Beyond Single Models: Mitigating Multimodal Hallucinations via Adaptive
Token Ensemble Decoding

Anonymous ACL submission

Abstract

Large Vision-Language Models (LVLMs) have
recently achieved impressive results in multi-
modal tasks such as image captioning and vi-
sual question answering. However, they remain
prone to object hallucination—generating de-
scriptions of nonexistent or misidentified ob-
jects. Prior work have partially mitigated this
via auxiliary training objectives or external
modules, but often lacks scalability, adapt-
ability, or model independence. To address
these limitations, we propose Adaptive Token
Ensemble Decoding (ATED), a training-free,
token-level ensemble framework that mitigates
hallucination by aggregating predictions from
multiple LVLMs during inference. ATED dy-
namically computes uncertainty-based weights
for each model, reflecting their reliability at
each decoding step. It also integrates diverse
decoding paths to improve contextual ground-
ing and semantic consistency. Experiments on
standard hallucination detection benchmarks
demonstrate that ATED significantly outper-
forms state-of-the-art methods, reducing hal-
lucination without compromising fluency or
relevance. Our findings highlight the ben-
efits of adaptive ensembling and point to a
promising direction for improving LVLM ro-
bustness in high-stakes vision-language ap-
plications. Code is available at https://
anonymous. 4open.science/r/ATED.

1 Introduction

In recent years, large language models (LLMs)
have made significant breakthroughs in natural lan-
guage processing (Touvron et al., 2023; Chiang
et al., 2023; Achiam et al., 2023; Bai et al., 2023a)
and have been increasingly extended to vision-
language tasks, giving rise to large vision-language
models (LVLMs) (Ye et al., 2023; Liu et al., 2023;
Li et al., 2023a, 2024; Chen et al., 2024c,d; Bai
et al., 2023b). These models have demonstrated
strong capabilities in both understanding (Zhang
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Figure 1: Comparison of image-description generation
results from various LVLMs and our proposed ATED
method. Red text indicates hallucination. text
represents hallucination mitigating from ATED.

et al., 2025; Lai et al., 2024) and generating (Geng
et al., 2023) multimodal content.

However, LVLMs often suffer from the problem
of object hallucination, where the model gener-
ates details or objects that do not exist in the im-
age (Li et al., 2023d; Wang et al., 2023; Gunjal
et al., 2024; Liu et al., 2024b), significantly lim-
iting their reliability in high-stakes applications,
such as autonomous driving, medical image analy-
sis, and remote sensing, where factual correctness
and visual grounding are critical.

Early research on mitigating hallucinations pri-
marily focused on enhancing data quality and train-
ing paradigms. Specifically, diverse instruction-
tuning datasets and multi-task training approaches
were introduced to reduce the models’ tendency
to hallucinate during generation (Li et al., 2023c;
Liu et al., 2024a). Other methods adopted post-
hoc strategies by implementing output-checking
mechanisms to detect and correct hallucinated con-
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tent (Yin et al., 2024; Zhou et al., 2024).

More recently, training-free approaches have
emerged (Leng et al., 2023; Wang et al., 2024;
Huang et al., 2024). However, many of these meth-
ods rely on additional annotations, large-scale fine-
tuning, or complex inference, incurring substan-
tial human and computational costs. Furthermore,
single-model strategies are inherently limited by
the knowledge scope of the underlying model, re-
stricting generalization and adaptability. As shown
in Figure 1, existing LVLMs exhibit notable levels
of hallucination in image captioning tasks, high-
lighting the need for a more robust solution.

Ensemble learning (Polikar, 2012), which lever-
ages the collective intelligence of multiple models,
has proven highly effective at reducing errors and
enhancing robustness in traditional classification
and regression tasks (Mienye and Sun, 2022). More
recently, it has been successfully extended to text
generation tasks—particularly in LLMs—to im-
prove output accuracy and mitigate issues such as
hallucination (Jiang et al., 2023; Wan et al., 2024).
Inspired by these advances, this paper presents a
novel framework that integrates ensemble learn-
ing with diversified decoding strategies within the
autoregressive generation process, harnessing the
complementary strengths of different LVLMs. By
aggregating outputs from multiple models or de-
coding paths, our approach not only improves the
factual consistency and coherence of generated con-
tent, but also reduces the disparity in hallucination
tendencies across models—ultimately enhancing
the generalization and adaptability of LVLMs in
multimodal tasks.

To this end, we introduce Adaptive Token En-
semble Decoding (ATED)—the first fine-grained,
token-level ensemble strategy for multimodal
LVLMs. ATED is a training-free framework that
performs parallel inference across multiple LVLMs
and aggregates their output logits at the token
level. We estimate each model’s hallucination ten-
dency via output uncertainty, and use a greedy op-
timization algorithm to derive adaptive importance
weights by minimizing overall uncertainty. Further-
more, ATED incorporates diverse decoding paths,
substantially improving the factual accuracy and
reliability of generated outputs while maintaining
strong adaptability across diverse scenarios.

Our main contributions are as follows:

* We propose ATED, a training-free multi-
modal ensemble decoding method that mit-

igates hallucinations via fine-grained token-
level fusion.

* We introduce an uncertainty-minimization
weighting mechanism that dynamically as-
signs weights based on model confidence, im-
proving the reliability of ensemble decoding.

* Extensive experiments show that ATED con-
sistently outperforms existing methods across
multiple multimodal benchmarks, achieving
superior accuracy and robustness.

2 Related Work

Hallucination in LVLMs Hallucination was ini-
tially observed in LLMs, referring to generated
content that deviates from factual knowledge or
user intent (Jing et al., 2024; Liu et al., 2024b).
Large vision-language models (LVLMs) (Bai et al.,
2025; Zhang et al., 2023), which extend LLMs with
visual inputs, also exhibit hallucinations—typically
manifesting as mismatches between generated text
and visual content. Existing studies categorize hal-
lucinations in LVLMs into three main types: object
hallucination (Biten et al., 2021; Li et al., 2023d;
Rohrbach et al., 2019), attribute hallucination, and
relationship hallucination (Wu et al., 2024; Zhou
et al., 2024). Object hallucination refers to fab-
ricated or omitted objects; attribute hallucination
involves incorrect properties such as color or size;
relationship hallucination describes inaccurate rela-
tions among objects. These errors may arise from
visual misinterpretation, flawed reasoning, or over-
reliance on language priors.

