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Abstract

Deep generative models have recently been proposed for sampling protein confor-
mations from the Boltzmann distribution, as an alternative to often prohibitively
expensive Molecular Dynamics simulations. However, current state-of-the-art ap-
proaches rely on fine-tuning pre-trained folding models and evolutionary sequence
information, limiting their applicability and efficiency, and introducing potential
biases. In this work, we propose a flow matching model for sampling protein
conformations based solely on backbone geometry – BBFlow. We introduce a
geometric encoding of the backbone equilibrium structure as input and propose to
condition not only the flow but also the prior distribution on the respective equilib-
rium structure, eliminating the need for evolutionary information. The resulting
model is orders of magnitudes faster than current state-of-the-art approaches at
comparable accuracy, is transferable to multi-chain proteins, and can be trained
from scratch in a few GPU days. In our experiments, we demonstrate that the
proposed model achieves competitive performance with reduced inference time,
across not only an established benchmark of naturally occurring proteins but also
de novo proteins, for which evolutionary information is scarce or absent. BBFlow
is available at https://github.com/graeter-group/bbflow.

1 Introduction

In recent years, the field of protein structure prediction has been revolutionized by geometric deep
learning [19, 9, 27]. Jumper et al. [19] introduced AlphaFold 2, which predicts a protein’s structure
using patterns found in naturally occurring protein sequences, so-called evolutionary information,
upon inference. On the other hand, advancements in generative modeling such as diffusion [39] and
flow-matching [29, 3, 41] have propelled the field of protein design, where several approaches for the
generation of novel protein structures have been proposed [45, 51, 6]. Plausible protein structures
conditioned on symmetry or a motif can be designed without requiring an input sequence [15, 14, 52].

Both, protein structure prediction and design methods, generate a single equilibrium structure of a
protein. In contrast, protein function depends on structural dynamics [34, 11, 4], that is, the protein’s
conformational ensemble as given by the Boltzmann distribution, assuming thermal equilibrium. To
sample from the Boltzmann distribution, Molecular Dynamics (MD) simulations are an established
method in the field [2]. However, covering the state space extensively with MD requires long
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Figure 1: Schematic representation of BBFlow. The equilibrium backbone structure xeq of an input
protein is used to condition an SE(3) Flow Matching model on the generation of protein backbone
conformations x1. Already the prior p0 of the flow matching process is conditioned on the input
protein via partial geodesic interpolation between pure noise and the equilibrium backbone structure.

simulation times in order to satisfy ergodicity by overcoming local free energy minima, making
conformational sampling often prohibitively expensive. Recently, generative models have been
suggested for emulating the sampling of MD conformations, offering inference times that are orders
of magnitudes faster than MD [33].

For proteins, current state-of-the-art approaches for such generative models rely on modifications of
AlphaFold 2, where noise is introduced into the MSA [46], the pre-trained folding model is fine-tuned
on ensemble data [16], or the structure block is replaced by a diffusion model [23]. While these
approaches are capable of generating realistic conformational ensembles, their efficiency is limited
since they depend on large pre-trained folding models or the sampling of each state requires to predict
the overall fold of the protein from the sequence. Consequently, the models rely on processing of
evolutionary information such as MSA or weights from protein language models like ESM [26]. This
renders the models not only expensive, but can in addition introduce biases for sequences where
evolutionary information is scarce or, as for de novo proteins, absent [27].

Main contributions In this work, we introduce BBFlow, a generative model for MD-derived protein
conformational ensembles based on backbone geometry that is more than an order of magnitude
faster than the current state-of-the-art model AlphaFlow [16], at similar accuracy. To the best of
our knowledge, it is the first protein ensemble generation model shown to be applicable not only
to monomeric but also to multi-chain proteins. BBFlow relies on two key innovations. (1) We
formulate conformational ensemble prediction as protein structure generation task, conditioned on
a geometric encoding of the equilibrium structure and (2) propose a conditional prior distribution
for flow matching based on geodesic interpolation (Fig. 1). Notably, our work shows that neither
pre-trained weights from a folding model nor evolutionary sequence information are necessarily
required to generate conformational ensembles as observed in 300 nanoseconds (ns) of MD.

For benchmarking BBFlow, we train and test the model on the ATLAS dataset [42], which contains
a curated set of 300 ns long Molecular Dynamics trajectories for 1390 proteins – the same dataset
used for training AlphaFlow. We also test BBFlow on MD trajectories of de novo proteins, where we
find similar performance as for naturally occurring proteins while AlphaFlow fails if the equilibrium
structure is not provided as template. We show that BBFlow – although trained only on monomeric
proteins – can generalize to multi-chain proteins, which are not covered by other baselines.

1.1 Related Work

Ensemble generation Previous deep learning approaches for sampling conformational ensembles
that apply invertible neural networks [33] or equivariant flow matching [21] usually require training
on the specific system of interest. For proteins, a transferable model, AlphaFlow, has been recently
proposed [16], relying on fine-tuning the pre-trained folding model AlphaFold 2. Li et al. [24]
propose to speed up AlphaFlow upon inference time by only calling the evoformer once, however,
the model is not publicly available and only a subset of metrics is reported.
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Generating standardized MD-emulating ensembles AlphaFlow is trained on the ATLAS dataset
[42], which contains MD conformations obtained in a standardized setting – via three times 100 ns
long simulations at the same temperature, force field and water model. Training models to generate
such standardized ensembles, which we refer to as MD emulation, is important for evaluating their
distributional accuracy quantitatively. This is because ensemble metrics strongly depend on the
duration and temperature of the corresponding MD (see also Tab. A.3).

