods of CycleGAN [32],
DualGAN [52], and DiscoGAN [53] achieve promising perfor-
mance on image translation tasks. This insight has also been
resorted by many image restoration methods [15], [29], [30],
[31], [43], [54]. Among them, LRGAN [15] introduces two
cycle-consistent generators [32] for face SR: a “learning-to-
degrade” branch for HR image degradation and a “learning-
to-SR” branch for LR face image super-resolution. However,
the two branches are only coupled for HR face image recon-
struction, bringing a potential gap between unpaired LR and
HR face images. In this work, we also exploit the powerful
generative capability of CycleGAN [32] for unsupervised real-
world face SR. Built upon LRGAN [15], our SCGAN intro-
duces an additional “learning-to-degrade” branch to degrade
the super-resolved face images, which are supervised by the
real-world LR ones.

C. Cycle-Consistent Learning

The framework of cycle-consistent learning has been devel-
oped originally for image-to-image translation [32] to jointly
learn a paired of coupled branches under the process of

backward domain transfer. From then on, researchers have
exploited the cycle-consistent learning framework for many
vision tasks such as image restoration [15], [29], [30],
[31], [43]. For example, the methods of [29] and [43]
simultaneously perform degradation on the LR images and
also restoration on the degraded LR images with pseudo-
supervision.

CinCGAN [55] first uses an inner CycleGAN to map a
noisy LR image into a clean LR image, and then uses an
outer CycleGAN to map the clean LR image into an HR one.
MCinCGAN [56] obtains SR results with different upsampling
factors by adjusting the number of recurrent GAN models.
Lugmayr et al. [57] first utilizes the cycle consistency model
to degenerate the HR image into a simulated LR image
and then forms data pairs for supervised learning of the SR
network. Similar ideas have also been studied in [29], [58],
and [43]. Reference [59] replaces the adversarial loss in
CycleGAN [32] with a dual back-projection loss to form an
internal learning framework.

Guo et al. [30] introduced a U-Net like cycle-consistent
network for image super-resolution, while Zhang et al. [31]
employed the cycle-consistent learning for image deblurring.
Yi et al. [54] proposed an asymmetric cycle-consistent archi-
tecture for face portrait line drawing, which is improved by a
pre-trained Inception-V3 [60] under a knowledge distillation
scheme [61]. The method of [62] employs the cycle-consistent
architecture to firstly convert the input real-world LR image
into a pseudo-clean LR image, and then produce the final SR
result. Differently, our SCGAN simultaneously restores the
real-world and synthetic LR face images to real-world HR
face images.

Cycle-consistent learning is also effective for face SR.
LRGAN [15] first learns to degrade the real-world HR face
images to the synthetic LR ones by a “learning-to-degrade”
sub-network, and then learns to restore the synthetic/real-world
LR face images to the corresponding SR ones by a “learning-
to-SR” sub-network. In this paper, we also employ the cycle-
consistent learning framework. But different from fully-cycled
CycleGAN, our semi-cycled SCGAN alleviates the adverse
gap between real-world HR face images and SR ones by
establishing independent degradation mappings.

III. PROPOSED METHOD

In this section, we introduce the motivation of our Semi-
Cycled Generative Adversarial Networks (SCGAN) for unsu-
pervised face super-resolution (SR) in §III-A. Then we
overview our SCGAN in §III-B. We present three degrada-
tion and restoration branches in §III-C, §III-D, and §III-E,
respectively. Finally, the implementation details are provided
in §III-F.

A. Motivation

Our goal is to super-resolve real-world low-resolution
(LR) face images into the identity preserving high-resolution
(HR) face images, without the corresponding paired real-world
HR face images. This task can be suitably tackled under the
unsupervised cycle-consistent framework like CycleGAN [32].
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Fig. 2. Distributions of the feature maps extracted by ResNet-101 [41] from HR and SR face images using t-SNE [42]. (a) Visualization of the HR face
images. (b) Visualization of the SR face images restored by state-of-the-art face SR method PULSE [27]. (c) Visualization of the SR face images restored
by fully-cycled CycleGAN [32]. (d) Visualization of the SR face images restored by our semi-cycled SCGAN. Our semi-cycled architecture better retains the
feature maps of the SR face images compared to the fully-cycled CycleGAN.

Fig. 3. Architecture of our Semi-Cycled Generative Adversarial Network (SCGAN) for unsupervised face super resolution. Given a real-world HR face
image Ir H , we first perform image degradation through the HR face degradation branch DH L and compute the pixel loss between the downsampled Ir H and
the obtained IsL to preserve more details. Then IsL is sent to the sub-network RL S to perform SR to obtain IsS . Here, we calculate the cycle consistency loss
for Ir H and IsS to maintain their identity consistency. The above process forms a forward cycle consistent GAN model. Among them, DL1 is responsible for
distinguishing IsL and unpaired input LR face image Ir L , DH1 is responsible for distinguishing Ir H and paired SR result IsS . The backward cycle consistent
GAN model is similar to the forward one. The most important difference with CycleGAN [32] is that, the backward model has an independent degradation
sub-network DSL , while not in the fully-cycled situation.

With two fully-cycled generators, CycleGAN well preserves
the consistency within the bidirectional translation between
two different image domains. However, the fully-cycled Cycle-
GAN is prone to get stuck upon real-world unsupervised face
SR with unpaired LR and HR face images, since the complex
degradation in real-world LR face images can hardly be well
simulated by the generator simultaneously synthesizing the
HR face degradation. Therefore, directly employing the fully-
cycled architecture for real-world face SR inadvertently suffers
from an inevitable problem on the degradation gap between
synthetic LR images and real-world LR images. To address
this problem, it is natural to model the synthetic and real-
world degradations by different generators. To this end, our
SCGAN is developed with two different degradation branches
and one restoration branch to learn semi-cycled forward
and backward cycle-consistent reconstruction processes. Our
SCGAN is more flexible than the fully-cycled architecture with
more accurate unsupervised real-world face SR performance.
Besides, the two independent degradation branches in our
SCGAN further facilitate our SCGAN to learn a stronger
restoration branch for LR face image, making our SCGAN
very robust on super-resolving real-world LR face images.

