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Abstract

We study the problem of the identification of m arms with largest means under a
fixed error rate δ (fixed-confidence Top-m identification), for misspecified linear
bandit models. This problem is motivated by practical applications, especially
in medicine and recommendation systems, where linear models are popular due
to their simplicity and the existence of efficient algorithms, but in which data
inevitably deviates from linearity. In this work, we first derive a tractable lower
bound on the sample complexity of any δ-correct algorithm for the general Top-m
identification problem. We show that knowing the scale of the deviation from
linearity is necessary to exploit the structure of the problem. We then describe the
first algorithm for this setting, which is both practical and adapts to the amount
of misspecification. We derive an upper bound to its sample complexity which
confirms this adaptivity and that matches the lower bound when δ → 0. Finally, we
evaluate our algorithm on both synthetic and real-world data, showing competitive
performance with respect to existing baselines.

1 Introduction

The multi-armed bandit (MAB) is a popular framework to model sequential decision making problems.
At each round t > 0, a learner chooses an arm kt among a finite set of K ∈ N possible options,
and it receives a random reward Xkt

t ∈ R drawn from a distribution νkt with unknown mean µkt .
Among the many problem settings studied in this context, we focus on pure exploration, where the
learner aims at maximizing the information gain for answering a given query about the arms [5]. In
particular, we are interested in finding a subset of m ≥ 1 arms with largest expected reward, which is
known as the Top-m identification problem [22]. This generalizes the widely-studied best-arm (i.e.,
Top-1) identification problem [16]. This problem has several important applications, including online
recommendation and drug repurposing [31, 35]. Two objectives are typically studied. On the one
hand, in the fixed-budget setting [2], the learner is given a finite amount of samples and must return
a subset of m best arms while minimizing the probability of error in identification. On the other
hand, in the fixed-confidence setting [16], the learner aims at minimizing the sample complexity for
returning a subset of m best arms with a fixed maximum error rate δ ∈ (0, 1), defined as the number
of samples collected before the algorithm stops. This paper focuses on the latter.
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In practice, information about the arms is typically available (e.g., the characteristics of an item in a
recommendation system, or the influence of a drug on protein production in a clinical application).
This side information influence the expected rewards of the arms, thus adding structure (i.e., prior
knowledge) to the problem. This is in contrast to the classic unstructured MAB setting, where
the learner has no prior knowledge about the arms. Due to their simplicity and flexibility, linear
models have become the most popular to represent this structure. Formally, in the linear bandit
setting [3], the mean reward µk of each arm k ∈ [K] := {1, 2, . . . ,K} is assumed to be an inner
product between known d-dimensional arm features φk ∈ Rd and an unknown parameter θ ∈ Rd.
This model has led to many provably-efficient algorithms for both best-arm [38, 42, 17, 43, 13] and
Top-m identification [24, 35]. Unfortunately, the strong guarantees provided by these algorithms
hold only when the expected rewards are perfectly linear in the given features, a property that is often
violated in real-world applications. In fact, when using linear models with real data, one inevitably
faces the problem of misspecification, i.e., the situation in which the data deviates from linearity.

A misspecified linear bandit model is often described as a linear bandit model with an additive term to
encode deviation from linearity. Formally, the expected reward µk = φ>k θ + ηk of each arm k ∈ [K]
can be decomposed into its linear part φ>k θ and its misspecification ηk ∈ R. Note the flexibility
of this model: for ‖η‖ = 0, where η = [η1, η2, . . . , ηK ]>, the problem is perfectly linear and thus
highly structured, as the mean rewards of different arms are related through the common parameter
θ; whereas when the misspecification vector η is large in all components, the problem reduces to
an unstructured one, since knowing the linear part alone provides almost no information about the
expected rewards. Learning in this setting thus requires adapting to the scale of misspecification,
typically under the assumption that some information about the latter is known (e.g., an upper bound
ε to ‖η‖). Due to its importance, this problem has recently gained increasing attention in the bandit
community for regret minimization [20, 29, 18, 33, 39]. However it has not been addressed in the
context of pure exploration. In this paper, we take a step towards bridging this gap by studying
fixed-confidence Top-m identification in the context of misspecified linear bandits. Our detailed
contributions are as follows.

Contributions. (1) We derive a tractable lower bound on the sample complexity of any δ-correct
algorithm for the general Top-m identification problem. (2) Leveraging this lower bound, we show
that knowing an upper bound ε to ‖η‖ is necessary for adapting to the scale of misspecification,
in the sense that any δ-correct algorithm without such information cannot achieve a better sample
complexity than that obtainable when no structure is available. (3) We design the first algorithm
for Top-m identification in misspecified linear bandits. We derive an upper bound to its sample
complexity that holds for any δ ∈ (0, 1) and that matches our lower bound for δ → 0. Notably,
our analysis reveals a nice adaptation to the value of ε, recovering state-of-the-art dependences in
the linear case (ε = 0), where the sample complexity scales polynomially in d and not in K, and
in the unstructured case (ε large), where only polynomial terms in K appear. (4) We evaluate our
algorithm on synthetic problems and real datasets from drug repurposing and recommendation system
applications, while showing competitive performance with state-of-the-art methods.

