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Abstract

Determining the mechanism of action (MoA) of novel chemical compounds is a
critical yet challenging task in drug discovery. We introduce MoAgent, a multi-
agent framework that reframes MoA inference as a hypothesis-driven scientific
discovery process. MoAgent integrates multi-modal data from chemical structure,
gene expression, and biological pathways, deploying a committee of specialized
agents to collaboratively generate and validate mechanistic hypotheses. The frame-
work operates through an iterative cycle of evidence triangulation and hypothesis
validation, where a bioinformatician agent assesses causal plausibility using a
knowledge graph and a medicinal chemist agent verifies direct target engagement.
Our experiments demonstrate that the integrated, hypothesis-driven strategy sig-
nificantly enhances the accuracy and reliability of MoA inference, and maintains
robust performance even in zero-shot scenarios. By emulating scientific reasoning,
MoAgent offers a more effective paradigm for accelerating drug discovery.

1 Introduction

Understanding the mechanism of action (MoA) of drugs is a fundamental challenge in pharmacology
and drug discovery. Knowledge of MoA helps distinguish intended multi-target effects from undesired
off-target interactions [Davis, 2020, [Watkins et al., 2010} [De Savi et al., 2020, thereby balancing
efficacy and safety in the early stages of development [Berger and Iyengar, 2011]. It also enables the
identification of synthetic lethal relationships, which can guide the design of cell-specific therapeutic
strategies, and supports drug repurposing or biomarker discovery for efficient candidate selection
[Zhang et al., [2021} [Previtali et al.,2024]]. Though their elucidation is crucial, it remains challenging
task for existing methods, as detailed in appendix [A]

To address these challenges, we introduce MoAgent, an autonomous multi-agent framework that
emulates the scientific process of MoA inference by simulating a collaborative scientific committee
(see Figure [I). Building on the recognition that chemical similarity, transcriptomic signatures,
and biological knowledge each provide only partial clues, MoAgent unifies them into a single
iterative reasoning process. This process is centered on evidence triangulation, a principle wherein
multiple, independent lines of evidence are systematically sought to corroborate a finding, thereby
increasing the validity and reliability of the conclusion. A large language model (LLM) orchestrates
specialized LLLM agents to synthesize evidence, formulate hypotheses, and validate them through
both mechanistic reasoning over biological resources and physical evidence from external databases.
Through this orchestration, and by leveraging the prior biological knowledge embedded in LLMs,
MoAgent transforms fragmented signals into coherent and testable mechanistic insights, offering a
flexible and explainable framework for MoA discovery.
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Figure 1: The MoAgent framework for hypothesis-driven MoA discovery. The framework
emulates the scientific discovery process by first synthesizing multi-modal evidence to generate
hypotheses. These hypotheses are then validated by a committee of specialist agents. A central
controller evaluates these outcomes, generating a final MoA report upon successful validation or
initiating an adaptive re-planning loop in case of refutation. This iterative, self-correcting architecture
enables MoAgent to perform robust, evidence-based mechanistic inference.

2.1 Problem definition

The central challenge of MoA inference is to solve the inverse of this biological process: to infer
the initial causal event from its downstream consequences. Formally, the problem is defined as
follows: given a query compound’s molecular structure and its induced gene expression signature as
inputs, the goal is to predict the set of protein targets that constitute its MoA. To simulate a realistic
discovery scenario with no prior knowledge of a given compound, we anonymized it by withholding
its common name and structure from the LLM in our MoAgent framework.

2.2 MoAgent: A multi-agent framework for drug MoA discovery

Implemented as a state graph using the LangGraph! library, MoAgent employs a LLM to manipulate
a collaborative, iterative workflow among specialized agents. As depicted in Figure[T} the modular
architecture of MoAgent, which composed of four distinct modules corresponding to key stages
of scientific inquiry, enables a flexible and robust reasoning process where subsequent actions are
determined by the outcome of the previous stage. Details about each module and the overall workflow
of MoAgent are introduced at Appendix

3 Results

To validate effectiveness of MoAgent, we designed a benchmark to test its ability to infer MoAs
against established and generalist baselines. The evaluation focuses on the accuracy and biological
completeness of MoA inferences for a set of well-characterized drugs. For detailed explanations
about the dataset, baselines, and evaluation metrics, refer to Appendices @] to @}

3.1 Comparative performance on MoA inference

The performance of MoAgent compared to the baselines is summarized in Table[T] To first isolate and
evaluate the underlying reasoning architecture of each framework, this initial experiment deliberately
limits the input to a single data source: the compound’s gene expression signature. This establishes a


https://www.langchain.com/langgraph

fair comparison, allowing for a direct assessment of how effectively each method infers MoA from
transcriptomic evidence alone.

Table 1: MoA inference performance. MoAgent is compared against a signature similarity baseline
(top-k union, k=1,3,5) and a general-purpose agent baseline (ReAct). Performance is evaluated using
Precision, Recall, and F1-score (F1) across two aggregation strategies: Individual (per-signature),
Union (per-drug). The best and second-best performances are indicated in bold and underlined,
respectively.

Individual Union

Method — —

Precision (1) Recall (1) F1 (1) Precision (1) Recall (1) FI (1)
Signature Sim. (k=1) 0.0962 0.1154 0.1026 0.0379 0.2222 0.0630
Signature Sim. (k=3) 0.0915 0.1667 0.1067 0.0412 0.2593 0.0613
Signature Sim. (k=5) 0.0599 0.1806 0.0818 0.0392 0.2994 0.0628
ReAct 0.0942 0.1346 0.0923 0.1139 0.2778 0.1437
MoAgent 0.4519 0.4385 0.4156 0.5278 0.4889 0.4598

MoAgent achieves a remarkable F1-score in the individual evaluation, an over four-fold improvement
over the ReAct. This significant performance gap highlights the fundamental limitations of both
conventional and generalist agent approaches. The signature similarity method, relying on a single
data modality, is insufficient for this complex task. Moreover, the performance of the ReAct agent
reveals that access to a powerful LLM and relevant tools is not sufficient to navigate the complexity of
this scientific reasoning task. In contrast, MoAgent’s success is directly attributable to its architecture:
its structured hypothesis-driven workflow and rigorous verification process provide the superior
reasoning that the generalist agent lacks.

The traditional signature similarity method exhibits a classic trade-off. While combining results from
replicates increases recall by capturing more potential true positives, it introduces a high number
of false positives from noisy predictions. This leads to a drastic drop in precision that outweighs
the gain in recall, ultimately resulting in a lower F1-score. In contrast, both agent-based approaches
show a more favorable trend. While the ReAct agent also improves upon aggregation, the critical
distinction lies in the absolute performance. MoAgent starts from a much higher baseline in the
individual evaluation and further improves its scores, highlighting the effectiveness of considering
biological context. By formulating and rigorously verifying hypotheses for each replicate, MoAgent
generates high-confidence predictions that effectively filter out experimental noise. Consequently,
the Union aggregation primarily serves to collect these high-quality predictions, capturing a more
complete set of true MoAs. This empirically validates that our framework successfully emulates the
scientific process of building a robust consensus from multiple pieces of evidence.

3.2 Reasoning beyond retrieval: MoA inference in a zero-shot setting

Having established the superiority of its architecture with a single data source, we next evaluated
MoAgent in a more realistic, multi-modal setting. In this second experiment, we incorporated
chemical structure as a key, independent line of evidence to assess MoAgent’s ability to synergize
diverse information—a core aspect of its design. We also designed an experiment to contrast the
performance of the model in two distinct scenarios: the first scenario (‘w/ Protein Target’), where the
true protein target of the drug is present in the reference database, and a more challenging zero-shot
scenario (‘w/o Protein Target’), where the true target is deliberately excluded from it. The latter
simulates a true discovery task, compelling the agent to infer the MoA from a convergence of evidence
without any direct target information to retrieve. This setup is crucial for assessing whether the agent
can perform scientific discovery rather than simple fact-checking. To implement the zero-shot ‘w/o
Protein Target’ scenario, we removed known interactions between a query drug and its ground-truth
protein targets from the knowledge sources accessible to the agents (e.g., removing ‘EGFR’ for
Gefitinib). For details, refer to section[C.3]

As shown in Table[2] the results from the ‘w/ Protein Target’ scenario highlight that simpler, heuristic-
based approaches can perform effectively when a direct, unambiguous signal is available. This is
particularly evident with the structure similarity baseline; for the well-known drugs in our benchmark,
structural information provides such a powerful signal that the task becomes more akin to information
retrieving rather than complex reasoning. Consequently, all methods, including ReAct, achieve high
F1-scores in this setting compared to Table