To globally compare our semi-cycled SCGAN with
the fully-cycled CycleGAN, we perform degradation and
restoration on HR face images of 10 identities from the
LFW dataset [63], by the same strategy mentioned above.
In Figure 2, we visualize the input HR face images, and the
HR face images restored by PULSE [27], CycleGAN [32]
and our SCGAN via t-SNE [42], using the one-dimensional
vectors output by the last fully connected layer of a pre-trained
Resnet-101 [41]. One can see that the distribution of HR
face images restored by our SCGAN is more consistent than
those restored by PULSE or CycleGAN, with the distribution
of input HR face images. This validates the superiority of
our SCGAN over the fully-cycled CycleGAN on the identity
preservation of HR face image restoration.

B. Network Overview
Our SCGAN contains two semi-cycled sub-networks con-

sisting of two independent degradation branches coupled by
a restoration branch. The overall network architecture is illus-
trated in Figure 3. The synthetic degradation branch DH L
and the restoration branch RL S together perform forward
cycle-consistent HR face image reconstruction, while the
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Fig. 4. Comparison of the degradation and restoration results between the fully-cycled CycleGAN [32] and the proposed semi-cycled SCGAN. The input
images are circled with red borders. (a) The “degradation-restoration” process of the real-world HR face image. CycleGAN (or Our SCGAN) degrades a
real-world HR face image by a degradation branch D (or DH L ) and restores the degraded image by a restoration branch R (or RL S ). The FID (lower is
better) is calculated between the degraded LR face image and the real-world LR face image, the PSNR and SSIM (higher is better) are calculated between
the restored HR face image and the original HR face image. (b) The “restoration-degradation” process of the real-world LR face image. CycleGAN (or Our
SCGAN) restores a real-world LR face image by a restoration branch R (or RL S ) and degrades the restored image by a degradation branch D (or DSL ).
The FID is calculated between the restored HR face image and the real HR face image, and the PSNR and SSIM are calculated between the degraded LR
face image and the original LR face image. Please zoom in for better view.

restoration branch RL S and the real-world degradation branch
DSL together implement the backward cycle-consistent LR
face image reconstruction. The two reconstruction sub-
networks are semi-cycled to avoid the adverse effects of
the domain gap between the synthetic and realistic LR
face images, and to achieve robust yet accurate face SR
performance.

1) Synthetic HR Image Degradation Branch: The HR face
image degradation branch, denoted as DH L , degrades an HR
face image Ir H to a synthetic LR face image. It is the
degradation stage of the forward cycle-consistency learning
process Ir H → DH L(Ir H ) → Ir H , in which the correspond-
ing restoration stage is implemented by the LR face image
restoration branch RL S introduced as follows.

2) LR Face Restoration Branch: This branch is to enhance
the quality of the synthetic LR face image IsL generated
by previous degradation branch DH L and the real-world
LR face image Ir L that is the input in the test stage. The
restoration of synthetic LR face image comprises the forward
cycle-consistent learning process “Ir H → DH L(Ir H ) →

RL S(DH L(Ir H ))”, together with the previous synthetic degra-
dation branch, and simultaneously comprises the backward
cycle-consistency learning process “Ir L → RL S(Ir L) →

DSL(RL S(Ir L))”, in which the corresponding degradation
stage is implemented by the real-world HR face image degra-
dation branch DSL introduced as follows.

3) Real-World HR Face Degradation Branch: Since the
real-world and synthetic LR face images suffer from an
inevitable degradation gap, it is reasonable to separately
degrade the real-world HR face image Ir H and the syn-
thetic one Is H generated from the restoration branch RL H
by respective branches. The real-world HR face degradation
branch, with the restoration one, comprise the backward
cycle-consistent learning process “Ir L → RL H (Ir L) →

DSL(RL H (Ir L))”.
4) Discussion: We train the fully-cycled CycleGAN and

our semi-cycled SCGAN with unpaired HR face images from
the FFHQ dataset [47] and LR ones from the Widerface

dataset [64]. To achieve better reconstruction quality, we train
the fully-cycled CycleGAN and our semi-cycled SCGAN with
an additional pixel-wise loss function, which will be intro-
duced in §III-C. In Figure 4, we first compare the degraded
LR images and the restored HR ones by CycleGAN and
our SCGAN, respectively, on four typical real-world HR face
images. The results of FID scores [65], PSNR, and SSIM [66]
are also provided as references. One can see that the synthetic
LR face images degraded from the HR ones in our SCGAN
obtains lower FID score than those degraded in the fully-
cycled CycleGAN, indicating that our degradation branch
obtains more realistic LR face images than those generated
by CycleGAN. To evaluate the reconstruction consistency,
we also restore the two sets of synthetic LR face images
by the corresponding restoration branches in CycleGAN and
our SCGAN, respectively. Besides, we compare the restored
SR images and the degraded LR ones by CycleGAN and
our SCGAN, respectively, on four typical real-world LR
face images. We observe that the face images restored by
our SCGAN show clear improvement over those restored by
CycleGAN on details recovery. All these results indicate the
advantage of our semi-cycled SCGAN over the fully-cycled
CycleGAN on unsupervised real-world face SR.