Related work. While model misspecification has not been addressed in the pure exploration literature,
several attempts to tackle this problem in the context of regret minimization exist. In [20], the authors
show that, if T is the learning horizon, for any bandit algorithm which enjoys O(d

√
T ) regret scaling

on linear models, there exists a misspecified instance where the regret is necessarily linear. As a
workaround, the authors design a statistical test based on sampling a subset of arms prior to learning
to decide whether a linear or an unstructured bandit algorithm should be run on the data. Similar
ideas are presented in [8], where the authors design a sequential test to switch online between linear
and unstructured models. More recently, elimination-based algorithms [29, 39] and model selection
methods [33, 18] have attracted increasing attention. Notably, these algorithms adapt to the amount of
misspecification ε without knowing it beforehand, at the cost of an additive linear term that scales with
ε. Moreover, while best-arm identification has been the focus of many prior works in the realizable
linear setting, some suggesting asymptotically-optimal algorithms [13, 21], Top-m identification has
been seldom studied in terms of problem-dependent lower bounds. Lower bounds for the unstructured
Top-m problem have been derived previously, focusing on explicit bounds [26], on getting the correct
dependence in the problem parameters for any confidence δ [9, 37], or on asymptotic optimality (as
δ → 0) [19]. Because of the combinatorial nature of the Top-m identification problem, obtaining a
tractable, tight, problem-dependent lower bound is not straightforward.
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2 Setting

At successive stages t ∈ N, the learner samples an arm kt ∈ [K] based on previous observations
and internal randomization (a random variable Ut ∈ [0, 1]) and observes a reward Xkt

t . Let Ft :=

σ({U1, k1, X
k1
1 , . . . , Ut, kt, X

kt
t , Ut+1}) be the σ-algebra associated with past sampled arms and

rewards until time t. Then kt is a Ft−1-measurable random variable. The reward Xkt
t is sampled

from νkt and is independent of all past observations, conditionally on kt. We suppose that the noise is
Gaussian with variance 1, such that the observation when pulling arm kt at time t isXkt

t ∼ N (µkt , 1).
The mean vector µ = (µk)k∈[K] ∈ RK then fully describes the reward distributions.

In a misspecified linear bandit, each arm k ∈ [K] is described by a feature vector φk ∈ Rd. The
corresponding feature matrix is denoted by A := [φ1, φ2, . . . , φK ]> ∈ RK×d and the maximum
`2 -norm of these vectors is L := maxk∈[K] ‖φk‖2. We assume that the feature vectors span Rd
(otherwise we could rewrite those vectors in a subspace of smaller dimension). We assume that the
learner is provided with a set of realizable models

M :=
{
µ ∈ RK | ∃θ ∈ Rd ∃η ∈ RK , µ = Aθ + η ∧ ‖µ‖∞ ≤M ∧ ‖η‖∞ ≤ ε

}
, (1)

where M, ε ∈ R are known upper bounds on the `∞-norm of the mean1 and misspecification vectors,
respectively. Intuitively,M represents the set of bandit models whose mean vector µ is linear in the
features A only up to some misspecification η.

We consider Top-m identification in the fixed-confidence setting. Given a confidence parameter
δ ∈ (0, 1), the learner is required to output the m ∈ [K] arms of the unknown bandit model µ ∈M
with highest means with probability at least 1− δ. The strategy of a bandit algorithm designed for
Top-m identification can be decomposed into three rules: a sampling rule, which selects the arm kt to
sample at a given learning round t according to past observations; a stopping rule, which determines
the end of the learning phase, and is a stopping time with respect to the filtration (Ft)t>0, denoted by
τδ; finally, a decision rule, which returns a Fτδ -measurable answer to the pure exploration problem.
An answer is a set Ŝm ⊆ [K] with exactly m arms: |Ŝm| = m. In our context, the “m best arms of µ”
might not be well defined since the set S?(µ) := {k ∈ [K] | µk ≥ maxmi∈[K] µ

i}2 might contain more
than m elements if some arms have the same mean. Thus, let Sm(µ) = {S ⊆ S?(µ) | |S| = m} be
the set containing all subsets of m elements of S?(µ).

