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Abstract001

Large Vision-Language Models (LVLMs) have002
recently achieved impressive results in multi-003
modal tasks such as image captioning and vi-004
sual question answering. However, they remain005
prone to object hallucination—generating de-006
scriptions of nonexistent or misidentified ob-007
jects. Prior work have partially mitigated this008
via auxiliary training objectives or external009
modules, but often lacks scalability, adapt-010
ability, or model independence. To address011
these limitations, we propose Adaptive Token012
Ensemble Decoding (ATED), a training-free,013
token-level ensemble framework that mitigates014
hallucination by aggregating predictions from015
multiple LVLMs during inference. ATED dy-016
namically computes uncertainty-based weights017
for each model, reflecting their reliability at018
each decoding step. It also integrates diverse019
decoding paths to improve contextual ground-020
ing and semantic consistency. Experiments on021
standard hallucination detection benchmarks022
demonstrate that ATED significantly outper-023
forms state-of-the-art methods, reducing hal-024
lucination without compromising fluency or025
relevance. Our findings highlight the ben-026
efits of adaptive ensembling and point to a027
promising direction for improving LVLM ro-028
bustness in high-stakes vision-language ap-029
plications. Code is available at https://030
anonymous.4open.science/r/ATED.031

1 Introduction032

In recent years, large language models (LLMs)033

have made significant breakthroughs in natural lan-034

guage processing (Touvron et al., 2023; Chiang035

et al., 2023; Achiam et al., 2023; Bai et al., 2023a)036

and have been increasingly extended to vision-037

language tasks, giving rise to large vision-language038

models (LVLMs) (Ye et al., 2023; Liu et al., 2023;039

Li et al., 2023a, 2024; Chen et al., 2024c,d; Bai040

et al., 2023b). These models have demonstrated041

strong capabilities in both understanding (Zhang042

A group of young men perform an
a cappella piece on stage, likely
as part of a university concert.
They appear well-rehearsed,
singing in harmony under soft

stage lighting, while a slideshow
of their past performances plays

in the background.

Human

LLaVA-1.5

Ours: 

This image shows a group of men performing on stage, likely an a
cappella group called 'Ttones.' They are singing together, some with
microphones, dressed in casual and semi-formal outfits. A projection

behind them reads ‘A concert of Ttones past and present’.

InstructBLIP

A group of thirteen men are
standing on a stage, performing a
vocal piece. They are wearing a

mix of blazers, shirts, and jeans,
and several of them are holding
microphones. The event appears
to be a reunion concert attended
by alumni and current students.

MiniGPT-4

The image shows a group of men
performing on stage, possibly as
part of a musical or a cappella

group. They are dressed casually,
and some are holding microphones
while singing. The performance

seems to be part of a celebratory
event, perhaps marking an

anniversary or group milestone.

Please describe this image.

Figure 1: Comparison of image-description generation
results from various LVLMs and our proposed ATED
method. Red text indicates hallucination. Green text
represents hallucination mitigating from ATED.

et al., 2025; Lai et al., 2024) and generating (Geng 043

et al., 2023) multimodal content. 044

However, LVLMs often suffer from the problem 045

of object hallucination, where the model gener- 046

ates details or objects that do not exist in the im- 047

age (Li et al., 2023d; Wang et al., 2023; Gunjal 048

et al., 2024; Liu et al., 2024b), significantly lim- 049

iting their reliability in high-stakes applications, 050

such as autonomous driving, medical image analy- 051

sis, and remote sensing, where factual correctness 052

and visual grounding are critical. 053

Early research on mitigating hallucinations pri- 054

marily focused on enhancing data quality and train- 055

ing paradigms. Specifically, diverse instruction- 056

tuning datasets and multi-task training approaches 057

were introduced to reduce the models’ tendency 058

to hallucinate during generation (Li et al., 2023c; 059

Liu et al., 2024a). Other methods adopted post- 060

hoc strategies by implementing output-checking 061

mechanisms to detect and correct hallucinated con- 062
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tent (Yin et al., 2024; Zhou et al., 2024).063

More recently, training-free approaches have064

emerged (Leng et al., 2023; Wang et al., 2024;065

Huang et al., 2024). However, many of these meth-066

ods rely on additional annotations, large-scale fine-067

tuning, or complex inference, incurring substan-068

tial human and computational costs. Furthermore,069

single-model strategies are inherently limited by070

the knowledge scope of the underlying model, re-071

stricting generalization and adaptability. As shown072

in Figure 1, existing LVLMs exhibit notable levels073

of hallucination in image captioning tasks, high-074

lighting the need for a more robust solution.075

Ensemble learning (Polikar, 2012), which lever-076

ages the collective intelligence of multiple models,077

has proven highly effective at reducing errors and078

enhancing robustness in traditional classification079

and regression tasks (Mienye and Sun, 2022). More080

recently, it has been successfully extended to text081

generation tasks—particularly in LLMs—to im-082

prove output accuracy and mitigate issues such as083

hallucination (Jiang et al., 2023; Wan et al., 2024).084

Inspired by these advances, this paper presents a085

novel framework that integrates ensemble learn-086

ing with diversified decoding strategies within the087

autoregressive generation process, harnessing the088

complementary strengths of different LVLMs. By089

aggregating outputs from multiple models or de-090

coding paths, our approach not only improves the091

factual consistency and coherence of generated con-092

tent, but also reduces the disparity in hallucination093

tendencies across models—ultimately enhancing094

the generalization and adaptability of LVLMs in095

multimodal tasks.096

To this end, we introduce Adaptive Token En-097

semble Decoding (ATED)—the first fine-grained,098

token-level ensemble strategy for multimodal099

LVLMs. ATED is a training-free framework that100

performs parallel inference across multiple LVLMs101

and aggregates their output logits at the token102

level. We estimate each model’s hallucination ten-103

dency via output uncertainty, and use a greedy op-104

timization algorithm to derive adaptive importance105

weights by minimizing overall uncertainty. Further-106

more, ATED incorporates diverse decoding paths,107

substantially improving the factual accuracy and108

reliability of generated outputs while maintaining109

strong adaptability across diverse scenarios.110

Our main contributions are as follows:111

• We propose ATED, a training-free multi-112

modal ensemble decoding method that mit-113

igates hallucinations via fine-grained token- 114

level fusion. 115

• We introduce an uncertainty-minimization 116

weighting mechanism that dynamically as- 117

signs weights based on model confidence, im- 118

proving the reliability of ensemble decoding. 119

• Extensive experiments show that ATED con- 120

sistently outperforms existing methods across 121

multiple multimodal benchmarks, achieving 122

superior accuracy and robustness. 123

2 Related Work 124

Hallucination in LVLMs Hallucination was ini- 125

tially observed in LLMs, referring to generated 126

content that deviates from factual knowledge or 127

user intent (Jing et al., 2024; Liu et al., 2024b). 128

Large vision-language models (LVLMs) (Bai et al., 129

2025; Zhang et al., 2023), which extend LLMs with 130

visual inputs, also exhibit hallucinations—typically 131

manifesting as mismatches between generated text 132

and visual content. Existing studies categorize hal- 133

lucinations in LVLMs into three main types: object 134

hallucination (Biten et al., 2021; Li et al., 2023d; 135

Rohrbach et al., 2019), attribute hallucination, and 136

relationship hallucination (Wu et al., 2024; Zhou 137

et al., 2024). Object hallucination refers to fab- 138

ricated or omitted objects; attribute hallucination 139

involves incorrect properties such as color or size; 140

relationship hallucination describes inaccurate rela- 141

tions among objects. These errors may arise from 142

visual misinterpretation, flawed reasoning, or over- 143

reliance on language priors. 144

Hallucination Mitigation in LVLMs To address 145

hallucination in LLMs and LVLMs, researchers 146

have proposed a range of solutions, including im- 147

proved instruction tuning (Jiang et al., 2024; Liu 148

et al., 2024a; Yu et al., 2024a; Yue et al., 2024), 149

reinforcement learning with human or AI feed- 150

back (Gunjal et al., 2024; Kim et al., 2024; Li 151

et al., 2023b; Sun et al., 2023; Yu et al., 2024b,c), 152

retrieval augmentation, and structural model en- 153

hancements (Zhai et al., 2024). More recently, sev- 154

eral training-free decoding strategies have been 155

developed to suppress hallucination in LVLMs. 156

For example, conservative decoding methods ap- 157

plied to both original and perturbed inputs (Chen 158

et al., 2024b; Favero et al., 2024; Huo et al., 2025; 159

Leng et al., 2023; Wang et al., 2024; Woo et al., 160

2024) aim to reduce overreliance on language pri- 161

ors. Techniques such as input distortion—applied 162
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to either visual content or instructions—amplify163