Hallucination Mitigation in LVLMs To address
hallucination in LLLMs and LVLMs, researchers
have proposed a range of solutions, including im-
proved instruction tuning (Jiang et al., 2024; Liu
et al., 2024a; Yu et al., 2024a; Yue et al., 2024),
reinforcement learning with human or Al feed-
back (Gunjal et al., 2024; Kim et al., 2024; Li
et al., 2023b; Sun et al., 2023; Yu et al., 2024b,c),
retrieval augmentation, and structural model en-
hancements (Zhai et al., 2024). More recently, sev-
eral training-free decoding strategies have been
developed to suppress hallucination in LVLMs.
For example, conservative decoding methods ap-
plied to both original and perturbed inputs (Chen
et al., 2024b; Favero et al., 2024; Huo et al., 2025;
Leng et al., 2023; Wang et al., 2024; Woo et al.,
2024) aim to reduce overreliance on language pri-
ors. Techniques such as input distortion—applied



to either visual content or instructions—amplify
hallucinations to better identify and suppress them
through contrastive decoding. Token-level prun-
ing and related approaches (Favero et al., 2024;
Woo et al., 2024) also manipulate visual inputs to
mitigate hallucinations.

While existing methods mitigate hallucinations
to some extent from various angles, they often suf-
fer from limitations in scalability, generalizability,
and practical deployment. This paper, therefore,
focuses on reducing hallucinations in LVLMs with-
out requiring additional training or complex rea-
soning pipelines, with an emphasis on adaptability
to real-world applications.

3 Methodology

3.1 Preliminaries of LVLMs Generation

The generation mechanism of LVLMs can be de-
constructed into three core modules: Vision Lan-
guage Input, Model Forward Propagation, and Next
Token Decoding.

Vision Language Input. LVLMs take both vi-
sual and textual inputs. Typically, raw images
are processed by a vision encoder (e.g., a pre-
trained visual backbone), and the resulting fea-
tures are projected into the input space of the lan-
guage decoder via a cross-modal interface. These
visual features are represented as visual tokens
V = {v1,v,...,v,}, where n is the number of
visual tokens. Similarly, the textual input is to-
kenized into text tokens 7' = {t1,t2,...,tm} us-
ing a tokenizer, where m is the number of text
tokens. The visual and text tokens are then concate-
nated to form the final input sequence, denoted as
{zi,i € [0,n+m —1]}.

Model Forward Propagation. A large language
model (LLM) parameterized by ¢, such as Vi-
cuna (Chiang et al., 2023), generates responses
by conditioning on both the text and visual context.
Following the autoregressive generation paradigm,
LVLMs predict the probability of the next token
x; at time step ¢ based on the previously generated
tokens, the input text, and the visual features, over
the vocabulary set V. This process can be formally
expressed as:

p(z¢ | v,t, 1<) = softmax(logit, (z; | v, t, 7)),
zr€v (1)

where x; denotes the token at time step t, ¢ repre-
sents the sequence of previously generated tokens.

Next Token Decoding. Based on the predicted
probabilities p(z¢|v,t,x<), various decoding
strategies—such as greedy decoding, beam search,
and contrastive decoding (e.g., VCD)—can be ap-
plied to generate output. While these strategies can
marginally reduce hallucinations, they are typically
restricted to single-model outputs, cannot leverage
external knowledge, and fail to fully exploit com-
plementary strengths across different models. As
a result, they remain prone to errors, especially in
open-domain scenarios. In contrast, our method
adaptively fuses the token-level logits from mul-
tiple LVLMs that share the same vocabulary, im-
mediately after the forward pass. By leveraging
the diverse capabilities of different models, our ap-
proach more effectively mitigates hallucinations in
both general-purpose and task-specific settings.

3.2 Adapative Token Ensemble Decoding

To leverage the complementary strengths of diverse
LVLMs and enhance general task performance
while reducing hallucinations, we propose a token-
level ensemble decoding approach. Specifically,
we introduce Adaptive Token Ensemble Decod-
ing (ATED), a training-free, uncertainty-guided
fusion method that dynamically integrates multiple
LVLMs at inference time. The overall framework
is illustrated in Figure 2.

Given two or more LVLMs {};} at test time,
ATED fuses their output logits using adaptive
importance weights {A1,..., Ay}, where each
weight \; reflects how well model M; interprets
the visual and textual inputs. At each decoding step
t, each model M; takes the visual token sequence
V = {v1,v9,...,v,} and the text token history
T = {t1,ta,...,t;—1} to generate a logit score
pi = pi(ze | V,T) over the vocabulary. Assuming
all models share the same vocabulary, the logits
from the ¢-th model are computed as:

p(xi|v, t, x<t)0rig’i = LVLMs;(X<t)

)

where ¢ = 1, ..., M indexes the models, and p €
RY with v vocabulary size. ATED combines output
logits to obtain the final probabilities as:

M
p(xt‘v7t7x<t> = ( Ai pi)7 3)
2 A

- ’II,TLA?II,()(I'TI,
where p; is the decoding logits of model M;. We
assume that the weights \; € [0, 1] are normal-
1zed, i.e., Z£1 X; = 1. To further enhance robust-
ness, we additionally introduce multiple perturbed
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Figure 2: Overall pipeline of Adapative Token Ensemble Decoding (ATED). Given a set of candidate LVLMs,
a system instruction (inst), the original image, and its perturbed variants, the system produces multiple output
streams. We ensemble the logits from each LVLM using uncertainty-guided weights and employ greedy uncertainty
optimization to generate the final output. The entire process is dynamically repeated at each time step ¢ of token
generation, ensuring high reliability and consistency of the generated results.

variants of the original image I and employ con-
trastive decoding to effectively mitigate the back-
bone model’s hallucinations. Formally, contrastive
decoding can be expressed as:

pi,t = softmax [(1 + a) logit¢(xt | v,t, x<t)

—« logitd)(:rt | Ud,t,$<t):|a “4)

where d and « indicate distortion operation and
vision contrastive hyperparameter, respectively.

Inspired by Chen et al. (2024a); Qiu et al. (2025);
Dey et al. (2025), we propose utilizing the entropy
of probability distributions based on visual features
as an uncertainty metric when LVLMs generate
the next textual token. This metric reflects the
model’s token prediction confidence and associated
weights \; under current multimodal inputs. The
metric aligns with the training objectives of causal
language modeling. By analyzing prediction en-
tropy under visual conditions, we can evaluate the
model’s depth of understanding of specific visual
content, the quality of vision-language alignment,
and the distributional differences between the vi-
sual input and the model’s training data (Gonen
et al., 2024). This cross-modal uncertainty analysis
provides a novel perspective for assessing the gen-
eralization capabilities of multimodal large models
in open-world scenarios.

3.3 Uncertainty-Guided Weight

Uncertainty Minimization. Given a tokenized
input X at time ¢, its uncertainty score is defined

as the distribution entropy of X at that time, with
the following formula as:

Hiy(X) ==Y PiylogPiy, (5)
eV

where P;; represents the normalized probability
for the ¢-th token corresponding to vocabulary V,
conditioned on the preceding tokens x; according
to model M;.

