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Abstract
While recent Large Vision-Language Models (LVLMs) have shown remarkable
performance in multi-modal tasks, they are prone to generating hallucinatory text
responses that do not align with the given visual input, which restricts their practical
applicability in real-world scenarios. In this work, inspired by the observation
that the text-to-image generation process is the inverse of image-conditioned re-
sponse generation in LVLMs, we explore the potential of leveraging text-to-image
generative models to assist in mitigating hallucinations in LVLMs. We discover
that generative models can offer valuable self-feedback for mitigating hallucina-
tions at both the response and token levels. Building on this insight, we introduce
self-correcting Decoding with Generative Feedback (DeGF), a novel training-free
algorithm that incorporates generative feedback into the decoding process to ef-
fectively mitigate hallucinations. Specifically, DeGF generates an image from the
initial response produced by LVLMs, which acts as an auxiliary visual reference
and provides self-feedback to verify and, if necessary, correct the initial response.
Extensive experimental results validate the effectiveness of our approach in mitigat-
ing diverse types of hallucinations, consistently surpassing state-of-the-art methods
across two evaluated LVLMs and five benchmarks.

1 Introduction

Recently, Large Vision-Language Models (LVLMs) have demonstrated remarkable performance
across various multi-modal tasks, such as image captioning and visual question answering, by extend-
ing the capabilities of powerful large language models (LLMs) to incorporate visual inputs [34, 28, 13,
2, 51]. Despite their proficiency in interpreting both visual and textual modalities, these models often
suffer from hallucinations, where LVLMs erroneously produce responses that are inconsistent with
the visual input [30, 19, 52]. This potential for misinformation raises significant concerns, limiting
the models’ reliability and restricting their broader deployment in real-world scenarios [33, 3, 6].

Recent research has revealed that a major cause of hallucinations in LVLMs is the over-reliance
on language priors due to biased training sets, which can override the visual content in response
generation [3, 33]. In response, various strategies have been developed to detect and mitigate these
hallucinations by directly introducing additional training [19, 44, 23, 8], demonstrating promising
results in reducing over-reliance. However, the need for additional data and costly training processes
hinders their deployment in downstream tasks. Recently, a new paradigm of methods has emerged to
tackle the hallucination problem in LVLMs by intervening in the decoding process [21, 14]. Among
these, recent training-free contrastive decoding-based methods [29] have proven effective in mitigat-
ing undesired hallucinations by contrasting token predictions derived from original visual input with
bias-inducing counterparts, such as no/distorted visual input [15, 26], disturbed instructions [48], or
premature layers [12]. While they address hallucinations arising from language priors, hallucinations
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Figure 1: Generative models can visualize and help correct various types of hallucinations in
the initial response. We query LLaVA-1.5 [34] with the prompt “Describe this image in detail.”
for two examples from LLaVA-Bench. Based on the initial response, we utilize Stable Diffusion
XL [36] to generate a new image, which effectively highlights hallucinations and provides valuable
self-feedback. Our approach then incorporates this feedback in the decoding process to successfully
correct various types of hallucinations in the original response (as highlighted in red and green).

can also originate beyond language bias, stemming from visual deficiencies in LVLMs [45]. For
instance, in counting hallucinations, language does not imply any count information; instead, mis-
counts largely arise from visual recognition errors of LVLMs, as complex scenes include numerous,
similar objects at ambiguous positions which may confuse the LVLMs, leading to incorrect visual
understanding and, consequently, hallucinated answers. Therefore, we argue that current contrastive
decoding-based methods may struggle to generalize effectively across all types of hallucinations.

In this work, we explore the potential of leveraging powerful text-to-image generative models (e.g.,
Stable Diffusion [39, 36]) to mitigate hallucinations in LVLMs. Our work is based on a simple yet
intuitive hypothesis: given a visual input and a textual prompt to an LVLM, if the generated image-
conditioned response is accurate and non-hallucinatory, then a text-to-image generative model should
be capable of reversing this process to produce a similar image from that response. Therefore, the
discrepancy between the original image and the generated image can serve as valuable self-feedback,
guiding the decoding process to correct potential hallucinations in the initial response. To verify this
hypothesis, we conduct an empirical study (in Section 3.2), demonstrating that generative models can
provide valuable self-feedback for mitigating hallucinations at both the response and token levels.