hallucinations to better identify and suppress them164

through contrastive decoding. Token-level prun-165

ing and related approaches (Favero et al., 2024;166

Woo et al., 2024) also manipulate visual inputs to167

mitigate hallucinations.168

While existing methods mitigate hallucinations169

to some extent from various angles, they often suf-170

fer from limitations in scalability, generalizability,171

and practical deployment. This paper, therefore,172

focuses on reducing hallucinations in LVLMs with-173

out requiring additional training or complex rea-174

soning pipelines, with an emphasis on adaptability175

to real-world applications.176

3 Methodology177

3.1 Preliminaries of LVLMs Generation178

The generation mechanism of LVLMs can be de-179

constructed into three core modules: Vision Lan-180

guage Input, Model Forward Propagation, and Next181

Token Decoding.182

Vision Language Input. LVLMs take both vi-183

sual and textual inputs. Typically, raw images184

are processed by a vision encoder (e.g., a pre-185

trained visual backbone), and the resulting fea-186

tures are projected into the input space of the lan-187

guage decoder via a cross-modal interface. These188

visual features are represented as visual tokens189

V = {v1, v2, ..., vn}, where n is the number of190

visual tokens. Similarly, the textual input is to-191

kenized into text tokens T = {t1, t2, ..., tm} us-192

ing a tokenizer, where m is the number of text193

tokens. The visual and text tokens are then concate-194

nated to form the final input sequence, denoted as195

{xi, i ∈ [0, n+m− 1]}.196

Model Forward Propagation. A large language197

model (LLM) parameterized by ϕ, such as Vi-198

cuna (Chiang et al., 2023), generates responses199

by conditioning on both the text and visual context.200

Following the autoregressive generation paradigm,201

LVLMs predict the probability of the next token202

xt at time step t based on the previously generated203

tokens, the input text, and the visual features, over204

the vocabulary set V . This process can be formally205

expressed as:206

p(xt | v, t, x<t) = softmax(logitϕ(xt | v, t, x<t)),207

xt ∈ v (1)208

where xt denotes the token at time step t, x<t repre-209

sents the sequence of previously generated tokens.210

Next Token Decoding. Based on the predicted 211

probabilities p(xt|v, t, x<t), various decoding 212

strategies—such as greedy decoding, beam search, 213

and contrastive decoding (e.g., VCD)—can be ap- 214

plied to generate output. While these strategies can 215

marginally reduce hallucinations, they are typically 216

restricted to single-model outputs, cannot leverage 217

external knowledge, and fail to fully exploit com- 218

plementary strengths across different models. As 219

a result, they remain prone to errors, especially in 220

open-domain scenarios. In contrast, our method 221

adaptively fuses the token-level logits from mul- 222

tiple LVLMs that share the same vocabulary, im- 223

mediately after the forward pass. By leveraging 224

the diverse capabilities of different models, our ap- 225

proach more effectively mitigates hallucinations in 226

both general-purpose and task-specific settings. 227

3.2 Adapative Token Ensemble Decoding 228

To leverage the complementary strengths of diverse 229

LVLMs and enhance general task performance 230

while reducing hallucinations, we propose a token- 231

level ensemble decoding approach. Specifically, 232

we introduce Adaptive Token Ensemble Decod- 233

ing (ATED), a training-free, uncertainty-guided 234

fusion method that dynamically integrates multiple 235

LVLMs at inference time. The overall framework 236

is illustrated in Figure 2. 237

Given two or more LVLMs {Mi} at test time, 238

ATED fuses their output logits using adaptive 239

importance weights {λ1, . . . , λM}, where each 240

weight λi reflects how well model Mi interprets 241

the visual and textual inputs. At each decoding step 242

t, each model Mi takes the visual token sequence 243

V = {v1, v2, . . . , vn} and the text token history 244

T = {t1, t2, . . . , tt−1} to generate a logit score 245

pi = pi(xt | V, T ) over the vocabulary. Assuming 246

all models share the same vocabulary, the logits 247

from the i-th model are computed as: 248

p(xt|v, t, x<t)
orig,i = LV LMsi(X<t)

∣∣
t
, (2) 249

where i = 1, . . . ,M indexes the models, and p ∈ 250

Rv with v vocabulary size. ATED combines output 251

logits to obtain the final probabilities as: 252

p(xt|v, t, x<t) =
( M∑
i=1

λi︸︷︷︸
unknown

pi), (3) 253

where pi is the decoding logits of model Mi. We 254

assume that the weights λi ∈ [0, 1] are normal- 255

ized, i.e.,
∑M

i=1 λi = 1. To further enhance robust- 256

ness, we additionally introduce multiple perturbed 257
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Original Image: I

Perturbation

LVLM 1

LVLM 2

Output: The image features the
baseball sport 

LVLM M

What sport is shown
in the image?

Cansidate
Models

Golf

Shooting
Tennis

Baseball

Original

Perturbation

Tennis

Golf
Baseball
Shooting

Golf

Shooting
Tennis

Baseball
🙁

LVLM 1

LVLM M...

Figure 2: Overall pipeline of Adapative Token Ensemble Decoding (ATED). Given a set of candidate LVLMs,
a system instruction (inst), the original image, and its perturbed variants, the system produces multiple output
streams. We ensemble the logits from each LVLM using uncertainty-guided weights and employ greedy uncertainty
optimization to generate the final output. The entire process is dynamically repeated at each time step t of token
generation, ensuring high reliability and consistency of the generated results.

variants of the original image I and employ con-258

trastive decoding to effectively mitigate the back-259

bone model’s hallucinations. Formally, contrastive260

decoding can be expressed as:261

pi,t = softmax
[
(1 + α) logitϕ

(
xt | v, t, x<t

)
262

− α logitϕ
(
xt | vd, t, x<t

)]
, (4)263

where d and α indicate distortion operation and264

vision contrastive hyperparameter, respectively.265

Inspired by Chen et al. (2024a); Qiu et al. (2025);266

Dey et al. (2025), we propose utilizing the entropy267

of probability distributions based on visual features268

as an uncertainty metric when LVLMs generate269

the next textual token. This metric reflects the270

model’s token prediction confidence and associated271

weights λi under current multimodal inputs. The272

metric aligns with the training objectives of causal273

language modeling. By analyzing prediction en-274

tropy under visual conditions, we can evaluate the275

model’s depth of understanding of specific visual276

content, the quality of vision-language alignment,277

and the distributional differences between the vi-278

sual input and the model’s training data (Gonen279

et al., 2024). This cross-modal uncertainty analysis280

provides a novel perspective for assessing the gen-281

eralization capabilities of multimodal large models282

in open-world scenarios.283

3.3 Uncertainty-Guided Weight284

Uncertainty Minimization. Given a tokenized285

input X at time t, its uncertainty score is defined286

as the distribution entropy of X at that time, with 287

the following formula as: 288

Hi,t(X) = −
∑
xt∈V

Pi,t logPi,t, (5) 289

where Pi,t represents the normalized probability 290

for the i-th token corresponding to vocabulary V , 291

conditioned on the preceding tokens x<t according 292

to model Mi. 293

We formulate the assignment of importance 294

weights across M models as an optimization prob- 295

lem that requires no training or labeled data, and 296

can be solved directly during next token prediction. 297

Formally, our optimization framework is defined 298

as follows: 299

λ∗
1, . . . , λ

∗
i = arg min

λ1,...,λi

−
∑

p(xi|x<i) log p(xi|x<i), 300

p(xi|x<i) = softmax
M∑
i=0

λipi(xt|v, t, x<t), (6) 301

where the weights λi are inversely proportional to 302

each model’s normalized uncertainty score—i.e., 303

models with lower uncertainty are assigned higher 304

weights. All weights are constrained such that 305∑M
i=1 λi = 1 and λi ∈ [0, 1]. 306

Uncertainty Greedy Optimization. To address 307

the uncertainty minimization problem proposed in 308

Equation 6, we introduce an efficient greedy opti- 309

mization algorithm that incrementally ensembles 310

LVLMs. Specifically, we first compute the uncer- 311

tainty of each LVLM’s next-token prediction using 312

Equation 5, and then sort the LVLMs M1, . . . ,Mi 313
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based on their uncertainties scores. Let the sorted314

models be denoted as:315

[M∗
1 , M

∗
2 , . . . , M

∗
i ]

= argsort
(
H1,t, . . . , Hi,t

)
,

(7)316

where [M∗
1 , M

∗
2 , . . . , M

∗
i ] are ordered by the low-317

est to highest uncertainty scores, and set the weight318

of the top-ranked model to λ∗
1 = 1 and λ∗

i>1 =319

0, i = {2, . . . ,M}.320

We then iteratively consider incorporating the321

next-ranked model M∗
i+1 into the current ensem-322

ble. A grid search is performed over interpolation323

weights λi with the step values between the two324

models, and the fused logits are defined as:325

pλ
(
xi | x<i

)
= λ p(i)

(
xi | x<i

)
+

(1− λ) p(i+1)
(
xi | x<i

)
.

(8)326

Finally, we compute the uncertainty score un-327

der each interpolation ratio with Equation 6, and328

select the weight that minimizes the uncertainty329

score. The same procedure is repeated to iterate330

through all LVLM for the next step and iteratively331

update the ensemble logits and weight allocation332

accordingly. We can perform early stopping when333

we find λ(i) = 1, i.e., the effect of the current334

LVLM is zero. The final generation is performed335

using the output probabilities from the adapative336

uncertainty-guided ensemble.337

4 Experiments338

4.1 Experimental Settings339

4.1.1 Datasets340

We evaluate our model on three datasets as listed341

below. More details are shown in the Appendix C.342

POPE (Probability of Object Presence Estima-343

tion). Li et al. (2023d) is a benchmark dataset for344

evaluating object hallucination in LVLMs. POPE345

integrates the MSCOCO (Lin et al., 2015), A -346

OKVQA (Schwenk et al., 2022), and GQA (Hud-347

son and Manning, 2019) datasets to form 27,000348

query - answer pairs for evaluation. Performance349

is quantified using standard metrics, including ac-350

curacy, precision, recall, and F1 score.351

CHAIR(The Caption Hallucination Assessment352

with Image Relevance). Rohrbach et al. (2019)353

is a dataset for evaluating object hallucination in354

image captioning. CHAIR has two main variants:355

CHAIRi and CHAIRs, focusing on instance and356

sentence levels, respectively.357

MME (Multimodal Large Language Model 358

Evaluation). Fu et al. (2024) assesses the per- 359

formance of LVLMs in terms of two core capabil- 360

ities: perception and cognition. In our evaluation, 361

we focus on four representative sub-tasks: object 362

existence, counting, position, and color. Model per- 363

formance is measured using the accuracy+ metric. 364

4.1.2 Models 365

We integrate our proposed method with four pop- 366

ular LVLMs: InstructBLIP (Dai et al., 2023), 367

MiniGPT-4 (Zhu et al., 2023), LLaVA-1.5 (Liu 368

et al., 2024c), and LLaVA-Next (Liu et al., 2024d). 369

All the LVLMs used have a language model size 370

of 7 billion parameters (7B). InstructBLIP and 371

MiniGPT-4 utilize a Q-former(Li et al., 2023a), 372

which represents an image using only 32 to- 373

kens, effectively bridging the visual and textual 374

modalities. LLaVA-1.5 and LLaVA-NeXT em- 375

ploy a linear projection layer to align features 376

from the two modalities. All LVLMs adopt pre- 377

trained vision encoders such as the CLIP vision en- 378

coder(Radford et al., 2021), along with pre-trained 379

large language models (LLMs) as language de- 380

coders, such as LLaMA(Touvron et al., 2023) or 381

Vicuna v1.1(Chiang et al., 2023). Complete experi- 382

mental details are provided in the Appendix. A.1 383

4.1.3 Baselines 384

For the object hallucination evaluation, we em- 385

ploy several widely used decoding strategies, such 386

as multinomial sampling (default), greedy decod- 387

ing, and four state-of-the-art training-free decoding 388

methods. Greedy decoding selects tokens step by 389

step by always choosing the one with the high- 390

est probability from the language model’s logits. 391

Based on greedy decoding, beam search maintains 392

a set of beams to explore a wider range of candi- 393

dates and eventually selects the best one among 394

them. OPERA(Huang et al., 2024) is an improved 395

method based on beam search ,it alleviates hallu- 396

cination by penalizing specific patterns of knowl- 397

edge aggregation. VCD(Leng et al., 2023) reduces 398

hallucination by decoding with noisy images in a 399

contrastive manner. ICD(Wang et al., 2024) miti- 400

gates hallucination by designing negative prompts 401

to interfere with the visual inputs during contrastive 402

decoding. SID (Huo et al., 2025) mitigateas hallu- 403

cinations by introspectively filtering low-relevance 404

visual signals during generation. For all the base- 405

lines, we use the default hyperparameters provided 406

by their original source code to ensure a fair com- 407
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Model Method
Random Popular Adversarial