Table 2: Comparison of MoA inference performance with and without the ground-truth protein target.
MoAgent is compared against baseline methods under each condition. The best and second-best
performances are indicated in bold and underlined, respectively.

w/ Protein Target w/o Protein Target

Method Individual Union Individual Union

Py RM  FIMH P RM  FIM P RO FIP) PO RA)  FID)

Structure Sim. (k=1) 0.673 0.420 0.403 0.648 0.404 0.388 0.000 0.000 0.000 0.000 0.000 0.000
Structure Sim. (k=3) 0.430 0.471 0.375 0414 0454 0361 0.000 0.000 0.000 0.000 0.000 0.000
Structure Sim. (k=5) 0.309 0.555 0.357 0.298 0.534 0.344 0.000 0.000 0.000 0.000 0.000 0.000

ReAct 0.657 0.510 0.517 0.537 0.555 0.480 0.000 0.000 0.000 0.000 0.000 0.000
MoAgent 0.663 0.566 0.550 0.622 0.638 0.583 0.528 0.500 0.482 0.554 0.559 0.537

However, the evaluation for scientific inference comes from the ‘w/o Protein Target’ setting. Here,
the performance of all baseline methods collapses, with Fl-scores dropping to zero. The failure
of the ReAct agent is particularly revealing: despite having access to the same tools as MoAgent,
its unstructured process, driven by a single general-purpose agent, gets lost in the complex data
landscape once the dominant signal is removed. In contrast, the performance of MoAgent remains
remarkably robust, achieving a Union F1-score of 0.537. This success validates its core design for
genuine scientific discovery. The strength of MoAgent lies in its evidence triangulation, a process
powered by its specialized agents. Each agent examines the problem from a distinct biochemical
perspective, allowing MoAgent to construct a unified biological context. This unified approach is
particularly effective at amplifying weak signals that would be missed by relying on a single line of
evidence. Furthermore, this framework is inherently robust; if an initial reasoning path fails to yield a
coherent hypothesis, its adaptive re-planning mechanism allows it to reassess the evidence and forge
a new, more promising strategy.

Strikingly, F1-score of MoAgent was higher in this challenging zero-shot setting than in the standard
experiment where direct target information was available (Table [T). This counterintuitive result
validates that multi-modal synergy is fundamental to the design of MoAgent. While there is no
direct information about the ground-truth target, the integration of multi-modal evidences provides
complementary but indirect signals. MoAgent is able to triangulate these weaker, distributed signals
into a coherent mechanistic hypothesis. Consequently, it can sometimes perform better in scenarios
where only indirect but diverse evidence is available. This result highlights that core strength of
MoAgent lies not in simple retrieval of clear answers, but in synergizing heterogeneous evidence to
uncover robust mechanistic insights.

4 Conclusion

In this work, we introduced MoAgent, a multi-agent framework that reframes mechanism of action
(MoA) inference from a process reliant on correlation-based similarity to a hypothesis-driven process
of scientific discovery. MoAgent integrates multi-modal data—spanning chemical structure, gene
expression, and biological pathways—through a committee of specialized agents. It overcomes the
distinct limitations of single-modality analysis through an iterative cycle of evidence triangulation
and computational validation.

The integrated approach of MoAgent significantly improved prediction performance compared to
conventional similarity-based methods and generalist single-agent systems. Crucially, its true strength
was revealed in a multi-source, zero-shot scenario; while all baseline methods which collapsed
completely, MoAgent successfully synergized distinct clues to maintain robust performance. This
transition from a single-source to a multi-source context empirically validates that MoAgent excels
at genuine scientific reasoning, constructing a coherent mechanistic narrative rather than simply
retrieving facts from a dominant signal.

While evidence triangulation of the MoAgent is designed to be robust against gaps in any single
knowledge source, its overall performance is naturally bounded by the collective completeness
of its external resources. Promising directions for future work include extending the model by
incorporating additional data modalities. Furthermore, to enhance generalizability of the model and
practical applicability, future validation should encompass a broader range of experimental conditions,
including diverse cell lines, dosages, and time points.
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A Related Works

A dominant paradigm in MoA inference is rooted in biochemical similarity [Musa et al., 2018, [Szalai
and Veres), [2023|, [Trapotsi et al., [ 2022]. On the chemical side, compounds with similar molecular
structures are often assumed to engage similar targets and thereby elicit comparable MoA. On the
biological side, transcriptomic profiling resources such as the Connectivity Map (CMap) leverage
gene expression similarity, under the assumption that drugs producing comparable gene expression
signatures act through related pathways [Lamb et al., 2006, |[Subramanian et al.,|2017, Segal et al.,
2012]]. A second, complementary paradigm relies on causal reasoning over biological knowledge.
Approaches based on knowledge graphs (KGs) integrate curated interactions and pathways to trace
upstream regulators [Jaeger et al.,|2014| |Bradley and Barrett, 2017} [Liu et al.,|2019], while pathway
enrichment analyses highlight coordinated pathway activities [|Garana et al.| 2023} |Gao et al.| 2021].

These parallel paradigms highlight a critical challenge in MoA inference. Similarity-based approaches
offer scalability but often yield superficial correlations [Wang et al.l 2013} [Fakhraei et al., 2014,
Madhukar et al.,|2019]. Conversely, methods centered on causal reasoning using knowledge graphs
provide mechanistic depth, but their reliability is vulnerable to the inherent gaps and biases of any
single, curated knowledge source. An inference process that depends solely on such a resource can be
prone to failure when a causal path is not yet documented [Hosseini-Gerami et al., [2023]]. Moreover,
most existing approaches rely on a single modality—either molecular structure, gene expression, or
biological networks—while MoA inference is inherently a multi-modal reasoning task that requires
integrating chemical, biological, and knowledge-based evidence [Trapotsi et al., 2022| Krix et al.,
2023\ |Lopez et al., 2025].

B Method details

This appendix provides supplementary details regarding the implementation of the MoAgent frame-
work, intended to ensure the transparency and reproducibility of our work.

B.1 Detail modules of MoAgent

1. Evidence retrieval module This module gathers initial, multi-modal evidence to form a
foundational understanding of the compound’s effects. It collects three distinct types of evidence
from gene expression data:

* Chemical evidence: Based on the assumption that structurally similar compounds often
interact with similar biological targets, this provides a strong, albeit heuristic, starting point.
Specifically, we utilized the Tanimoto similarity[Tanimoto, [1957] to retrieve analogous
compound from databases. The MoAs of known analogs offer valuable clues to the potential
target class of the query compound (see the example in Table[3).

* Transcriptomic evidence: This provides a functional, systems-level view of the compound’s
impact. By comparing gene expression signatures, it groups compounds based on their
ultimate phenotypic outcome, offering a complementary perspective to chemical structure.
Specifically, we retrieved similar compounds from databases based on the cosine similarity
of their signatures (see the example in Table[3).

* Mechanistic evidence: This contextualizes the broad transcriptomic changes within known
biological pathways. By inferring the activity of specific signaling pathways and transcrip-
tion factors, it translates the high-dimensional gene expression data into more interpretable,

mechanistic insights (see the and examples Table[3).

The evidence collected from these three modalities is then synthesized to identify convergent biologi-
cal themes (e.g. EGFR signaling disruption). This consolidated output, which translates raw data into
actionable insights, is then delivered to the Hypothesis planning module. For more details, refer to
section

This module performs an abductive reasoning task to bridge the
gap from broad biological themes to specific, testable hypotheses, which are potential protein targets
with respective rationales (e.g., Table[TT). Its central challenge is to navigate a key complexity of



cellular signaling: distinct upstream perturbations, such as inhibiting different proteins within the
same signaling pathway, can converge to produce similar downstream gene expression signatures. To
disambiguate these scenarios and infer the most plausible causal origins, the reasoning of the module
is guided by two core strategies, which are implemented in a structured, two-stage process involving
distinct planning and refinement agents.

» Stage 1: initial hypothesis generation by a planning agent: The first agent applies the
evidence convergence strategy to identify up to N consensus themes from the evidence. And
then, for each theme, it compiles a comprehensive list of candidate targets by considering
proteins (a) explicitly mentioned in the initial evidence, (b) known to be central to the
theme, and (c) suggested as upstream regulators by the causal hierarchy strategy, which
consider biological signaling cascade. Based on this expanded list, the agent formulates
initial hypotheses.