C. Synthetic Degradation Branch on HR Face Image

This branch, denoted as DH L , aims to learn the degradation
process from real-world HR face images to synthetic LR
ones. Given a real-world HR face image Ir H ∈ RH×W×3,
we randomly generate a noise vector z ∈ RH W , reshape it
into the size of H × W , and concatenate it with Ir H along
the channel dimension. This is to simulate different degrees
and types of noise contained in real-world LR face images,
as suggested in [49]. The concatenated tensor [Ir H , z] ∈

RH×W×4 is then fed into the degradation branch DH L to
produce a synthetic LR face image IsL :

IsL = DH L([Ir H , z], 2H L), (1)

where 2H L is the set of learnable parameters for DH L .
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Fig. 5. Architectures of the synthetic and real-world HR face degradation branches DH L and DSL (a), and the LR face restoration branch DL S (b). The
discriminators are shown in (c) and (e). The residual block used in them is shown in (d). Please zoom in for the best view.

As shown in Figure 5 (a), the synthetic degradation branch
DH L is in an encoder-decoder architecture. The encoder
begins with a Spectral Normalization (SN) [67], followed
by a 3 × 3 convolutional layer (conv.) and a global average
pooling (GAP). Then six residual blocks (Resblocks) are used
to extract meaningful feature. As shown in Figure 5 (d), the
ResBlock used in DH L contains two successive sets of SN,
ReLU, and 3 × 3 conv., with a skip connection for feature
addition. Here, we use SN to mitigate unstable model training
and gradient explosion with the 1-Lipschitz constraint [67].
GAP is used after every two ResBlocks to reduce feature
resolution by a factor of 2. The decoder also has six Resblocks,
with two Pixel-Shuffle operations used after the second and
fourth ResBlocks to upsample feature resolution by a factor
of 2. Finally, this branch has two groups of Resblock and
3 × 3 Conv., followed by a ReLU or a Tanh function for
nonlinear activation, respectively, and outputs the degraded LR
face image IsL .

To approximate the degradation in real-world LR face
images, the synthetic degradation branch DH L is learned with
an adversarial loss function and a pixel loss function as:

lDH L = αlDL1
adv + βlIsL

pix , (2)

where α and β are the weights of the two loss functions.
1) Adversarial Loss: lDL1

adv uses a discriminator DL1 to
predict the real-world LR face image Ir L as 1 and the synthetic
LR one IsL as 0, respectively. As shown in Figure 5 (c), the
discriminator DL1 contains six Resblocks followed by a fully
connected layer. The max-pooling is used before the last two
Resblocks to reduce the resolution of the feature map. Similar
to [67], we use the hinge loss as follows,

lDL1
adv = EIr L∼Pr L [min(0,DL1(Ir L) − 1)]

+ EIsL∼PsL [min(0, −1 −DL1(IsL))], (3)

where Pr L and PsL are the distributions of real-world LR face
image Ir L and the synthetic one IsL degraded by DH L from
the real-world HR face image Ir H , respectively.

2) Pixel Loss: lIsL
pix is calculated between the synthetic

degradation image IsL and the input HR face image Ir H
downsampled to the same resolution with IsL by average
pooling. Here, we adopt the ℓ1 loss function that is widely
used in image SR task [15], [68] to well recover image details.

D. Synthetic/Real-World LR Face Restoration Branch

The LR face restoration branch RL S is a hub shared by the
forward and backward cycle-consistency learning processes.
In the forward learning process, it restores the synthetic LR
image IsL degraded from the HR face image Ir H via DH L ,
while in the backward learning process, it restores the real-
world LR face image Ir L . Denote the SR image restored from
IsL as IsS and the SR image restored from Ir L as Ir S , the
restoration process is as follows:

IsS = RL S(IsL , 2L S), (4)
Ir S = RL S(Ir L , 2L S), (5)

where 2L S is the learnable parameters of the branch RL S .
As shown in Figure 5 (b), our restoration branch RL S

also begins with a Spectral Normalization [67], followed by
a 3 × 3 convolutional layers. Then three groups of 12, 3,
and 2 Resblocks are used to extract meaningful features, and
in each group the input and output of each group have a
skip connection for feature addition to preserve high-frequency
details. To enhance its resolution, the feature map is upsampled
by a factor of 4 by two bilinear interpolations, followed
by a group of “ReLU-Resblock-3 × 3 Conv.” and a group
of “ReLU-Resblock-1 × 1 Conv.”, respectively. Finally, this
branch outputs the restored HR face image through a Resblock,
a 1 × 1 Conv., and a Tanh activation function.

The restoration branch RL S aims to generate high-quality
face images, shared by the forward and backward learning
processes. We use the combination of adversarial loss lDH1

adv

and cycle-consistency loss lIsS
cyc in the forward learning process,

and use the combination of adversarial loss lDH2
adv and pixel

loss lIr S
pix in the backward learning process. The overall loss
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function for this branch is

lRL S = θlIsS
RL S

+ γ lIr S
RL S

, (6)

where θ and γ are the corresponding weights, and

lIsS
RL S

= αlDH1
adv + βlIsS

cyc, (7)

lIr S
RL S

= αlDH2
adv + βlIr S

pix . (8)

1) Adversarial Loss: We use a discriminator DH1 to predict
the real-world HR face image Ir H as 1 and the synthetic SR
image IsS as 0, respectively. Similarly, we use a discriminator
DH2 to predict the real-world HR face image Ir H as 1 and
the real-world SR image Ir S as 0, respectively. The adversarial
losses lDH1

adv and lDH2
adv are computed as follows,

lDH1
adv = EIr H ∼Pr H [min(0,DH1(Ir H ) − 1)]

+ EIsS∼PsS [min(0, −1 −DH1(IsS)], (9)

lDH2
adv = EIr H ∼Pr H [min(0,DH2(Ir H ) − 1)]

+ EIr S∼Pr S [min(0, −1 −DH2(Ir S)]. (10)

Here, Pr H , PsS , and Pr S are the distributions of real-world
HR face image Ir H , synthetic SR image IsS restored by RL S
from the synthetic LR face image IsL , and real-world SR
image Ir S restored by RL S from the real-world LR face image
Ir L , respectively. The discriminators DH1 and DH2 are in the
same structure, which contains six Resblocks followed by a
fully connected layer and uses max-pooling before the last
four Resblocks, as shown in Figure 5 (e).