Definition 1 (δ-correctness). For δ ∈ (0, 1), we say that an algorithm A is δ-correct onM if, for all
µ ∈M, τδ < +∞ almost surely and PA

µ

(
Ŝm /∈ Sm(µ)

)
≤ δ .

3 Tractable lower bound for the general Top-m identification problem

LetNk
t denote the number of times arm k has been sampled until time t included. Suppose that the true

model µ has exactlym arms that are among the top-m, i.e., that |S?(µ)| = m and Sm(µ) = {S?(µ)}.
Consider the following set of alternatives to µ,

Λm(µ) := {λ ∈M | Sm(λ) ∩ Sm(µ) = ∅} ,

that is, the set of all bandit models λ inM where the top-m arms of µ are not among the top-m
arms of λ. Note that, while we assumed that the set of top-m arms in µ is unique, this might not be
the case for λ. Define the event Eτδ := {Ŝm ∈ Sm(µ)} that the answer returned by the algorithm
at τδ is correct for µ and consider any δ-correct algorithm A. Let us call KL the Kullback-Leibler
divergence3 and kl the binary relative entropy. Then, using the change-of-measure argument proposed
in [19, Theorem 1], for any λ ∈ Λm(µ) and δ ≤ 1/2,∑

k∈[K]

EA
µ [Nk

τ ] KL
(
µk, λk

)
≥ kl

(
PA
µ (Eτδ),PA

λ (Eτδ)
)
≥ kl(1− δ, δ) ≥ log

(
1

2.4δ

)
,

1The restriction to ‖µ‖∞ ≤M is required only for our analysis, while it can be safely dropped in practice.
2The expression maxmi∈S f(i) denotes the mth maximal value in {f(i) | i ∈ S}.
3We abuse notation by denoting distributions in the same one-dimensional exponential family by their means.
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where the second-last inequality follows from the δ-correctness of the algorithm and the monotonicity
of the function kl. This holds for any λ ∈ Λm(µ), so we have that

EA
µ [τ ] ≥

 sup
ω∈∆K

inf
λ∈Λm(µ)

∑
k∈[K]

ωkKL
(
µk, λk

)−1

log

(
1

2.4δ

)
, (2)

with ∆K := {p ∈ [0, 1]K |
∑K
k=1 pk = 1} the simplex on [K]. We define the inverse complexity

Hµ := supω∈∆K
infλ∈Λm(µ)

∑
k∈[K] ω

kKL
(
µk, λk

)
. Computing that lower bound might be diffi-

cult: while the Kullback-Leibler is convex for Gaussians, the set Λm(µ) over which it is minimized is
non-convex. Its description using Sm(λ) is combinatorial: we can write Λm(µ) as a union of convex
sets, one for each subset of top-m arms of λ, but this implies minimizing over

(
K
m

)
sets, which is not

practical. In order to rewrite this lower bound, we prove the following lemma in Appendix C.
Lemma 1. ∀µ, λ ∈ RKs.t. |S?(µ)| = m, Sm(λ)∩Sm(µ) = ∅ ⇔ ∃i /∈ S?(µ) ∃j ∈ S?(µ), λi > λj .

Lemma 1 allows us to go from an exponentially costly optimization problem, which implied mini-
mizing over

(
K
m

)
sets, to optimizing across m(K −m) halfspaces. Therefore, by replacing the set

of alternative models as derived in Lemma 1, the lower bound in Equation 2 can be rewritten in the
following more convenient form :
Theorem 1. For any δ ≤ 1/2, for any δ-correct algorithm A onM, for any bandit instance µ ∈ RK
such that |S?(µ)| = m, the following lower bound holds on the stopping time τδ of A on instance µ:

EA
µ [τδ] ≥

 sup
ω∈∆K

min
i/∈S?(µ)

min
j∈S?(µ)

inf
λ∈M:λi>λj

∑
k∈[K]

ωkKL
(
µk, λk

)−1

log

(
1

2.4δ

)
.

Computing the lower bound now requires performing one maximization over the simplex (which
can be still hard), and m(K − m) minimizations over half-spaces {λ ∈ M : λi > λj}, where
(i, j) ∈ (S?(µ))

c × S?(µ). The minimizations are convex optimization problems and can be solved
efficiently. Our algorithm inspired from that bound will need to perform only those minimizations.

Note that a lower bound for Top-m identification using the cited change-of-measure argument has
been obtained in [26]. Aiming to be more explicit, it relies on alternative models where one of the
best arms is switched with the (m+ 1)th best one (or one of the K −m worst ones with the mth

best one). These models are a strict subset of Λm(µ). Hence this bound is not as tight as the one in
Theorem 1, which is why the algorithm we detail in the next sections will rely on the latter instead.