 Stage 2: hypothesis refinement by a reflector agent: Each initial hypothesis is then passed
to a second agent for refinement. This agent reviews the initial hypothesis and proposes
additional, closely related target proteins, based on the biological themes. This step expands
the hypotheses, ensuring a comprehensive search.

The final output provides a structured action plan containing prioritized target list of hypotheses ready
for validation (see Table [IT).

3. Hypothesis validation module This module rigorously tests the proposed hypotheses by
requiring a consensus from two specialist agents, each assessing an independent and orthogonal line
of evidence: causal plausibility and direct physical interaction.

* The bioinformatician agent investigates causal plausibility. Its primary tool is querying
a biological knowledge graph (e.g., Signor [Lo Surdo et al.l 2023]]) to find established
signaling pathways between a candidate target and the inferred active transcription factors.
A short, known path provides strong evidence for mechanistic coherence.

* The medicinal chemist agent seeks direct evidence of molecular interaction. It is equipped
with tools to query public bioactivity databases (e.g., ChEMBL [Zdrazil et al., 2023,
BindingDB [Liu et al., 2024]) for experimental data (e.g., IC5g, K;) confirming a high-
affinity interaction between the compound and the target. When experimental data is
unavailable, we discard the hypothesis. In the future, this can be addressed by employing
computational methods such as molecular docking or Al-driven models (e.g., PIGNet [Moon
et al.| 2024]], Boltz [Passaro et al.,[2025]]) to predict binding affinity.

4. Controller and iterative refinement loop The central LLM controller acts as the “principal
investigator”. It receives analytical reports from the bioinformatician and medicinal chemist agents
to determine the outcome. A hypothesis is considered successfully validated only if both agents
independently classify it as Supported, confirming both causal plausibility and direct physical
interaction. Upon finding the validated hypothesis, the framework initiates a target expansion phase
to explore a broader mechanistic space around validated target, by leveraging the embedded biological
knowledge of LLM, such as protein family relationships and drug polypharmacology (see Table[T4]
for example). These expanded targets form a new set of hypotheses, which are then fed back
into the hypothesis validation module. This expansion-validation cycle repeats, allowing MoAgent
to systematically map out potential multi-target effects. The number of expansion iterations is a
configurable hyperparameter, which is set to one for this study.

If all initial hypotheses are refuted, controller initiates the adaptive replanning loop. In this failure
analysis phase, it reviews the history of failed validation to discard invalidated assumptions and
generates new hypotheses from alternative perspectives, returning to the planning module. To prevent
infinite loops, this overall planning-validation cycle is constrained by a maximum number of rounds,
which is set to three for this study. At the conclusion of the process, a final report is generated.
If a hypothesis is successfully validated, the system generates a comprehensive MoA hypothesis
report detailing the evidence-backed mechanism. Conversely, if all hypotheses are refuted within the
maximum rounds, a failure analysis report is created. This report details the attempted hypotheses
and the reasons for their refutation, providing critical insights for human scientists to inform the next
steps of the investigation.



B.2 Implementation details

Frameworks and libraries The MoAgent system is built using Python 3.9. The core agentic
workflow and state management are implemented using LangChain (v0.2.5) and LangGraph (v0.1.0),
which provide a robust foundation for creating cyclical, stateful multi-agent systems. Key libraries
for scientific computation and data handling include:

* Biological analysis: decoupler (v1.6.0) [Badia-i Mompel et al.| 2022] for pathway and
transcription factor activity analysis, and pandas (v2.2.2) for data manipulation.

* Chemical informatics: RDKit (v2023.09.6) for chemical structure processing and finger-
print generation, and cmapPy (v5.1.0) for parsing LINCS GCTX files.

* Database and API interface: py2neo (v2021.2.4) for interacting with the Neo4j
graph database, and chembl-webresource-client (v0.10.9) for accessing the ChEMBL
database.

Language models All reasoning, synthesis, and evaluation tasks within the MoAgent framework
are performed by Large Language Models. For the experiments presented in this paper, we utilized
OpenAl’s gpt-4o-mini model, accessed via their API.

B.3 Agent prompting strategy

Our prompting strategy is central to directing the behavior of the LLM-driven agents. All prompts
are engineered to elicit structured reasoning and are designed to request JSON-formatted outputs to
ensure reliable, deterministic parsing of agent responses.

MoAgent We employ a “Chain-of-Thought” approach, asking the agent to “think step-by-step”
before providing a final answer. This encourages more logical and less error-prone reasoning. Key
prompt templates are summarized below. All experiments were conducted using the same prompt.

Chemical structure analysis prompt

You are an expert medicinal chemist. Your task is to analyze a list of compounds that are
structurally similar to a query compound and identify the dominant biological themes from
their known targets.

Please analyze the following data:

— **Data from Structural Similarity Search:** {Structural Similarity Search Result} —
**Analysis Instructions:**

1. **Extract and Group Targets:** Examine the ‘target’ column for all listed compounds.
2. **Identify Biological Themes:** Group the identified protein targets into "Biological
Themes." A theme represents a biological pathway (e.g., “PI3K/mTOR signaling”), a protein
family (e.g., “Receptor Tyrosine Kinases™), or a key cellular process (e.g., “Cell Cycle
Regulation”). 3. **Assess Theme Strength:** In the ‘comment’ field, explicitly state the
strength of the theme based on the number of supporting compounds and the magnitude
of their similarity scores (e.g., ‘Dominant theme supported by multiple high-similarity
compounds’, ‘Secondary theme with moderate support’, ‘Weak signal from a single low-
similarity compound’). 4. **Format Output:** Structure your entire response as a single
JSON object. Do not include any text outside of the JSON structure.

**JSON Output Format:** “‘json ...
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Gene expression analysis prompt

You are an expert bioinformatician. Your task is to analyze a list of compounds that produce a
similar gene expression signature to a query compound and identify the dominant biological
themes from their known targets.

Please analyze the following data:

— **Data from Gene Expression Similarity Search:** { Gene Expression Similarity Search
Results} —

**Analysis Instructions:**

1. **Extract and Group Targets:** Examine the ‘aggregated_targets‘ column for all listed
compounds. 2. **Identify Biological Themes:** Group the identified protein targets into "Bi-
ological Themes." A theme represents a biological pathway (e.g., "PI3K/mTOR signaling"),
a protein family (e.g., "Receptor Tyrosine Kinases"), or a key cellular process (e.g., "Cell
Cycle Regulation"). 3. **Assess Theme Strength:** In the ‘comment® field, explicitly state
the strength of the theme based on the number of supporting compounds and the magnitude
of their similarity scores (e.g., ’Dominant theme supported by multiple high-similarity com-
pounds’, ’Secondary theme with moderate support’, *Weak signal from a single low-similarity
compound’). 4. **Format Output:** Structure your entire response as a single JSON object.
Do not include any text outside of the JSON structure.

**JSON Output Format:** “‘json ...

Pathway activity analysis prompt

You are a systems biologist. Your task is to analyze predicted pathway activities (from
PROGENYy) and summarize them into high-level biological themes.

Please analyze the following data:

— **Data from Pathway Activity Prediction:** {Pathway Activity Prediction Results} —
**Analysis Instructions:**

1. **Focus on Significance:** Identify only the most significantly activated or inhibited
pathways (e.g., absolute activity score > 10). Ignore pathways with minor activity. 2.
**Quantify Theme Impact:** In the ‘interpretation® field, explicitly describe the magnitude
of the change using quantitative language (e.g., "Overwhelmingly strong inhibition with a
score of -40.7", "Significant activation", "Moderate but notable inhibition"). This provides
crucial context for the planning stage. 3. **Format Output:** Structure your entire response
as a single JSON object. Do not include any text outside of the JSON structure.

**JSON Output Format:** “‘json ...
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Hypothesis planning prompt

You are a lead scientist in a drug discovery team. Your task is to create a prioritized, multi-step
verification plan to identify a compound’s Mechanism of Action (MoA) based on several
summarized pieces of evidence. Your reasoning must be sharp, critical, and adhere to
scientific principles.