Next to AlphaFlow, also ConfDiff [44], a diffusion model that relies on a pre-trained sequence
representation of AlphaFold 2, and MDGen [17], a model that generates ensembles of molecules in
all-atom representation with consistent time evolution, are trained on the ATLAS dataset.

Generating other ensembles There is also interest in generating protein ensembles that do not
strictly follow a certain distribution induced by a fixed MD time and temperature but rather sampling
general alternative states, such as BioEmu [23]. We discuss such models in App. A.4 and Tab. A.3.

2 Background

2.1 Flow Matching for protein structure generation

Flow Matching In order to sample from a target distribution p1 : M → [0, 1] on the data domain
M, Lipman et al. [29] have proposed flow matching as generalization of diffusion models [39].
A learned flow ϕ : M × [0, 1] → M is used to transform samples x0 ∼ p0 from a simple prior
distribution p0 to samples ϕ(x0, 1) from the target distribution p1. The key idea is to learn a time-
dependent flow vector field

v(x, t) : M× [0, 1] → TxM, (x, t) 7→ v(x, t), (1)

where TxM is the tangent space at point x. The flow ϕt ≡ ϕ(·, t) is then defined by vt via integration
of the flow ODE,

d

dt
ϕt(x) = v(ϕt(x), t), ϕ0(x) = x . (2)

The vector field vt can be learned by sampling x0 ∼ p0 and x1 ∼ p1, connecting them by a particle-
wise flow ψ(x0, x1, t) and regressing on the time derivative of ψ [29]. On Riemannian manifolds, ψ
is usually chosen as geodesic [8].

Application to protein structure A protein backbone can be represented as a sequence of Euclidean
frames x = (r, z) ∈ SE(3) [19], each of which consists of a rotation r ∈ SO(3) and a translation
z ∈ R3. A flow matching process for protein structure can thus be formulated on the Riemannian
manifold M ≡ SE(3)N . By choosing the metric on SE(3)N as in [50], the geodesic paths can be
split into independent rotation and translation parts for each residue. Typically, one parametrizes both
the ground truth and predicted vector field by a current structure xt and a final structure x1. It can be
shown [50, 6] that the vector field components are then given by

vSO(3)(rt, t|r1) =
logrt (r1)

1− t
, vR3(zt, t|z1) =

z1 − zt
1− t

. (3)

A common choice for the prior distribution p0 is independent Gaussians for the translations z0 ∼
N (0, σ2) and uniform distributions for the rotations r0 ∼ U(SO(3)) [50].

2.2 Evolutionary sequence information

In order to determine the structure of a protein, the challenging task of mapping from a one-
dimensional sequence representation to a three-dimensional backbone geometry needs to be solved.
To achieve this, folding models like AlphaFold 2 rely on evolutionary information in the form of
Multiple Sequence Alignment (MSA) – an algorithm that aligns the input sequence with related natu-
rally occurring protein sequences from a database during inference and training to identify patterns
that encode information on folding states such as pairwise contacts. The calculation of an MSA
during inference is computationally expensive. A more efficient strategy is to encode evolutionary
information by extracting weights from a protein language model [36], which can be seen as learned
evolutionary information [27]. While evolutionary information has been shown to be beneficial
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for predicting ensembles or alternative folding states [46], there is rising interest for methods that
perform well also without relying on evolutionary information [12, 53], which is not available for
de-novo proteins or the disordered proteome.

3 Method

In this work, we propose to decouple protein conformational ensemble generation from the structure
prediction task and introduce a generative model based purely on backbone geometry that does not
rely on evolutionary sequence information. We achieve this by conditioning both the flow and the
prior on the equilibrium structure of the protein.

Conditional flow matching for ensemble generation Inspired by FrameFlow [50], a flow match-
ing model for protein structure design, we formulate MD emulation as structure generation task,
conditioned on the equilibrium state of the respective protein. In particular, we express the Boltzmann
distribution of a given protein as probability distribution p(x|xeq) of conformations x, conditioned on
the equilibrium state xeq of the respective protein. In order to sample from p(x|xeq), we learn a flow
vector field,

v(x, t, xeq) : M× [0, 1]×Meq → TxM , (4)

that receives protein equilibrium states xeq ∈ Meq as additional input. This defines a conditional
flow ϕt by

d

dt
ϕt(x|xeq) = v (ϕt, t, xeq) , ϕ0(x|xeq) = x . (5)

Crucially, by conditioning the generation not on the sequence but the equilibrium structure, we
eliminate the need for evolutionary information and pre-trained folding model weights. We summarize
the training procedure in Algorithm 1.

We note that assuming the availability of an equilibrium structure is reasonable because, as MD
emulator, the use-case of the model is to offer an alternative to MD simulation, which also requires
an initial structure (see A.1). If only a sequence is available, both MD and BBFlow first require a
structure prediction with a folding model. In Tab. A.1, we show that BBFlow remains accurate and
fast if used as sequence-to-ensemble model in combination with AlphaFold 2.

Model architecture In order to learn the conditional flow vector field vt, we adapt the model
architecture of the recent protein design model GAFL [43], which is an extension of the FrameDiff
architecture proposed by Yim et al. [51]. The input features include the frames xt at time t, their
pairwise spatial distances, and the flow matching time t. Crucially, in contrast to common protein
structure architectures [51, 50, 19, 16], we do not use the residue indices as input feature. The
reasoning behind this choice is that the ordering of the residues in the chain is already encoded
geometrically in the equilibrium structure. Removing the residue index as an input feature reduces
memorization and enables transferability from monomers to multi-chain proteins as explained in
Sec. 4.3.