Note that with ε = 0 and m = 1, this lower bound is exactly the one for best arm identification in
perfectly linear models [17]. As the misspecification ε grows, the setM becomes larger and so does
the set of alternative models Λm(µ), thus the lower bound grows. In the limit ε→ +∞, the model
becomes the same as the unstructured model. We show that in fact the lower bound becomes exactly
equal to the unstructured lower bound as soon as ε > εµ, a finite value.

Lemma 2. There exists εµ ∈ R with εµ ≤ maxk µ
k −mink µ

k such that if ε > εµ, then the lower
bound of Theorem 1 is equal to the unstructured top-m lower bound.

The proof is in Appendix C. It considers finitely supported distributions over Λm(µ) that realize
the equilibrium in the max-min game of the lower bound. As soon as one of these equilibrium
distributions for the unstructured problem has its whole support in the misspecified model, the two
complexities are equal.

3.1 Adaptation to unknown misspecification is impossible

We now make an important observation: knowing that a problem is misspecified without knowing an
upper bound ε on ‖η‖∞ is the same as not knowing anything about the structure of that problem.

The lower bound of Equation (2) is a function of the setM of realizable models µ. Let B(µ, δ,M)
be the right-hand side of that equation, such that EA

µ [τδ] ≥ B(µ, δ,M) for any algorithm A which is
δ-correct onM. Suppose that we haveM1 ⊆M, a subset of the model, for which we would like to
have lower sample complexity (possibly at the cost of a higher sample complexity onM\M1). If
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Algorithm 1 MISLID

Require: Set of modelsM, online learner L, stopping thresholds {βt,δ}t≥1

Compute a sequence of arms k1, . . . , kt0 such that
∑t0
t=1 φktφ

T
kt
� 2L2Id // INITIALIZATION

for t = 1, . . . , t0 do
Pull kt, receive Xkt

t , and set ωt ← ekt // PULL SPANNER

end for
Compute empirical mean µ̂t0 and its projection µ̃t0 ← arg minλ∈M ‖λ− µ̂t0‖2DNt0
for t = t0 + 1, t0 + 2, . . . , do

if infλ∈Λm(µ̃t−1) ‖µ̃t−1 − λ‖2DNt−1
> 2βt−1,δ then // STOPPING RULE

Stop and return S?m(µ̃t−1)
end if
Obtain ωt from L
Compute closest alternative: λt ← arg minλ∈Λm(µ̃t−1) ‖µ̃t−1 − λ‖2Dωt
Update L with gain gt : ω 7→

∑
k∈[K] ω

k
(
|µ̃kt−1 − λkt |+

√
ckt−1

)2

// UPDATE LEARNER

Pull kt ∼ ωt and receive reward Xkt
t // ACTION SAMPLING

Update µ̂t and compute projection µ̃t ← arg minλ∈M ‖λ− µ̂t‖2DNt // ESTIMATION

end for

M is the misspecified linear model with deviation ε, let us say thatM1 is the set of problems with
deviation lower than ε1 < ε ; that is, we want the algorithm to be faster on more linear models. This
is not achievable. The lower bound states that it is not possible for an algorithm to have lower sample
complexity onM1 while being δ-correct onM. On every µ ∈M, the lower bound is B(µ, δ,M).

An algorithm cannot adapt to the deviation to linearity: it has to use a parameter ε set in advance,
and its sample complexity will depend on that ε, not on the actual deviation of the problem. Note
that this observation does not contradict recent results for regret minimization [e.g., 29, 39], which
show that adapting to an unknown scale of misspecification is possible. In fact, such results involve a
“weak” form of adaptivity, where the algorithms provably leverage the linear structure at the price of
suffering an additive linear regret term of order O(ε

√
dT ), where T is the learning horizon. Since

the counterpart of δ-correctness for regret minimization is “the algorithm suffers sub-linear regret
in T for all instances of the given family”, this implies that algorithms with such “weak” adaptivity
loose this important property of consistency.

4 The MISLID algorithm

We introduce MISLID (Misspecified Linear Identification), an algorithm to tackle misspecification in
linear bandit models for fixed-confidence Top-m identification. We describe the algorithm in Section
4.1, while in Section 4.2 we report its sample complexity analysis.

4.1 Algorithm

The pseudocode of MISLID is outlined in Algorithm 1. On the one hand, the design of MISLID
builds on top of recent approaches for constructing pure exploration algorithms from lower bounds
[12, 13, 43, 21]. On the other hand, its main components and their analysis introduce several technical
novelties to deal with misspecified Top-m identification, that might be of independent interest for
other settings. We describe these components below. Let us define Dv := diag(v1, v2, . . . , vK) for
any vector v ∈ RK , and Vt :=

∑t
s=1 φksφ

>
ks

.