— Evidence Summaries —

{evidence_blocks}

— Core Principles for Scientific Reasoning —

Before formulating hypotheses, you must evaluate the evidence based on the following
principles, in this order of importance:

**]. Principle of Convergence (Highest Priority):** - A hypothesis is strongest when multiple,
independent types of evidence (e.g., Pathway Activity, Expression Similarity) converge on
the same theme. This is the most reliable starting point. - However, a single, exceptionally
strong signal from one data type is still valuable and should be considered a valid hypothesis
for testing, as it may represent a critical finding. - Use strong signals (Pathway Iscorel > 20,
Expression Isimilarityl > 0.3, Structural similarity > 0.5) as the baseline for convergence,
while exceptionally strong signals justify an isolated hypothesis.

**2. Principle of Specificity & Strength (Secondary Priority):** - If no clear convergence
exists, prioritize the most specific and overwhelmingly strong signal from a single source
(e.g., a pathway activity score > 120l). - A strong signal for a specific pathway (e.g., ’Estrogen
Signaling’) MUST be formulated into an equally specific hypothesis ("Inhibition of Estrogen
Signaling’), not a broad one ("Hormonal Regulation’).

**3. Principle of Causal Hierarchy (Upstream First):** - After identifying a theme, apply
this principle. Biological pathways are hierarchical. When you see effects across a known
signaling cascade (e.g., A -> B -> C), your primary hypothesis must target the **most
upstream plausible component**. - **Mental Model:** Ask yourself, "Could inhibiting
Target X *cause* the other observed effects?" - **Mandatory Test Strategy:** When a major
signaling pathway is implicated (e.g., MAPK, PI3K), your ‘verification_targets‘ **must**
include a representative set of key nodes to ensure full coverage: a plausible **upstream
receptor** (e.g., RTK), a **critical intermediate kinase** (e.g., MAP2K1, AKT), and a
**downstream effector** (e.g., MAPK1, MTOR). This avoids missing intermediate targets.
— Handling Uncertainty and Contradictory Evidence —

1. **Acknowledge Contradictions:** If evidence sources are in strong conflict (e.g., Pathway
data suggests activation, but Expression data suggests inhibition), state the contradiction
in the ‘rationale‘ and formulate hypotheses to test the conflicting possibilities. 2. **Flag
Low Confidence:** When evidence is weak, reflect this using the ‘confidence’ field ("High",
"Medium", "Low") and explain why in the ‘rationale*.

— Instructions for Plan Formulation —

Based on your rigorous evaluation of the evidence, create a step-by-step verification plan. For
each hypothesis, you must follow a three-step process for identifying targets:

1. **List Evidence Targets:** In the ‘all_evidence_targets* field, list only the protein targets
that appeared *directly* in the provided evidence summaries. 2. **Expand with Biological
Knowledge:** For the ‘all_related_targets* field, use your extensive biological knowledge
to create a comprehensive list of all known, druggable targets associated with the ‘hypothe-
sis_theme*. 3. **Prioritize for Verification:** From your expanded ‘all_related_targets* list,
select a small number (up to 5) of the most critical and representative targets for initial testing
and list them in ‘verification_targets, following the **Mandatory Test Strategy** above.
You can propose up to 5 hypotheses in total.

**JSON Output Format:** Your entire response must be a single JSON object. Targets should
be represented by their HUGO gene symbols (e.g., "EGFR", "AKT1", "MTOR"), and should
be in uppercase. Do not use synonyms or other identifiers (e.g., Use KDR not VEGFR2,
MAP2K1 not MEK1, MAPK1 not ERK2).

e 999

json ...
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Hypothesis re-planning prompt

You are a lead scientist adapting your team’s research strategy based on new experimental
results. Your initial MoA verification plan has failed. Your task is to analyze the failure,
review ALL the original evidence with fresh eyes, and formulate a new, smarter verification
plan.

— Original Evidence Summaries —

{evidence_block}

— Previous Verification Plan (Now Invalidated) — “‘json {previous_hypothesis}
— Verification History (What We’ve Learned) — “‘json {history_str} “*

— Instructions for Re-planning —

1. **Analyze the Failure:** Understand *why* the previous hypotheses were refuted. The
‘verification_history‘ shows that direct binding to the selected targets was not observed. This
suggests the compound’s effects are likely **indirect™* or that we tested the wrong targets.

2. **Re-evaluate ALL Evidence with a New Mindset:** Go back to the **original evidence
summaries**. Your previous interpretation was wrong. Look for new connections. - **Focus
on Upstream Causes:** The observed pathway activity (e.g., MAPK inhibition) is a real effect,
but it’s downstream. Your primary goal now is to find the upstream cause. - **Systematically
Work Backwards:** If the strongest signal was "MAPK pathway inhibition," your new top
hypothesis **must** be to test known upstream regulators. Formulate a hypothesis like
"Inhibition of MAPK Pathway via Upstream Regulators" and for ‘verification_targets‘, you
**must** include key upstream kinases like **RAF, MEK, and relevant RTKs (e.g., EGFR,
ALK, MET, ROS1)**. - **Promote Secondary Themes:** If systematic backtracking doesn’t
yield a clear hypothesis, re-examine secondary themes from the original evidence (e.g., a
theme with moderate support from expression data) that you previously dismissed. This could
be the real MoA.

3. **Consider supported and unsupported targets:** Review the ‘supported_targets‘ and
‘unsupported_targets‘ from the binding affinity expert. Use this information to avoid previ-
ously tested targets and focus on new, plausible candidates. - **Supported Targets:** These
targets had some evidence of binding. They might be part of the MoA but were not sufficient
alone. Consider them as part of a broader pathway or complex. “‘json {supported_str} “* -
**Unsupported Targets: ** These targets were directly tested and refuted. Avoid them in your
new plan. “‘json {unsupported_str} “*

**Your Goal:** Do not simply test the next hypothesis from the old plan. Create a *new*
plan that demonstrates you have learned from the experimental failure and are now thinking
about **indirect effects and upstream causes™**.

**JSON Output Format:** Your entire response must be a single JSON object containing the
new ‘verification_plan‘.

Targets should be represented by their HUGO gene symbols (e.g., "EGFR", "AKT1",
"MTOR"), and should be in uppercase. Do not use synonyms or other identifiers (e.g.,
Use KDR not VEGFR2, MAP2K1 not MEK1, MAPKI1 not ERK2). “‘json ...

1133
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Hypothesis reflection prompt

You are a pharmacology expert specializing in experimental design for the following biologi-
cal theme: **{hypothesis_theme}**. Your task is to review a single, draft MoA hypothesis
and ensure its verification plan is optimal and comprehensive.

**Your Goal:** Refine the ‘verification_targets* for this specific hypothesis to maximize the
scientific insight from the first round of experiments. **Crucially, you MUST NOT change
the ‘priority‘, ‘hypothesis_theme*, ‘confidence, or ‘rationale‘.** Your focus is solely on
improving the experimental design.

— Draft Hypothesis — “‘json {hypothesis_str}
— **Incorporate Search Insights:** Review the ‘search_result‘ for any new insights or targets
that may have emerged from recent literature or databases. If relevant, integrate these findings
into your refined hypothesis. “‘json {search_result_str} “

— Expert Review and Refinement Instructions —

1. **Analyze the Target Pool:** As an expert in this specific theme, examine the
‘all_related_targets. This list represents the complete set of potential targets for this bi-
ological theme. 2. **Critique the Verification Targets:** Look at the ‘verification_targets*
selected for the experiment. Ask yourself: - **Completeness:** Does this list cover the
key nodes of the pathway (e.g., upstream receptors, intermediate kinases, downstream effec-
tors)? - **Upstream Cause:** Is the most likely upstream driver of this pathway included? -
**Crosstalk:** Is there a critical, commonly-known crosstalk partner that should be measured
to understand the system-level response? - **Representativeness:** Are these the best targets
to confirm or refute the hypothesis? 3. **Propose Refinements:** Rewrite the hypothesis
with your expert suggestions. Copy the ‘priority‘, ‘hypothesis_theme*, ‘confidence‘, and
‘rationale‘ exactly as they were. Modify only the ‘verification_targets‘ to be more comprehen-
sive and scientifically robust based on your expert critique. If you believe the original targets
are already optimal, you may return the original hypothesis unchanged. 4. **Consider sup-
ported and unsupported targets:** Review the ‘supported_targets‘ and ‘unsupported_targets*
from the binding affinity expert. Use this information to avoid previously tested targets and
focus on new, plausible candidates. If there are not either supported or unsupported targets,
you can ignore this step. - **Supported Targets:** These targets had some evidence of
binding. They might be part of the MoA but were not sufficient alone. Consider them as
part of a broader pathway or complex. “‘json {supported_targets_str} “* - **Unsupported
Targets:** These targets were directly tested and refuted. Avoid them in your new plan.
“‘json {unsupported_targets_str} “

*#JSON Output Format:** Your entire response must be a single JSON object representing
the single, refined hypothesis. The structure must be identical to the input. Targets should be
represented by their HUGO gene symbols (e.g., "EGFR", "AKT1", "MTOR"), and should
be in uppercase. Do not use synonyms or other identifiers (e.g., Use KDR not VEGFR2,
MAP2K1 not MEK1).