The neural network is an SE(3) equivariant graph neural network, which uses invariant point attention
(IPA) [19] as core element. In GAFL, IPA is extended to Clifford frame attention (CFA), where
geometric features are represented in the projective geometric algebra and messages are constructed
using the bilinear products of the algebra. Frames are consecutively updated along with node and
edge features in a series of 6 message passing blocks to predict the target frames x1. Compared
to Alphafold 2 [19], this architecture is more shallow and operates only on structural data, hence a
sequence-processing module like the Evoformer of AlphaFold 2 is not required.

Encoding of the equilibrium structure For conditioning the flow vector field as in Eq. 4, we
modify the architecture such that the equilibrium backbone structure of the protein can be used as
input feature. Inspired by the interpretation of evolutionary information as contact map [27], we
propose to encode pairwise distances of the equilibrium state xeq as initial edge feature,

sij ≡ bin (||zi − zj ||2) , (6)

where we bin the distance uniformly between 0 and 20Å with bin count 22 [50]. Additionally,
we encode the equilibrium structure in a more direct, geometrically meaningful way. Inspired by
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tensor-based equivariant networks [38] and their formulation in terms of local frames [30], we include
equivariant pairwise directions between residues that are closer than 5Å as unit vectors,

eij ≡ r−1
i

(
zi − zj

||zi − zj ||2

)
, (7)

and express them in the coordinate frame xi = (ri, zi) of residue i. Through the transformation into
the co-rotating coordinate frame, the feature components become invariant and can be used together
with sij as initial edge feature.

We use amino acid identities as additional node features by transforming a one-hot encoding via a
linear layer to a 128-dimensional embedding. The reasoning behind encoding the amino acid type is
that it carries information about the local degrees of freedom of the backbone, however, in an ablation
(Tab. 3) we find that also without the amino acid identity, the model performs remarkably well.

Conditional prior distribution Unlike diffusion models [39], where Gaussianity of the prior p0 is a
strict theoretical requirement, flow matching, in principle, allows the use of general prior distributions
[29]. Non-Gaussian, unconditional prior distributions for proteins have been proposed by Ingraham
et al. [15] and Jing et al. [16]. We take this idea a step further and propose a conditional prior
distribution p0(x|xeq) for flow matching. Samples x0 ∼ p0(·|xeq) are generated by interpolating
between samples from an unconditional prior puncond and the equilibrium structure xeq,

xuncond ∼ puncond, x0 ≡ γ(xuncond, xeq, ξ), (8)

where γ is the geodesic between xuncond and xeq,

γ(xuncond, xeq, 0) = xuncond, γ(xuncond, xeq, 1) = xeq, (9)

and ξ is a hyperparameter between 0 and 1 that quantifies how close the noise sampled from the prior
is to the equilibrium structure (see Fig. A.4). In our experiments, we set ξ ≡ 0.2. For an ablation of
ξ, see Sec. A.8. For the unconditional prior distribution puncond, we use the normal distribution for
translations and the uniform distribution for rotations [50]. We note that this approach of conditioning
the prior can be seen as generalization of partial denoising from diffusion [31] to the flow matching
framework.

Loss function As explained in Sec. 2, we represent protein backbone structure as a set of frames
x = (r, z) ∈ SE(3) and define the flow matching process on the data manifold M ≡ SE(3)N . We
learn a conditional flow vector field v̂(xt, t, xeq) (Eq. 4) on the tangent space of the data domain,
parametrized by Eq. 3. For regressing on this vector field, we calculate the ground truth v as tangent
vector to the geodesic γFM between the prior sample x0 and target sample x1, and apply a mean
squared error loss,

LFM = E
[∥∥v − v̂(xt, t, xeq)

∥∥2
SE(3)

]
, (10)

where xt is a point along the geodesic γFM, xt ≡ γFM(x0, x1, t), and xeq denotes the equilibrium
structure used as condition. The expectation in Eq. 10 runs over

t ∼ U(0, 1) , (x1, xeq) ∼ pdata , x0 ∼ p0(·|xeq) , (11)

and the metric is defined as in [51],∥∥v∥∥2
SE(3)

≡ Tr
(
vrv

T
r

)
/2 +

∥∥vz∥∥22, (12)

with the Euclidean 2-norm ∥ · ∥2 and the projection on rotational and translational subspaces v =
(vr, vz). As in [50], we also use the auxiliary loss proposed in [51].

4 Experiments

Training In order to directly compare the proposed model to the current state-of-the-art MD
emulator for proteins, AlphaFlow [16], we train BBFlow on the ATLAS dataset [42] with the same
split into training, validation and test proteins. The ATLAS dataset consists of three trajectories of
100 ns long all-atom Molecular Dynamics (MD) simulations for 1390 structurally diverse proteins,
of which Jing et al. [16] select 1265 for training, 39 for validation and 82 for testing. We train the
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Table 1: Performance of BBFlow and baselines (Sec. 4) on the ATLAS test set. For each protein,
we evaluate the metrics described in Sec. 4 and report the median of all proteins. We also report
RMSF medians over all residues and indicate the MD reference value in parentheses. Inference time
is reported per generated conformation of the 302 residue protein 7c45A. All metrics except for
correlations r and transient contact accuracy Jtr are reported in Å. Errors are estimated as described
in Sec. 4 and are shown in parentheses if they are above precision. Best values are bold, second best
are underlined. Note that BioEmu cannot be compared to other baselines directly, as explained in the
paragraph Further Baselines below.