Building on this insight, we introduce the self-correcting Decoding with Generative Feedback (DeGF),
a corresponding training-free decoding algorithm, which effectively incorporates feedback from
generative models to recursively enhance the accuracy of generated responses. Specifically, we
generate a new image based on the initial response for each instance, which acts as an auxiliary
visual reference to verify the correctness of the initial response. We propose self-correcting decoding
that selectively enhances or contrasts predictions from the original and this reference, confirming or
revising the initial response from the LVLMs based on the measured divergence between the two
predictions. By integrating this additional visual reference and generative feedback, LVLMs can
gain enhanced visual insights and verify the initial response to ensure accurate visual details in the
text outputs. In Figure 1, we demonstrate that incorporating generative feedback in our approach
can reduce various types of hallucinations, including object existence, visual appearance, counting,
etc. To the best of our knowledge, we are the first work to explore the use of generative models for
mitigating hallucinations in LVLMs.

The effectiveness of DeGF is evaluated on LLaVA-1.5 [34] and InstructBLIP [13] across five
benchmarks: POPE [30], CHAIR [38], MME-Hallucination [16], MMVP [45], and LLaVA-Bench.
The experimental results validate the the effectiveness of our DeGF in reducing hallucinations in
LVLMs, with performance improvements of up to 5.24% on POPE, 3.0% on CHAIR, and 21.11 points
on MME-Hallucination compared to existing state-of-the-arts. A qualitative case study further demon-
strates that our approach enhances both the accuracy and detailedness of the generated responses.

The contributions of this paper are summarized as follows:

• We discover the potential of generative models in mitigating hallucinations in LVLMs and demon-
strate that generative models can provide valuable self-feedback for mitigating hallucinations at
both the response and token levels.
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• We propose DeGF, a novel training-free decoding algorithm for LVLMs that recursively enhances
the accuracy of responses by integrating generative feedback to confirm or revise the initial output.

• Extensive experimental evaluations across five benchmarks demonstrate that our DeGF consistently
outperforms state-of-the-art approaches in effectively mitigating hallucinations in LVLMs.

2 Related Work

Hallucination in LVLMs. With advances of autoregressive LLMs [46, 11, 4, 10], researchers have
extended these powerful models to process visual inputs [34, 13, 2, 51]. These models typically train
a modality alignment module to project visual tokens into the textual embedding space of the LLM,
demonstrating impressive performance in various multi-modal tasks such as visual question answer-
ing and image captioning [33, 3]. However, LVLMs are prone to hallucinations, where contradictions
arise between the visual content and the generated textual response [30, 33, 3]. To mitigate hallucina-
tions in LVLMs, early works have introduced various approaches, including employing reinforcement
learning from human feedback (RLHF) [19, 44], applying auxiliary supervision [23, 8], incorporating
negative [32] or noisy data [54, 47], and training post-hoc revisors for correction [57, 52]. Despite
promising results, these methods often lack practicality due to their reliance on additional data and
costly training processes. To address this, another line of work focuses on training-free methods
that can be seamlessly integrated into existing LVLMs. Such methods encompass contrastive
decoding [26, 15, 58] and guided decoding with auxiliary information [7, 56, 14, 50]. In this work,
we present a novel training-free decoding method that recursively enhance the accuracy of the
generated response by incorporating generative feedback. To our best knowledge, we are the first
work to effectively utilize generative models for mitigating hallucinations in LVLMs.

Text-to-Image Synthesis. Text-to-image synthesis aims to create realistic images from textual
descriptions [59, 17]. In recent years, significant progress has been achieved in this area, largely due
to the advent of deep generative models [55, 18]. These advances include Generative Adversarial
Networks (GAN) [41, 24], autoregressive models [5, 53], and diffusion models [20, 25, 35, 40, 39].
Pre-trained on large-scale text-image datasets [42], diffusion-based methods have shown strong
vision-language alignment, making them valuable for downstream tasks such as classification [27]
and semantic segmentation [1, 49]. In this work, we leverage a pre-trained diffusion model to provide
useful feedback for refining the generated response of LVLMs.

3 Method

In this work, we present DeGF, a novel training-free decoding algorithm for LVLMs that recursively
improves the accuracy of generated responses using generative feedback, as illustrated in Figure 2.