2) Cycle-Consistency Loss: lIsS
cyc is an ℓ1 loss function used

here to make our restoration branch RL S well preserve the
identity information and well recover the face details.

3) Pixel Loss: lIr S
pix is an ℓ1 loss function to penalize the

difference between real-world HR face image Ir H and SR
one Ir L (upsampled to the same size of Ir H by bicubic
interpolation).

E. Real-World HR Face Degradation Branch

This branch, denoted as DSL , learns to degrade the real-
world SR face image Ir S restored from the real-world LR
image Ir L via RSL as follows,

Îr L = DSL(Ir S, 2SL), (11)

where 2SL is the learnable parameters. As shown in
Figure 5 (b), the architecture of DSL is the same as that of
the synthetic HR face degradation branch DH L introduced
in §III-C.

To make the branch DSL generate degradation results that
are close to real-world LR face images, here, we employ
the adversarial loss lDL2

adv and the cycle-consistency loss l Îr L
cyc

between the output LR image Îr L and the real-world one Ir L ,
which are computed as follows,

lDSL = αlDL2
adv + βl Îr L

cyc. (12)

1) Adversarial Loss: lDL2
adv uses a discriminator DL2 to

predict the real-world LR face image Ir L as 1 and the output
LR one Îr L as 0, respectively. The architecture of DL2 is the
same as that of DL1 introduced in §III-C. Similar to Eq. (3),
the adversarial loss lDL2

adv is computed as follows,

lDL2
adv = EIr L∼Pr L [min(0,DL2(Ir H ) − 1)]

+ E Îr L∼P ˆr L
[min(0, −1 −DL2( Îr L)], (13)

where Pr L and P ˆr L are the distributions of real-world LR face
image Ir L and synthetic one Îr L degraded by DSL from the
real-world SR face image Ir S , respectively.

2) Cycle-Consistency Loss: l Îr L
cyc is an ℓ1 loss function to

penalize the difference between the LR image Îr L degraded
by this branch and the corresponding real-world LR face
image Ir L .

F. Implementation Details

The parameters of all three branches in our SCGAN are
initialized by Kaiming initialization [69], and optimized by
Adam [70] with β1 = 0.9 and β2 = 0.999. We set α = 1,
β = 0.05 in Eqs. (2)-(8) and θ = 1, γ = 0.05 in Eq. (6).
Our SCGAN is trained for 200 epochs. The learning rate is
initialized as 1×10−4 and decayed to 1×10−5 with the cosine
annealing scheme at every 10 epochs. The batch size is set as
64. We implement our SCGAN in PyTorch [71] and train it
on a Tesla V100 GPU, which takes about 42 hours.

IV. EXPERIMENTS

In this section, we first introduce the experimental setup,
including the dataset and evaluation metrics in §IV-A. We then
conduct a comprehensive ablation study in §IV-B to validate
the role of each component of our SCGAN on face SR.
Comparison with the state-of-the-art methods on real-world
face SR are presented in §IV-C. Finally, we apply our SCGAN
into three other vision tasks, e.g., face detection, face verifi-
cation, and face landmark detection in §IV-D.

A. Dataset and Evaluation Metric

1) Training Set: We train our SCGAN, its variants (to be
introduced in §IV-B), and all the comparison methods (to be
introduced in §IV-C) with the 20,000 high-quality, high-
resolution (HR) face images from the real-world FFHQ
dataset [47] and the 4,000 low-quality, low-resolution (LR)
face images from the real-world Widerface dataset [64].

2) Test Set: We evaluate the comparison methods on four
popular face SR datasets, including two synthetic datasets, i.e.,
LS3D-W balanced [72] and FFHQ [47], and two real-world
datasets, i.e., Widerface [64] and our newly collected Webface:

• LS3D-W balanced [72] contains 7,200 HR face images
taken in different scenes and poses. We randomly select
1000 face images and perform simple bilinear downsam-
pling to produce synthetic LR face images.

• FFHQ [47] contains 70,000 HR face images, 20,000 of
which are used as the training set. We randomly select
2,500 images from the remaining images to perform
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random degradation IsL = ((Ir L ⊗ k) ↓ +nδ)J P EGq

to produce the synthetic LR face images, as suggested
in [15]. Here, k is a Gaussian blur kernel, ↓ is a
downsampling operation randomly chosen from bilinear
or bicubic at a scaling factor of 4, nδ is additive white
Gaussian noise, and J P EGq is the JPEG compression
with quality factor q . For each degradation, we randomly
sample k ∈ [0.5, 8], δ ∈ [1, 25], and q ∈ [30, 95],
respectively.

• Widerface [64] contains 32,203 real-world LR face
images from 62 versatile scenes, and we randomly select
2,000 images with unknown yet complex degradation
process.

• WebFace. We crawled 1,028 real-world LR face images,
with different genders, ages, races, expression, postures,
and unknown degradation process, from the internet.

• DroneSURF [73] contains more than 720,000 images
with faces from drone-captured videos in the wild,
we randomly selected 1,000 images, and directly cropped
the patches of size 16 × 16 that contain human faces.