RMSF Pw-RMSD DCCM PCA Jtr Time

r (↑) MAE (↓) Median MAE (↓) r (↑) W2 (↓) % (↑) [s] (↓)(MD=1.48)

BioEmu∗ 0.83 1.29 (0.01) 2.34 2.84 (0.01) 0.80 1.65 (0.04) 36 1.9

AlphaFlow 0.86 0.59 (0.01) 1.51 1.35 (0.01) 0.86 1.47 (0.03) 41 32.0
ConfDiff 0.88 0.62 (0.01) 2.00 1.45 (0.01) 0.86 1.41 (0.03) 39 20.2
AlphaFlow-T 0.92 0.41 (0.01) 1.17 0.91 (0.01) 0.89 1.28 (0.03) 47 32.6
ESMFlow-T 0.92 0.52 (0.01) 0.94 1.22 (0.01) 0.89 1.48 (0.03) 47 11.2
AlphaFlow-Tdist 0.92 0.68 (0.01) 0.90 1.41 (0.01) 0.88 1.43 (0.03) 42 3.3
AlphaFlow-T12L,dist 0.90 0.85 (0.01) 0.68 1.80 (0.01) 0.87 1.60 (0.04) 24 1.2

BBFlow 0.90 0.42 (0.01) 1.49 0.77 (0.01) 0.87 1.33 (0.03) 29 0.8
*Not trained to generate ATLAS-ensembles.

model, and variants where we leave out key features for an ablation study, for 3 days on two NVIDIA
A100-40GB GPUs from scratch, i.e. without initial weights from a pre-trained folding model. For all
experiments, we use the same hyperparameters as in FrameFlow [50] and GAFL [43], except for the
number of timesteps, which we set to 20. Also the respective feature dimensions are increased by 128
for embedding the amino acid identity as node feature and by 22 or 25, respectively, for embedding
the equilibrium structure encoding with or without direction as edge feature.

Baselines We compare BBFlow with models from [16] that were fine-tuned on the training set of
BBFlow, but rely on pre-trained weights from the folding models AlphaFold 2 and ESMFold [27]
that were trained on much larger datasets. Next to the original AlphaFlow-MD model (referred to in
this work as AlphaFlow), we also evaluate AlphaFlow-MD with templates (AlphaFlow-T), which
receives the equilibrium structure as input, encoded as template in AlphaFold. Jing et al. [16] also
introduce a model that relies not directly on the expensive MSA but on the protein language model
ESM (ESMFlow-T). Additionally, we compare BBFlow with models based on AlphaFlow-MD with
templates that are optimized for efficiency by distillation (AlphaFlow-Tdist), decreasing the timesteps
required from 10 to 1, and by reducing the number of layers (AlphaFlow-T12L,dist). We evaluate
all models above using the conformations deposited in the AlphaFlow GitHub repository2. We also
include the diffusion model ConfDiff [44] in our comparison (see Sec. 1.1).

Further Baselines For completeness, and because of their recent impact on the field, we also
evaluate models that were not trained on the ATLAS dataset but on static structures, NMR data or
longer MD trajectories, such as BioEmu [23] and other baselines [31, 32] in the appendix (Tab. A.3).
These models are not trained to sample from the probability distribution of states visited during three
times 100ns of MD and perform unfavorable if quantitatively evaluated in a standardized setting,
as on the ATLAS test set (see Sec. 1.1). Further, we show in Tab. A.3 that BBFlow outperforms
MDGen [17], an all-atom approach for generating time-consistent ensembles trained on ATLAS.
For a comparison with the MSA subsampling approach [46] and the classical normal mode analysis
(NMA) [7], we refer to [16], where it is shown that both perform worse than AlphaFlow and BBFlow.

Metrics We evaluate the performance of the compared models by reporting metrics that quantify
how well statistical properties of the generated ensembles agree with those obtained by MD under
standardized settings as described in Sec. 1.1. We report the key metrics, measuring similarity
of the ensemble properties, Root Mean Square Fluctuation (RMSF), pairwise RMSD, principal

2https://github.com/bjing2016/alphaflow
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components (PCA) and the Dynamical Cross Correlation Matrix (DCCM) that are established in the
field of protein dynamics. To this end, we calculate the residue-wise Pearson correlation r for RMSF
and DCCM, the mean absolute error (MAE) for RMSF and pairwise RMSD and the Wasserstein-2
distance of the ensembles, projected on the first two principal components obtained from MD. To
assess the role of pairwise distances in the provided equilibrium structure, we also report the accuracy
of predicted transient contacts Jtr as the Jaccard similarity between the generated ensemble and the
MD ensemble. As in [16], we define a transient contact as a pair of residues that are separated in the
equilibrium structure, but in proximity in 10% of the ensemble states, using a Cα distance threshold
of 8 Å. In addition to these, Jing et al. [16] include new metrics, which we also report in an exhaustive
evaluation table in the appendix (Tab. A.9). Furthermore, we investigate Ramachandran dihedral
distributions in Sec. A.9. More details on the metrics and their interpretation can be found in Sec. A.3.
In all experiments, we generate 250 conformations per protein, as in AlphaFlow, and bootstrap the
set of MD conformations 100 times in order to estimate the error caused by sampling finitely many
states. All metrics are calculated using the Cα atoms of the protein structures.

Inference time Inference time is, even if orders of magnitude smaller than MD, a critical factor
for applications of MD emulators such as annotation of datasets or screening of proteins for a target
motion. As in [14], we evaluate the inference time per generated conformation of the 302-residue
protein 7c45A, and on the entire ATLAS test set in Fig. 5, using an NVIDIA A100-80GB GPU. Note
that for models based on AlphaFold2, the inference time for all-atom structures is dominated by
backbone generation (Tab. A.8).