3.1 Preliminary: Decoding of LVLMs

We consider an LVLM parameterized by θ, which processes an input image v and a textual query
x, aiming to autoregressively generate a fluent sequence of textual responses y. The visual input v
is first processed by a vision encoder and then projected into visual tokens within the textual input
space using a vision-language alignment module (e.g., Q-Former [28] or linear projection [34]).
These visual tokens, along with the textual query tokens, are then fed into the language encoder for
conditioned autoregressive generation. Formally, we denote the autoregressive generation process as

yt ∼ pθ(yt|v,x,y<t) ∝ exp fθ(yt|v,x,y<t), (1)

where yt represents the token at time step t, y<t ≜ [y0, . . . , yt−1] denotes the sequence of tokens
generated before time step t, and fθ is the logit distribution (unnormalized log-probabilities) produced
by the LVLM over a vocabulary of textual tokens V . At each step t ∈ [0, . . . , T ], the response token
yt is sampled from the probability distribution pθ(yt|v,x,y<t), and this generative process continues
iteratively until the response sequence y ≜ [y0, . . . , yT ] is complete.

3.2 Visual Reference Generation

In our method, we incorporate generative feedback from diffusion models to guide the decoding
process. Specifically, given a visual input v and a textual query x, we first prompt the LVLMs to
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Figure 2: Overview of our proposed DeGF. Our method follows a two-step process: first, a genera-
tive model produces a high-quality image based on the initial response; second, this image acts as an
auxiliary visual reference, providing feedback to refine the next-token predictions. Additionally, we
introduce self-correcting decoding, which selectively enhances or contrasts the next-token predictions
conditioned on the original and generated images to mitigate hallucinations in the generated response.

generate an initial response τ , which includes relevant descriptions of the visual input with potential
hallucinations. Subsequently, we leverage a pre-trained diffusion model G to generate a new image v′
based on the initial response:

v′ = G(τ , xT ), where xT ∼ N (0, I). (2)

Here, xT denotes a sample from the standard Gaussian distribution, which serves as the initial
noisy input to the diffusion model. Starting from this pure noise image xT , the diffusion model G
iteratively applies T steps of the denoising process to obtain xT , xT−1, . . . , x0, where the final output
x0 corresponds to the final generated image v′. Through this diffusion process, the generative model
visualizes the initial response, providing a visual reference that helps mitigate potential hallucinations
and produce a more accurate and consistent output.

Effectiveness of Generative Models in Reflecting Hallucinations. We validate the effectiveness of
generative models in reflecting hallucinations through an empirical study, as shown in Figure 3. The
experimental results verify that generative models can provide valuable self-feedback for mitigating
hallucinations at both the response and token levels.

Figure 3: Generative models can provide feedback for
reflecting hallucinations. (Left) Density plot of CLIP simi-
larities and bar plot of average CHAIRI in each bin on the
CHAIR [38] benchmark; (Right) Density plots of token-level
JS divergence for both hallucinatory and non-hallucinatory
tokens on the POPE [30] benchmark.

We conduct the following two
experiments: (1) We generate an
image v′ using diffusion model based
on the initial caption provided by
LLaVA-1.5 and compute the CLIP
image similarities between the orig-
inal image v and the generated image
v′ using OpenCLIP [9] ViT-H/14
backbone. Following prior work, we
use the CHAIR [38] benchmark, a
rule-based metric on MS-COCO [31]
for evaluating object hallucination
from generated captions. We report
the average per-instance metric
CHAIRI within each bin of CLIP
similarity, which evaluates the object
hallucination rates in the entire initial
response. As shown in Figure 3 (Left),
a clear negative correlation between hallucination rates and CLIP similarities is observed (with a
correlation coefficient of ρ = −0.63). This indicates that lower similarity between original image
and generated image corresponds to higher rates of hallucinations at the response level. (2) Similarly,
we generate an image v′ based on the initial response given by LLaVA-1.5 for each instance on
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the POPE [30] benchmark. In Figure 3 (Right), we present the density plot of Jensen-Shannon
(JS) divergence between the predicted probabilities for both images, i.e., pθ(yt|v,x,y<t) and
pθ(yt|v′,x,y<t), for hallucinatory and non-hallucinatory tokens.2 The results show that the density
of JS divergence follows a long-tail distribution, with hallucinatory tokens exhibiting significantly
longer tails and higher JS divergence. This shows JS divergence between probabilities derived from
the original and the generated image corresponds well to hallucinations at the token level. These
observations provide insights into the effectiveness of generative models in reflecting hallucinations,
and motivate us to incorporate the generative feedback during the decoding process.