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

LLaVA-1.5

default 83.86 82.68 80.82 79.54 76.42 76.61

OPERA 88.85 88.67 82.77 83.40 79.16 80.93

VCD 87.2 87.17 83.08 83.07 77.70 79.14

ICD 83.15 83.91 83.15 83.91 79.13 80.41

SID 89.46 89.62 85.13 85.94 83.24 82.21

InstructBLIP

default 81.44 81.21 79.06 79.12 76.29 76.99

OPERA 84.57 83.74 78.24 79.15 74.59 76.33

VCD 84.91 84.08 81.89 81.46 79.97 79.90

ICD 81.12 82.25 81.12 82.25 76.82 78.99

SID 87.23 86.90 81.16 82.57 78.51 81.26

MiniGPT4

default 65.65 66.45 59.61 62.54 58.35 62.22

OPERA 79.91 77.6 73.78 72.23 71.76 70.64

VCD 67.79 68.54 62.42 65.24 60.17 63.94

ICD 71.89 75.63 64.58 75.33 61.77 67.61

SID 75.20 76.12 68.94 72.93 66.57 69.40

LLaVA-NeXT

default 84.83 81.78 81.00 79.72 76.01 75.83

OPERA 88.41 87.33 82.69 83.48 79.22 79.40

VCD 86.01 85.20 81.90 82.23 78.00 79.12

ICD 82.14 82.09 81.95 81.87 79.24 78.89

SID 89.54 89.67 85.24 85.67 82.43 81.51

Ensemble
ATED∗ 88.74 87.82 83.62 84.82 78.86 81.21

ATED& 89.21 89.39 85.32 85.66 81.51 82.32

ATED# 89.83 89.35 86.71 85.97 82.96 82.78

Table 1: POPE evaluation results on different decoding strategies. Results are from the papers or re-implemented
based on official codes. Note:∗ denotes ours ensemble method without vision contrastive decoding, & denotes
ensemble with LLaVA-1.5 and InstructBLIP, # denotes ensemble with LLaVA-1.5, InstructBLIP and LLaVA-NeXT.

parison. We posit that our method, being LVLM-408

agnostic, can be easily integrated into various off-409

the-shelf LVLMs that share the same vocabulary.410

4.2 Experimental Results411

Results on POPE. We begin with the most412

widely adopted benchmark for evaluating object413

hallucination. Table 1 reports the average perfor-414

mance across three evaluation settings—random,415

popular, and adversarial—on various datasets,416

where Default refers to the unmodified backbone417

model. Our evaluation of ATED includes three418

configurations: two distinct LVLM ensemble vari-419

ants (ATED& and ATED#), as well as a ver-420

sion (ATED∗) based on the ATED# that ex-421

cludes vision-contrastive decoding (ATED∗). For422

clarity, we highlight the best baseline results for423

each backbone in bold. Compared to each respec-424

tive backbone, ATED achieves improvements of425

4.20%–6.29% in Accuracy and 6.29%–6.97% in426

F1-score. Furthermore, on both LLaVA-1.5 and427

InstructBLIP, ATED consistently surpasses state-of-428

the-art methods ICD and VCD, attaining additional 429

gains ranging from 0.89% to 5.10% in Accuracy 430

and 0.80% to 2.94% in F1-score, thereby effec- 431

tively mitigating hallucination issues. 432

Results on CHAIR. Beyond the binary “yes” or 433

“no” evaluations on the POPE benchmark, we fur- 434

ther validate the effectiveness of TADE in open- 435

ended image captioning using the CHAIR metric. 436

Specifically, we randomly sample 500 images from 437

the validation split of the MSCOCO dataset and 438

query various LVLMs with the prompt, “Please 439

describe this image in detail.” As shown in Table , 440

when setting the maximum new token length to 441

64, our proposed ATED method significantly out- 442

performs all baseline decoding approaches on the 443

CHAIR metric, achieving improvements of 81.57% 444

and 1.23% over the strongest baseline, respectively. 445

Notably, when increasing the generation length 446

to 512 tokens, ATED still attains the best perfor- 447

mance on the CHAIR metric, with an improvement 448

of approximately 30.0%. More detailed result are 449
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Type METHOD
LLaVA-1.5 InstructBLIP MiniGPT4 LLaVA-NeXT

CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI

Single

Default 24.8 8.9 30.3 13.9 19.8 8.5 24.26 8.51
OPERA 21.8 8.2 28.4 9.7 22.6 8.2 21.33 7.73
VCD 23.6 8.6 30.0 11.2 22.0 10.6 23.27 8.34
ICD 21.0 8.7 21.8 8.2 20.0 8.7 20.59 8.54
SID 20.7 8.4 20.7 8.4 23.1 10.7 19.37 7.83

Ensemble
Ours

ATED& ATED#

CHAIRS CHAIRI CHAIRS CHAIRI

15.3 10.9 11.4 8.1

Table 2: CHAIR evaluation results on different decoding strategies. Results are from the papers or re-implemented based on
official codes. Note: & denotes ensemble with LLaVA-1.5 and InstructBLIP, # denotes ensemble with LLaVA-1.5, InstructBLIP
and LLaVA-NeXT.
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Figure 3: MME evaluation on hallucination subset
with decoding strategies in LLaVA-1.5(up) and Instruct-
BLIP(down).

provided in Appendix E.450

Results on MME. We extend the evaluation to451

include hallucinations at the object attribute level.452

We further conducted a systematic and comprehen-453

sive evaluation of the ATED method on the MME454

hallucination subset, which includes object-level455

tasks (existence identification and quantity judg-456

ment) and attribute-level tasks (location identifica-457

tion and color classification). As shown in Figure458

4, ATED achieves the highest performance on loca-459

tion questions, and attains nearly perfect accuracy460

on existence-related questions. Our ATED method461

significantly outperforms the default LVLMs and462

other baseline methods across all four tasks (with463

total score improvements of at least +61.7 and464

+54.2 respectively).465

Setting Method Accuracy F1 Score

Random

Uniform 87.03 86.65
Confidence-based 88.13 86.76
Ours (w/o UGO) 89.30 87.78
Ours 88.97 88.29

Popular

Uniform 84.57 84.37
Confidence-based 86.27 84.79
Ours (w/o UGO) 87.10 85.98
Ours 87.57 86.58

Adversarial

Uniform 81.07 81.65
Confidence-based 84.77 83.40
Ours (w/o UGO) 85.17 84.25
Ours 85.37 84.64

Table 3: Average results on the POPE COCO bench-
mark comparing various weights fusion method.

In addition, we provide several qualitative cases 466

that proves ATED strong ability on mitigating hal- 467

lucinations. These cases uses the instructions with 468

“Please describe this image in detail.”, and details 469

are provided in Appendix E.3. 470

4.3 Ablation Studies 471

Adapative Uncertainty-Guided Weight. To fur- 472

ther validate the effectiveness of the adaptive 473

uncertainty-guided weighting strategy, we con- 474

duct an extensive comparative analysis of vari- 475

ous weighting approaches on the POPE bench- 476

mark. Specifically, we consider uniform weight- 477

ing, confidence-based weighting, and uncertainty- 478

guided weighting without the uncertainty greedy 479

optimization (UGO) module. As presented in Ta- 480

ble 3, our proposed ATED method delivers av- 481

erage improvements of 3.66% in Accuracy and 482

2.71% in F1 Score over the uniform weighting 483

baseline. Moreover, when the UGO module is re- 484

moved, the performance of the model ensemble 485

deteriorates to varying extents, indicating that the 486

lack of uncertainty-aware optimization impairs the 487
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effectiveness of the ensemble strategy. These re-488

sults clearly highlight the crucial role of adaptive489

uncertainty-guided weighting—particularly when490

enhanced by greedy optimization—in maximizing491

the performance gains of multimodal model ensem-492

bles. Overall, our findings provide strong empiri-493

cal evidence that the proposed adaptive weighting494

strategy is fundamental for robust and effective495

multimodal integration.496

Impact of Vision Perturbations. We further in-497

vestigate the impact of visual perturbations on hal-498

lucination reduction in LVLM ensemble decoding499

across different tasks. Specifically, we conduct500

systematic experiments on the POPE-MSCOCO501

and MME benchmarks to evaluate the performance502

of dynamic model ensembles under various condi-503

tions, including the absence of visual perturbations504

(Ours(0)) and different levels of perturbation inten-505

sity. Experimental results in Table 4 demonstrate506

that, without adaptation to visual perturbations,507

the performance of multimodal ensemble reason-508

ing significantly degrades on both the POPE and509

MME datasets—for example, Accuracy decreases510

by 1.4%, F1-score drops by 2.7%, and Accuracy+511

decreases by 20. These findings further highlight512

that introducing multi-path contrastive decoding513

under visual perturbations can effectively mitigate514

hallucinations and enhance reasoning performance.515

Additionally, we conduct an ablation study on516

the amplification factor between the output dis-517

tributions of original and perturbed visual inputs,518

denoted as the hyperparameter α in Equation 4,519

to further validate the effect of visual contrast on520

model performance. Detailed experimental results521

are provided in Appendix E.2.522

4.4 Performance Comparison of LVLMs523

Ensemble Strategy.524

To investigate the performance of different LVLMs525

ensemble strategies across various tasks, we con-526

ducted ensemble experiments on the MME and527

POPE benchmarks usin LLaVA-1.5, InstructBLIP,528

and LLaVA-NeXT. The results are presented in Ta-529

ble 5. Our experiments reveal that when the perfor-530

mance gap between models is large (e.g., Instruct-531

BLIP and LLaVA-1.5 exhibit over a 10% difference532

on the MME benchmark), simple uniform(U) of533

token probabilities across models fails to improve534

results and may even degrade overall performance535

due to noise introduced by lower-performing mod-536

els. Conversely, when the performance gap is small537

Noise
POPE MME

Accuracy F1 Score Accuracy+

Ours(0) 85.90 84.19 616.67
Ours(200) 87.04 85.86 636.67
Ours(500) 86.73 85.44 608.33
Ours(700) 86.88 85.49 591.67
Ours(999) 87.17 86.59 576.67

Table 4: Evaluation results on POPE and MME with
varying noise levels.