4.1 ATLAS benchmark

We report the performance of BBFlow and the baselines evaluated on the ATLAS test set from
AlphaFlow [16] in Tab. 1. We find that BBFlow generates high-quality conformational ensembles
faster than all baselines. For proteins of length 300, it is around 40 times faster than AlphaFlow with
templates (AlphaFlow-T), at comparable accuracy. While AlphaFlow-T is slightly more accurate in
terms of RMSF and principal components, BBFlow outperforms it in capturing flexibility quantified
by pairwise RMSD and median RMSF. BBFlow outperforms AlphaFlow, ESMFlow-T, the two
distilled models and ConfDiff in almost all metrics while, at the same time, generating the ensembles
faster. Indicated by small median RMSF, AlphaFlow-T systematically over-stabilizes the proteins
and samples too close to the equilibrium structure. Additionally, we investigate the performance
for different protein lengths (Fig. 2, Fig. A.6) and find that, while the trends described above hold
true for all lengths considered, BBFlow performs favorably for larger proteins. At transient contact
accuracy, BBFlow underperforms the baselines, indicating that for predicting rare events, evolutionary
information might be required. For weak contacts (see A.3, Tab. A.9), BBFlow is more competitive.

Table 2: Performance of BBFlow and baselines for de novo proteins. Evaluation settings as in Tab. 1.
Errors shown in parentheses if above precision. Best values are bold, second best are underlined.

RMSF Pw-RMSD DCCM PCA Jtr Time

r (↑) MAE (↓) Median MAE (↓) r (↑) W2 (↓) % (↑) [s] (↓)(MD=0.91)

BioEmu∗ 0.60 4.24 (0.01) 7.56 8.29 0.64 1.53 (0.04) 23 1.9

AlphaFlow 0.47 4.76 (0.01) 7.09 7.40 0.58 1.64 (0.03) 17 32.0
ConfDiff 0.62 3.82 (0.01) 6.35 7.26 0.65 1.72 (0.02) 15 20.2
AlphaFlow-T 0.89 0.25 (0.01) 0.74 0.38 0.85 0.66 (0.01) 55 32.6
ESMFlow-T 0.89 0.28 (0.01) 0.68 0.43 0.86 0.63 (0.01) 56 11.2
AlphaFlow-Tdist 0.88 0.46 (0.01) 0.51 0.77 0.84 0.69 (0.01) 51 3.3
AlphaFlow-T12L,dist 0.87 0.58 (0.01) 0.41 0.97 0.83 0.75 (0.01) 38 1.2

BBFlow 0.84 0.26 (0.01) 0.87 0.32 0.83 0.67 (0.01) 32 0.8
*Not trained to generate ATLAS-ensembles.

4.2 De novo proteins

We hypothesize that BBFlow’s greatly reduced inference time for generating high-quality ensembles
makes the method interesting for applications in protein design pipelines, where efficient MD
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Figure 2: (A) Performance of BBFlow, AlphaFlow-T and AlphaFlow-T12L,dist on the ATLAS test set
for different protein lengths. We divide the protein lengths in three bins and calculate RMSF MAE,
the absolute error of pairwise RMSD and PCA W2 of each protein (lower is better) with length in
the respective bin. The boxes depict the 0.25 and 0.75 quantile, minimum, maximum and median
of all test proteins. We also show inference time per generated conformation as function of protein
length in log-scale, spanning several orders of magnitude. (B) RMSF profiles of de novo proteins.
We show structures and RMSF profiles predicted by BBFlow and MD of four selected proteins from
the dataset of de novo proteins along with Pearson correlation r and MAE as reported in Tab. 2.

Figure 3: Ensembles of two de novo proteins predicted by BBFlow, AlphaFlow-T (AF-T), AlphaFlow
(AF) and BioEmu compared with the ground truth molecular dynamics (MD) simulation. The proteins
were generated by RFDiffusion and ProteinMPNN, and are colored by residue index.

emulation would allow to screen for dynamical properties. However, since de novo proteins often
have no evolutionary information available, the applicability of models that rely on such information
is unclear. In order to evaluate conformational ensembles of de novo proteins, we generate a small
dataset of 50 proteins sampled with the established models RFdiffusion [45] and FrameFlow [52],
respectively, and perform three 100-ns-long MD simulations for each, similar to ATLAS (A.10).

In Tab. 2, we report the performance of the models considered in Sec. 4.1 for de novo proteins.
We find that AlphaFlow without templates and BioEmu, which both heavily rely on evolutionary
information, experience a strong decline of performance compared to naturally occurring proteins
(Tab. 1). The relative differences between BBFlow and the other baselines are comparable to the
performance on natural proteins. Fig. 2B displays structures and predicted RMSF profiles of four de
novo proteins. We also visualize ensembles of two randomly chosen de novo proteins predicted by
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BBFlow, AlphaFlow-T, AlphaFlow and BioEmu. Both AlphaFlow without templates and BioEmu fail
to sample ensembles consistent with MD (Fig. 3), and instead tend to predict unstable conformations.

4.3 Multi-chain proteins

In contrast to folding architectures [19, 16, 51], BBFlow does not rely on absolute residue or chain
indices as input features but rather on geometric biases imposed by the distance matrix of the
equilibrium structure (see Sec. 3). It thus naturally extends to protein complexes that are made up of
several protein chains, which are not covered by the baselines. This makes BBFlow, to the best of our
knowledge, the first ensemble generation model shown to be applicable to multi-chain proteins.