3) Evaluation Metrics: We employ feature-level and image-
level metrics to objectively and comprehensively evaluate
results of different methods. On all test sets, we use the Frechet
Inception Distance (FID) [65] and Kernel Inception Distance
(KID) [74] to evaluate the distribution distance between the
output SR images and real-world HR face images on diversity
and visual quality, respectively. On two synthetic test sets,
we also use the Learned Perceptual Image Patch Similarity
(LPIPS) [75] to measure the distance of human perception
between the SR images and the corresponding ground-truth
ones. On two real-world test sets, we also use the widely used
Natural Image Quality Evaluator (NIQE) [76] to evaluate the
naturalness of restored face images. Besides, we compute the
detection accuracy of the method based on RetinaFace [77]
on the SR face images from each dataset, which indirectly
measures the capability of face SR methods on identity
preservation.

B. Ablation Study

To study the role of each component in our SCGAN to its
effectiveness on real-world face SR, here, we conduct detailed
examinations of our SCGAN on different LR face image test
sets. Specifically, we access a) the benefits of our semi-cycle
architecture; b) whether to share parameters of two degrada-
tion branches or not in our SCGAN; c) how different loss
functions (adversarial loss, pixel loss, and cycle consistency
loss) contribute to our SCGAN; d) how different combinations
of adversarial losses influence our SCGAN; e) how different
structures of the degradation branch influence our SCGAN; f)
how about using two independent restoration branches with a
shared degradation branch; g) how to determine the weights
of different loss functions.

a) How the semi-cycled architecture benefits our SCGAN
on real-world face SR? To answer this question, we develop
three variants of our SCGAN. 1) We remove the real-world
HR face degradation branch DSL introduced in §III-E, and
only train the forward cycle-consistency reconstruction process

TABLE I
QUANTITATIVE RESULTS ON TWO SYNTHETIC AND TWO REAL-WORLD

DATASETS BY OUR SCGAN AND ITS VARIANTS WITH
DIFFERENT ARCHITECTURES. THE BEST, SECOND BEST, AND

THIRD BEST RESULTS ARE HIGHLIGHTED IN RED,
BLUE AND BOLD, RESPECTIVELY

“DH L → RL S”. This variant is denoted as “SCGAN-w/o-
DSL”. 2) We remove the synthetic degradation branch DH L
introduced in §III-C, and only train the backward cycle-
consistency reconstruction process “RL S → DSL”. This
variant is denoted as “SCGAN-w/o-DH L”. 3) We share the
parameters of synthetic HR face degradation branch DH L
and real-world one DSL , and jointly train the forward cycle-
consistency reconstruction process DH L → RL S as well as
the backward one RL S → DSL . This variant is denoted as
“SCGAN-fc”. The quantitative results are listed in Table I.
We observe that our SCGAN achieves better results in term
of FID, KID, and LPIPS, with comparable NIQE results, than
the other variants. This demonstrates that our semi-cycled
architecture really benefits the real-world face SR task.

b) Whether to share parameters or not in the two
degradation branches in our SCGAN? Here, we study
whether to share parameters or not in the two degradation
branches DH L and DSL of our semi-cycled SCGAN. To this
end, we design four other variants of our SCGAN with
degradation branches DH L sharing partial parameters (except
for the input head and output head). 1) We share the parameters
of all layers except the input and output heads (denoted as
“In” and “Out” in Figure 5) in DH L and DSL , and denote
this variant as “SCGAN-SA”. 2) We share the parameters
of the encoder layers in DH L and DSL , and denote this
variant as “SCGAN-SE”. 3) We share the parameters of the
decoder layers in DH L and DSL , and denote this variant as
“SCGAN-SD”. 4) We share the parameters of the middle part,
i.e., the last two groups of Resblocks in the encoder and the
first two groups in the decoder, in DH L and DSL . We denote
this variant as “SCGAN-SM”. The objective results are listed
in Table II. One can see that our SCGAN with two independent
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Fig. 6. Comparison results by different variants of our SCGAN on representative LR face images from the Widerface [64] dataset.

TABLE II
QUANTITATIVE RESULTS ON TWO SYNTHETIC AND TWO REAL-WORLD

DATASETS BY OUR SCGAN AND ITS VARIANTS WITH
DIFFERENT PARAMETER-SHARING SCHEMES IN TWO

DEGRADATION BRANCHES. THE BEST, SECOND BEST, AND
THIRD BEST RESULTS ARE HIGHLIGHTED IN RED,

BLUE AND BOLD, RESPECTIVELY

degradation branch achieves the best results among all these
variants in terms of all four objective metrics.

c) How different loss functions (i.e., adversarial loss,
pixel loss and cycle consistency loss) contribute to our
SCGAN on face SR? To understand the role of different loss
functions, we design three variants of our SCGAN: 1) we
remove all adversarial losses in our SCGAN, and denote this
variant as “SCGAN-w/o-AL”; 2) we remove all pixel losses
in our SCGAN, and denote this variant as “SCGAN-w/o-PL”;