We formulate the assignment of importance
weights across M models as an optimization prob-
lem that requires no training or labeled data, and
can be solved directly during next token prediction.
Formally, our optimization framework is defined
as follows:

Al A = argAf}?_{lAi - ZP(%W@) log p(xi|T<i),

M
p(zi|r<i) = softmax Z Aipi(ze|v, t, x <), 6)
i=0
where the weights \; are inversely proportional to
each model’s normalized uncertainty score—i.e.,
models with lower uncertainty are assigned higher

weights. All weights are constrained such that
M XNi=Tand )\ € [0,1].

Uncertainty Greedy Optimization. To address
the uncertainty minimization problem proposed in
Equation 6, we introduce an efficient greedy opti-
mization algorithm that incrementally ensembles
LVLMs. Specifically, we first compute the uncer-
tainty of each LVLM’s next-token prediction using
Equation 5, and then sort the LVLMs My, ..., M;



based on their uncertainties scores. Let the sorted
models be denoted as:

(M7, M3, ..., M|

)

7
, Hiy), @
where [M{, M5, ..., M}] are ordered by the low-
est to highest uncertainty scores, and set the weight
of the top-ranked model to A7 = 1 and A\j_; =
0,i={2,...,M}.

We then iteratively consider incorporating the
next-ranked model M}, into the current ensem-
ble. A grid search is performed over interpolation
weights \; with the step values between the two
models, and the fused logits are defined as:

= argsort (H1,t, e

p/\(ffi | 33<z') = Ap(i)(%’ | $<i)+
(1= X) p (| 2c).

Finally, we compute the uncertainty score un-
der each interpolation ratio with Equation 6, and
select the weight that minimizes the uncertainty
score. The same procedure is repeated to iterate
through all LVLM for the next step and iteratively
update the ensemble logits and weight allocation
accordingly. We can perform early stopping when
we find \(7) = 1, i.e., the effect of the current
LVLM is zero. The final generation is performed
using the output probabilities from the adapative
uncertainty-guided ensemble.

®)

4 Experiments

4.1 Experimental Settings
4.1.1 Datasets

‘We evaluate our model on three datasets as listed
below. More details are shown in the Appendix C.

POPE (Probability of Object Presence Estima-
tion). Lietal. (2023d) is a benchmark dataset for
evaluating object hallucination in LVLMs. POPE
integrates the MSCOCO (Lin et al., 2015), A -
OKVQA (Schwenk et al., 2022), and GQA (Hud-
son and Manning, 2019) datasets to form 27,000
query - answer pairs for evaluation. Performance
is quantified using standard metrics, including ac-
curacy, precision, recall, and F1 score.

CHAIR(The Caption Hallucination Assessment
with Image Relevance). Rohrbach et al. (2019)
is a dataset for evaluating object hallucination in
image captioning. CHAIR has two main variants:
CHAIR; and CHAIR;, focusing on instance and
sentence levels, respectively.

MME (Multimodal Large Language Model
Evaluation). Fu et al. (2024) assesses the per-
formance of LVLMs in terms of two core capabil-
ities: perception and cognition. In our evaluation,
we focus on four representative sub-tasks: object
existence, counting, position, and color. Model per-
formance is measured using the accuracy+ metric.

4.1.2 Models

We integrate our proposed method with four pop-
ular LVLMs: InstructBLIP (Dai et al., 2023),
MiniGPT-4 (Zhu et al., 2023), LLaVA-1.5 (Liu
et al., 2024c), and LLaVA-Next (Liu et al., 2024d).
All the LVLMs used have a language model size
of 7 billion parameters (7B). InstructBLIP and
MiniGPT-4 utilize a Q-former(Li et al., 2023a),
which represents an image using only 32 to-
kens, effectively bridging the visual and textual
modalities. LLaVA-1.5 and LLaVA-NeXT em-
ploy a linear projection layer to align features
from the two modalities. All LVLMs adopt pre-
trained vision encoders such as the CLIP vision en-
coder(Radford et al., 2021), along with pre-trained
large language models (LLMs) as language de-
coders, such as LLaMA(Touvron et al., 2023) or
Vicuna v1.1(Chiang et al., 2023). Complete experi-
mental details are provided in the Appendix. A.1

4.1.3 Baselines

For the object hallucination evaluation, we em-
ploy several widely used decoding strategies, such
as multinomial sampling (default), greedy decod-
ing, and four state-of-the-art training-free decoding
methods. Greedy decoding selects tokens step by
step by always choosing the one with the high-
est probability from the language model’s logits.
Based on greedy decoding, beam search maintains
a set of beams to explore a wider range of candi-
dates and eventually selects the best one among
them. OPERA(Huang et al., 2024) is an improved
method based on beam search ,it alleviates hallu-
cination by penalizing specific patterns of knowl-
edge aggregation. VCD(Leng et al., 2023) reduces
hallucination by decoding with noisy images in a
contrastive manner. ICD(Wang et al., 2024) miti-
gates hallucination by designing negative prompts
to interfere with the visual inputs during contrastive
decoding. SID (Huo et al., 2025) mitigateas hallu-
cinations by introspectively filtering low-relevance
visual signals during generation. For all the base-
lines, we use the default hyperparameters provided
by their original source code to ensure a fair com-



Model Method Random Popular Adversarial

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

default 83.86 82.68 80.82 79.54 76.42 76.61

OPERA 88.85 88.67 82.77 83.40 79.16 80.93

LLaVA-1.5 VCD 87.2 87.17 83.08 83.07 77.70 79.14

ICD 83.15 83.91 83.15 83.91 79.13 80.41

SID 89.46 89.62 85.13 85.94 83.24 82.21

default 81.44 81.21 79.06 79.12 76.29 76.99

OPERA 84.57 83.74 78.24 79.15 74.59 76.33

InstructBLIP VCD 84.91 84.08 81.89 81.46 79.97 79.90

ICD 81.12 82.25 81.12 82.25 76.82 78.99

SID 87.23 86.90 81.16 82.57 78.51 81.26

default 65.65 66.45 59.61 62.54 58.35 62.22

OPERA 79.91 77.6 73.78 72.23 71.76 70.64

MiniGPT4 VCD 67.79 68.54 62.42 65.24 60.17 63.94

ICD 71.89 75.63 64.58 75.33 61.77 67.61

SID 75.20 76.12 68.94 72.93 66.57 69.40

default 84.83 81.78 81.00 79.72 76.01 75.83

OPERA 88.41 87.33 82.69 83.48 79.22 79.40

LLaVA-NeXT VCD 86.01 85.20 81.90 82.23 78.00 79.12

ICD 82.14 82.09 81.95 81.87 79.24 78.89

SID 89.54 89.67 85.24 85.67 8243 81.51

ATED* 88.74 87.82 83.62 84.82 78.86 81.21

Ensemble ATED¥ 89.21 89.39 85.32 85.66 81.51 82.32

ATED# 89.83 89.35 86.71 85.97 82.96 82.78

Table 1: POPE evaluation results on different decoding strategies. Results are from the papers or re-implemented
based on official codes. Note:x denotes ours ensemble method without vision contrastive decoding, & denotes
ensemble with LLaVA-1.5 and InstructBLIP, # denotes ensemble with LLaVA-1.5, InstructBLIP and LLaVA-NeXT.

parison. We posit that our method, being LVLM-
agnostic, can be easily integrated into various off-
the-shelf LVLMs that share the same vocabulary.