We demonstrate in Tab. A.4 that BBFlow, indeed, captures ensemble properties of five well studied
multi-chain systems (see App. A.5) and show that AlphaFlow, given multi-chain features as input,
fails (App. A.5 and Fig. A.1). We visualize multi-chain ensembles and their DCCM computed with
MD and BBFlow in Fig. 4 to illustrate that both intra-chain and inter-chain motions are captured by
the model. Remarkably, it is able to do so without being trained on multimeric proteins but only on
the single-chain proteins from the ATLAS dataset.

Figure 4: BBlow is applicable to multi-chain proteins. Dynamic cross-correlation matrices (DCCM)
of conformational ensembles computed either with MD (upper triangle) or with BBFlow (lower
triangle) for three protein dimers. Chain boundaries are indicated by black lines within matrices. r:
Pearson correlation between entries of the triangular matrices. We show RMSF profiles in Fig. A.5.

Table 3: Ablation study for key components of BBFlow. Metrics are reported as in Tab. 1. Errors are
calculated as described in Sec. 4 and displayed in parentheses if above precision.

Name Cond. Distance Direction Amino Index RMSF Pw-RMSD DCCM
prior encoding encoding acid enc. encoding MAE (↓) MAE (↓) r (↑)

BBFlow ✓ ✓ ✓ ✓ 0.42(0.01) 0.77 (0.01) 0.87

a ✓ ✓ ✓ 0.52 (0.01) 1.15 (0.01) 0.85
b ✓ ✓ ✓ ✓ 0.48 (0.01) 0.90 (0.01) 0.86
c ✓ ✓ ✓ ✓ ✓ 0.42 (0.01) 0.82 (0.01) 0.88
d ✓ ✓ ✓ 0.54 (0.01) 0.93 (0.01) 0.85
e ✓ ✓ ✓ 5.88 (0.01) 7.08 (0.01) 0.55

4.4 Ablation

For quantifying the contributions of key components proposed or discussed in this work, we perform
an ablation study on the ATLAS dataset and report the results in Tab. 3. We find that using the
proposed direction encoding (a), the novel conditional prior (b) and eliminating the index encoding (c)
indeed benefits the performance of the model. Additionally, we train a model that is entirely backbone
structure-based, without any sequence information (d), and find that it is on par with non-template
AlphaFlow. We also demonstrate the need for the distance encoding of the equilibrium structure (e).
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4.5 Discussion

Figure 5: Trade-off between accu-
racy and speed of MD emulation.
While other methods are either effi-
cient or accurate, BBFlow performs
well at both. The accuracy met-
ric RMSF MAE and inference time
are averaged over the ATLAS test
set. More metrics can be found in
Fig. A.3. BBFlow-light: App. A.6.

The results show that BBFlow achieves state-of-the-art per-
formance in the trade-off between speed and quality of the
generated ensembles (see also Fig. 5). At comparable accuracy,
it is more than an order of magnitude faster than the current
state-of-the-art model AlphaFlow-T and also faster than the
distilled model AlphaFlow-T12L,dist. Crucially, BBFlow does
not suffer from the over-stabilization observed in AlphaFlow-T,
impeding the exploration of conformational space. This perfor-
mance is due to the proposed conditional prior and geometric
encoding of the equilibrium structure, as shown in our ablation.

Not using templates in AlphaFlow can avoid overstabilization,
but causes AlphaFlow to fail for de novo proteins. As a conse-
quence, BBFlow is the only model considered that accurately
captures overall flexibility for de novo proteins. We attribute
these observations to BBFlow being based entirely on back-
bone geometry instead of evolutionary information, which is
scarce for non-natural proteins. We also find that BBFlow is
transferable to multimers – a class of proteins uncovered by
current ensemble generation models.

Limitations As MD emulation model, BBFlow’s scope is fundamentally limited to reproducing
MD-derived distributions, thus, it cannot predict states that are very distant from equilibrium, such as
alternative folding states, without being trained on correspondingly long MD trajectories. For predict-
ing alternative states, specialized models, which are in turn less accurate at MD emulation, exist (see
App. A.4). In terms of sampling transient contacts, BBFlow underperforms MSA-based approaches
like AlphaFlow, indicating that evolutionary information is especially helpful for predicting rare
events. Note that the requirement of an initial structure as input is not a limitation for MD emulators
in practice and can be overcome (see App. A.1, Tab. A.1). Similar to the other backbone generation
models in Sec. 1.1, BBFlow does not sample sidechain conformational ensembles or protein-ligand
interactions, which is subject of further work.

5 Conclusion

The generation of MD-derived ensembles of proteins is a key task in many protein-related fields.
Inspired by generative models for protein design, we propose BBFlow, a method for emulating MD by
sampling ensembles with state-of-the-art performance in the trade-off between accuracy and efficiency.
At the same time, BBFlow also avoids problems with de novo proteins and over-stabilization observed
in current state-of-the-art models. Crucially, BBFlow is also applicable to multi-chain proteins, which
are not covered by other ensemble generation models. We achieve this by introducing a conditional
prior distribution and a geometric encoding of the protein’s equilibrium structure as condition in a
flow-matching model that is based on backbone geometry. This eliminates the need for evolutionary
information and enables to train the model from scratch, without requiring weights from a folding
model that is trained on a much larger dataset. We expect that both of these ideas – using a conditional
prior in flow-matching and replacing evolutionary information by structure-conditioning – can also
be applied to other problems in generative modeling and structural biology.