Initialization phase. MISLID starts by pulling a deterministic sequence of t0 arms that make the
minimum eigenvalue of the resulting design matrix Vt0 larger than 2L2. Since the rows of A span
Rd, such sequence can be easily found by taking any subset of d arms that span the whole space
(e.g., by computing a barycentric spanner [4]) and pulling them in a round robin fashion until the
desired condition is met. This is required to make the design matrix invertible. While the literature
typically avoid this step by regularizing (e.g., [1]), in our misspecified setting it is crucial not to do
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so to obtain tight concentration results for the estimator of µ, as explained in the next paragraph. See
Appendix D.1 for a discussion of the length t0 of that initialization phase.

Estimation. At each time step t ≥ t0, MISLID maintains an estimator µ̃t of the true bandit model µ.
This is obtained by first computing the empirical mean µ̂t, such that µ̂kt = 1

Nkt

∑t
s=1 1 {ks = k}Xks

s ,
and then projecting it onto the family of realizable modelsM according to the DNt -weighted norm,
i.e., µ̃t := arg minλ∈M ‖λ− µ̂t‖2DNt . Since each λ ∈M can be decomposed into λ = Aθ′ + η′ for
some θ′ ∈ Rd and η′ ∈ RK , this can be solved efficiently as the minimization of a quadratic objective
in K + d variables subject to the linear constraints ‖η′‖∞ ≤ ε and ‖Aθ′ + η′‖∞ ≤M . The second
constraint is only required for the analysis, while it often has a negligible impact in practice. Thus,
we shall drop it in our implementation, which yields two independent optimization problems for the
projection µ̃t = Aθ̃t + η̃t: one for θ̃t, whose solution is available in closed form as the standard
least-squares estimator θ̃t = θ̂t := V −1

t

∑t
s=1X

ks
s φks , and one for η̃t, which is another quadratic

program with K variables (see Appendix D).

A crucial component in the concentration of these estimators, and a key novelty of our work, is the
adoption of an orthogonal parametrization of mean vectors. In particular, we leverage the following
observation: any mean vector µ = Aθ + η can be equivalently represented, at any time t, as
µ = Aθt + ηt, where θt = V −1

t

∑t
s=1 µ

ksφks is the orthogonal projection (according to the design
matrix Vt) of µ onto the feature space and ηt = µ−Aθt is the residual. Then, it is possible to show
that ‖θ̂t − θt‖2Vt is exactly the self-normalized martingale considered in [1] and, thus, it enjoys the
same bound we have in linear bandits with no misspecification (refer to Appendix B). This is an
important advantage over prior works [29, 44] that, in order to concentrate θ̂t to θ, need to inflate
the concentration rate by a factor ε2t, which often makes the bound too large to be practical for
misspecified models with ε� 0. It allows us to also avoid superlinear terms of the form ε2t log(t)
which are present in related works and which would prevent us from deriving good problem-dependent
guarantees.

Stopping rule. MISLID uses the standard stopping rule adopted in most existing algorithms for pure
exploration [19, 12, 36]. What makes it peculiar is the definition of the thresholds βt,δ. MISLID
requires a careful combination of concentration inequalities for (1) linear bandits, to make the
algorithm adapt well to linear models with low ε, and (2) unstructured bandits, to guarantee asymptotic
optimality. The precise definition of βt,δ is shown in the following result.
Lemma 3 (MISLID is δ-correct). Let W−1 be the negative branch of the Lambert W function and let
W (x) = −W−1(−e−x) ≈ x+ log x. For δ ∈ (0, 1), define

βuns
t,δ := 2KW

(
1

2K
log

2e

δ
+

1

2
log(8eK log t)

)
, (3)

βlin
t,δ :=

1

2

(
4
√
tε+

√
2

√
1 + log

1

δ
+

(
1 +

1

log(1/δ)

)
d

2
log

(
1 +

t

2d
log

1

δ

))2

. (4)

Then, for the choice βt,δ := min{βuns
t,δ , β

lin
t,δ}, MISLID is δ-correct.

This result is a simple consequence of two (linear and unstructured) concentration inequalities. See
Appendix F.

Sampling strategy and online learners. The sampling strategy of MISLID aims at achieving the
optimal sample complexity from the lower bound in Theorem 1. As popularized by recent works [12,
13, 43], instead of relying on inefficient max-min oracles to repeatedly solve the optimization problem
of Theorem 1 [17, 21], we compute it incrementally by employing no-regret online learners. At each
step t, the learner L plays a distribution over arms ωt ∈ ∆K and it is updated with a gain function gt
whose precise definition will be specified shortly. Then, MISLID directly samples the next arm to pull
from the distribution ωt, instead of using tracking as in the majority of previously mentioned works.
Similarly to what was recently shown by [40] for regret minimization in linear bandits, sampling will
be crucial in our analysis to reduce dependencies on K and, in particular, to obtain only logarithmic
dependencies in the realizable linear case.