TABLE III
QUANTITATIVE RESULTS ON TWO SYNTHETIC AND TWO REAL-WORLD

DATASETS BY OUR SCGAN AND ITS VARIANTS WITH
DIFFERENT LOSS FUNCTIONS. THE BEST, SECOND BEST, AND

THIRD BEST RESULTS ARE HIGHLIGHTED IN RED,
BLUE AND BOLD, RESPECTIVELY

3) we remove all cycle-consistency losses in our SCGAN, and
denote this variant as “SCGAN-w/o-CL”. The results of FID,
KID and NIQE listed in Table III show that our SCGAN
without either loss function achieves inferior performance
to the original SCGAN. The visual comparison results on
Widerface [64] are shown in Figure 6. We observe that the
variant “SCGAN-w/o-AL” fails to recover well the face details,
and the variant “SCGAN-w/o-PL” could not guarantee the con-
textual consistency with the input real-world LR face images,
while the variant “SCGAN-w/o-CL” hard to preserve structural
consistency on identity. On the contrary, by integrating all
three loss functions, our SCGAN recovers well the contextual
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TABLE IV
QUANTITATIVE RESULTS ON TWO REAL-WORLD LR FACE IMAGE DATASETS BY OUR SCGAN AND ITS 15 MORE VARIANTS WITH DIFFERENT

COMBINATIONS OF ADVERSARIAL LOSSES. THE BEST, SECOND BEST, AND THIRD BEST RESULTS ARE
HIGHLIGHTED IN RED, BLUE AND BOLD, RESPECTIVELY

TABLE V
QUANTITATIVE RESULTS ON TWO REAL-WORLD DATASETS BY OUR
SCGAN AND ITS VARIANTS WITH DIFFERENT STRUCTURES IN TWO

DEGRADATION BRANCHES. THE BEST, SECOND BEST, AND THIRD
BEST RESULTS ARE HIGHLIGHTED IN RED, BLUE

AND BOLD, RESPECTIVELY

and detailed information to preserve the face identity. These
demonstrate that the adversarial loss is mainly used to recover
details, and the pixel loss is mainly used to preserve the
contextual information, while the cycle-consistency loss is
mainly used to keep the structural consistency.

d) How different combinations of adversarial losses
influence our SCGAN? Our SCGAN has 4 adversarial losses.
To study this problem, we design 15 more variants of our
SCGAN in 4 categories, according to the number of removed
adversarial losses. The variants are denoted as “ladv-a-b”,
where “a” represents the number of removed adversarial
losses, and “b” represents the possible combination of the
remaining 4-a adversarial losses. The details of the variants
and the objective results are summarized in Table IV. We have
four main observations: 1) With all the 4 adversarial losses,
our SCGAN achieves better results than the other 15 variants.
This demonstrates the essential role of every adversarial loss
in our SCGAN for promising face SR performance. 2) By
removing one adversarial loss, our SCGAN without DL2
or DH2 degrades greatly in terms of all four evaluation
metrics. This reveals the dominate role of the adversarial
losses in the backward cycle-consistency learning process
for effective real-world LR face restoration. 3) By removing

two adversarial losses, our SCGAN without DL1 and DL2
(“ladv-2-1”) achieves slightly inferior results than our original
SCGAN. This shows the essential role of high-quality HR
face images on the guidance of learning an effective LR face
restoration branch. 4) By removing three adversarial losses, the
variant “ladv-3-1” performs better than the other three variants
of “ladv-3-2”, “ladv-3-3”, or “ladv-3-4”. This shows that the
adversarial loss in DH2 plays a dominant role in optimizing
the real-world LR face restoration branch.

e) How different structures of the degradation branch
influence our SCGAN? To this end, we conducted exper-
iments to explore the impact of degradation branch archi-
tectures on the performance of our SCGAN. Specifically,
we designed two variants of our SCGAN with different
degradation structures: 1) “SCGAN-DH L -6”: the number of
residual blocks in the encoder-decoder architecture of the
synthetic degradation branch DH L of our SCGAN is reduced
from 12 to 6; 2) “SCGAN-DSL -6”: the number of residual
blocks in the encoder-decoder architecture of the real-world
HR face degradation branch DSL of our SCGAN is reduced
from 12 to 6. In Table VI, we list the quantitative results
on two real-world datasets Widerface [64] and WebFace by
the two variants “SCGAN-DH L -6” and “SCGAN-DSL -6”,
as well as our SCGAN. One can see that the variants of
“SCGAN-DH L -6” and “SCGAN-DSL -6” achieve lower FID,
KID, and NIQE scores than the proposed SCGAN. This
indicates that our SCGAN performs better when the two
degradation branches both have 12 residual blocks than those
with only 6 blocks in the synthetic (or real-world) HR face
degradation branch.

f) How about using two independent restoration
branches with a shared degradation branch? To answer this
question, we performed experiments by designing our SCGAN
with a shared degradation branch and two independent
restoration branches. We denote this varaint as “SCGAN-
2SR”, it contains two independent restoration branches,
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TABLE VI
QUANTITATIVE RESULTS ON TWO REAL-WORLD DATASETS BY OUR
SCGAN AND ITS VARIANT WITH TWO INDEPENDENT RESTORATION

BRANCHES AND A SHARED DEGRADATION BRANCH. THE BEST,
SECOND BEST, AND THIRD BEST RESULTS ARE HIGHLIGHTED

IN RED, BLUE AND BOLD, RESPECTIVELY

TABLE VII
QUANTITATIVE RESULTS ON TWO SYNTHETIC AND TWO REAL-WORLD

DATASETS BY OUR SCGAN AND ITS VARIANTS WITH DIFFERENT
WEIGHTS OF DIFFERENT LOSS FUNCTIONS. THE BEST, SECOND

BEST, AND THIRD BEST RESULTS ARE HIGHLIGHTED
IN RED, BLUE AND BOLD, RESPECTIVELY

denoted as RL S and RRS . Please note that, since this vari-
ant “SCGAN-2SR” contains two restoration branches RL S
and RRS , here we performed independent face image super-
resolution test by RL S and RRS , respectively. In Table VI,
we list the quantitative results on two real-world datasets
Widerface [64] and WebFace by the restoration branch RL S
or RRS in the variant “SCGAN-2SR”, as well as our SCGAN.
It can be seen that, our SCGAN achieves better results than the
restoration branches RL S and RRS of the variant “SCGAN-
2SR”. This demonstrates that using two independent SR
branches with one shared degradation branch largely degrades
the performance of our SCGAN on real-world face image
super-resolution task.