AlphaFlow [16] is widely used by practitioners to replace expensive MD simulations of proteins.
We also see BBFlow as highly relevant in practice, given its significantly increased efficiency and
transferability to multimers, allowing accurate MD emulation on a much larger scale. In particular,
BBFlow can be applied in pipelines for de novo protein design, where it could enable the screening of
generated structures for desired dynamics – a property that is challenging to incorporate into designed
proteins so far.
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A Appendix

A.1 On the requirement of an initial structure for MD emulation

Since BBFlow is an MD emulator, it also inherits the dependency on the initial structure from
MD. AlphaFlow (without templates) can be applied as a sequence-to-structure model by relying on
evolutionary information encoded in form of a Multiple Sequence Alignment (MSA). Since MD
requires an initial structure, it can be assumed that an initial structure is available in all practical
workflows that currently include expensive MD simulation. However, in a scenario where a sequence,
but not the structure is available, BBFlow can be combined with a folding model and used as
sequence-to-structure model that remains accurate and fast.

We show that the combination of AlphaFold2 and BBFlow remains both more accurate and more
time-efficient at sequence-to-structure prediction than AlphaFlow’s sequence-to-structure model at
almost all metrics considered (Tab. A.1). For de novo proteins, the equilibrium structure that is
passed to BBFlow and AlphaFlow-T was obtained by the folding model EMSFold during creation of
the dataset (Sec. A.10), thus we already evaluate the combination of ESMFold and BBFlow, which
acts as sequence-to-structure pipeline. BBFlow outperforms the sequence-to-structure model from
AlphaFlow (without templates) in this setting (Tab. 2). Note that the inference time of the pipeline of
AlphaFold 2 and BBFlow is still around 30 times faster than that of AlphaFlow because AlphaFlow
requires a structure prediction for every conformation at every time step while the combination of
AlphaFold 2 and BBFlow only requires a single structure prediction at the beginning.

We further investigate BBFlow’s sensitivity with respect to good input equilibrium structures by
evaluating its performance when passing distorted equilibrium structures (Tab. A.2) to the model.
To this end, we add Gaussian noise to the Euclidean backbone coordinates of the ATLAS test set
proteins and run inference with BBFlow. We find that the performance remains strong and decreases
only slightly.

Table A.1: Performance of BBFlow as sequence-to-structure model. We evaluate the pipeline of
predicting a structure from a sequence with AlphaFold 2 and passing this structure as input to BBFlow,
compared to the direct sequence-to-structure model AlphaFlow. We report metrics as in Tab. 1.

RMSF Pw-RMSD

r (↑) MAE (↓) Median (1.48) MAE (↓) DCCM r (↑) PCA W2 (↓) Time [s]

AlphaFlow 0.86 0.59 (0.01) 1.51 1.35 (0.01) 0.86 1.47 (0.03) 32.0
AlphaFold 2 + BBFlow 0.87 0.52 (0.01) 1.49 1.07 (0.01) 0.85 1.47 (0.03) 0.3+0.8

Table A.2: Performance of BBFlow with distorted equilibrium structures as input. We add Gaussian
noise with the respective standard deviation to the backbone atoms equilibrium structure, or choose
random MD conformations as equilibrium structure, and evaluate each model on the ATLAS test set.
Units and settings as in Tab. 1.

RMSF Pw-RMSD DCCM PCA

r (↑) MAE (↓) Median (MD=1.48) MAE (↓) r (↑) W2 (↓)

BBFlow 0.90 0.42 1.49 0.77 0.87 1.33
BBFlow-0.1Å 0.90 0.48 1.53 0.77 0.87 1.33
BBFlow-0.2Å 0.90 0.48 1.62 0.79 0.87 1.32
BBFlow-random conf. 0.90 0.47 1.56 0.83 0.85 1.56

A.2 The role of nanosecond-timescale MD simulations of proteins

In the biophysics community, Molecular Dynamics (MD) is one of the most established method to
study protein function and folding by analyzing conformational landscapes [20]. Most commonly,
functional protein movements leading to molecular recognition, ligand binding, catalysis and protein
folding span the timescale between microseconds to seconds [22, 47]. Sampling rare, large-scale
conformational transitions with MD on the biologically relevant timescale, however, is often com-
putationally prohibitive. Short-timescale simulations, while typically insufficient to observe rare
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events, nonetheless provide valuable insight into local dynamics and mechanisms relevant to protein
function.

Among a myriad of applications, short-time scale MDs in the range of hundreds of nanoseconds,
as emulated by BBFlow and AlphaFlow, were employed to develop antibodies against NMDA
receptors [40], to study allosteric regulation in enzymes [49, 37, 5, 5], to optimize biocatalysts for
thermostability [48], and to shed light on the inhibition of SARS-CoV-2 NSP 13 helicase [35]. Given
that BBFlow is capable of accurately emulating MD ensembles of 300 ns while being orders of
magnitudes faster than current baselines, we believe it can become a useful tool in the hands of
practitioners.

A.3 Metrics for conformational ensembles

RMSF The Root Mean Square Fluctuation (RMSF) of Cα atoms measures the magnitude of
positional deviations of individual residues across the set of conformations. For a given residue, these
fluctuations are calculated in a reference frame that is defined by aligning the entire protein to the
equilibrium structure and thus implicitly depend on the positions of all other residues. Consequently,
RMSF can be interpreted as measure for flexibility, but also encodes global collective behaviour.
As in AlphaFlow, we calculate the Pearson correlation between RMSF profiles (for an example see
Fig. 2B) obtained from MD and generated ensembles in order to quantify how well the shapes of the
profiles match. We also include the Mean Absolute Error (MAE) of per-residue RMSF to measure
how well RMSF amplitudes are reproduced, and compare the median over all residues with the
ground truth in order to quantify systematic over- or under-stabilization.