Regarding the choice of L, two important properties are worth mentioning. First, MISLID requires
only a single learner, while existing asymptotically optimal algorithms for pure exploration [12, 13]
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need to allocate one learner for each possible answer. Since the number of answers is
(
K
m

)
, a direct

extension of these algorithms to the Top-m setting would yield an impractical method with exponential
(in K) number of learners, hence space complexity, and possibly sample complexity.4 Second, the
choice of L is highly flexible since any learner that satisfies the following property suffices.

Definition 2 (No-regret learner). A learner L over ∆K is said to be no-regret if, for any t ≥ 1 and
any sequence of gains {gs(ω)}s≤t bounded in absolute value by B ∈ R+, there exists a positive
constant CL(K,B) such that maxw∈∆K

∑t
s=1

(
gs(w)− gs(ws)

)
≤ CL(K,B)

√
t .

Examples of algorithms in this class are Exponential Weights [7] and AdaHedge [15]. The latter shall
be our choice for the implementation since it does not use B as a parameter but adapts to it, and thus
does not suffer from a possibly loose bound on B.

Optimistic gains. Finally, we need to specify how the gains gt are computed. Clearly, if
µ were known, one would directly use gt : ω 7→ infλ∈Λm(µ) ‖µ − λ‖2Dω . Since µ is un-
known and must be estimated, we set gt(ω) to an optimistic proxy for that quantity. In
particular, we choose a sequence of bonuses {ckt }t≥t0,k∈[K] such that, with high probabil-

ity, gt(ωt) :=
∑
k∈[K] ω

k
t

(
|µ̃kt−1 − λkt |+

√
ckt−1

)2

≥ infΛ∈λm(µ) ‖µ − λ‖2Dωt , for λt :=

arg minλ∈Λm(µ̃t−1) ‖µ̃t−1 − λ‖2Dωt . As for the stopping thresholds, we construct ckt by a care-
ful combination of structured and unstructured concentration bounds:

ckt := min

{
8(LK + 1)2ε2 + 4αlin

t2 ‖φk‖2V −1
t
,

2αuns
t2

Nk
t

, 4M2

}
,

where αuns
t := βuns

t,1/(5t3) and αlin
t := log(5t2) + d log(1 + t/(2d)). We show in Appendix F that

this choice of ckt suffices to guarantee optimism with high probability.

4.2 Sample complexity

Theorem 2. MISLID has expected sample complexity Eµ[τδ] ≤ T0(δ) + 2, where T0(δ) is the
solution to the equation in t

βt,δ ≥ tHµ + Ô
(

min{tK2ε2+d
√
t`t,
√
Kt`t}; logK

√
t;
√

min{tK2ε2+d`t,K`t} log(1/δ)
)
,

(5)

where `t := log t, Hµ is the inverse complexity appearing in the lower bound (see Equation 2), and
Ô(a; b; c) represent a sum of terms, each of which is O of one of the expressions shown.

See Appendix F for the proof. Since βuns
t,δ ≈ log(1/δ) for small δ, T0(δ) = H−1

µ log(1/δ) +

Cµo(log(1/δ)), where Cµ is a problem-dependent constant. Then lim infδ→0 Eµ[τδ]/ log(1/δ) =
lim infδ→0 T0(δ)/ log(1/δ) = H−1

µ and thus the upper bound matches the lower bound in that limit:
MISLID is asymptotically optimal. The only polynomial factors in K are in a minimum with a term
that depends on ε. In the linear setting, when ε = 0, we have only logarithmic (and no polynomial)
dependence on the number of arms, which is on par with the state of the art [40, 21, 27]. Moreover,
the bound exhibits an adaptation to the value of ε. If ε is small, then the minimums in βt,δ and in the
inequality (5) are equal to the “linear” values which involve Kε and d instead of K. As ε grows, the
upper bound transitions to terms matching the optimal unstructured bound.

Decoupling the stopping and sampling analyses. Our analysis decomposes into two parts: first, a
result on the stopping rule, then, a discussion of the sampling rule. The algorithm is shown to verify
that, under a favorable event, if it does not stop at time t,

2βt,δ ≥ inf
λ∈Λm(µ)

‖µ− λ‖2DNt −O(
√
t) ≥ 2tHµ −O(

√
t) .

The sample complexity result is a consequence of that bound on t. The first inequality is due
solely to the stopping rule, and the second one only to the sampling mechanism. The expression

4The fact that the optimization problem of the lower bound decomposes into m(K −m) minimizations does
not reduce the number of possible answers, which is still combinatorial in K.
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infλ∈Λm(µ) ‖µ− λ‖
2
DNt

does not feature any variable specific to the algorithm: we can combine any
stopping rule and any sampling rule, as long as they each verify the corresponding inequality.