GG6S 999

json ...
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Bioinformatician prompt

You are an expert in bioinformatics and knowledge graphs, specializing in gene regulatory
networks.

Your task is to determine if the proposed hypothesis is supported by evidence of a connection
between activated Transcription Factors (TFs) and the proposed protein targets.

— Input Data —

1. **Current Hypothesis:** “‘json {hypothesis_str}
2. **Predicted Transcription Factor Activity:** (Positive scores indicate activation, negative
scores indicate inhibition) “‘ {tf_activity_str}
3. #*KG-derived Paths between Targets and TFs:** (This data shows which proposed targets

1

have a documented path to the most active TFs in the knowledge graph). “‘json {kg_path_str}

1113
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— Instructions for Review —

For each target in the hypothesis’s ‘verification_targets* list, perform the following analysis:
1. **Identify Active TFs:** Look at the ‘Predicted Transcription Factor Activity‘ data and
identify the top 5-10 TFs with the highest absolute scores. Note their activation/inhibition
status. 2. **Check for Connectivity:** Refer to the ‘KG-derived Paths* data to see if the target
has a documented connection to these active TFs. The ‘total_tf_coverage* field indicates how
many of the top TFs are connected to the target. 3. **Assess Consistency:** The connection
is strongest if the direction of the hypothesis (e.g., inhibition of a pathway) is consistent with
the TF activity. For example, if a pathway is inhibited, you might expect TFs that activate
downstream genes to also be inhibited. 4. **Make a Decision:** - **Supported: ** Classify
the target as "Supported" if there is strong evidence of connectivity (‘total_tf_coverage* >
0) to relevantly activated/inhibited TFs. - **Refuted:** Classify the target as "Refuted" if
there is no path (‘total_tf coverage® == 0) or if the connection contradicts the TF activity.
5. **Provide Rationale:** Briefly explain your decision. For example: "Supported due to a
direct connection to the highly activated TF *STAT3’ (score: 25.5)" or "Refuted as no path
exists in the KG to any of the top 10 active TFs."

**JSON Output Format:** Your entire response must be a single JSON object.

“‘json ... "

Medicinal chemist prompt

You are an expert pharmacologist specializing in interpreting protein-ligand binding affinity
data from databases like BindingDB and ChEMBL.

Your task is to review the following experimental binding data for a compound against a list
of protein targets. Based *only* on the provided data, determine if the data supports the
hypothesis that the compound is a direct and potent binder for each target.

— Input Data —

- **Protein Targets to Evaluate:** ‘{targets_str}‘ - **Retrieved Binding Data:** {data_str}

— Instructions for Review —

For each target, perform the following analysis:

1. **Review the Data:** Look at the provided binding affinity values (e.g., IC50, Ki, Kd,
EC50). Potent binding is typically indicated by low nanomolar (nM) or at worst, low
micromolar (< 1 uM) values. 2. **Make a Decision:** - If the data shows potent binding
(e.g., IC50 < 100 nM), classify the target as "Supported". - If no data is available for a target,
or if the reported affinity values are weak (e.g., > 10 uM), classify the target as "Refuted". 3.
**Provide Rationale:** Briefly explain your decision based on the data (or lack thereof). For
example: "Supported due to a reported IC50 of 50 nM," or "Refuted as no binding data was
found in the database."

**JSON Output Format:** Your entire response must be a single JSON object. The
‘has_supported_targets‘ field should be ‘true‘ if at least one target is marked as "Supported".

113 999

json ...
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ReAct agent For the ReAct agent, we utilized the standard prompt (‘hwchasel7/react’) from the
huggingface hub. This prompt enables the agent to follow a “Chain-of-Thought” process, allowing it
to think step-by-step before acting. To adapt this generalist agent to our specific scientific task, we
augmented the base prompt with a clear set of instructions, guiding it to analyze the compound’s
MoA and structure its final output in a standardized JSON format. This approach ensures that while
the agent has the freedom to use the provided tools (Table [3), its ultimate goal and the format of its
conclusion are well-defined. The specific instructions provided to the agent are detailed below.

ReAct agent prompt

Analyze the mechanism of action (MoA) for the compound associated with signature ID
{signature_id}. Your goal is to identify the primary target proteins and explain the MoA.
Provide your conclusive answer as a JSON object with two keys: - “predicted_targets”: A list
of gene symbols for the most likely primary target(s). Gene symbols should be capitalized
and be HUGO standard. - “summary”: A text summary that states the primary target(s) and
synthesizes all the evidence (structural, expressional, pathway, TF, binding, and KG) that
supports your conclusion.

Table 3: Tools for MoA inference

Tool Name Description

Finds compounds that are structurally similar to the compound associ-
ated with the given signature ID. This tool helps understand the potential
MOoA based on known MoAs of similar chemical structures. The input to
this tool is a single signature ID string (e.g., “CPC014_A549_24H_BRD-
K64052750-001-04-3_10"). Returns a markdown table of similar com-
pounds, their known targets, and Tanimoto similarity scores.

Finds other compound signatures that are similar to the input signa-
ture based on gene expression profiles (L1000 data). This is useful
for finding compounds that have a similar biological effect, even if
their structures are different. The input to this tool is a single signature
ID string (e.g., “CPC014_A549_24H_BRD-K64052750-001-04-3_10").
Returns a markdown table summarizing compounds with similar signa-
tures and their aggregated targets.

Predicts the activity of biological pathways (e.g., MAPK, PI3K) based
on the gene expression signature. This helps to understand the high-
level biological processes affected by the compound. The input to this
tool is a single signature ID string (e.g., “CPC014_A549_24H_BRD-
K64052750-001-04-3_10"). Returns a markdown table of pathways and
their predicted activity scores.

Predicts the activity of transcription factors (TFs) based on the gene
expression signature. This can reveal the key regulatory proteins that me-
diate the compound’s effects. The input to this tool is a single signature
ID string (e.g., “CPC014_A549_24H_BRD-K64052750-001-04-3_10").
Returns a markdown table of the top activated/inactivated transcription
factors and their scores.

Queries public databases (ChEMBL, BindingDB) for measured binding
affinities between the compound (identified by sig_id) and a list of po-
tential target proteins (gene symbols). This is a crucial step for verifying
direct interaction. The input must be a single string containing the sig-
nature ID, followed by a comma, and then a Python-style list of gene
symbols. For example: “CPC006_HCCS515_24H, [‘TP53’, ‘EGFR’]”.
Returns a string summarizing the findings for each target.

Analyzes the connections in a biological knowledge graph between a
list of potential target genes and a list of activated transcription factors
(TFs). This helps to check if a proposed target can plausibly explain
the observed TF activity. The input must be a single string containing a
Python-style list of target gene symbols, followed by a comma, and then
a Python-style list of TF gene symbols. For example: “[‘TP53’,"EGFR’],
['MYC’, ‘JUN’]”.

find_similar_compounds_by_structure

find_similar_compound_signatures

predict_pathway_activity

predict_transcription_activity

query_binding_affinity

analyze_tf_target_connections
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B.4 Hyperparameter configuration

The behavior of the MoAgent is governed by several key hyperparameters, which were fixed for all
experiments to ensure consistency. The configuration is detailed in Table 4]

Table 4: Hyperparameter settings for the MoAgent framework.