3.3 Self-Correcting Decoding with Generative Feedback

In this section, we focus on effectively utilizing generative feedback during the decoding process to
mitigate potential hallucinations. Specifically, we propose a self-correcting decoding approach that
leverages generative feedback to confirm or revise the initial response by selectively enhancing or
contrasting the logits for each generated token based on the measured divergence between the two
predicted probability distributions.

Specifically, to predict a specific token yt, we utilize LVLMs to generate two output distributions,
each conditioned on either the original image v or the synthesized visual reference v′, expressed as:

pθ(yt|v,x,y<t)=Softmax[fθ(yt|v,x,y<t)], pθ(yt|v′,x,y<t)=Softmax[fθ(yt|v′,x,y<t)] .
(3)

We define and compute the following distance metric based on Jensen-Shannon (JS) divergence at
each timestep t to quantify the discrepancy between two next-token probability distributions:

dt(v, v
′) = DJS (pθ (yt|v,x,y<t) ∥ pθ (yt|v′,x,y<t)) ,

where DJS(P ∥ Q) =
1

2
DKL(P ∥ M) +

1

2
DKL(Q ∥ M), and M =

1

2
(P +Q). (4)

Here, DKL represents the Kullback-Leibler (KL) divergence. Note that dt(v, v′) ∈ [0, 1] is a
symmetric metric, providing a fine-grained measure of how closely the two distributions align as the
model predicts each subsequent token.

We consider two scenarios based on the token-level generative feedback: (1) If the two predictions
are aligned and both images agree on a specific token prediction, we confirm the original prediction
as correct, and the auxiliary prediction from the generated image can be combined with the original
prediction for enhancement (complementary decoding [50]). (2) Conversely, if there is significant
discrepancy between the predictions, indicating that the original prediction is likely hallucinatory, we
revise the original response by using the generated visual input as a contrasting reference to refine the
initial next-token prediction (contrastive decoding [26]). To implement this, we introduce a distance
threshold γ and develop two corresponding decoding approaches as follows:

yt ∼ pθ(yt) =

{
Softmax [fθ(yt|v,x,y<t) + α1 fθ(yt|v′,x,y<t)] , if dt(v, v′) < γ;

Softmax [(1 + α2) fθ(yt|v,x,y<t)− α2 fθ(yt|v′,x,y<t)] , if dt(v, v′) ≥ γ,
(5)

where α1 and α2 are hyperparameters that control the influence of the generated visual reference in
the final prediction. Note that setting α1 = 0 or α2 = 0 degrades this process to regular decoding.
The final generated token yt is sampled from the multinomial distribution with probabilities pθ(yt).

4 Experiments

In this section, we evaluate the effectiveness of our method in mitigating hallucinations in LVLMs
across a range of benchmarking scenarios, comparing it with existing state-of-the-art approaches.

4.1 Experimental Settings

Evaluated LVLMs. We evaluate the effectiveness of our method on two state-of-the art open-
source LVLMs: LLaVA-1.5 [34] and InstructBLIP [13]. Both LVLMs utilize Vicuna-7B [10] as
the language encoder, which is instruction-tuned from LLaMA [46]. LLaVA-1.5 [34] employs a

2Note that POPE benchmark contains yes-or-no questions about object existence. In this experiment, we
evaluate only the first response token (i.e., yes or no) to determine the presence of hallucinations.
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pre-trained CLIP ViT-L/14 [37] as the vision encoder, and trains a linear mapping layer to connect the
vision and language modalities. In contrast, InstructBLIP [13] builds on a pre-trained BLIP-2 [28]
and incorporates an instruction-aware Q-Former module to bridge the modalities.

Benchmarks and Metrics. We conduct extensive experiments on the following five benchmarks:

• POPE [30] is a widely used benchmark for assessing object hallucinations in LVLMs. It tests
the models with yes-or-no questions regarding the presence of specific objects, such as, “Is
there a {object} in the image?” The benchmark draws data from three existing datasets:
MSCOCO [31], A-OKVQA [43], and GQA [22], and comprises three distinct subsets—random,
popular, and adversarial—based on how the negative samples are generated. For each dataset
setting, the benchmark provides 6 questions per image, resulting in 3,000 test instances. We evaluate
the performance of different methods using four metrics: accuracy, precision, recall, and F1 score.