A more aggressive optimism. The optimistic gains that we have chosen, gt(ω) =∑
k∈[K] ω

k(|µ̃kt−1 − λkt | +
√
ckt−1)2, are tuned to ensure asymptotic optimality (with a factor 1

in the leading term). If we instead accept to be asymptotically optimal up to a factor 2, we can use the
gains gt(ω) =

∑
k∈[K] ω

k
(
(µ̃kt−1 − λkt )2 + ckt−1

)
. When using those, the learner takes decisions

which are much closer to those it would take if using the empirical gains
∑
k∈[K] ω

k(µ̃kt−1−λkt )2 and
the theoretical bound, while worse in the leading factor, has better lower order terms. The aggressive
optimism sometimes has significantly better practical performance (see Experiment (C) in Figure 1).

5 Experimental evaluation

Since our algorithm is the first to apply to Top-m identification in misspecified linear models, we
compare it against an efficient linear algorithm, LinGapE [42] (that is, its extension to Top-m as
described in [35], which coincides with LinGapE for m = 1), and an unstructured one, LUCB [23].
In all experiments, we consider δ = 5%. 5 For each algorithm, we show boxplots reporting
the average sample complexity on the y-axis, and the error frequency δ̂ across 500 (resp. 100)
repetitions for simulated (resp. real-life) instances rounding up to the 5th decimal place. Individual
outcomes are shown as gray dots. It has frequently been noted in the fixed-confidence literature that
stopping thresholds which guarantee δ-correctness tend to be too conservative and to yield empirical
error frequencies that are actually much lower than δ. Moreover, these thresholds are different
from linear to unstructured models. In order to ensure a good trade-off between performance and
computing speed, and fairness between tested algorithms, we use a heuristic value for the stopping
rule βt,δ := ln((1 + ln(t + 1))/δ) unless otherwise specified. For each experiment, we report the
number of arms (K), the dimension of features (d), the size of the answer (m), the misspecification
(ε) and the gap between the mth and (m + 1)th best arms (∆ := maxma∈[K] µ

a − maxm+1
b∈[K] µ

b).
The computational resources used, data licenses and further experimental details can be found in
Appendix G.

(A) Simulated misspecified instances. (K = 10, d = 5, m = 3, ε ∈ {0, 5}, ∆ ≈ 0.28) First, we
fix a linear instance µ := Aθ by randomly sampling the values of θ ∈ Rd and A ∈ RK×d from a
zero-mean Gaussian distribution, and renormalizing them by their respective `∞ norm. Then, for
ε ∈ {0, 5}, we build a misspecified linear instance µε = Aθ + ηε, such that, if (4) is the index of the
fourth best arm, ∀k 6= (4), ηkε = 0, and η(4)

ε = ε. Note that any value of ε < ∆ does not switch the
third and fourth arms in the set of best arms of µε, contrary to values greater than ∆. The greater
ε is, the more different the answers from the linear and misspecified models are. This experiment
was inspired by [20], where a similar model is used to prove a lower bound in the setting of regret
minimization. See the leftmost two plots on Figure 1. As expected, LUCB is always δ-correct, but
suffers from a significantly larger sample complexity than its structured counterparts. Moreover,
LinGapE does not preserve the δ-correctness under large misspecification level ε = 5 (with error rate
δ̂ = 0.96), which illustrates the effect of ε on the answer set. Note that it is not due to the choice of
stopping threshold, as running it with the theoretically-supported threshold derived in [1] also yields
an empirical error rate δ̂ = 1. MISLID proves to be competitive against LinGapE. Note that the case
ε = 0 is a perfectly linear instance. See Table 2 in Appendix for numerical results for algorithms
LinGapE and MISLID.

(B) Discrepancy between user-selected ε and true ‖η‖. (K = 15, d = 8, m = 3, ε ∈ {0.5, 1, 2},
∆ ≈ 0.4) MISLID crucially relies on a user-provided upper bound on the scale of deviation from
linearity. We test its robustness against perturbations to the input value ε compared to the value
ε? := ‖η‖∞ in the misspecified model µ := Aθ + η. Values are sampled randomly for θ,A, η, and
the associated vectors are normalized by their `∞ norm (for η, by ‖η‖∞/ε?), where ε? = 1 > ∆ is
the true deviation to linearity. The results, shown in the third plot of Figure 1, display the behavior
predicted by Lemma 2. Indeed, as the user-provided value ε increases, the associated sample
complexity increases as well. The plateau in sample complexity when ε is large enough is noticeable.
Cases ε ∈ {1, 2} display a sample complexity close to that of unstructured bandits.