Model POPE MME

Accuracy F1 Score Accuracy+

InstructBLIP 78.93 79.11 1385.87

LLaVA-1.5 80.37 79.61 1715.40
+ InstructBLIP(U) 83.90 85.14 1437.84
+ InstructBLIP 85.35 85.79 1718.18
+ LLaVA-NeXT 86.55 86.13 1788.09

Table 5: Ensemble performance on POPE and MME
benchmarks

(for instance, LLaVA-1.5’s F1 score on POPE ex- 538

ceeds that of LLaVA-NEXT by only about 5%), 539

probability averaging can yield improvements over 540

individual models. ATED overcomes these limi- 541

tations. Unlike uniform methods, ATED employs 542

an adaptive weighting strategy guided by uncer- 543

tainty, effectively overcoming the aforementioned 544

limitations and achieving stable performance im- 545

provements. This gives ATED greater robustness 546

and broader applicability. 547

5 Conclusion 548

In this paper, we propose ATED, the first training- 549

free multimodal ensemble decoding method that 550

effectively mitigates hallucinations across diverse 551

multimodal tasks. During inference, ATED per- 552

forms parallel processing with multiple LVLMs 553

and adaptively fuses token-level logits, enabling 554

finer-grained semantic control and more consistent 555

generation. By introducing an adaptive uncertainty- 556

guided weighting mechanism, ATED dynamically 557

adjusts model importance via uncertainty minimiza- 558

tion, enhancing reliability of ensemble inference. 559

Moreover, ATED supports diverse decoding paths, 560

further improving the factual consistency and ro- 561

bustness of generated content. Extensive experi- 562

ments show that ATED consistently outperforms 563

previous methods on multiple benchmarks, achiev- 564

ing notable gains in both accuracy and robustness. 565
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Limitations566

Despite ATED’s strong performance in mitigating567

hallucinations and enhancing robustness, several568

limitations remain. (i) ATED cannot address all569

types of hallucinations in LVLMs, which is under-570

standable since the method requires neither addi-571

tional training nor modifications to model architec-572

tures—factors that may constrain its effectiveness573

in certain scenarios. (ii) The uncertainty minimiza-574

tion framework relies on estimating output logits575

over the vocabulary, but the accuracy of this es-576

timation may fluctuate across different tasks and577

models, potentially affecting the reliability of the578

ensemble. (iii) Furthermore, our framework de-579

pends on the estimation of logits over a shared vo-580

cabulary among LVLMs; integrating models with581

differing vocabularies remains an underexplored582

area for future research.583

References584

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama585
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,586
Diogo Almeida, Janko Altenschmidt, Sam Altman,587
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-588
cal report. arXiv preprint arXiv:2303.08774.589

Wenbin An, Feng Tian, Sicong Leng, Jiahao Nie,590
Haonan Lin, QianYing Wang, Ping Chen, Xiaoqin591
Zhang, and Shijian Lu. 2025. Mitigating object592
hallucinations in large vision-language models with593
assembly of global and local attention. Preprint,594
arXiv:2406.12718.595

Rie Kubota Ando and Tong Zhang. 2005. A framework596
for learning predictive structures from multiple tasks597
and unlabeled data. Journal of Machine Learning598
Research, 6:1817–1853.599

Galen Andrew and Jianfeng Gao. 2007. Scalable train-600
ing of L1-regularized log-linear models. In Proceed-601
ings of the 24th International Conference on Machine602
Learning, pages 33–40.603

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,604
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei605
Huang, and 1 others. 2023a. Qwen technical report.606
arXiv preprint arXiv:2309.16609.607

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,608
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,609
and Jingren Zhou. 2023b. Qwen-vl: A frontier large610
vision-language model with versatile abilities. arXiv611
preprint arXiv:2308.12966, 1(2):3.612

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He,613
Zongbo Han, Zheng Zhang, and Mike Zheng Shou.614
2025. Hallucination of multimodal large language615
models: A survey. Preprint, arXiv:2404.18930.616

Ali Furkan Biten, Lluis Gomez, and Dimosthenis 617
Karatzas. 2021. Let there be a clock on the beach: 618
Reducing object hallucination in image captioning. 619
Preprint, arXiv:2110.01705. 620

Shiqi Chen, Miao Xiong, Junteng Liu, Zhengxuan Wu, 621
Teng Xiao, Siyang Gao, and Junxian He. 2024a. In- 622
context sharpness as alerts: An inner representation 623
perspective for hallucination mitigation. Preprint, 624
arXiv:2403.01548. 625

Zhaorun Chen, Zhuokai Zhao, Hongyin Luo, Huaxiu 626
Yao, Bo Li, and Jiawei Zhou. 2024b. Halc: Object 627
hallucination reduction via adaptive focal-contrast 628
decoding. Preprint, arXiv:2403.00425. 629

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, 630
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi 631
Hu, Jiapeng Luo, Zheng Ma, and 1 others. 2024c. 632
How far are we to gpt-4v? closing the gap to com- 633
mercial multimodal models with open-source suites. 634
Science China Information Sciences, 67(12):220101. 635

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo 636
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, 637
Xizhou Zhu, Lewei Lu, and 1 others. 2024d. Internvl: 638
Scaling up vision foundation models and aligning 639
for generic visual-linguistic tasks. In Proceedings of 640
the IEEE/CVF conference on computer vision and 641
pattern recognition, pages 24185–24198. 642

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, 643
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 644
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, and 645
1 others. 2023. Vicuna: An open-source chatbot 646
impressing gpt-4 with 90%* chatgpt quality. See 647
https://vicuna. lmsys. org (accessed 14 April 2023), 648
2(3):6. 649

Yeongjae Cho, Keonwoo Kim, Taebaek Hwang, and 650
Sungzoon Cho. 2025. Do you keep an eye on 651
what i ask? mitigating multimodal hallucination via 652
attention-guided ensemble decoding. In Proceedings 653
of the 2025 International Conference on Learning 654
Representations (ICLR). 655

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 656
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 657
Boyang Li, Pascale Fung, and Steven Hoi. 658
2023. Instructblip: Towards general-purpose vision- 659
language models with instruction tuning. Preprint, 660
arXiv:2305.06500. 661

Prasenjit Dey, Srujana Merugu, and Sivaramakrishnan 662
Kaveri. 2025. Uncertainty-aware fusion: An ensem- 663
ble framework for mitigating hallucinations in large 664
language models. arXiv preprint arXiv:2503.05757. 665

Thomas G Dietterich. 2000. ensemble methods in ma- 666
chine learning. International workshop on multiple 667
classifer systems. 668

Alessandro Favero, Luca Zancato, Matthew Trager, Sid- 669
dharth Choudhary, Pramuditha Perera, Alessandro 670
Achille, Ashwin Swaminathan, and Stefano Soatto. 671
2024. Multi-modal hallucination control by visual 672
information grounding. Preprint, arXiv:2403.14003. 673

9

https://arxiv.org/abs/2406.12718
https://arxiv.org/abs/2406.12718
https://arxiv.org/abs/2406.12718
https://arxiv.org/abs/2406.12718
https://arxiv.org/abs/2406.12718
https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2404.18930
https://arxiv.org/abs/2110.01705
https://arxiv.org/abs/2110.01705
https://arxiv.org/abs/2110.01705
https://arxiv.org/abs/2403.01548
https://arxiv.org/abs/2403.01548
https://arxiv.org/abs/2403.01548
https://arxiv.org/abs/2403.01548
https://arxiv.org/abs/2403.01548
https://arxiv.org/abs/2403.00425
https://arxiv.org/abs/2403.00425
https://arxiv.org/abs/2403.00425
https://arxiv.org/abs/2403.00425
https://arxiv.org/abs/2403.00425
https://openreview.net/forum?id=ziw5bzg2NO
https://openreview.net/forum?id=ziw5bzg2NO
https://openreview.net/forum?id=ziw5bzg2NO
https://openreview.net/forum?id=ziw5bzg2NO
https://openreview.net/forum?id=ziw5bzg2NO
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2403.14003
https://arxiv.org/abs/2403.14003
https://arxiv.org/abs/2403.14003


Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,674
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,675
Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji.676
2024. Mme: A comprehensive evaluation benchmark677
for multimodal large language models. Preprint,678
arXiv:2306.13394.679

Zigang Geng, Binxin Yang, Tiankai Hang, Chen Li,680
Shuyang Gu, Ting Zhang, Jianmin Bao, Zheng681
Zhang, Han Hu, Dong Chen, and Baining Guo. 2023.682
Instructdiffusion: A generalist modeling interface for683
vision tasks. Preprint, arXiv:2309.03895.684

Hila Gonen, Srini Iyer, Terra Blevins, Noah A.685
Smith, and Luke Zettlemoyer. 2024. Demystifying686
prompts in language models via perplexity estima-687
tion. Preprint, arXiv:2212.04037.688

Anisha Gunjal, Jihan Yin, and Erhan Bas. 2024. De-689
tecting and preventing hallucinations in large vision690
language models. Preprint, arXiv:2308.06394.691