Hyperparameter Value

LLM Model Name gpt-4o0-mini
LLM Temperature 0.0

Max Evidence Compounds 20

Max Re-planning Attempts 3

Plan Reflection Step True

Max Target Expansion Attempts 1

C Experimental details

C.1 Dataset

We constructed a benchmark dataset from the Broad Institute’s LINCS L1000 library of drug-induced
gene expression signatures [Subramanian et al.|[2017]. To mitigate confounding variables and ensure
a rigorous comparison, we exclusively selected profiles generated under consistent experimental
conditions: a single cell line (MCF7), a fixed dosage (10 uM), and a 24-hour time point. This
controlled setting isolates the mature transcriptomic response to a standardized perturbation, leading
to a total of 26 individual signatures, consisting of randomly sampled three biological replicates for
eight drugs and two for one. Our final benchmark comprises 9 targeted anti-cancer drugs, chosen
to represent a diverse range of well-established MoAs (section[C.5). The ground truth MoAs were
rigorously compiled and cross-referenced from leading expert-annotated databases, including clue.io,
the Drug Repurposing Hub, and DrugBank [Subramanian et al., 2017, (Corsello et al.,[2017, |Knox’
et al.| [2023]]. For our similarity baseline, we utilized the gene expression signatures from the LINCS
L1000 dataset, constrained to a single cell line (MCF7), a fixed dosage (10 ©M), and time points of 6
and 24 hours.

C.2 Baselines

We compare MoAgent against two representative baselines to contextualize its performance. The
first, signature similarity, represents the conventional, non-agentic approach to this problem, while
the second, a ReAct Agent [[Yao et al., 2022], serves as an architectural ablation to evaluate our
collaborative multi-agent framework against a single-agent system.

* Signature similarity: This method represents the conventional transcriptomic-based ap-
proach to MoA inference, as popularized by the CMap [Lamb et al.,|2006]]. It operates on
the assumption that similar gene expression signatures imply similar MoAs. For a given
query signature, we retrieve the most similar signatures from the reference library based
on their cosine similarity to the query. The MoAs of the top-k most similar cases are
aggregated (union) to make a final prediction. This baseline test evaluates whether MoAgent,
a multi-agent-based system with tools beyond similarity measurement, provides a benefit
over simple pattern matching.

* ReAct agent: We implemented a generalist agent using the ReAct framework, providing
it with the exact same set of tools as MoAgent. However, it operates as a single agent
following a simpler think-act-observe loop, lacking the multi-agent collaborative strategy
and hypothesis-driven process of MoAgent. This comparison evaluates whether MoAgent’s
performance gains stem from its structured, collaborative workflow rather than just the
availability of tools. [More detailed explanation|can be found in Appendix
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C.3 Evaluation metrics

MoA inference is a multi-label classification task, as a single drug can have multiple MoAs. We
evaluate performance using standard metrics: precision (P), recall (R), and F1-score (F1). We report
results under two distinct aggregation strategies:

* Individual: Metrics are calculated for each of the 26 individual signatures and then averaged.
This evaluates the per-signature accuracy in MoA inference.

* Union: For each drug, the MoA inferences from its replicate signatures are combined into a
single set using a union operation. This approach is important from a biological standpoint,
as scientists typically form robust hypotheses from a consensus of multiple experiments
rather than a single result. This aggregation is also crucial for evaluation integrity because it
mitigates the impact of any single noisy replicate. Such outliers, often caused by factors
like batch effects, could otherwise lead to a misleading assessment of model performance.
Therefore, this metric assesses the per-drug accuracy of the model in MoA inference.

C.4 Knowledge sources and pre-processing

Chemical structural similarity To quantify structural similarity, compounds were represented as
2048-bit Morgan fingerprints with a radius of 2. The Tanimoto similarity between these fingerprints
was then calculated using the RDKit library.

Gene expression data We utilized the LINCS L1000 dataset from the clue.io repository. Specifi-
cally, we used the level 5 data, which consists of moderated Z-scores representing the differential
expression of 12,328 genes upon perturbation, normalized relative to controls. For details, see
Subramanian et al.|[2017].

Biological knowledge graph Our knowledge graph was constructed in Neo4;j. Protein interactions
involved in signal transduction were obtained from SIGNOR 3.0 [Lo Surdo et al., [2023], a database
that provides manually curated causal interactions annotated with direction and signed information.
Transcription factor—target interactions were collected from CollecTRI [Miiller-Dott et al., 2023,
which integrates multiple public datasets through manual curation and includes 43,175 interactions
across 1,186 transcription factors. Pathway—gene relationships were derived from PROGENy [Schu/
bert et al.| 2018]], a method that identifies pathway-responsive genes by analyzing gene expression
patterns from numerous pathway perturbation experiments. These relationships also account for the
effects of post-translational regulation. The graph primarily consists of ‘protein’ nodes and directed
edges representing regulatory relationships, such as ‘UPREGULATE’ and ‘DOWNREGULATE’.

External bioactivity databases The Chemical Verification Agent performs real-time queries to the
ChEMBL (v34) and BindingDB databases to fetch experimental bioactivity data. No pre-processing
was performed on these sources.

C.5 Test set and experimental setup for zero-shot scenario

Table 5: Test drugs and their target proteins

Drug Name Target Protein(s)

gefitinib EGFR

selumetinib  MAP2K1, MAP2K?2

everolimus MTOR

alectinib ALK, MEK

vemurafenib BRAF, RAF1

bexarotene RXRA, RXRB, RXRG

nilotinib BCR, ABLI1, KIT, PDGFRA, PDGFRB, CSF3R, DDR1, DDR2
ruxolitinib JAK1, JAK2, JAK3, TYK2, PLAUR

tivozanib FLT1, KDR, FLT4, KIT, PDGFRA, PDGFRB, FLT3, PTK6, MET
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For our evaluation in the “w/o Protein Target” setting, a specific adjustment was made for gefitinib.
We additionally removed the related proteins ERBB2, ERBB3, and ERBB4 from the candidate targets,
given that EGFR inhibitors often share high target similarity with other members of the ERBB family.
This adjustment, as clearly demonstrated in Tables[6]and[7] results in the disappearance of EGFR and
ERBB family inhibitors from the list of most structurally similar compounds.

Table 6: Retrieved evidence by chemical structure (before target protein removal)

Name Target Protein(s) Similarity
canertinib ERBB2, EGFR, ERBB4 0.697368
ZM-447439  AURKB, AURKA 0.653333
ZM-306416 KDR, FLT1 0.485294
foretinib KDR, MET 0.483146
WHI-P154 JAK3, EGFR 0.442857
tandutinib PDGFRA, KIT, FLT3, PDGFRB 0411111
BIBX-1382 EGFR 0.407407
KINO0O1-055 JAK3 0.400000
AV-412 ERBB2, EGFR 0.397849
BIBU-1361 EGFR 0.383721

Table 7: Retrieved evidence by chemical structure (after target protein removal)

Name Target Protein(s) Similarity
7ZM-447439  AURKB, AURKA 0.653333
ZM-306416  FLT1, KDR 0.485294
foretinib MET, KDR 0.483146
WHI-P154 JAK3 0.442857
tandutinib FLT3, KIT, PDGFRB, PDGFRA 0411111
KINO001-055 JAK3 0.400000
LY-456236 GRM1 0.347826
iloperidone HTR7, DRD2, HTR6, HTR2A, HTR1A 0.315217
copanlisib PIK3CD, PIK3CA 0.312500
eprobemide =~ MAOA 0.293333

D Case study: a walkthrough for gefitinib

To provide a concrete illustration of MoAgent’s reasoning process, we present a condensed walk-
through for the well-known drug Gefitinib, a small molecule inhibitor.

1. Evidence retrieval The process begins by analyzing three independent lines of evidence to
identify convergent biological themes. (a) The analysis of structurally similar compounds (Table[§)
proposed several kinase inhibitor activities, with Aurora Kinase and VEGFR signaling being the most
prominent. (b) Concurrently, the analysis of similar gene expression signatures (Table[J) suggested
broader cancer-related mechanisms such as Topoisomerase Inhibition and Cell Cycle Regulation. (c)
Finally, the direct pathway activity analysis (Table[I0) provided a decisive report on a potent and
specific inhibitory signal targeting the EGFR pathway.
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Table 8: Potential MoA themes for gefitinib based on structural similarity.