g) How to determine the weights of different loss
functions? The proposed SCGAN has four weights (α, β, θ ,
and γ ) for different loss functions. To determine these param-
eters, we have conducted more ablation studies with different
weights β = 0.01, 0.1, 0.5, 1 and γ = 0.01, 0.1, 0.5, 1 by
fixing one parameter as 0.05. The quantitative results presented
in Table VII show that, although our SCGAN achieves the

best NIQE score when β = 0.1 and γ = 0.05, our SCGAN
obtains the best FID and KID scores on both datasets when
β = 0.05 and γ = 0.05. Overall, we set β = 0.05 and
γ = 0.05.

C. Comparisons With State-of-the-Art Methods

Here, we compare our SCGAN with the state-of-the-art
methods on both synthetic and real-world ×4 face SR tasks
(16 × 16 LR face images to 64 × 64 HR ones). To compre-
hensively evaluate the performance of different methods on
face SR, we perform face SR with three different degradation
settings: 1) simple degradation with randomly bilinear or bicu-
bic downsampling; 2) complex degradation with blur kernel,
downsampling, synthetic noise, and JPEG compression; and
3) real-world unknown degradation.

1) Comparison Methods: We compare our SCGAN with
Bicubic Interpolation and other state-of-the-art methods, such
as DFDNet [23], HifaceGAN [78], Real-ESRGAN [79], GFP-
GAN [28], LRGAN [15], PULSE [27], GCFSR [80], and
RestoreFormer [81]. We also compare our SCGAN with
the fully-cycled CycleGAN [32] to verify the effectiveness
of our semi-cycled SCGAN on face super-resolution. Here,
DFDNet [23] firstly detects and crops out faces using a
face detector and then performs face super-resolution on the
cropped images, and would be limited by the accuracy of
employed face detector. The PULSE [27] utilized a pre-trained
StyleGAN [47], and thus can only generate HR images of size
1024×1024. For a fair comparison, we resize its results to the
same size (e.g., 64 × 64) as those obtained by the comparison
methods.

2) Face SR on Simple Degradation: Here, the simple
degradation is performed by random bilinear or bicubic down-
sampling on the 1,000 LR face images in LS3D-W balanced
dataset [72] as the test set, as described in §IV-A, and we
evaluate the performance of different methods on it. For a
fair comparison, all the comparison methods are re-trained
carefully to achieve their best results. The quantitative results
of FID, KID, and LPIPS are summarized in Table VIII (2-nd
row). It can be seen that our SCGAN obtains higher indices
than the other competiting methods. The qualitative results of
visual quality are presented in Figure 7 (left part). One can
see that DFDNet [23] and HifaceGAN [78] produce blurry
results similar to those produced by Bicubic Interpolation.
Real-ESRGAN, CycleGAN, and LRGAN fail to preseve well
the facial structure. We also observe that, although PULSE and
GFPGAN have amazing generalization ability in face super-
resolution, their performance still has room for improvement
for very low-resolution face images (16 × 16) that suffer from
severe degradation. On the contrary, our SCGAN generates
realistic results in ensuring the structure and detail consistency
to that of the ground-truth HR face images.

3) Face SR on Complex Degradation: Before generalizing
our SCGAN to real-world face SR, we perform experiments
on blind face SR with random complex degradation. Here, the
complex degradation with random blur kernel, downsampling,
synthetic noise, and JPEG compression is performed on the
2,500 face images in FFHQ as the test set [47], as described
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TABLE VIII
QUANTITATIVE RESULTS OF OUR SCGAN AND OTHER STATE-OF-THE-ART METHODS ON TWO SYNTHETIC AND TWO REAL-WORLD DATASETS.

THE BEST, SECOND BEST, AND THIRD BEST RESULTS ARE HIGHLIGHTED IN RED, BLUE AND BOLD, RESPECTIVELY

Fig. 7. Comparison of visual quality by our SCGAN and other face SR methods on LS3D-W balanced [72], FFHQ [47], Widerface [64], and WebFace
datasets, respectively (from left to right). Please zoom in for better view.

in §IV-A. The quantitative results are listed in Table VIII
(3-rd row). It can be seen that our SCGAN obtains clearly
lower scores of FID, KID and LPIPS than the other methods.
In Figure 7 (right part), we compare the face SR results of dif-
ferent methods on representative face samples in FFHQ [47].
We observe that Bicubic Interpolation, DFDNet [23] and

HifaceGAN [78] still produce blurry results. Besides, Real-
ESRGAN [79] and CycleGAN [32] fail to recover the face
contexts. LRGAN [15] tends to produce incomplete face
structure, and PULSE [27] is prone to lose the identity infor-
mation or important face components like eyeglasses, while
GFPGAN [28] fails to recover important face details. On the
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contrary, our SCGAN generates high-quality and realistic HR
face images with accurate face structure and fine-grained face
details. All these results validate that our SCGAN is more
robust to the complex random degradation, and can produce
high-quality HR face images more realistically to the real-
world HR face images, than all the comparison methods.

4) Face SR on Real-World Degradation: Now we compare
different methods on the Widerface [64], our Webface and
DroneSURF [73] dataset for real-world face SR with complex
and unknown degradation, where the experimental settings are
described in §IV-A. The quantitative results are presented in
Table VIII.