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang,692
Conghui He, Jiaqi Wang, Dahua Lin, Weiming693
Zhang, and Nenghai Yu. 2024. Opera: Alleviating694
hallucination in multi-modal large language models695
via over-trust penalty and retrospection-allocation.696
Preprint, arXiv:2311.17911.697

Drew A. Hudson and Christopher D. Manning. 2019.698
Gqa: A new dataset for real-world visual reason-699
ing and compositional question answering. Preprint,700
arXiv:1902.09506.701

Fushuo Huo, Wenchao Xu, Zhong Zhang, Haozhao702
Wang, Zhicheng Chen, and Peilin Zhao. 2025.703
Self-introspective decoding: Alleviating hallucina-704
tions for large vision-language models. Preprint,705
arXiv:2408.02032.706

Chaoya Jiang, Haiyang Xu, Mengfan Dong, Jiaxing707
Chen, Wei Ye, Ming Yan, Qinghao Ye, Ji Zhang,708
Fei Huang, and Shikun Zhang. 2024. Hallucination709
augmented contrastive learning for multimodal large710
language model. Preprint, arXiv:2312.06968.711

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin.712
2023. Llm-blender: Ensembling large language713
models with pairwise ranking and generative fusion.714
Preprint, arXiv:2306.02561.715

Liqiang Jing, Ruosen Li, Yunmo Chen, and Xinya Du.716
2024. Faithscore: Fine-grained evaluations of hallu-717
cinations in large vision-language models. Preprint,718
arXiv:2311.01477.719

Minchan Kim, Minyeong Kim, Junik Bae, Suhwan720
Choi, Sungkyung Kim, and Buru Chang. 2024. Es-721
real: Exploiting semantic reconstruction to mitigate722
hallucinations in vision-language models. Preprint,723
arXiv:2403.16167.724

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-725
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,726
Yannis Kalantidis, Li-Jia Li, David A Shamma,727

Michael S Bernstein, and Fei-Fei Li. 2017. Vi- 728
sual genome: Connecting language and vision us- 729
ing crowdsourced dense image annotations. Interna- 730
tional Journal of Computer Vision. 731

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui 732
Yuan, Shu Liu, and Jiaya Jia. 2024. Lisa: Reasoning 733
segmentation via large language model. Preprint, 734
arXiv:2308.00692. 735

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin 736
Li, Shijian Lu, Chunyan Miao, and Lidong Bing. 737
2023. Mitigating object hallucinations in large vision- 738
language models through visual contrastive decoding. 739
Preprint, arXiv:2311.16922. 740

Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Ren- 741
rui Zhang, Feng Li, Yuanhan Zhang, Ziwei Liu, and 742
Chunyuan Li. 2024. Llava-next: Stronger llms super- 743
charge multimodal capabilities in the wild. 744

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 745
2023a. Blip-2: Bootstrapping language-image pre- 746
training with frozen image encoders and large lan- 747
guage models. In International conference on ma- 748
chine learning, pages 19730–19742. PMLR. 749

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi 750
Wang, Liang Chen, Yazheng Yang, Benyou Wang, 751
and Lingpeng Kong. 2023b. Silkie: Preference dis- 752
tillation for large visual language models. Preprint, 753
arXiv:2312.10665. 754

Lei Li, Yuwei Yin, Shicheng Li, Liang Chen, Peiyi 755
Wang, Shuhuai Ren, Mukai Li, Yazheng Yang, 756
Jingjing Xu, Xu Sun, Lingpeng Kong, and Qi Liu. 757
2023c. M3it: A large-scale dataset towards multi- 758
modal multilingual instruction tuning. Preprint, 759
arXiv:2306.04387. 760

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, 761
Wayne Xin Zhao, and Ji-Rong Wen. 2023d. Eval- 762
uating object hallucination in large vision-language 763
models. Preprint, arXiv:2305.10355. 764

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir 765
Bourdev, Ross Girshick, James Hays, Pietro Perona, 766
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dol- 767
lár. 2015. Microsoft coco: Common objects in con- 768
text. Preprint, arXiv:1405.0312. 769

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser 770
Yacoob, and Lijuan Wang. 2024a. Mitigating hal- 771
lucination in large multi-modal models via robust 772
instruction tuning. Preprint, arXiv:2306.14565. 773

Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng 774
Chen, Xiutian Zhao, Ke Wang, Liping Hou, Rongjun 775
Li, and Wei Peng. 2024b. A survey on halluci- 776
nation in large vision-language models. Preprint, 777
arXiv:2402.00253. 778

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae 779
Lee. 2024c. Improved baselines with visual instruc- 780
tion tuning. Preprint, arXiv:2310.03744. 781

10

https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2309.03895
https://arxiv.org/abs/2309.03895
https://arxiv.org/abs/2309.03895
https://arxiv.org/abs/2212.04037
https://arxiv.org/abs/2212.04037
https://arxiv.org/abs/2212.04037
https://arxiv.org/abs/2212.04037
https://arxiv.org/abs/2212.04037
https://arxiv.org/abs/2308.06394
https://arxiv.org/abs/2308.06394
https://arxiv.org/abs/2308.06394
https://arxiv.org/abs/2308.06394
https://arxiv.org/abs/2308.06394
https://arxiv.org/abs/2311.17911
https://arxiv.org/abs/2311.17911
https://arxiv.org/abs/2311.17911
https://arxiv.org/abs/2311.17911
https://arxiv.org/abs/2311.17911
https://arxiv.org/abs/1902.09506
https://arxiv.org/abs/1902.09506
https://arxiv.org/abs/1902.09506
https://arxiv.org/abs/2408.02032
https://arxiv.org/abs/2408.02032
https://arxiv.org/abs/2408.02032
https://arxiv.org/abs/2312.06968
https://arxiv.org/abs/2312.06968
https://arxiv.org/abs/2312.06968
https://arxiv.org/abs/2312.06968
https://arxiv.org/abs/2312.06968
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2311.01477
https://arxiv.org/abs/2311.01477
https://arxiv.org/abs/2311.01477
https://arxiv.org/abs/2403.16167
https://arxiv.org/abs/2403.16167
https://arxiv.org/abs/2403.16167
https://arxiv.org/abs/2403.16167
https://arxiv.org/abs/2403.16167
https://arxiv.org/abs/2308.00692
https://arxiv.org/abs/2308.00692
https://arxiv.org/abs/2308.00692
https://arxiv.org/abs/2311.16922
https://arxiv.org/abs/2311.16922
https://arxiv.org/abs/2311.16922
https://arxiv.org/abs/2312.10665
https://arxiv.org/abs/2312.10665
https://arxiv.org/abs/2312.10665
https://arxiv.org/abs/2306.04387
https://arxiv.org/abs/2306.04387
https://arxiv.org/abs/2306.04387
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2306.14565
https://arxiv.org/abs/2306.14565
https://arxiv.org/abs/2306.14565
https://arxiv.org/abs/2306.14565
https://arxiv.org/abs/2306.14565
https://arxiv.org/abs/2402.00253
https://arxiv.org/abs/2402.00253
https://arxiv.org/abs/2402.00253
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2310.03744


Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan782
Zhang, Sheng Shen, and Yong Jae Lee. 2024d. Llava-783
next: Improved reasoning, ocr, and world knowledge.784

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae785
Lee. 2023. Visual instruction tuning. Advances in786
neural information processing systems, 36:34892–787
34916.788

Ibomoiye Domor Mienye and Yanxia Sun. 2022. A789
survey of ensemble learning: Concepts, algorithms,790
applications, and prospects. IEEE Access, 10:99129–791
99149.792

David Opitz and Richard Maclin. 1999. Popular en-793
semble methods: An empirical study. Journal of794
Artificial Intelligence Research.795

Robi Polikar. 2012. Ensemble learning. Ensemble ma-796
chine learning: Methods and applications, pages797
1–34.798

Zexuan Qiu, Zijing Ou, Bin Wu, Jingjing Li, Aiwei Liu,799
and Irwin King. 2025. Entropy-based decoding for800
retrieval-augmented large language models. Preprint,801
arXiv:2406.17519.802

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya803
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-804
try, Amanda Askell, Pamela Mishkin, Jack Clark,805
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-806
ing transferable visual models from natural language807
supervision. Preprint, arXiv:2103.00020.808

Mohammad Sadegh Rasooli and Joel R. Tetreault. 2015.809
Yara parser: A fast and accurate dependency parser.810
Computing Research Repository, arXiv:1503.06733.811
Version 2.812

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,813
Trevor Darrell, and Kate Saenko. 2019. Ob-814
ject hallucination in image captioning. Preprint,815
arXiv:1809.02156.816

Dustin Schwenk, Apoorv Khandelwal, Christopher817
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.818
A-okvqa: A benchmark for visual question answering819
using world knowledge. Preprint, arXiv:2206.01718.820

Rico Sennrich, Alexandra Birch, and Barry Haddow.821
2016. Edinburgh neural machine translation system822
for wmt 16. In Proceedings of the First Conference823
on Machine Translation.824

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu,825
Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan826
Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer,827
and Trevor Darrell. 2023. Aligning large multimodal828
models with factually augmented rlhf. Preprint,829
arXiv:2309.14525.830

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier831
Martinet, Marie-Anne Lachaux, Timothée Lacroix,832
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal833
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard834
Grave, and Guillaume Lample. 2023. Llama: Open835

and efficient foundation language models. Preprint, 836
arXiv:2302.13971. 837

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun 838
Quan, Wei Bi, and Shuming Shi. 2024. Knowl- 839
edge fusion of large language models. Preprint, 840
arXiv:2401.10491. 841

Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng 842
Shi, Chenlin Zhao, Haiyang Xu, Qinghao Ye, Ming 843
Yan, Ji Zhang, Jihua Zhu, Jitao Sang, and Haoyu 844
Tang. 2023. Evaluation and analysis of halluci- 845
nation in large vision-language models. Preprint, 846
arXiv:2308.15126. 847

Xintong Wang, Jingheng Pan, Liang Ding, and Chris 848
Biemann. 2024. Mitigating hallucinations in large 849
vision-language models with instruction contrastive 850
decoding. Preprint, arXiv:2403.18715. 851

Sangmin Woo, Donguk Kim, Jaehyuk Jang, Yubin Choi, 852
and Changick Kim. 2024. Don’t miss the forest for 853
the trees: Attentional vision calibration for large vi- 854
sion language models. Preprint, arXiv:2405.17820. 855