theme targets compounds similarity comment
Aurora Kinase Inhibition AURKB, AU- ZM-447439 0.653333 Dominant theme supported
RKA by a single high-similarity
compound.
Vascular Endothelial Growth  FLT1, KDR ZM-306416, fore- 0.485294, 0.483146, Dominant theme supported
Factor Receptor Signaling tinib, ZM-323881  0.261364 by multiple compounds with
moderate structural similar-
ity.
Janus Kinase Inhibition JAK3 WHI-P154, 0.442857,0.4 Secondary theme with mod-
KINO001-055 erate support.
Receptor Tyrosine Kinase In-  FLT3, KIT, tandutinib 0411111 Secondary theme with mod-
hibition PDGFRB, erate support.
PDGFRA
Serotonin Receptor Modula- HTR7, DRD2, iloperidone 0.315217 Weak signal from a single
tion HTR6, HTR2A, low-similarity compound.
HTRIA
Phosphoinositide 3-Kinase PIK3CD, copanlisib 0.3125 Weak signal from a single
Inhibition PIK3CA low-similarity compound.
Monoamine Oxidase Inhibi- MAOA eprobemide, mo- 0.293333,0.266667  Weak signal from two low-
tion clobemide similarity compounds.
Histone Methyltransferase EHMT?2 UNC-0321, BIX- 0.28125, 0.27957 Weak signal from two low-
Inhibition 01294 similarity compounds.
Serotonin Receptor Modula- HTR4 RS-23597-190, 0.280488, 0.278351 Weak signal from two low-
tion cisapride similarity compounds.
Cannabinoid Receptor Mod- CNR2 GW-405833 0.268817 Weak signal from a single
ulation low-similarity compound.
Mitogen-Activated Protein MAPKI2, doramapimod 0.262626 Weak signal from a single
Kinase Inhibition MAPKI11, low-similarity compound.
MAPK14
Sigma Receptor Modulation SIGMAR1 API-001, cutame- 0.261905, 0.25974 Weak signal from two low-

sine

similarity compounds.

2. Hypothesis generation Based on the convergent themes identified from the retrieved evidence,
the hypothesis generation module formulates and prioritizes a set of actionable scientific hypotheses.
As detailed in Table [T T} the module assigns the highest priority to the “Inhibition of Aurora Kinase
Signaling” hypothesis, citing the strong, convergent evidence from both structural and gene expression
analyses. The “Inhibition of EGFR Pathway” is identified as the second-highest priority hypothesis,
supported with high confidence due to the potent and specific signal from the pathway analysis. Other
plausible MoAs, such as “Topoisomerase and PI3K inhibition,” are also identified but ranked lower
due to their reliance on evidence from a single source. This ranked list of hypotheses provides a clear
roadmap for the subsequent verification stage.
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Table 9: Potential MoA themes for gefitinib based on gene expression similarity.

theme targets compound ilarity comment
Topoisomerase Inhibition TOP2A Doxorubicin 0.502557 Dominant theme supported
by a high-similarity com-
pound.
Cell Cycle Regulation CCNDI, CDK4 Arcyriaflavin-a 0.498831 Strong theme supported by a
high-similarity compound.
p53 Pathway TP53, HSPATA Pifithrin-mu 0.49714 Strong theme supported by a
high-similarity compound.
Retinoic Acid Signaling RXRG, RARA, Retinol 0.491672 Moderate theme supported
RORB, RARB, by a single compound.
RARG, RXRA,
RXRB
DNA Damage Response CHEK1 PF-477736 0.490488 Moderate theme supported
by a single compound.
Dopaminergic Signaling ADRA2C, Bromocriptine 0.489856 Moderate theme supported
DRD4, DRD2, by a single compound.

Histamine Receptor Signal-

DRD3, ADRA2B,
HTR2B, HTR2C
HRHI

Ketotifen, Terfe-

0.48569, 0.470357

Moderate theme supported

ing nadine by multiple compounds.
PI3K Signaling PIK3CD, LY-294002 0.472557 Dominant theme supported
PRKDC, by a high-similarity com-
PIK3CA, pound.
PLKI, PIK3CG,
PIK3CB
Serotonin Receptor Signal- HTR4, KCNH2 Cisapride 0.470699 Moderate theme supported
ing by a single compound.
PARP Inhibition PARP1, PARP2 Veliparib 0.463792 Moderate theme supported
by a single compound.
Receptor Tyrosine Kinases MERTK, MSTIR, BMS-777607 0.463594 Moderate theme supported
AXL, TYRO3, by a single compound.
MET
Aurora Kinase Inhibition AURKB Barasertib-HQPA  0.459572 Moderate theme supported

by a single compound.

Table 10: Potential MoA themes for gefitinib based on pathway activity.

theme pathways comment

Inhibition of EGFR Pathway ~EGFR

activity scores
-10.251666

Significant inhibition of the EGFR pathway,
indicating a strong impact on signaling re-
lated to cell proliferation and survival.

3. Hypothesis validation The final stage involves a validation module that systematically tests the
prioritized hypotheses by dispatching tasks to a team of validation specialists: a bioinformatician and
a medicinal chemist. The module first investigates the top-ranked hypothesis, “Inhibition of Aurora
Kinase Signaling,” by evaluating its proposed targets (Table [I2). Although the bioinformatician
confirms plausible biological pathways for several targets (e.g., AURKA, AURKB), the medicinal
chemist consistently refutes these findings, citing weak or non-existent binding affinity (e.g., K4
> 10,000 nM). Due to this critical lack of biochemical support, the Aurora Kinase hypothesis is
ultimately rejected.

Proceeding to the second hypothesis, the module examines the “Inhibition of EGFR Pathway”
(Table[T3). In this case, a strong consensus is achieved for the primary target, EGFR. The bioinfor-
matician validates its connection to active transcription factors, while the medicinal chemist confirms
potent binding with a reported IC50 of 0.1 nM. This successful, concordant verification, contrasted
with the failure of the higher-ranked but unsupported hypothesis, allows MoAgent to confidently
confirm that the primary Mechanism of Action for Gefitinib is the direct inhibition of EGFR.

With EGFR established as the primary target, the investigation then broadens to assess the compound’s
effects on closely related proteins, such as other ErbB family members and key downstream signaling
molecules, to fully delineate its pharmacological scope (Table[T4).
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Table 11: Hypothesis prioritization and supporting evidence

priority  hypothesis_theme confidence rationale all_evidence_targets all_related_targets  verification_targets
1 Inhibition of Aurora High This hypothesis is supported by strong  AURKB, AURKA AURKA, AURKB, AURKA, AURKB,
Kinase Signaling convergence from both structural sim- CDK1, CDK2, PLKI, CDKI, CCNBI,
ilarity evidence (high similarity with CCNBI, TP53, TP53, CDKNIA
ZM-447439) and gene expression ev- BCL2, MAPKI1,
idence (high similarity with Barasertib- CDKNIA
HQPA), indicating a significant role of
Aurora Kinases in the compounds mech-
anism of action.
2 Inhibition of EGFR High The pathway activity evidence shows EGFR EGFR, ERBB2, EGFR, PIK3CA,
Pathway significant inhibition of the EGFR path- ERBB3, ERBB4, KRAS, AKTI,
way, which is a strong signal indicating PIK3CA, KRAS, MTOR, RAPIA,
a direct impact on cell proliferation and AKTI, MTOR, SOS1
survival mechanisms. RAPIA, SOS1
3 Inhibition of Topoiso- Medium The gene expression evidence indicates TOP2A TOPI, TOP2A, TOP2A, ATM,
merase Activity a strong similarity with Doxorubicin, a TOP2B, ATM, CHKI, BRCAL,
known topoisomerase inhibitor, suggest- CHKI1, BRCAI, TP53, MRELl1,
ing that the compound may also inhibit TP53, MREI1l, PARPI
topoisomerase activity. PARP1
4 Inhibition of PI3K Medium The gene expression evidence shows a  PIK3CD, PIK3CA PIK3CA, PIK3CB, PIK3CA, AKTI,
Signaling moderate similarity with LY-294002, a PIK3CD, AKTI1, PIK3RI, PTEN,
PI3K inhibitor, indicating potential in- MTOR, PIK3R1, RPS6KBI, GSK3B
volvement of the PI3K pathway in the PTEN, RPS6KBI,
compounds mechanism. GSK3B
5 Inhibition of Cell Cy- Low The evidence suggests a moderate sim- CCNDI1, CDK4 CCND1, CDK4, CCNDI, CDK4,

cle Regulation

ilarity with Arcyriaflavin-a, which is
known to affect cell cycle regulation,
but the signal strength is not robust

CDK6, RBI, E2F1,
CDKNIA, CCNEI,
TP53, MDM2

CDKNIA, CCNEIl,
TP53, MDM2, RBI,
E2F1

enough to prioritize this hypothesis
highly.

Table 12: Hypothesis verification and rationale 1

target_name rationale

AURKA

is_supported

False [Bioinformatician] Supported. AURKA has a total TF coverage of 3, showing connec-
tions to active TFs, supporting the hypothesis of inhibiting Aurora Kinase signaling.
[Medicinal chemist] Refuted as the reported Kd is > 10,000 nM, indicating weak

binding.