• CHAIR [38] evaluates object hallucinations in open-ended captioning tasks. It prompts the
LVLMs to describe specific images selected from a random sample of 500 images from the
MSCOCO validation set and assesses performance based on two metrics:

CHAIRI =
# hallucinated objects

# all objects mentioned
, CHAIRS =

# sentences with hallucinated object
# all sentences

. (6)

Additionally, we assess the recall and the average length of the generated responses.
• MME-Hallucination [16] is a comprehensive benchmark for LVLMs consisting of four subsets:

existence and count for object-level hallucinations, and position and color for attribute-level
hallucinations. Each subset includes 30 images and 60 questions. Similar to POPE [30], these
questions are structured as yes-or-no queries, and performance is assessed based on binary
accuracy. Following the official implementation, the reported score is calculated by combining
accuracy and accuracy+, where accuracy is based on individual questions, and accuracy+ is based
on images where both questions are answered correctly.

• MMVP [45] collects CLIP-blind pairs and evaluate the fine-grained visual recognition capabilities
of LVLMs. It consists of 150 image pairs, each accompanied by a binary-option question. Each
image is queried independently, and for a given pair, the LVLM’s response is considered correct
only if both associated questions are answered accurately.

• LLaVA-Bench3 provides 24 images featuring complex scenes, memes, paintings, and sketches,
along with 60 challenging questions. We select examples from this dataset to provide qualitative
comparisons between the responses generated by different decoding methods. We also follow Yin
et al. [52] to evaluate the accuracy and detailedness of generated responses of different methods
using the advanced LVLM, GPT-4V4.

Baselines. As a simple baseline, we include results from regular decoding, where the next token
is sampled directly from the post-softmax probability distribution. Additionally, we compare the
performance of our method three state-of-the-art decoding approaches: VCD [26], M3ID [15],
and RITUAL [50]. For evaluations on the MME-Hallucination benchmark, we further include
comparisons with DoLa [12] and OPERA [21]. We report the performance of these baselines based
on our re-implementation using their released code bases.

Implementation Details. In our experiments, we adhere to the default query format for the input
data used in both LLaVA-1.5 [34] and InstructBLIP [13]. Additionally, we set α1 = 3, α2 = 1, and
γ = 0.1 by default in our decoding process. We follow VCD [26] to implement adaptive plausibility
constraints [29], with β set to 0.1 by default. To ensure the reliability of our results, we conduct MME
experiments three times with different initialization seeds and report the mean accuracy along with the
standard deviation. All experiments are conducted on a single 48GB NVIDIA RTX 6000 Ada GPU.

4.2 Results and Discussions

Results on POPE. In Table 1, we compare the performance of our method against other baselines on
POPE benchmark under three different negative sampling settings, across three datasets. As shown
in the table, our method consistently outperforms other decoding methods on both LVLMs, achieving
state-of-the-art accuracies across all 18 settings, with improvements of up to 5.24% in accuracy,

3https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild.
4https://openai.com/index/gpt-4v-system-card.
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Table 1: Results on POPE [30] benchmark. Higher (↑) accuracy, precision, recall, and F1 indicate
better performance. The best results in each setting are bolded, and the second-best are underlined.

Setup Method
LLaVA-1.5 [34] InstructBLIP [13]

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑ Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑
M

S-
C

O
C

O
[3

1]

Random

Regular 83.13 81.94 85.00 83.44 83.07 83.02 83.13 83.08
VCD [26] 87.00 86.13 88.20 87.15 86.23 88.14 83.73 85.88
M3ID [15] 87.50 87.38 87.67 87.52 86.67 88.09 84.80 86.41
RITUAL [50] 88.87 89.23 88.40 88.81 88.83 90.48 86.80 88.60
Ours 89.03 91.20 86.40 88.74 88.83 93.73 82.41 87.71

Popular

Regular 81.17 78.28 86.27 82.08 77.00 73.82 83.67 78.44
VCD [26] 83.10 79.96 88.33 83.94 80.07 77.67 84.40 80.89
M3ID [15] 84.30 81.58 88.60 84.95 80.97 77.93 86.40 81.85
RITUAL [50] 85.83 84.17 88.27 86.17 81.97 78.90 87.27 82.87
Ours 86.63 87.75 84.86 86.28 82.73 84.02 80.27 82.10

Adversarial

Regular 77.43 73.31 86.27 79.26 74.60 71.26 82.47 76.45
VCD [26] 77.17 72.18 88.40 79.47 77.20 74.29 83.20 78.49
M3ID [15] 78.23 73.51 88.27 80.22 77.47 73.68 85.47 79.14
RITUAL [50] 78.80 74.43 87.73 80.54 78.73 74.57 87.20 80.39
Ours 81.63 80.59 83.33 81.94 80.30 80.90 79.33 80.11