One can see that our SCGAN achieves higher FID and KID
results than the other methods on Widerface and our WebFace
datasets. At the same time, it is only inferior to PULSE
on DroneSURF [73] dataset. As shown in Figure 7, though
achieving the best NIQE results in the Widerface dataset,
HifaceGAN is prone to produce blurry face images, similar to
Bicubic Interpolation, DFDNet, and Real-ESRGAN. Though
PULSE achieves the best FID and KID scores on DroneSURF
dataset, its results produce noticeable structural changes from
the input LR face images. Although Real-ESRGAN achieves
the best NIQE score on DroneSURF dataset, it is difficult
to well recover some key facial features such as eyes, nose,
etc. The methods of LRGAN, PULSE, and GFPGAN produce
either artifacts or color bias. After all, our SCGAN not only
restores the facial structure and details, but also preserves
human identity of real-world LR face images, when compared
to the other comparison methods.

D. Application on Downstream Vision Tasks

In this section, we apply our SCGAN and state-of-the-art
methods to downstream vision tasks. We conduct experiment
on face detection, face verification and face landmark detection
in §IV-D.1, §IV-D.2 and §IV-D.3, respectively. On all tasks,
we compare our SCGAN with the methods of Bicubic Inter-
polation, DFDNet [23], HifaceGAN [78], CycleGAN [32],
LRGAN [15], and GFPGAN [28] on face SR.

1) Application on Face Detection: Face detection is to
predict the bounding boxs around the faces in the images.
To validate the effectiveness of these methods on face SR,
we perform face detection with the state-of-the-art face detec-
tion method of RetinaFace [77], on the SR face images by dif-
ferent methods. Here, we define face detection accuracy as the
ratio of the number of face images successfully predicted by
bounding boxes to the total number of the input face images,
and each input image has exactly one face. In Table IX,
we list the detection accuracies on the SR face images by
different methods from the datasets of LS3D-W balanced [72],
FFHQ [47], Widerface [64] and WebFace, as described in
§IV-A. One can see that, the model of RetinaFace [77]
consistently achieves the highest detection accuracy on the SR
face images by our SCGAN. This validates the effectiveness
of our SCGAN on the face structure preservation for face
detection.

2) Application on Face Verification: Face verification is a
binary classification task to determine whether the pair of

TABLE IX
ACCURACY (%) OF FACE DETECTION ON THE SR RESULTS RESTORED BY

OUR SCGAN AND OTHER METHODS ON TWO SYNTHETIC AND TWO
REAL-WORLD DATASETS. THE BEST, SECOND BEST, AND THIRD

BEST RESULTS ARE HIGHLIGHTED IN RED, BLUE
AND BOLD, RESPECTIVELY

TABLE X
ACCURACY OF FACE VERIFICATION BY FACENET ON THE SUPER-

RESOLVED FACE IMAGES IN DRONESURF TEST SET [73] RESTORED
BY DIFFERENT FACE SUPER-RESOLUTION METHODS. THE BEST,

SECOND BEST, AND THIRD BEST RESULTS ARE HIGHLIGHTED
IN RED, BLUE AND BOLD, RESPECTIVELY

Fig. 8. Comparison results of landmark detection and the corresponding
ℓ1 norm errors on the face images in synthetic FFHQ [47] dataset restored
by different methods. Please zoom in for better view.

output and reference face images have the same identity or not.
Here, we first restore the synthetic DroneSURF test set [73],
as introduced in §IV-A, by different face SR methods. Then
we perform face verification on the restored face images by the
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state-of-the-art face verification method of FaceNet [82]. The
accuracies of FaceNet on the SR images by different methods
are listed in Table X. It can be seen that, the accuracy on
the SR images of our SCGAN is clearly higher than those of
the other face SR methods. This demonstrates the superiority
of our SCGAN over the other competitors on preserving the
consistency of face identity information for the face SR task.

3) Application on Face Landmark Detection: Face land-
mark detection aims to locate the key facial components
of face images. We restore the LR images into HR ones
with more facial details and then use the state-of-the-art
face landmark detection method of RetinaFace [77] for face
landmarks detection. We compare the face SR methods on six
representative LR face images degraded from FFHQ test set,
as described in §IV-A. The landmark detection results of six
representative face images restored by different methods and
the ℓ1 norm errors (lower is better) between them and the
corresponding ground-truth landmarks are shown in Figure 8.
We observe that, compared with the SR results of other
methods, the landmarks detected by the face images restored
by our SCGAN are closer to those detected on the original
HR face images, and the corresponding ℓ1 errors are also the
lowest among all comparison methods. This shows that our
SCGAN recovers the key facial components more detectable
than the other methods for face SR.

V. CONCLUSION

In this paper, we proposed a novel Semi-Cycled Generative
Adversarial Network (SCGAN) to alleviate the domain gap
between unpaired LR and HR face images for real-world face
super-resolution (SR). Our SCGAN contains three independent
branches to learn the forward and backward cycle-consistent
reconstruction processes. Specifically, a synthetic degradation
branch learns to generate synthetic LR face images by degrad-
ing the real-world HR ones, a restoration branch recovers SR
face images from the synthetic/real-world LR face images,
and a real-world degradation branch degrades the SR face
images restored from the real-world LR ones. The restoration
branch is coupled and regularized by the two independent
degradation branches, making our SCGAN robust to super-
resolve synthetic and real-world LR face images. Experiments
on two synthetic and two real-world datasets demonstrated
that our semi-cycled SCGAN outperforms the state-of-the-art
methods on synthetic and real-world face SR tasks, in terms of
structure preservation, detail recovery, and standard objective
metrics. Three downstream vision tasks on face detection,
face verification, and face landmark detection reveal that the
effectiveness of our SCGAN better recovers the face structure,
identity, and details than the other face SR methods.
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