AURKB False [Bioinformatician] Supported. AURKB has a total TF coverage of 3, indicating
connections to active TFs, which aligns with the hypothesis. [Medicinal chemist]

Refuted as the reported Kd is > 10,000 nM, indicating weak binding.

CDK1 [Bioinformatician] Supported. CDKI1 also has a total TF coverage of 3, showing
connections to active TFs, supporting the hypothesis regarding Aurora Kinase signaling
inhibition. [Medicinal chemist] Refuted as no binding evidence was found in the

database.

False

CCNB1 [Bioinformatician] Refuted. CCNB1 has no documented path to any of the top active
TFs, indicating a lack of support for the hypothesis. [Medicinal chemist] Refuted as no

binding evidence was found in the database.

False

TP53 [Bioinformatician] Supported. TP53 has a total TF coverage of 3, indicating connec-
tions to multiple active TFs, which aligns with the hypothesis of inhibiting Aurora
Kinase signaling. [Medicinal chemist] Refuted as no binding evidence was found in

the database.

False

CDKNI1A False [Bioinformatician] Supported. CDKN1A has a total TF coverage of 3, indicating it is
connected to active TFs, which is consistent with the hypothesis. [Medicinal chemist]

Refuted as no binding evidence was found in the database.

5

4. Final conclusion and report generation The successful validation of the “EGFR Inhibition’
hypothesis, following the refutation of the top-ranked Aurora Kinase hypothesis, serves as the
stopping condition for the agent’s iterative process of hypothesis generation and verification. With
a supported MoA now confirmed, the Controller & Reasoning Module proceeds to its final task:
synthesizing all analyzed evidence into a comprehensive scientific report. Table[I3]presents this final
output, which constructs a complete narrative around the primary MoA by detailing the causal chain,
discussing network crosstalk, and critically evaluating both supporting and contradictory evidence.
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Table 13: Hypothesis verification and rationale 2

target_name

is_supported rationale

EGFR

True [Bioinformatician] Supported. EGFR has a documented connection to 3 active TFs, and
the inhibition of the EGFR pathway aligns with the activation of TFs like SREBF1 and
SREBF2. [Medicinal chemist] Supported due to a reported IC50 of 0.1 nM, indicating

potent binding.

PIK3CA False [Bioinformatician] Supported. PIK3CA is connected to 3 active TFs, and the inhibition
of the EGFR pathway is consistent with the activation of TFs that may regulate down-
stream effects. [Medicinal chemist] Refuted as the only available data shows a weak
Kd of >10,000 nM.

KRAS False [Bioinformatician] Supported. KRAS has a documented connection to 3 active TFs, and
the inhibition of the EGFR pathway supports the activation of these TFs. [Medicinal
chemist] Refuted as no binding evidence was found in the database.

AKT1 False [Bioinformatician] Supported. AKT1 is connected to 3 active TFs, and the inhibition of
the EGFR pathway is consistent with the activation of these TFs. [Medicinal chemist]
Refuted as the only available data shows a weak Kd of >10,000 nM.

MTOR False [Bioinformatician] Supported. MTOR has a documented connection to 3 active TFs,
and the inhibition of the EGFR pathway aligns with the activation of these TFs. [Medic-
inal chemist] Refuted as the only available data shows a weak Kd of >10,000 nM.

RAPIA False [Bioinformatician] Supported. RAP1A is connected to 2 active TFs, and the inhibition
of the EGFR pathway is consistent with the activation of these TFs. [Medicinal chemist]
Refuted as no binding evidence was found in the database.

SOS1 False [Bioinformatician] Supported. SOS1 has a documented connection to 2 active TFs, and
the inhibition of the EGFR pathway aligns with the activation of these TFs. [Medicinal
chemist] Refuted as no binding evidence was found in the database.

Table 14: Target expansion

target rationale

ERBB2 ERBB2 (HER2) is a member of the ErbB family and often forms heterodimers with EGFR.
Inhibitors of EGFR have been shown to also affect HER2 signaling, making it a relevant target
for potential cross-reactivity.

ERBB3  ERBB3 (HER3) is another member of the ErbB family that can form heterodimers with EGFR.
Given its role in signaling pathways activated by EGFR, it is important to assess its potential
inhibition.

MAPK1 MAPKI1 (ERK2) is part of the Ras-Raf-MEK-ERK pathway activated by EGFR. Since
the compound targets EGFR, it is plausible that it may also affect downstream signaling
components like MAPK1.

PIK3CA PIK3CA is a key component of the PI3K-Akt pathway, which is activated by EGFR. Given
the interconnectedness of these pathways, testing PIK3CA could reveal additional effects of
the compound.

AKT1 AKT1 is a downstream effector in the PI3K-Akt pathway, which is activated by EGFR

signaling. Since compounds targeting EGFR may also influence AKT1 activity, it is a relevant
target for verification.
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Table 15: Final report on the mechanism of action of gefitinib

Final Report on the Mechanism of Action of the Compound

1. Primary Mechanism of Action Hypothesis

a. State the Primary MoA

The primary mechanism of action for this compound is the direct inhibition of the Epidermal Growth Factor
Receptor (EGFR). This conclusion is supported by experimental data indicating a potent binding affinity to
EGFR, with an IC50 of 0.1 nM, confirming its role as a significant target.

b. Build the Causal Chain

Direct binding to EGFR leads to profound inhibition of the EGFR pathway, as evidenced by a significant
activity score of -10.251666. This inhibition is critical as it impacts downstream signaling pathways
associated with cell proliferation and survival. The inhibition of EGFR signaling is further supported by
the activation of transcription factors SREBF1 and SREBF2, which are known to be positively regulated by
EGFR activity. The predicted transcription factor activities of SREBF1 (4.596963) and SREBF2 (5.759338)
indicate a compensatory response to the inhibition of EGFR, suggesting a shift in cellular signaling dynamics.

c. Explain Network Effects (Crosstalk)

In addition to the direct effects on the EGFR pathway, the compound’s action appears to have secondary
effects on related pathways. For instance, the data indicates a significant inhibition of the PI3K signaling
pathway, which is a known crosstalk partner of the EGFR pathway, with an activity score of -12.5. This
suggests that the primary inhibition of EGFR signaling not only disrupts its direct downstream effects but
also leads to a broader suppression of associated signaling networks, further emphasizing the compound’s
impact on cellular signaling.

2. Corroborating Evidence from Similar Compounds

The hypothesis of EGFR inhibition is strongly corroborated by expression similarity data. The compound
shows a high gene expression similarity (score: 0.472557) to LY-294002, a well-documented PI3K inhibitor,
which aligns with the observed inhibition of the PI3K pathway as a consequence of EGFR inhibition. This
phenocopying of cellular responses to a known drug with overlapping effects provides robust evidence for
the proposed mechanism.

Additionally, the compound exhibits structural similarity (score: 0.653333) to ZM-447439, a known Aurora
Kinase inhibitor, which, while not directly targeting EGFR, supports the notion of the compound’s potential
multi-target profile. However, the primary focus remains on the EGFR inhibition as the core mechanism.

3. Analysis of Unexplained & Contradictory Evidence

a. Propose Secondary / Compensatory Mechanisms

The analysis also reveals an unexpected activation of the p53 pathway, indicated by the involvement of
targets such as TP53 and HSPA1A, which are known to be activated in response to cellular stress and DNA
damage. This activation may represent a compensatory mechanism in response to the inhibition of EGFR
signaling, as cells often engage stress response pathways when proliferative signals are disrupted.

b. Identify Potential Off-Target Effects

One unexplained observation is the moderate inhibition of the Topoisomerase pathway (related target:
TOP2A), which is not a canonical downstream effect of EGFR signaling. This suggests that the compound
may possess additional, currently unidentified off-target activities. Further investigation, such as broad kinase
screening, is recommended to identify the protein(s) responsible for this effect.

4. Conclusive Summary

In conclusion, the compound primarily acts through the inhibition of EGFR, leading to significant downstream
effects on the EGFR and PI3K pathways, as well as the activation of transcription factors SREBF1 and
SREBF2. The observed network effects highlight the compound’s ability to disrupt multiple signaling
pathways, reinforcing its potential as a therapeutic agent. However, the presence of unexplained off-target
activities, particularly the inhibition of the Topoisomerase pathway, warrants further investigation to fully
elucidate the compound’s pharmacological profile and potential side effects.
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