A
-O

K
V

Q
A

[4
3]

Random

Regular 81.90 76.63 91.80 83.53 80.63 76.82 87.73 81.92
VCD [26] 83.83 78.05 94.13 85.34 84.20 80.90 89.53 85.00
M3ID [15] 84.67 79.25 93.93 85.97 85.43 81.77 91.20 86.23
RITUAL [50] 85.17 79.79 94.20 86.40 87.13 83.92 91.87 87.71
Ours 86.93 84.28 90.80 87.42 87.40 87.67 86.85 87.26

Popular

Regular 75.07 68.58 92.53 78.77 75.17 70.15 87.60 77.91
VCD [26] 76.63 69.59 94.60 80.19 78.63 73.53 89.47 80.72
M3ID [15] 77.80 70.98 94.07 80.91 78.80 73.38 90.40 81.00
RITUAL [50] 78.83 71.99 94.40 81.68 78.73 72.83 91.67 81.17
Ours 80.90 75.68 91.07 82.66 81.47 78.61 86.47 82.35

Adversarial

Regular 67.23 61.56 91.80 73.70 69.87 64.54 88.20 74.54
VCD [26] 67.40 61.39 93.80 74.21 71.00 65.41 89.13 75.45
M3ID [15] 68.60 62.22 94.73 75.11 70.10 64.28 90.47 75.16
RITUAL [50] 68.57 62.26 94.27 74.99 70.27 64.15 91.87 75.55
Ours 72.70 66.70 90.67 76.86 73.93 69.36 85.67 76.67

G
Q

A
[2

2]

Random

Regular 82.23 76.32 93.47 84.03 79.67 76.05 86.60 80.99
VCD [26] 83.23 76.73 95.40 85.05 82.83 80.16 87.27 83.56
M3ID [15] 84.20 78.00 95.27 85.77 83.07 80.06 88.07 83.87
RITUAL [50] 86.10 80.30 95.67 87.31 84.87 82.52 88.47 85.39
Ours 87.40 83.51 93.20 88.09 85.40 85.64 84.60 85.12

Popular

Regular 73.47 66.83 93.20 77.84 73.33 68.72 85.67 76.26
VCD [26] 72.37 65.27 95.60 77.58 76.13 71.10 88.07 78.68
M3ID [15] 73.87 66.70 95.33 78.49 75.17 69.94 88.27 78.04
RITUAL [50] 74.80 67.50 95.67 79.15 74.50 69.17 88.40 77.61
Ours 78.10 71.56 93.27 80.98 76.90 73.89 83.20 78.27

Adversarial

Regular 68.60 62.43 93.40 74.84 68.60 63.94 85.33 73.10
VCD [26] 68.83 62.26 95.67 75.43 71.00 65.75 87.67 75.14
M3ID [15] 68.67 62.16 95.40 75.28 71.17 65.79 88.20 75.36
RITUAL [50] 68.23 61.75 95.80 75.10 70.17 64.76 88.47 74.78
Ours 74.07 67.42 93.13 78.22 73.63 70.08 82.47 75.11

6.33% in precision, and 2.79% in F1 score compared to the second-best approach. This suggests that
incorporating a generative reference enables the LVLMs to perceive more fine-grained visual details,
thereby effectively addressing object hallucinations. Moreover, while most decoding methods tend
to be overconfident in their responses, the double-check mechanism in our method makes it more
conservative in responding Yes, as evidenced by significantly higher precision across all settings. This
highlights its enhanced performance in filtering out false positives and suppressing misinformation.

Another notable finding is that our method shows significantly improved performance in the popular
and adversarial settings, which are more challenging than the random setting. In the popular and
adversarial settings, non-existent negative objects frequently appear and co-occur with other objects,
making them more susceptible to hallucination by LVLMs, as evidenced by the varying degrees of
performance degradation across all baselines. However, our method exhibits a lower performance
drop compared to other baselines, demonstrating its effectiveness in addressing hallucinations arising
from object co-occurrence.

Results on CHAIR. We also compare the performance of our methods and other state-of-the-art
methods in the open-ended captioning task and report the CHAIR scores, recall, and the average
length of responses in Table 2. The results across two LVLMs demonstrate consistent performance
improvements from our method over the compared methods. Specifically, our method outperforms
others by 3.0% and 2.6% on the CHAIRS metric, while also improving the detailedness of generated
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Table 2: Results on CHAIR [38] benchmark. We limit the maximum number of new tokens to 64.
Lower (↓) CHAIRS , CHAIRI and higher (↑) recall and length indicate better performance. The best
results in each setting are bolded, and the second-best are underlined.