4.2 Experimental Results

Results on POPE. We begin with the most
widely adopted benchmark for evaluating object
hallucination. Table 1 reports the average perfor-
mance across three evaluation settings—random,
popular, and adversarial—on various datasets,
where Default refers to the unmodified backbone
model. Our evaluation of ATED includes three
configurations: two distinct LVLM ensemble vari-
ants (ATED& and ATED#), as well as a ver-
sion (ATED*) based on the ATED¥ that ex-
cludes vision-contrastive decoding (ATED™). For
clarity, we highlight the best baseline results for
each backbone in bold. Compared to each respec-
tive backbone, ATED achieves improvements of
4.20%—6.29% in Accuracy and 6.29%—-6.97% in
F1-score. Furthermore, on both LLaVA-1.5 and
InstructBLIP, ATED consistently surpasses state-of-

the-art methods ICD and VCD, attaining additional
gains ranging from 0.89% to 5.10% in Accuracy
and 0.80% to 2.94% in F1-score, thereby effec-
tively mitigating hallucination issues.

Results on CHAIR. Beyond the binary “yes” or
“no” evaluations on the POPE benchmark, we fur-
ther validate the effectiveness of TADE in open-
ended image captioning using the CHAIR metric.
Specifically, we randomly sample 500 images from
the validation split of the MSCOCO dataset and
query various LVLMs with the prompt, ‘“Please
describe this image in detail.” As shown in Table ,
when setting the maximum new token length to
64, our proposed ATED method significantly out-
performs all baseline decoding approaches on the
CHAIR metric, achieving improvements of 81.57%
and 1.23% over the strongest baseline, respectively.
Notably, when increasing the generation length
to 512 tokens, ATED still attains the best perfor-
mance on the CHAIR metric, with an improvement
of approximately 30.0%. More detailed result are



LLaVA-1.. I BLIP MiniGPT4 LLaVA-NeXT
Type METHOD aVA-1.5 nstruct] iniG aVA-Ne
CHAIRs CHAIR CHAIRs CHAIR; CHAIRs CHAIR CHAIRs CHAIR;
Default 24.8 8.9 30.3 13.9 19.8 8.5 24.26 8.51
OPERA 21.8 8.2 28.4 9.7 22.6 8.2 21.33 7.73
Single VCD 23.6 8.6 30.0 11.2 22.0 10.6 23.27 8.34
ICD 21.0 8.7 21.8 8.2 20.0 8.7 20.59 8.54
SID 20.7 8.4 20.7 8.4 23.1 10.7 19.37 7.83
ATED* ATED#
Ours
Ensemble
CHAIR g CHAIR ¢ CHAIR g CHAIR
15.3 10.9 11.4 8.1

Table 2: CHAIR evaluation results on different decoding strategies. Results are from the papers or re-implemented based on
official codes. Note: & denotes ensemble with LLaVA-1.5 and InstructBLIP, # denotes ensemble with LLaVA-1.5, InstructBLIP

and LLaVA-NeXT.
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Figure 3: MME evaluation on hallucination subset
with decoding strategies in LLaVA-1.5(up) and Instruct-
BLIP(down).

provided in Appendix E.

Results on MME. We extend the evaluation to
include hallucinations at the object attribute level.
We further conducted a systematic and comprehen-
sive evaluation of the ATED method on the MME
hallucination subset, which includes object-level
tasks (existence identification and quantity judg-
ment) and attribute-level tasks (location identifica-
tion and color classification). As shown in Figure
4, ATED achieves the highest performance on loca-
tion questions, and attains nearly perfect accuracy
on existence-related questions. Our ATED method
significantly outperforms the default LVLMs and
other baseline methods across all four tasks (with
total score improvements of at least +61.7 and
+54.2 respectively).

Setting Method Accuracy F1 Score
Uniform 87.03 86.65
Random Confidence-based 88.13 86.76
ando Ours (w/o UGO) 89.30 87.78
Ours 88.97 88.29
Uniform 84.57 84.37
Popular Confidence-based 86.27 84.79
pu Ours (w/o UGO) 87.10 85.98
Ours 87.57 86.58
Uniform 81.07 81.65
Adversarial Confidence-based 84.77 83.40
Ours (w/o UGO) 85.17 84.25
Ours 85.37 84.64

Table 3: Average results on the POPE COCO bench-
mark comparing various weights fusion method.

In addition, we provide several qualitative cases
that proves ATED strong ability on mitigating hal-
lucinations. These cases uses the instructions with
“Please describe this image in detail.”, and details
are provided in Appendix E.3.

4.3 Ablation Studies

Adapative Uncertainty-Guided Weight. To fur-
ther validate the effectiveness of the adaptive
uncertainty-guided weighting strategy, we con-
duct an extensive comparative analysis of vari-
ous weighting approaches on the POPE bench-
mark. Specifically, we consider uniform weight-
ing, confidence-based weighting, and uncertainty-
guided weighting without the uncertainty greedy
optimization (UGO) module. As presented in Ta-
ble 3, our proposed ATED method delivers av-
erage improvements of 3.66% in Accuracy and
2.71% in F1 Score over the uniform weighting
baseline. Moreover, when the UGO module is re-
moved, the performance of the model ensemble
deteriorates to varying extents, indicating that the
lack of uncertainty-aware optimization impairs the



effectiveness of the ensemble strategy. These re-
sults clearly highlight the crucial role of adaptive
uncertainty-guided weighting—particularly when
enhanced by greedy optimization—in maximizing
the performance gains of multimodal model ensem-
bles. Overall, our findings provide strong empiri-
cal evidence that the proposed adaptive weighting
strategy is fundamental for robust and effective
multimodal integration.

Impact of Vision Perturbations. We further in-
vestigate the impact of visual perturbations on hal-
lucination reduction in LVLM ensemble decoding
across different tasks. Specifically, we conduct
systematic experiments on the POPE-MSCOCO
and MME benchmarks to evaluate the performance
of dynamic model ensembles under various condi-
tions, including the absence of visual perturbations
(Ours(0)) and different levels of perturbation inten-
sity. Experimental results in Table 4 demonstrate
that, without adaptation to visual perturbations,
the performance of multimodal ensemble reason-
ing significantly degrades on both the POPE and
MME datasets—for example, Accuracy decreases
by 1.4%, F1-score drops by 2.7%, and Accuracy+
decreases by 20. These findings further highlight
that introducing multi-path contrastive decoding
under visual perturbations can effectively mitigate
hallucinations and enhance reasoning performance.