Mingrui Wu, Jiayi Ji, Oucheng Huang, Jiale Li, 856
Yuhang Wu, Xiaoshuai Sun, and Rongrong Ji. 2024. 857
Evaluating and analyzing relationship hallucina- 858
tions in large vision-language models. Preprint, 859
arXiv:2406.16449. 860

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, 861
Ming Yan, Yiyang Zhou, Junyang Wang, Anwen 862
Hu, Pengcheng Shi, Yaya Shi, and 1 others. 2023. 863
mplug-owl: Modularization empowers large lan- 864
guage models with multimodality. arXiv preprint 865
arXiv:2304.14178. 866

Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao 867
Wang, Dianbo Sui, Yunhang Shen, Ke Li, Xing Sun, 868
and Enhong Chen. 2024. Woodpecker: hallucina- 869
tion correction for multimodal large language models. 870
Science China Information Sciences, 67(12). 871

Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wen- 872
tao Ye, Bosheng Qin, Siliang Tang, Qi Tian, and Yuet- 873
ing Zhuang. 2024a. Hallucidoctor: Mitigating hallu- 874
cinatory toxicity in visual instruction data. Preprint, 875
arXiv:2311.13614. 876

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng 877
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao 878
Zheng, Maosong Sun, and Tat-Seng Chua. 2024b. 879
Rlhf-v: Towards trustworthy mllms via behavior 880
alignment from fine-grained correctional human feed- 881
back. Preprint, arXiv:2312.00849. 882

Tianyu Yu, Haoye Zhang, Qiming Li, Qixin Xu, 883
Yuan Yao, Da Chen, Xiaoman Lu, Ganqu Cui, 884
Yunkai Dang, Taiwen He, Xiaocheng Feng, Jun 885
Song, Bo Zheng, Zhiyuan Liu, Tat-Seng Chua, and 886
Maosong Sun. 2024c. Rlaif-v: Open-source ai feed- 887
back leads to super gpt-4v trustworthiness. Preprint, 888
arXiv:2405.17220. 889

11

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://arxiv.org/abs/1106.0257
https://arxiv.org/abs/1106.0257
https://arxiv.org/abs/1106.0257
https://arxiv.org/abs/2406.17519
https://arxiv.org/abs/2406.17519
https://arxiv.org/abs/2406.17519
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
http://arxiv.org/abs/1503.06733
https://arxiv.org/abs/1809.02156
https://arxiv.org/abs/1809.02156
https://arxiv.org/abs/1809.02156
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/2206.01718
https://arxiv.org/abs/1606.02891
https://arxiv.org/abs/1606.02891
https://arxiv.org/abs/1606.02891
https://arxiv.org/abs/2309.14525
https://arxiv.org/abs/2309.14525
https://arxiv.org/abs/2309.14525
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2401.10491
https://arxiv.org/abs/2401.10491
https://arxiv.org/abs/2401.10491
https://arxiv.org/abs/2308.15126
https://arxiv.org/abs/2308.15126
https://arxiv.org/abs/2308.15126
https://arxiv.org/abs/2403.18715
https://arxiv.org/abs/2403.18715
https://arxiv.org/abs/2403.18715
https://arxiv.org/abs/2403.18715
https://arxiv.org/abs/2403.18715
https://arxiv.org/abs/2405.17820
https://arxiv.org/abs/2405.17820
https://arxiv.org/abs/2405.17820
https://arxiv.org/abs/2405.17820
https://arxiv.org/abs/2405.17820
https://arxiv.org/abs/2406.16449
https://arxiv.org/abs/2406.16449
https://arxiv.org/abs/2406.16449
https://doi.org/10.1007/s11432-024-4251-x
https://doi.org/10.1007/s11432-024-4251-x
https://doi.org/10.1007/s11432-024-4251-x
https://arxiv.org/abs/2311.13614
https://arxiv.org/abs/2311.13614
https://arxiv.org/abs/2311.13614
https://arxiv.org/abs/2312.00849
https://arxiv.org/abs/2312.00849
https://arxiv.org/abs/2312.00849
https://arxiv.org/abs/2312.00849
https://arxiv.org/abs/2312.00849
https://arxiv.org/abs/2405.17220
https://arxiv.org/abs/2405.17220
https://arxiv.org/abs/2405.17220


Zihao Yue, Liang Zhang, and Qin Jin. 2024. Less890
is more: Mitigating multimodal hallucination891
from an eos decision perspective. Preprint,892
arXiv:2402.14545.893

Bohan Zhai, Shijia Yang, Chenfeng Xu, Sheng894
Shen, Kurt Keutzer, Chunyuan Li, and Manling895
Li. 2024. Halle-control: Controlling object hal-896
lucination in large multimodal models. Preprint,897
arXiv:2310.01779.898

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and899
Noah A. Smith. 2023. How language model halluci-900
nations can snowball. Preprint, arXiv:2305.13534.901

Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao,902
Wenqi Shao, Wenwei Zhang, Yu Liu, Kai Chen,903
and Ping Luo. 2025. Gpt4roi: Instruction tuning904
large language model on region-of-interest. Preprint,905
arXiv:2307.03601.906

Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong,907
Jiaqi Wang, and Conghui He. 2023. Beyond hallu-908
cinations: Enhancing lvlms through hallucination-909
aware direct preference optimization. Preprint,910
arXiv:2311.16839.911

Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun912
Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and913
Huaxiu Yao. 2024. Analyzing and mitigating ob-914
ject hallucination in large vision-language models.915
Preprint, arXiv:2310.00754.916

Deyao Zhu, Xiang Shen, Xiang Li, and Mohamed Elho-917
seiny. 2023. Minigpt-4: Enhancing vision-language918
understanding with advanced large language models.919
Preprint, arXiv:2304.10592.920

A More Backgrounds921

A.1 Architecture of Vision-Language Models922

Large Vision-Language Models (LVLMs) integrate923

pretrained image encoders and large-scale language924

models to support tasks such as image caption-925

ing and visual question answering. Typically, a926

frozen vision encoder such as CLIP extracts dense927

image embeddings (Radford et al., 2021), which928

are projected into the language space and fed into929

a decoder-only LLM like LLaMA. Architectures930

such as BLIP-2 (Li et al., 2023a) and InstructBLIP931

(Dai et al., 2023) adopt this two-tower design and932

align the modalities using lightweight adapters or933

learned commands.934

LLaVA-1.5 is a refinement over the original935

LLaVA model, featuring a simplified architecture936

and improved training pipeline. It employs CLIP-937

ViT-L as the vision encoder and a Vicuna-based938

decoder-only language model. The two modali-939

ties are connected via a trainable MLP projection940

layer, which maps visual tokens into the language941

embedding space. Trained with visual instruction 942

tuning on synthetic datasets, it achieves strong re- 943

sults across various benchmarks. (Liu et al., 2023) 944

InstructBLIP builds on BLIP-2 by introducing 945

an instruction-aware query transformer that condi- 946

tions the vision encoder’s output on task-specific 947

prompts. It integrates a pretrained Vision Trans- 948

former (ViT) with a Q-Former, feeding the encoded 949

visual queries to a language model such as Flan-T5 950

or Vicuna. It is trained using instruction tuning on 951

a collection of 26 datasets. (Dai et al., 2023) 952

MiniGPT-4 aims to replicate the capabilities of 953

GPT-4-based vision-language systems using open- 954

source components. It integrates a frozen ViT- 955

based vision encoder with Vicuna, connected via 956

a lightweight linear projection layer. Training in- 957

volves two stages: pre-alignment on image-text 958

pairs followed by fine-tunning on high quality im- 959

age descriptions. Its minimal parameter count en- 960

ables efficient multimodal alignment with strong 961

performance in image captioning. (Zhu et al., 962

2023) 963

LLaVA-NEXT is an enhanced version of 964

LLaVA-1.5, optimized for higher visual reason- 965

ing fidelity. It retains the MLP projection structure 966

but augments training with improved instruction- 967

following datasets and higher-resolution visual in- 968

puts. It achieves better performance in OCR, com- 969

positional reasoning, and world knowledge bench- 970

makrs. (Liu et al., 2024d) 971

A.2 Ensemble Learning in NLP 972

Ensemble learning has long been a reliable strat- 973

egy in machine learning to improve robustness, 974

reduce overfitting, and enhance generalization. By 975

combining the predicitions of multiple models or 976

decision rules, ensembles can correct individual 977

biases and reduce the variance of outputs (Diet- 978

terich, 2000), Classical ensemble methods include 979

bagging, boosting, and stacking, all of which have 980

demonstrated strong performance in classification 981

tasks such as sentiment analysis, topic classifi- 982

cation, and named entity recognition (Opitz and 983

Maclin, 1999). 984

In the domain of Natural Language Processing 985

(NLP), ensemble methods have been applied exten- 986

sively in both structured prediction and generation 987

tasks. For example, ensemble decoding, which 988

involves averaging or voting across multiple lan- 989

guage models. has been shown to improve fluency 990

and factuality in neural machine translation (Sen- 991

nrich et al., 2016). Recent work has also explored 992
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ensemble inference for large language models, ag-993