5All the code and scripts are available at https://github.com/clreda/misspecified-top-m.
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Figure 1: Experiment (A) for ε ∈ {0, 5} (first two from the left). Experiment (B) with ε ∈ {0.5, 1, 2}.
Experiment (C) to compare different optimistic gains (right).

Figure 2: Experiment (D) for drug repurposing in epilepsy (left). Experiment (E) for online recom-
mendation.

(C) Comparing different optimisms. (K = 15, d = 8, m = 3, ε = 1, ∆ ≈ 0.4) We use the same
bandit model as in Experiment (B), and use ε = ε? = 1. We compare the aggressive optimism
described in Section 4.2, no optimism (that is, ∀k ∈ [K],∀t > 0, ckt = 0), and the default optimistic
gains given in Section 4.1. See the rightmost plot in Figure 1. The algorithm with no optimism is
denoted “empirical”, and is significantly faster than the optimistic variants.

(D) Application to drug repurposing. (K = 10, d = 5, m = 5, ε̂ ≈ 0.02, ∆ ≈ 0.062) We use
the drug repurposing problem for epilepsy proposed by [35] to investigate the practicality of our
method. In order to speed up LUCB, we consider the PAC version of Top-m identification, choosing
as stopping threshold 0.06 ≈ ∆, such that the algorithm stops earlier while returning the exact set
of m best arms. Following [34, Appendix F.4], we extract a linear model from the data by fitting a
neural network and taking the features learned in the last layer. We compute ε as the `∞ norm of the
difference between the predictions of this linear model and the average rewards from the data, which
yields ε̂ = 0.02. Since the misspecification is way below the minimum gap, and the linear model thus
accurately fits the data, the results (leftmost plot in Figure 2) show that MisLid and LinGapE perform
comparably on this instance. Moreover, both are an order of magnitude better than an unstructured
bandit algorithm sample complexity-wise. Please refer to Table 3 in Appendix for numerical results
for LinGapE and MISLID.

(E) Application to a larger instance of online recommendation. (K = 103, d = 8, m = 4,
ε̂ ≈ 0.206, ∆ ≈ 0.022) As in Experiment (D), a linear representation is extracted for an instance
of online recommendation of music artists to users (Last.fm dataset [6]). We compute a proxy
for ε and feed the value ∆ to the stopping threshold in LUCB in a similar fashion. Differently
from Experiment (D), this yields a misspecification that is much larger than the minimum gap. To
improve performance on these instances, we modified MISLID. To reduce the sample complexity,
we use empirical gains instead of optimism. To reduce the computational complexity, we check
the stopping rule infrequently (on a geometric grid) and use only a random subset of arms in each
round to compute the sampling rule (see Appendix G for details and an empirical comparison to
the theoretically supported MISLID). See the rightmost plot in Figure 2. This plot particularly
illustrates our introductory claim: an unstructured bandit algorithm is δ-correct, but too slow in
practice for misspecified instances, whereas the guarantee on correctness for a linear bandit does
not hold anymore on these models with large misspecification. Numerical results for LinGapE and
MISLID are listed in Table 3 in Appendix.
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6 Discussion

We have designed the first algorithm to tackle misspecification in fixed-confidence Top-m identifica-
tion, which has applications in online recommendation. However, the algorithm relies exclusively on
the features provided in the input data, and as such might be subjected to bias and lack of fairness in
its recommendation, depending on the dataset. The proposed algorithm can be applied to misspecified
models which deviate from linearity (i.e., ε > 0), encompassing unstructured settings (for large
values of ε) and linear models (i.e., ε = 0).

Our tests on variants of our algorithm suggest that the optimistic estimates have a big influence on
the sample complexity. Removing the optimism completely and using the empirical gains leads to
the best performance. We conjecture that other components of the algorithm like the learner are
conservative enough for the optimism to be superfluous. The main limitation of our method is its
computational complexity: at each round, O(Km) convex optimization problems need to be solved
for both the sampling and stopping rules, which can be expensive if the number of arms is large.
However, the “interesting” arms are much less numerous and we observed empirically that the sample
complexity is not increased significantly if we consider only a few arms. In general, theoretically
supported methods to replace the alternative set by computationally simpler approximations would
greatly help in reducing the computational cost of our algorithm.

Since the sampling of our algorithm is designed to minimize a lower bound, we can expect it to suffer
from the same shortcomings as that bound. It is known that the bound in question does not capture
some lower order (in 1/δ) effects, in particular those due to the multiple-hypothesis nature of the
test we perform, which can be very large for small times. Work to take these effects into account to
design algorithms has started recently [24, 25, 41] and we believe that it is an essential avenue for
further improvements in misspecified linear identification.
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