Additionally, we conduct an ablation study on
the amplification factor between the output dis-
tributions of original and perturbed visual inputs,
denoted as the hyperparameter a in Equation 4,
to further validate the effect of visual contrast on
model performance. Detailed experimental results
are provided in Appendix E.2.

4.4 Performance Comparison of LVLMs
Ensemble Strategy.

To investigate the performance of different LVLMs
ensemble strategies across various tasks, we con-
ducted ensemble experiments on the MME and
POPE benchmarks usin LLaVA-1.5, InstructBLIP,
and LLaVA-NeXT. The results are presented in Ta-
ble 5. Our experiments reveal that when the perfor-
mance gap between models is large (e.g., Instruct-
BLIP and LLaVA-1.5 exhibit over a 10% difference
on the MME benchmark), simple uniform(U) of
token probabilities across models fails to improve
results and may even degrade overall performance
due to noise introduced by lower-performing mod-
els. Conversely, when the performance gap is small

Noi POPE | MME
oise
Accuracy F1 Score ‘ Accuracy+

Ours(0) 85.90 84.19 616.67
Ours(200) 87.04 85.86 636.67
Ours(500) 86.73 85.44 608.33
Ours(700) 86.88 85.49 591.67
Ours(999) 87.17 86.59 576.67

Table 4: Evaluation results on POPE and MME with
varying noise levels.

Model POPE MME
Accuracy  F1 Score  Accuracy+
InstructBLIP 78.93 79.11 1385.87
LLaVA-1.5 80.37 79.61 1715.40
+ InstructBLIP(U) 83.90 85.14 1437.84
+ InstructBLIP 85.35 85.79 1718.18
+ LLaVA-NeXT 86.55 86.13 1788.09

Table 5: Ensemble performance on POPE and MME
benchmarks

(for instance, LLLaVA-1.5’s F1 score on POPE ex-
ceeds that of LLaVA-NEXT by only about 5%),
probability averaging can yield improvements over
individual models. ATED overcomes these limi-
tations. Unlike uniform methods, ATED employs
an adaptive weighting strategy guided by uncer-
tainty, effectively overcoming the aforementioned
limitations and achieving stable performance im-
provements. This gives ATED greater robustness
and broader applicability.

5 Conclusion

In this paper, we propose ATED, the first training-
free multimodal ensemble decoding method that
effectively mitigates hallucinations across diverse
multimodal tasks. During inference, ATED per-
forms parallel processing with multiple LVLMs
and adaptively fuses token-level logits, enabling
finer-grained semantic control and more consistent
generation. By introducing an adaptive uncertainty-
guided weighting mechanism, ATED dynamically
adjusts model importance via uncertainty minimiza-
tion, enhancing reliability of ensemble inference.
Moreover, ATED supports diverse decoding paths,
further improving the factual consistency and ro-
bustness of generated content. Extensive experi-
ments show that ATED consistently outperforms
previous methods on multiple benchmarks, achiev-
ing notable gains in both accuracy and robustness.



Limitations

Despite ATED’s strong performance in mitigating
hallucinations and enhancing robustness, several
limitations remain. (i) ATED cannot address all
types of hallucinations in LVLMs, which is under-
standable since the method requires neither addi-
tional training nor modifications to model architec-
tures—factors that may constrain its effectiveness
in certain scenarios. (ii) The uncertainty minimiza-
tion framework relies on estimating output logits
over the vocabulary, but the accuracy of this es-
timation may fluctuate across different tasks and
models, potentially affecting the reliability of the
ensemble. (iii) Furthermore, our framework de-
pends on the estimation of logits over a shared vo-
cabulary among LVLMs; integrating models with
differing vocabularies remains an underexplored
area for future research.
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A More Backgrounds

A.1 Architecture of Vision-Language Models

Large Vision-Language Models (LVLMs) integrate
pretrained image encoders and large-scale language
models to support tasks such as image caption-
ing and visual question answering. Typically, a
frozen vision encoder such as CLIP extracts dense
image embeddings (Radford et al., 2021), which
are projected into the language space and fed into
a decoder-only LLM like LLaMA. Architectures
such as BLIP-2 (Li et al., 2023a) and InstructBLIP
(Dai et al., 2023) adopt this two-tower design and
align the modalities using lightweight adapters or
learned commands.

LLaVA-1.5 is a refinement over the original
LLaVA model, featuring a simplified architecture
and improved training pipeline. It employs CLIP-
ViT-L as the vision encoder and a Vicuna-based
decoder-only language model. The two modali-
ties are connected via a trainable MLP projection
layer, which maps visual tokens into the language
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embedding space. Trained with visual instruction
tuning on synthetic datasets, it achieves strong re-
sults across various benchmarks. (Liu et al., 2023)

InstructBLIP builds on BLIP-2 by introducing
an instruction-aware query transformer that condi-
tions the vision encoder’s output on task-specific
prompts. It integrates a pretrained Vision Trans-
former (ViT) with a Q-Former, feeding the encoded
visual queries to a language model such as Flan-T5
or Vicuna. It is trained using instruction tuning on
a collection of 26 datasets. (Dai et al., 2023)

MiniGPT-4 aims to replicate the capabilities of
GPT-4-based vision-language systems using open-
source components. It integrates a frozen ViT-
based vision encoder with Vicuna, connected via
a lightweight linear projection layer. Training in-
volves two stages: pre-alignment on image-text
pairs followed by fine-tunning on high quality im-
age descriptions. Its minimal parameter count en-
ables efficient multimodal alignment with strong
performance in image captioning. (Zhu et al.,
2023)

LLaVA-NEXT is an enhanced version of
LLaVA-1.5, optimized for higher visual reason-
ing fidelity. It retains the MLP projection structure
but augments training with improved instruction-
following datasets and higher-resolution visual in-
puts. It achieves better performance in OCR, com-
positional reasoning, and world knowledge bench-
makrs. (Liu et al., 2024d)

A.2 Ensemble Learning in NLP

Ensemble learning has long been a reliable strat-
egy in machine learning to improve robustness,
reduce overfitting, and enhance generalization. By
combining the predicitions of multiple models or
decision rules, ensembles can correct individual
biases and reduce the variance of outputs (Diet-
terich, 2000), Classical ensemble methods include
bagging, boosting, and stacking, all of which have
demonstrated strong performance in classification
tasks such as sentiment analysis, topic classifi-
cation, and named entity recognition (Opitz and
Maclin, 1999).