gregating outputs per-token-level logits from mul-994

tiple sources to improve consistency and reduce995

hallucination996

In multimodal learning, ensemble approaches997

are gaining traction as a decoding-level interven-998

tion. Rather than relying on a single model’s out-999

put, ensembles constructed across different model1000

variants or decoding stratigies can better capture1001

complementary evidence, making them suitable for1002

suppressing the hallucination in vision-language1003

tasks.1004

B Details about Baseline1005

To mitigate hallucination without retraining, a va-1006

riety of decoding-time techniques have been pro-1007

posed:1008

• ICD: (Wang et al., 2024) Instruction-1009

Contrastice Decoding leverages instruction-1010

level perturbations to reduce hallucination in1011

multimodal large language models. It operates1012

by introducing minimal semantic alterations1013

to the input prompt, such as inserting irrele-1014

vant phrases or modifiying the question struc-1015

ture, and then comparing the model’s output1016

distributions under both the original and per-1017

turbed instructions. Tokens exhibiting insta-1018

bility across these variants are identified as po-1019

tentially hallucinated and are downweighted1020

during generation.1021

• SID (Self-Introspective Decoding): (Huo1022

et al., 2025) Self-Introspective Decoding miti-1023

gateas hallucinations by introspectively filter-1024

ing low-relevance visual signals during gener-1025

ation. It evaluates the contextual alignment of1026

visual tokens with both the preceding textual1027

context and the decoding history, retaining1028

only those with strong semantic relevance. By1029

pruning distractive or semantically weak vi-1030

sual features early in decoding, SID improves1031

grounding accuracy, particularly in complex1032

or visually dense scenarios.1033

• VCD (Visual-Contrastive Decoding): (Leng1034

et al., 2023) Visual-Contrastive Decoding1035

aims to improve visual consistency by intro-1036

ducing small-scale perturbations to the visual1037

input and contrasting the model’s responses.1038

The approach applies controlled distortions,1039

such as Gaussian blur, occlusion, or token1040

masking, to the image embeddings and mea- 1041

sures output divergence. Tokens highly sensi- 1042

tive to such perturbations are treated as visu- 1043

ally fragile and are penalized during decoding. 1044

• OPERA (Overtrust Penalty with Retro- 1045

spective Adjustment): (Huang et al., 2024) 1046

Overtrust Penalty with Retrospective Adjusti- 1047

ment introduces a two-stage mechanism to ad- 1048

dress hallucination in multimodal generation: 1049

overtrust penalty and retrospective adjustment. 1050

During decoding, it applies a regularization 1051

term to suppress overconfident token predic- 1052

tions that exhibit weak visual grounding. Af- 1053

ter generation, a retrospective evaluation is 1054

performed to re-rank or adjust outputs based 1055

on their semantic agreement with the image. 1056

• Ensemble Decoding (ED): (Cho et al., 2025) 1057

Ensemble Decoding combines multiple gen- 1058

eration pathways to improve robustness and 1059

reduce hallucination. It operates by aggregat- 1060

ing outputs from a set of models or decoding 1061

configurations, such as different random seed, 1062

visual crops, or temperature settings, and fus- 1063

ing them through majority voting, logit aver- 1064

aging, or response re-ranking. This ensemble 1065

process helps to mitigate the influence of un- 1066

stable or outlier predicitions by emphasizing 1067

consensus across multiple decoders 1068

All these methods operate without modifying 1069

model parameters, offering flexible, training-free 1070

solutions for enhancing visual faithfulness during 1071

inference. 1072

C Evaluation Metric Details 1073

The Polling-based Object Probing Evaluation 1074

(POPE) benchmark is a systematic framework 1075

designed to assess object hallucination in Large 1076

Vision-Language Models (LVLMs) during image 1077

description tasks. POPE employs a binary question- 1078

answering format, using prompts such as "Does the 1079

image contain ___?" to evaluate a model’s ability 1080

to accurately determine the presence or absence of 1081

specific objects within images. To construct nega- 1082

tive samples—instances where the object is absent 1083

from the image—POPE utilizes three distinct strate- 1084

gies: random sampling involves selecting objects 1085

that do not appear in the image at random; pop- 1086

ular sampling selects absent objects from a pool 1087

of frequently occurring objects across the dataset; 1088
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adversarial sampling prioritizes objects that com-1089

monly co-occur with present objects but are absent1090

in the current image. The benchmark integrates1091

three datasets: MSCOCO, A-OKVQA, and GQA.1092

From each dataset, 500 images are selected, and1093

six questions are generated per image, resulting in1094

a total of 27,000 query-answer pairs for evaluation.1095

Performance is measured using standard metrics,1096

including accuracy, precision, recall, and F1 score,1097

with higher values indicating a model’s superior1098

capability in mitigating hallucinations such as fab-1099

ricated objects and erroneous descriptions.1100

The Caption Hallucination Assessment with1101

Image Relevance (CHAIR) metric is a specialized1102

evaluation framework designed to quantify object1103

hallucination in image captioning models. CHAIR1104

assesses the alignment between generated captions1105

and the actual visual content by comparing the1106

objects mentioned in the captions against ground-1107

truth annotations from datasets like MSCOCO.1108

CS =
|{hallucinated objects}|
|{all mentioned objects}|

(9)1109

CI =
|{captions w/ hallucinated objects}|

|{all captions}|
(10)1110

The metric comprises two variants: CHAIRi1111

(instance-level) and CHAIRs (sentence-level).1112

CHAIRi calculates the proportion of hallucinated1113

object mentions relative to all object mentions in1114

the generated captions, while CHAIRs measures1115

the fraction of sentences that contain at least one1116

hallucinated object. Lower values in both metrics1117

indicate better performance in mitigating object1118

hallucinations .1119

The Multimodal Model Evaluation (MME)1120

benchmark offers a comprehensive framework for1121

assessing Large Vision-Language Models (LVLMs)1122

across a spectrum of tasks, encompassing both1123

perceptual and cognitive dimensions. Specifically,1124

MME comprises ten perception-oriented subtasks1125

and four cognition-focused ones, facilitating a1126

holistic evaluation of LVLM capabilities .In the1127

context of object-level hallucination evaluation,1128

MME includes dedicated subsets targeting the "ex-1129

istence" and "count" tasks. The "existence" task1130

assesses a model’s ability to accurately identify the1131

presence or absence of specific objects within an1132

image, while the "count" task evaluates the model’s1133

proficiency in determining the correct number of1134

instances of a given object.These tasks is quan-1135

tified using a combined metric of accuracy and1136

accuracy+. Accuracy measures the proportion of1137

correct predictions, while accuracy+ accounts for 1138

near-correct responses. 1139

D Implementation Details 1140

In all experimental settings, the hyper-parameter 1141

α is fixed at 1. For visual perturbations in the 1142

model ensemble, we adopt a noise-injection strat- 1143

egy, setting the noise steps T to 200 for MME, 1144

500 for LLaVA-Bench, and 999 for POPE. For 1145

OPERA, VCD, and SID, we use the default set- 1146

tings as specified in their original papers. Greedy 1147

decoding is used for comparison methods, while for 1148

open-ended generation tasks (such as CHAIR and 1149

LLaVA-Bench), we employ sampling with Top-p 1150

= 1. All experiments are conducted on Nvidia A40 1151

GPUs. 1152

E More Detailed Comparison 1153

E.1 More Results on on CHAIR 1154

The hyperparameter max new tokens, which con- 1155

trols the maximum length of generated responses, 1156

plays a critical role in CHAIR-based evaluation. 1157

In the main text, we report results using a setting 1158

of max new tokens = 64. Additional results un- 1159

der a relaxed constraint of max new tokens = 512 1160

are provided in Table 6. As Table illustrates, the 1161

generation length limit has a substantial impact 1162

on LVLM performance under the CHAIR metric. 1163

when the token budget is increased from 64 to 512, 1164

our method consistently outperforms all baselines 1165

on the metric CHAIRS , highlighting its robustness 1166

and adaptability under varying generation lengths. 1167

Furthermore, our model produces responses with 1168

an average length of 107.4 tokens as shown in Ta- 1169

ble 7 , indicating that the observed reduction in 1170

object hallucinations is achieved without compro- 1171

mising the richness of the generated descriptions. 1172

E.2 More Results on on MME 1173

ATED is designed to integrate the expertise of mul- 1174

tiple models, thereby bridging the hallucination gap 1175

that exists among different LVLMs during infer- 1176

ence. To further investigate whether our approach 1177

not only preserves but also potentially enhances the 1178

fundamental perception and reasoning capabilities 1179

of LVLMs across a broader range of multimodal 1180

tasks, we also analyze the comprehensive perfor- 1181

mance on the MME benchmark, which consists of 1182

14 sub-tasks for evaluating perception and recog- 1183

nition. As shown in Table 8, our method (Ours#) 1184

significantly outperforms all baseline approaches 1185
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Type METHOD
LLaVA-1.5 InstructBLIP MiniGPT4 LLaVA-NeXT

CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI CHAIRS CHAIRI

Single

Default 51.3 16.8 55.6 24.2 33.6 19.4 42.6 14.1
OPERA 46.4 13.0 47.1 12.4 26.4 10.7 39.4 11.8
VCD 51.7 15.6 51.0 16.7 30.4 14.2 41.1 12.9
ICD 47.4 13.9 46.3 15.3 32.6 13.1 42.1 12.6
SID 44.2 12.2 42.3 12.4 28.5 11.7 40.8 13.0

Ensemble
Ours

ATED& ATED#

CHAIRS CHAIRI CHAIRS CHAIRI

- - 34.0 17.1

Table 6: CHAIR evaluation results on different decoding strategies. Results are from the papers or re-implemented based on
official codes. Note: & denotes ensemble with InstructBLIP, # denotes ensemble with InstructBLIP and LLaVA-NeXT.

Method Length

Default 100.6
OPERA 98.6
VCD 100.4
ICD 106.3
Ours# 107.4

Table 7: Comparison of CHAIR performance across
different methods in terms of output length on LLaVA-
1.5.