Method
LLaVA-1.5 [34] InstructBLIP [13]

CHAIRS ↓ CHAIRI ↓ Recall ↑ Length ↑ CHAIRS ↓ CHAIRI ↓ Recall ↑ Length ↑
Regular 26.2 9.4 58.5 53.4 31.2 11.1 59.0 53.6
VCD [26] 24.4 7.9 63.3 54.2 30.0 10.1 61.8 54.2
M3ID [15] 21.4 6.3 64.4 53.5 30.8 10.4 62.6 53.4
RITUAL [50] 22.4 6.9 63.0 54.9 26.6 8.9 63.4 55.3
Ours 18.4 6.1 62.7 54.1 24.0 7.7 67.2 55.5

Table 3: Results on MME-Hallucination [16] benchmark. We report the average MME scores for
each subset, along with the standard deviation across three random seeds. Higher MME scores (↑)
indicate better performance. The best results are bolded, and the second-best are underlined.

Model Method
Object-level Attribute-level

Total Score ↑
Existence ↑ Count ↑ Position ↑ Color ↑

LLaVA-1.5 [34]

Regular 173.75 (±4.79) 121.67 (±12.47) 117.92 (±3.69) 149.17 (±7.51) 562.50 (±3.96)

DoLa [12] 176.67 (±2.89) 113.33 (±10.41) 90.55 (±8.22) 141.67 (±7.64) 522.22 (±16.78)

OPERA [21] 183.33 (±6.45) 137.22 (±6.31) 122.78 (±2.55) 155.00 (±5.00) 598.33 (±10.41)

VCD [26] 186.67 (±5.77) 125.56 (±3.47) 128.89 (±6.73) 139.45 (±12.51) 580.56 (±15.13)

M3ID [15] 186.67 (±5.77) 128.33 (±10.41) 131.67 (±5.00) 151.67 (±20.88) 598.11 (±20.35)

RITUAL [50] 187.50 (±2.89) 139.58 (±7.64) 125.00 (±10.27) 164.17 (±6.87) 616.25 (±20.38)

Ours 188.33 (±2.89) 150.00 (±7.64) 133.89 (±3.85) 172.22 (±3.47) 644.44 (±9.18)

InstructBLIP [13]

Regular 160.42 (±5.16) 79.17 (±8.22) 79.58 (±8.54) 130.42 (±17.34) 449.58 (±24.09)

DoLa [12] 175.00 (±5.00) 55.00 (±5.00) 48.89 (±3.47) 113.33 (±6.67) 392.22 (±7.88)

OPERA [21] 175.00 (±3.33) 61.11 (±3.47) 53.89 (±1.92) 120.55 (±2.55) 410.56 (±9.07)

VCD [26] 158.89 (±5.85) 91.67 (±18.34) 66.11 (±9.76) 121.67 (±12.58) 438.33 (±16.07)

M3ID [15] 160.00 (±5.00) 87.22 (±22.63) 69.44 (±9.18) 125.00 (±7.64) 441.67 (±17.32)

RITUAL [50] 182.50 (±6.45) 74.58 (±5.99) 67.08 (±10.31) 139.17 (±0.96) 463.33 (±12.40)

Ours 186.67 (±2.89) 89.44 (±8.22) 58.33 (±4.41) 150.00 (±1.89) 484.44 (±11.34)

responses compared to regular decoding, as evidenced by higher recall and length. These results
demonstrate that by enhancing the fine-grained visual recognition capabilities of LVLMs, our method
effectively mitigates object hallucinations in captioning tasks.

Figure 4: Results on MMVP [45] benchmark.
We apply our approach to LLaVA-1.5 [34] and
compare its performance against other hallucina-
tion mitigation methods. For reference, we also
report the performance of other LVLMs.

Results on MME-Hallucination. Beyond ob-
ject hallucinations, we further compare the
performance of our method with other ap-
proaches using the more comprehensive MME-
Hallucination benchmark, which includes both
object-level and attribute-level hallucinations.
The results in Table 3 demonstrate that our
method significantly outperforms the compared
methods, with substantial margins in the total
score metric (e.g., +18.19 on LLaVA-1.5 and
+21.11 on InstructBLIP) and consistently supe-
rior performance across various evaluation set-
tings, achieving the best results in 6 out of 8
settings. Moreover, our method shows notable
improvements on the attribute-level color sub-
set, further demonstrating its effectiveness in
addressing a wide range of hallucinations be-
yond object existence.