In the domain of Natural Language Processing
(NLP), ensemble methods have been applied exten-
sively in both structured prediction and generation
tasks. For example, ensemble decoding, which
involves averaging or voting across multiple lan-
guage models. has been shown to improve fluency
and factuality in neural machine translation (Sen-
nrich et al., 2016). Recent work has also explored
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ensemble inference for large language models, ag-
gregating outputs per-token-level logits from mul-
tiple sources to improve consistency and reduce
hallucination

In multimodal learning, ensemble approaches
are gaining traction as a decoding-level interven-
tion. Rather than relying on a single model’s out-
put, ensembles constructed across different model
variants or decoding stratigies can better capture
complementary evidence, making them suitable for
suppressing the hallucination in vision-language
tasks.

B Details about Baseline

To mitigate hallucination without retraining, a va-
riety of decoding-time techniques have been pro-
posed:

e ICD: (Wang et al.,, 2024) Instruction-
Contrastice Decoding leverages instruction-
level perturbations to reduce hallucination in
multimodal large language models. It operates
by introducing minimal semantic alterations
to the input prompt, such as inserting irrele-
vant phrases or modifiying the question struc-
ture, and then comparing the model’s output
distributions under both the original and per-
turbed instructions. Tokens exhibiting insta-
bility across these variants are identified as po-
tentially hallucinated and are downweighted
during generation.

SID (Self-Introspective Decoding): (Huo
et al., 2025) Self-Introspective Decoding miti-
gateas hallucinations by introspectively filter-
ing low-relevance visual signals during gener-
ation. It evaluates the contextual alignment of
visual tokens with both the preceding textual
context and the decoding history, retaining
only those with strong semantic relevance. By
pruning distractive or semantically weak vi-
sual features early in decoding, SID improves
grounding accuracy, particularly in complex
or visually dense scenarios.

* VCD (Visual-Contrastive Decoding): (Leng
et al., 2023) Visual-Contrastive Decoding
aims to improve visual consistency by intro-
ducing small-scale perturbations to the visual
input and contrasting the model’s responses.
The approach applies controlled distortions,
such as Gaussian blur, occlusion, or token
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masking, to the image embeddings and mea-
sures output divergence. Tokens highly sensi-
tive to such perturbations are treated as visu-
ally fragile and are penalized during decoding.

* OPERA (Overtrust Penalty with Retro-
spective Adjustment): (Huang et al., 2024)
Overtrust Penalty with Retrospective Adjusti-
ment introduces a two-stage mechanism to ad-
dress hallucination in multimodal generation:
overtrust penalty and retrospective adjustment.
During decoding, it applies a regularization
term to suppress overconfident token predic-
tions that exhibit weak visual grounding. Af-
ter generation, a retrospective evaluation is
performed to re-rank or adjust outputs based
on their semantic agreement with the image.

* Ensemble Decoding (ED): (Cho et al., 2025)
Ensemble Decoding combines multiple gen-
eration pathways to improve robustness and
reduce hallucination. It operates by aggregat-
ing outputs from a set of models or decoding
configurations, such as different random seed,
visual crops, or temperature settings, and fus-
ing them through majority voting, logit aver-
aging, or response re-ranking. This ensemble
process helps to mitigate the influence of un-
stable or outlier predicitions by emphasizing
consensus across multiple decoders

All these methods operate without modifying
model parameters, offering flexible, training-free
solutions for enhancing visual faithfulness during
inference.

C Evaluation Metric Details

The Polling-based Object Probing Evaluation
(POPE) benchmark is a systematic framework
designed to assess object hallucination in Large
Vision-Language Models (LVLMs) during image
description tasks. POPE employs a binary question-
answering format, using prompts such as "Does the
image contain ___?" to evaluate a model’s ability
to accurately determine the presence or absence of
specific objects within images. To construct nega-
tive samples—instances where the object is absent
from the image—POPE utilizes three distinct strate-
gies: random sampling involves selecting objects
that do not appear in the image at random; pop-
ular sampling selects absent objects from a pool
of frequently occurring objects across the dataset;



adversarial sampling prioritizes objects that com-
monly co-occur with present objects but are absent
in the current image. The benchmark integrates
three datasets: MSCOCO, A-OKVQA, and GQA.
From each dataset, 500 images are selected, and
six questions are generated per image, resulting in
a total of 27,000 query-answer pairs for evaluation.
Performance is measured using standard metrics,
including accuracy, precision, recall, and F1 score,
with higher values indicating a model’s superior
capability in mitigating hallucinations such as fab-
ricated objects and erroneous descriptions.

The Caption Hallucination Assessment with
Image Relevance (CHAIR) metric is a specialized
evaluation framework designed to quantify object
hallucination in image captioning models. CHAIR
assesses the alignment between generated captions
and the actual visual content by comparing the
objects mentioned in the captions against ground-
truth annotations from datasets like MSCOCO.

_ |{hallucinated objects}|

Cs = 9

s |{all mentioned objects} | ©)

Cr — |{captions w/ hallu(‘jinated objects}| (10)
|{all captions}|

The metric comprises two variants: CHAIRIi

(instance-level) and CHAIRs (sentence-level).
CHAIRI calculates the proportion of hallucinated
object mentions relative to all object mentions in
the generated captions, while CHAIRs measures
the fraction of sentences that contain at least one
hallucinated object. Lower values in both metrics
indicate better performance in mitigating object
hallucinations .

The Multimodal Model Evaluation (MME)
benchmark offers a comprehensive framework for
assessing Large Vision-Language Models (LVLMs)
across a spectrum of tasks, encompassing both
perceptual and cognitive dimensions. Specifically,
MME comprises ten perception-oriented subtasks
and four cognition-focused ones, facilitating a
holistic evaluation of LVLM capabilities .In the
context of object-level hallucination evaluation,
MME includes dedicated subsets targeting the "ex-
istence" and "count" tasks. The "existence" task
assesses a model’s ability to accurately identify the
presence or absence of specific objects within an
image, while the "count" task evaluates the model’s
proficiency in determining the correct number of
instances of a given object.These tasks is quan-
tified using a combined metric of accuracy and
accuracy+. Accuracy measures the proportion of
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correct predictions, while accuracy+ accounts for
near-correct responses.

D Implementation Details

In all experimental settings, the hyper-parameter
« is fixed at 1. For visual perturbations in the
model ensemble, we adopt a noise-injection strat-
egy, setting the noise steps 1" to 200 for MME,
500 for LLaVA-Bench, and 999 for POPE. For
OPERA, VCD, and SID, we use the default set-
tings as specified in their original papers. Greedy
decoding is used for comparison methods, while for
open-ended generation tasks (such as CHAIR and
LLaVA-Bench), we employ sampling with Top-p
= 1. All experiments are conducted on Nvidia A40
GPUs.