Method Accuracy+

Default 1715.40
OPERA 1773.52
VCD 1756.02
ICD 1749.43
SID 1770.43
Ours# 1788.09

Table 8: Comparison of total accuracy+ cacross different
methods on LLaVA-1.5.

based on the LLaVA-1.5 backbone, surpassing both1186

the original LVLMs and the best-performing base-1187

lines by a substantial margin (+18.34). These re-1188

sults indicate that our approach not only effectively1189

manages hallucination during inference but also1190

improves the accuracy of the underlying LVLMs1191

on fundamental tasks.1192

Table 9 presents the quantitative evaluation re-1193

sults of the model under different α values on1194

object-level metrics (Existence, Count), attribute-1195

level metrics (Position, Color), and the overall ac-1196

curacy (Total Accuracy+). As αincreases from 0.51197

to 1.0, all metrics demonstrate varying degrees of1198

improvement, with Color showing the most sub-1199

stantial gain—from 140 to 155. These improve-1200

ments are reflected in the Total Accuracy+, which 1201

rises from 595.00 to 636.67 as α increases. More- 1202

over, we observe that attribute-level metrics are 1203

more sensitive to changes in the intensity of vision- 1204

contrastive regularization compared to object-level 1205

metrics, resulting in greater improvements. This 1206

finding indicates that appropriately tuning the α 1207

parameter not only enhances the model’s ability 1208

to confirm object information during adaptive en- 1209

semble inference but also significantly improves 1210

its capability to capture fine-grained attribute de- 1211

tails. As a result, the overall prediction accuracy 1212

and robustness are further strengthened. 1213

E.3 Qualitative Analysis 1214

To further evaluate whether ATED effectively mit- 1215

igates hallucinations beyond quantitative metrics 1216

in open-ended generation tasks, we conducted a 1217

qualitative analysis on the MSCOCO dataset, us- 1218

ing several decoding strategies as baselines. The 1219

LVLMs are prompt with "Please describe this im- 1220

age in detail”, with the maximum token limit set 1221

to 150. As illustrated in Figure 8 and Figure 9, 1222

baseline methods including the default decoding, 1223

OPERA, and VCD often produce hallucinated con- 1224

tent (highlighted in red). In contrast, ATED dynam- 1225

ically selects and weights token-level outputs from 1226

multiple models at each decoding step, guided by 1227

a greedy uncertainty-minimization strategy. This 1228

enables the model to better adapt to contextual envi- 1229

ronments and significantly improves the credibility 1230

and robustness of the generated content. 1231

In addition, we perform GPT-assisted evalua- 1232

tion on the LLaVA-Bench benchmark (Liu et al., 1233

2023). Following evaluation protocol proposed by 1234

(Yin et al., 2024; An et al., 2025), the model is 1235

presented with an image and two candidate descrip- 1236

tions, structured according to the prompt format 1237
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α
Object-Level Attribute-Level Total Accuracy+

Existence Count Position Color

0.5 180.00 143.33 131.67 140 595.00
0.7 180.00 143.33 136.67 140 600.00
1.0 185.00 158.33 138.33 155 636.67

Table 9: Quantitative results on Object-level (Existence, Count), Attribute-level (Position, Color), and Total
Accuracy+ for using various noise steps.

shown in Figure 5. The GPT-4o API is employed1238

to evaluate the generated responses in terms of fac-1239

tual accuracy (Accuracy) and descriptive richness1240

(Detailedness).1241

Furthermore, we conducted an additional eval-1242

uation based on GPT-4, following the methodol-1243

ogy outlined in (Zhao et al., 2023). Specifically,1244

we randomly sampled 200 images from the Visual1245

Genome (VG-100K) dataset (Krishna et al., 2017)1246

and assessed model performance by comparing the1247

generated descriptions with the region descriptions1248

associated with each image. This comparison al-1249

lows for effective identification of hallucinated con-1250

tent based on semantic inconsistencies. We com-1251

prehensively analyzed five key metrics: sentences1252

per image (SPI), words per image (WPI), halluci-1253

nated sentence ratio (HSR), hallucinated word ratio1254

(HWR), and mean hallucination ratio (MHR). No-1255

tably, higher SPI and WPI values, as well as lower1256

HSR, HWR, and MHR, indicate better model per-1257

formance. In the radar charts, a larger area reflects1258

superior performance. Multiple models and de-1259

coding strategies were included as baselines for1260

comparison. The detailed results are presented in1261

Figure 4. As shown, the proposed ATED method1262

substantially reduces hallucination and effectively1263

suppresses misleading content during generation.

SPI

WPI

HSR

HWR

Mean HR

2.92 4.395 4.395 5.455

74.15

74.15

86.67

105.78

0.725

0.651

0.643

0.639

0.798

0.666

0.66

0.659

0.725

0.651

0.643

0.639

Ours LLaVA-1.5: Default LLaVA-1.5: VCD InstructBLIP

Figure 4: GPT-4 assisted hallucination evaluation.
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You are an AI designed to evaluate and score the performance of two AI
assistants in describing a given image. Your primary focus is on the
accuracy and detailedness of their descriptions. You will assess the
accuracy by checking for hallucinations—any part of the description
that is inconsistent with the image content. For detailedness, you
will consider how rich the response is in necessary details, excluding
any hallucinated parts. You will provide scores on a scale from 1 to
10 for each assistant separately, based on these criteria. After
scoring, you will offer an explanation for your evaluation, ensuring
it is free from bias and not influenced by the order of presentation
of the responses.

Input format:

[Assistant 1]

{}

[End of Assistant 1]

[Assistant 2]

{}

[End of Assistant 2]

Output format:

Accuracy:

Scores of the two answers:

Detailedness:

Scores of the two answers:

GPT-4o Prompt

Figure 5: GPT-4o prompt format.
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Instr: Please describe this image
in detail

LLaVA-1.5
OPERA

The image depicts a large, white skyscraper towering
over a city with a clear blue sky in the background.
The skyscraper is located in the center of the city,
surrounded by other buildings of various heights. The

city is bustling with activity, as evidenced by the
presence of numerous cars and trucks on the streets

below the skyscraper.

The image you've shared is a close-up of a tall, slender
tower. The tower is predominantly white, with a few

black accents that add a touch of contrast. The tower
is situated in a city, as evidenced by the buildings and

structures that surround it.

Ours

GPT-4o Evaluation: LLaVA-1.5
(OPERA)

Accuracy: 4/10
Detailedness: 5/10

GPT-4o Evaluation: Ours
Accuracy: 9/10

Detailedness: 7/10

Max New
Token = 150

 Detailedness: Assistant 1: While this response attempts to
provide a more elaborate description of the setting, most of the

details are fabricated and therefore detract from the
evaluation. It does not mention defining features of the tower,
such as its observation deck, tapered legs, or unique aesthetic. 
Assistant 2: This description is more concise but relatively to

the point. The mention of black accents and the general shape of
the tower improve its detailedness. However, it omits several

crucial features, such as the observation deck, the flag, and the
surrounding greenery in view. 

Accuracy: Assistant 1: This description contains significant
hallucinations. The structure in the image is the Space Needle in
Seattle, which is not a "large, white skyscraper" and does not
resemble one. It is a single, iconic observation tower with a

distinct design. The claim of "numerous cars and trucks on the
streets" is also inaccurate, as there are no visible streets

bustling with traffic in the image. Assistant 2: This response is
mostly accurate. The description identifies the subject as a
"tall, slender tower" that is "predominantly white with a few
black accents," which matches the appearance of the Space

Needle. It also matches the setting by mentioning the city with
surrounding buildings. 

Figure 6: Qualitative cases on LLaVA-Bench. The hallucinated content is highlighted in red.
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Instr: Please describe this image
in detail

LLaVA-1.5
VCD

A cute little dog is laying down on a wooden floor, resting
its head on its paws. The dog is white and brown in color
and appears to be sleeping on a blue-colored surface.

The image features a small dog with a predominantly white
coat, lying on its side on a wooden surface. The dog appears
to be resting or sleeping, with its head comfortably resting
on the wooden surface. The background is out of focus, but
it seems to be an indoor setting.

Ours

GPT-4o Evaluation: LLaVA-1.5 (VCD)
Accuracy: 4/10
Detailedness: 6/10

GPT-4o Evaluation: Ours
Accuracy: 9/10
Detailedness: 7/10

Max New
Token = 150

Detailedness: Assistant 1 included some descriptive details, such
as identifying the dog's coloration (albeit inaccurately) and the
mention of the "blue-colored surface". However, these inclusions
were not meaningful due to inaccuracies. Assistant 2 provided
sufficient and accurate details without adding unnecessary or
hallucinated elements, such as describing the dog, its position, and
the surrounding background accurately. Assistant 2's response is
slightly more detailed due to a richer contextual hint about the
background being "out of focus" and the scene being "an indoor
setting."

Accuracy: Assistant 1 incorrectly described the dog as "white and
brown" and stated that it was "sleeping on a blue-colored surface"
which is inaccurate. The dog's coat is light tan with slight white
markings, and it is lying directly on a blue wooden floor, not "a blue-
colored surface" like a blanket. Additionally, Assistant 1 claimed the
dog was "resting its head on its paws" which is not the case—its head
is resting on the floor. Assistant 2, on the other hand, provided an
accurate description of the dog and its environment, correctly
identifying that the dog is lying on its side on the blue wooden floor
and avoiding any inaccurate claims. 

Figure 7: Qualitative cases on LLaVA-Bench. The hallucinated content is highlighted in red.
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Max new token = 64

Instr: Please describe
this image in details

LLaVA-1.5 (VCD): The image features a woman lying
on a bed, with her head resting on her hand. She appears
to be looking at the camera, possibly posing for a picture.
The bed is covered with a striped blanket, adding a cozy
touch to the scene.  

LLaVA-1.5 (OPERA): The image features a beautiful
young woman sitting on a couch, wearing a white shirt. She
appears to be posing for the camera, possibly for a
magazine or advertisement. The couch she is sitting on has
a striped pillow, adding a touch of color to the scene.

Ours: The image features a beautiful young woman with
long, dark hair. She is lying down on a bed, dressed in a
white shirt. The bed she is on is covered with a white
comforter.

InstructBLIP (OPERA):  The image features a young
woman lying on a bed, wearing a white shirt and a red
lipstick. She is positioned in the middle of the bed, with
her hair cascading down her back. There are two pillows
visible in the scene, one on the left side of the bed and

Figure 8: Qualitative cases on MSCOCO. The hallucinated content is highlighted in red.
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Max new token = 64

Instr: Please describe
this image in details

LLaVA-1.5 (VCD): The image features a woman sitting
at a dining table, holding a large pizza in her hands. She is
smiling and appears to be enjoying the moment. The pizza
is placed in the center of the table, and the woman is
positioned on the left side of the table."

LLaVA-1.5 (OPERA):  The image features a woman
sitting at a dining table, holding up a large pizza with a
smile on her face. The pizza is placed in front of her,
occupying a significant portion of the table. There are
several other people in the scene, some sitting and others
standing around the dining

Ours: The image features a woman sitting in front of a
dining table. She is holding a large pizza in her hands,
which is placed on the table. The woman appears to be in
the process of serving the pizza, as she is holding it up.

InstructBLIP (OPERA): The image features a woman
sitting at a dining table, holding a large pizza in her hands.
She is smiling and appears to be eager to share the pizza
with others. There are several chairs placed around the
table, suggesting that there are other people present. 

Figure 9: Qualitative cases on MSCOCO. The hallucinated content is highlighted in red.
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