Results on MMVP. We conduct experiments on the MMVP benchmark to assess the fine-grained
visual recognition capabilities of LVLMs. As shown in Figure 4, applying our approach to LLaVA-1.5
significantly improves performance from 22.67% to 27.33%, and demonstrates advantages over other
hallucination mitigation methods [26, 15, 50]. This suggests that our approach enhances the visual
recognition capabilities of LVLMs in distinguishing similar images with different contents.

Case Study on LLaVA-Bench. In Figure 5, we present a case study on LLaVA-Bench comparing
our method’s response with the response generated by regular decoding using the LLaVA-1.5 model.
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Figure 5: Case study on the LLaVA-Bench benchmark. We compare the responses generated
by regular decoding and our method using LLaVA-1.5. GPT-4V-aided evaluation results are also
provided alongside the responses. Hallucinated and accurate content is highlighted in red and green.

Table 4: Sensitivity analysis of hyperparameter
γ. We report the performance variations on the
LLaVA-1.5 backbone by adjusting the value of γ.

Values of γ POPE Acc. CHAIRS CHAIRI MME Score

γ = 0 87.93 21.0 7.2 622.50
γ = 0.01 88.07 21.0 6.8 632.22
γ = 0.05 88.67 19.4 6.3 637.50
γ = 0.1 89.03 18.4 6.1 644.44
γ = 0.5 88.73 19.8 6.4 646.67
γ = 1 88.43 21.6 6.6 638.33

Table 5: Effects of different generative models.
We report the performance using different stable
diffusion models on the LLaVA-1.5 backbone.

Models POPE Acc. CHAIRS CHAIRI MME Score

Regular 83.13 26.2 9.4 562.50
SD-v1.1 88.37 19.3 6.5 638.33
SD-v1.5 89.03 18.4 6.1 644.44
SD-v2.1 88.70 18.8 6.7 632.22
SD-XL-v0.9 88.87 18.6 6.1 642.50
SD-XL-v1.0 88.60 17.9 5.8 648.33

Specifically, regular decoding often leads to hallucinated or inaccurate content, such as describing
“the island below the mountain”. Besides, the response generated by regular decoding tends to focus
on elements like the “cloudy sky” and “cohesive and captivating island landscape” without providing
specific information about the central features of the image. In contrast, our response is more detailed,
mentioning the volcano, the road, the surrounding greenery, and the inhabited areas, which gives
a clearer understanding of the image’s content. GPT-4V-aided evaluation further confirms that our
method enhances both the accuracy and detailedness of the generated response.

4.3 Ablation Studies

Impacts of Distance Threshold γ. In Section 3.3, we introduce a distance threshold γ to determine
the appropriate decoding algorithm for each generated token. Table 4 presents an analysis of our
method’s performance across various values of γ. Notably, when γ is set to either 0 or 1—correspond-
ing to the exclusive use of contrastive or complementary decoding for all tokens—the performance
exhibits a significant decline, by 0.6% and 1.1% in POPE accuracy, respectively. Moreover, our
default setting of γ = 0.1 achieves the best performance in 3 out of 4 metrics.

Effects of Different Generative Models. In Table 5, we examine the effects of using different
generative models (i.e., various versions of Stable Diffusion) with the same LLaVA-1.5 backbone.
The results show that different generative models do not result in significant performance variations,
and all demonstrate clear improvements compared to the original regular decoding. Although utilizing
SD-XL-v1.0 [36] yields slightly better performance, we opt for SD-v1.5 as the default due to its
faster image generation speed (3.8 s/image vs. 11.3 s/image).

5 Conclusion

In this work, we present self-correcting Decoding with Generative Feedback (DeGF), a novel training-
free decoding algorithm that leverages feedback from generative models to recursively improve the
accuracy of generated responses. Specifically, we generate a new image based on the initial response
given by LVLMs, which serves as a visual reference and provides token-level feedback for mitigating
hallucinations. Building on this, we propose a token-level adaptive decoding algorithm that measures
the discrepancy between next-token predictions conditioned on the original and generated images,
selecting either contrastive or complementary decoding to reduce the likelihood of hallucinatory
responses. Extensive experimental results across five benchmarks demonstrate that our proposed
DeGF consistently outperforms state-of-the-art methods in mitigating hallucinations in LVLMs.
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