E More Detailed Comparison

E.1 More Results on on CHAIR

The hyperparameter max new tokens, which con-
trols the maximum length of generated responses,
plays a critical role in CHAIR-based evaluation.
In the main text, we report results using a setting
of max new tokens = 64. Additional results un-
der a relaxed constraint of max new tokens = 512
are provided in Table 6. As Table illustrates, the
generation length limit has a substantial impact
on LVLM performance under the CHAIR metric.
when the token budget is increased from 64 to 512,
our method consistently outperforms all baselines
on the metric CHAIR g, highlighting its robustness
and adaptability under varying generation lengths.
Furthermore, our model produces responses with
an average length of 107.4 tokens as shown in Ta-
ble 7 , indicating that the observed reduction in
object hallucinations is achieved without compro-
mising the richness of the generated descriptions.

E.2 More Results on on MME

ATED is designed to integrate the expertise of mul-
tiple models, thereby bridging the hallucination gap
that exists among different LVLMs during infer-
ence. To further investigate whether our approach
not only preserves but also potentially enhances the
fundamental perception and reasoning capabilities
of LVLMs across a broader range of multimodal
tasks, we also analyze the comprehensive perfor-
mance on the MME benchmark, which consists of
14 sub-tasks for evaluating perception and recog-
nition. As shown in Table 8, our method (Ours4)
significantly outperforms all baseline approaches



LLaVA-1.. I BLIP MiniGPT4 LLaVA-NeXT
Type METHOD aVA-1.5 nstruct] iniG aVA-Ne
CHAIRg CHAIR; CHAIRg CHAIR; CHAIRg CHAIR; CHAIRg CHAIR;
Default 51.3 16.8 55.6 242 33.6 19.4 42.6 14.1
OPERA 46.4 13.0 47.1 12.4 26.4 10.7 394 11.8
Single VCD 51.7 15.6 51.0 16.7 30.4 14.2 41.1 12.9
1ICD 47.4 13.9 46.3 15.3 32.6 13.1 42.1 12.6
SID 44.2 12.2 42.3 12.4 28.5 11.7 40.8 13.0
ATED* ATED#
Ours
Ensemble
CHAIR g CHAIR CHAIR g CHAIR
34.0 17.1

Table 6: CHAIR evaluation results on different decoding strategies. Results are from the papers or re-implemented based on
official codes. Note: & denotes ensemble with InstructBLIP, # denotes ensemble with InstructBLIP and LLaVA-NeXT.

Method Length
Default 100.6
OPERA 98.6
VCD 100.4
ICD 106.3
Ours”  107.4

Table 7: Comparison of CHAIR performance across
different methods in terms of output length on LLaVA-
L.5.

Method Accuracy+
Default 1715.40
OPERA  1773.52
VCD 1756.02
ICD 1749.43
SID 1770.43
Ours”  1788.09

Table 8: Comparison of total accuracy+ cacross different
methods on LLaVA-1.5.

based on the LLaVA-1.5 backbone, surpassing both
the original LVLMs and the best-performing base-
lines by a substantial margin (+18.34). These re-
sults indicate that our approach not only effectively
manages hallucination during inference but also
improves the accuracy of the underlying LVLMs
on fundamental tasks.

Table 9 presents the quantitative evaluation re-
sults of the model under different o values on
object-level metrics (Existence, Count), attribute-
level metrics (Position, Color), and the overall ac-
curacy (Total Accuracy+). As aincreases from 0.5
to 1.0, all metrics demonstrate varying degrees of
improvement, with Color showing the most sub-
stantial gain—from 140 to 155. These improve-
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ments are reflected in the Total Accuracy+, which
rises from 595.00 to 636.67 as « increases. More-
over, we observe that attribute-level metrics are
more sensitive to changes in the intensity of vision-
contrastive regularization compared to object-level
metrics, resulting in greater improvements. This
finding indicates that appropriately tuning the «
parameter not only enhances the model’s ability
to confirm object information during adaptive en-
semble inference but also significantly improves
its capability to capture fine-grained attribute de-
tails. As a result, the overall prediction accuracy
and robustness are further strengthened.

E.3 Qualitative Analysis

To further evaluate whether ATED effectively mit-
igates hallucinations beyond quantitative metrics
in open-ended generation tasks, we conducted a
qualitative analysis on the MSCOCO dataset, us-
ing several decoding strategies as baselines. The
LVLMs are prompt with "Please describe this im-
age in detail”, with the maximum token limit set
to 150. As illustrated in Figure 8 and Figure 9,
baseline methods including the default decoding,
OPERA, and VCD often produce hallucinated con-
tent (highlighted in red). In contrast, ATED dynam-
ically selects and weights token-level outputs from
multiple models at each decoding step, guided by
a greedy uncertainty-minimization strategy. This
enables the model to better adapt to contextual envi-
ronments and significantly improves the credibility
and robustness of the generated content.

In addition, we perform GPT-assisted evalua-
tion on the LLaVA-Bench benchmark (Liu et al.,
2023). Following evaluation protocol proposed by
(Yin et al., 2024; An et al., 2025), the model is
presented with an image and two candidate descrip-
tions, structured according to the prompt format



Object-Level Attribute-Level Total Accuracy-+

Existence Count Position  Color

0.5 180.00 143.33 131.67 140 595.00
0.7 180.00 143.33 136.67 140 600.00
1.0 185.00 158.33 138.33 155 636.67

Table 9: Quantitative results on Object-level (Existence, Count), Attribute-level (Position, Color), and Total
Accuracy+ for using various noise steps.

shown in Figure 5. The GPT-40 API is employed
to evaluate the generated responses in terms of fac-
tual accuracy (Accuracy) and descriptive richness
(Detailedness).

Furthermore, we conducted an additional eval-
uation based on GPT-4, following the methodol-
ogy outlined in (Zhao et al., 2023). Specifically,
we randomly sampled 200 images from the Visual
Genome (VG-100K) dataset (Krishna et al., 2017)
and assessed model performance by comparing the
generated descriptions with the region descriptions
associated with each image. This comparison al-
lows for effective identification of hallucinated con-
tent based on semantic inconsistencies. We com-
prehensively analyzed five key metrics: sentences
per image (SPI), words per image (WPI), halluci-
nated sentence ratio (HSR), hallucinated word ratio
(HWR), and mean hallucination ratio (MHR). No-
tably, higher SPI and WPI values, as well as lower
HSR, HWR, and MHR, indicate better model per-
formance. In the radar charts, a larger area reflects
superior performance. Multiple models and de-
coding strategies were included as baselines for
comparison. The detailed results are presented in
Figure 4. As shown, the proposed ATED method
substantially reduces hallucination and effectively
suppresses misleading content during generation.

Ours LLaVA-15: Default ~—— LLaVA-1.5:VCD ~ —— InstructBLIP

Figure 4: GPT-4 assisted hallucination evaluation.
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GPT-40 Prompt

You are an AI designed to evaluate and score the performance of two AI
assistants in describing a given image. Your primary focus is on the
accuracy and detailedness of their descriptions. You will assess the
accuracy by checking for hallucinations—any part of the description
that is inconsistent with the image content. For detailedness, you
will consider how rich the response is in necessary details, excluding
any hallucinated parts. You will provide scores on a scale from 1 to
10 for each assistant separately, based on these criteria. After
scoring, you will offer an explanation for your evaluation, ensuring
it is free from bias and not influenced by the order of presentation
of the responses.

Input format:
[Assistant 1]

{}

[End of Assistant 1]
[Assistant 2]

{}

[End of Assistant 2]
Output format:
Accuracy:

Scores of the two answers:
Detailedness:

scores of the two answers:

Figure 5: GPT-40 prompt format.
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GPT-40 Evaluation: LLaVA-1.5
(OPERA)
Accuracy: 4/10
Detailedness: 5/10

GPT-40 Evaluation: Ours
Accuracy: 9/10
Detailedness: 7/10

a Instr: Please describe this image Max New
in detail Token = 150

g

4 The image depicts a large, white skyscraper towering
LLaVA-1 5 overa city with a clear blue sky in the background.
OPERA The skyscraper is located in the center of the city,
surrounded by other buildings of various heights. The
city is bustling with activity, as evidenced by the
esence of el d ki e
bel e sk er.

ee

a  The image you've shared is a close-up of a tall, slender

Ours tower. The tower is predominantly white, with a few
black accents that add a touch of contrast. The tower
is situated in a city, as evidenced by the buildings and

structures that surround it.

Accuracy: Assistant 1: This description contains significant
hallucinations. The structure in the image is the Space Needle in
Seattle, which is not a "large, white skyscraper" and does not
resemble one. It is a single, iconic observation tower with a
distinct design. The claim of "numerous cars and trucks on the
streets" is also inaccurate, as there are no visible streets
bustling with traffic in the image. Assistant 2: This response is
mostly accurate. The description identifies the subject as a
"tall, slender tower" that is "predominantly white with a few
black accents," which matches the appearance of the Space
Needle. It also matches the setting by mentioning the city with

surrounding buildings.

Detailedness: Assistant 1: While this response attempts to
provide a more elaborate description of the setting, most of the
details are fabricated and therefore detract from the
evaluation. It does not mention defining features of the tower,
such as its observation deck, tapered legs, or unique aesthetic.
Assistant 2: This description is more concise but relatively to
the point. The mention of black accents and the general shape of
the tower improve its detailedness. However, it omits several
crucial features, such as the observation deck, the flag, and the
surrounding greenery in view.

Figure 6: Qualitative cases on LLaVA-Bench. The hallucinated content is highlighted in red.
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Q A cute little dog is laying down on a wooden floor, resting

its head on its paws. The dog is white and brown in color
2 Instr: Please' dzsi"i:’e this image u'axésl‘sand appears to be sleeping on a blue-colored surface.
in detai
Max New
Token = 150
Q The image features a small dog with a predominantly white
Monnnv Ours S°at. lying on its side on a wooden surface. The dog appears

to be resting or sleeping, with its head comfortably resting
on the wooden surface. The background is out of focus, but
it seems to be an indoor setting.

"ls-I- “0“nnv which is inaccurate. The dog's coat is light tan with slight white
= n markings, and it is lying directly on a blue wooden floor, not "a blue-

colored surface" like a blanket. Additionally, Assistant 1 claimed the
dog was "resting its head on its paws" which is not the case—its head
is resting on the floor. Assistant 2, on the other hand, provided an

Accuracy: Assistant 1 incorrectly described the dog as "white and
brown" and stated that it was "sleeping on a blue-colored surface"

- accurate description of the dog and its environment, correctly
izzl;z E,":'}T;'o"' e (76 identifying that the dog is lying on its side on the blue wooden floor
Detaile d)rl'n.ess: 6/10 and avoiding any inaccurate claims.

GPT-40 Evaluation: Ours Detailedness: Assistant 1 included some descriptive details, such
Accuracy: 9/10 as identifying the dog's coloration (albeit inaccurately) and the
Detailedness: 7/10 mention of the "blue-colored surface". However, these inclusions

were not meaningful due to inaccuracies. Assistant 2 provided
sufficient and accurate details without adding unnecessary or
hallucinated elements, such as describing the dog, its position, and
the surrounding background accurately. Assistant 2's response is
slightly more detailed due to a richer contextual hint about the
background being "out of focus" and the scene being "an indoor
setting."

Figure 7: Qualitative cases on LLaVA-Bench. The hallucinated content is highlighted in red.
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'LLaVA 1.5 (VCD): The image features a woman lying
.on a bed, with her head resting on her hand. She appears
1o be Iookmg at_the camera, possibly posing for a picture.
(| The bed is covered with a striped blanket, adding a cozy
1 touch to the scene.

'LLaVA 1.5 (OPERA): The image features a beautiful
.young woman sitting_on a couch, wearing a white shirt. She
tappears to be posing for the camera, possibly for a
'magazine or advertisement. The couch she is sitting on has
1a striped pillow, adding a touch of color to the scene.

” { ot o\

Instr: Please describe
this image in details | InstructBLIP (OPERA): The image features a young
iwoman lying on a bed, wearing a white shirt and a red
'|lpS1‘le She is positioned in the middle of the bed, with

‘her_hair_cascading_down her back. There are two pllow
wisible in the scene, one on the left side of the bed and

Max new token = 64

:OUI'SI The image features a beautiful young woman with
tlong, dark hair. She is lying down on a bed, dressed in a
:whife shirt. The bed she is on is covered with a white

icomforter.
1

Figure 8: Qualitative cases on MSCOCO. The hallucinated content is highlighted in red.
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'LLaVA 1.5 (VCD): The image features a woman sitting
.a'r a dining table, holding a Iar'ge pizza in her hands. She is
lsmllmg and appears to be enjoying the moment. The plzza
|s placed in the center of the table, and the woman is
.posmoned on the left side of the Table

\LLaVA-1.5 (OPERA): The image features a woman
lsnﬂ'mg at a dining table, holdmg up a large pizza with a
\smile on her face. The pizza is placed in front of her,
.occupymg a sugmfucanf portion of the table. There are
i1several other people in the scene, some sitting_and others
| standing_around the dining

\InstructBLIP (OPERA): The image features a woman
1sitting at a dining table, holding a large pizza in her hands.
'She is smiling and appears to be eager to share the pizza
\with others. There are several chairs placed around the
Max new token = 64 itable, suggesting that there are other people present.

Instr: Please describe
this image in details

10urs: The image features a woman sitting in front of a
'dmmg table. She is holding a large pizza in her hands,
whlch is placed on the table. The woman appears to be in

rrhe process of serving the pizza, as she is holding it up.
1

Figure 9: Qualitative cases on MSCOCO. The hallucinated content is highlighted in red.
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