Pairwise RMSD For each protein, we calculate the average Cα RMSD between any two conforma-
tions x as

pwRMSD ≡ 1

N2

Nconfs∑
i,j=1

RMSD (xi, xj) . (13)

This quantifies the magnitude of conformational changes without requiring a specified reference state.
We report the MAE of pairwise RMSD across all proteins.

PCA A metric that explicitly accounts for conformational changes, and quantifies how well the re-
spective conformations are captured, relies on the Principal Component Analysis of the Cα positions
across the sampled conformations. We project the generated states on the first two principal compo-
nents obtained from MD, thus receiving a two-dimensional PCA-projection of each conformation.
We report the Wasserstein-2-distance between the distributions of PCA-projections.

DCCM Another metric that accounts for directional and long-range degrees of freedom is the
Dynamic Cross Correlation Matrix (DCCM). It measures for each pair of residues i, j whether they
rather move in parallel, antiparallel or with uncorrelated relative direction. The entries are thus
defined as

DCCMij ≡
〈
(x⃗i − ⟨x⃗i⟩) · (x⃗j − ⟨x⃗j⟩)

〉√〈
(x⃗i − ⟨x⃗i⟩)2

〉√〈
(x⃗j − ⟨x⃗j⟩)2

〉 , (14)

where ⟨. . .⟩ denotes the ensemble average and x⃗i denotes the Cα atom position of residue i. For
comparing the similarity of the DCCM matrices obtained with MD and with the generated ensemble,
we report the Pearson correlation r between all entries of both matrices.

A.3.1 Other metrics for protein ensembles

While the above metrics are frequently used and well established in the field of protein dynamics,
Jing et al. [16] introduce two new, less established metrics for conformational ensembles, which we
report for completeness in exhaustive evaluation tables in App. A.13.

RMWD The root mean Wasserstein distance (RMWD) introduced in [16] assumes that atom
positions in an ensemble are distributed according to three dimensional Gaussian distributions. It
reports the Wasserstein distance between Gaussian distributions fitted to both the generated and
the MD ensemble. However, the assumption that the atom positions are distributed according to
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3D-Gaussians is a strong approximation – for comparing real ensembles, the strong correlation
between individual atoms should be taken into account [28].

Weak contacts J Jing et al. [16] also report weak contacts as a metric defined as Cα pairs that
are in contact (or not in contact) in the crystal structure but dissociate (or associate) in more than
10% of the ensemble structures, using an 8 Å distance cutoff. This metric is informative for larger
conformational changes, however, the cutoff values of 8 Å and 10% are arbitrary and might not apply
to more heterogeneous systems.

Table A.3: Evaluation of other ensemble generation methods (see App. A.4) as MD emulators on the
ATLAS test set. Settings are the same as in Tab. 1. BBFlow-light is described in App. A.6.

RMSF Pw-RMSD DCCM PCA Jtr Time

r (↑) MAE (↓) Median MAE (↓) r (↑) W2 (↓) % (↑) [s] (↓)(MD=1.48)

MDGen 0.72 0.81 (0.01) 0.62 2.05 (0.01) 0.54 1.86 (0.03) 27 0.15
Str2Str 0.52 7.80 (0.01) 10.98 9.36 (0.01) 0.52 1.63 (0.03) 12 10.5
ESMDiff 0.69 1.57 (0.01) 3.00 4.95 (0.01) 0.75 1.84 (0.03) 27 0.39
BioEmu 0.83 1.29 (0.01) 2.34 2.84 (0.01) 0.80 1.65 (0.04) 36 1.9

BBFlow-light 0.89 0.48 (0.01) 1.38 0.86 (0.01) 0.86 1.32 (0.03) 31 0.14
BBFlow 0.90 0.42 (0.01) 1.49 0.77 (0.01) 0.87 1.33 (0.03) 29 0.77

A.4 Other ensemble generation models

For sampling alternative folding states and general ensembles that must not strictly follow the
distribution of states obtain via MD simulation with fixed runtime and temperature, several models
have been developed recently. Lewis et al. [23] propose the generative model Bio-Emu, which is
trained on a large custom dataset containing MDs of greatly varying lengths with an architecture
similar to AlphaFold 2. A diffusion module is used for generating protein structures from the learned
sequence representation, which relies on MSA. Another model trained on non-standardized MDs
and also NMR data is ESMDiff [32], which relies on a Structure Language Model (SLM). In the
proposed SLM, a discrete variational autoencoder is used to encode structure into tokens, whose
relationship to the protein sequence is modeled by a language model. By fine-tuning the SLM, protein
conformations can be sampled from the sequence. It has also been proposed to generate ensembles
using models that are only trained on static structures, such as Str2Str [31], where noise is added to
the equilibrium structure and a diffusion model is used to generate ensembles by partial denoising.
Another example for such an approach is MSA-subsampling [46], where AlphaFold 2 is applied with
modified MSA in order to sample alternative folding states.

Since one would not expect such models to sample the distribution induced by standardized MD to
high accuracy, we only benchmark them for illustrative purposes in the appendix (Tab. A.3) and focus
on the more relevant baselines AlphaFlow and ConfDiff in the main part of this paper.

Also for ATLAS-like ensembles, there is related work alongside ConfDiff; Li et al. [24] propose a
modification of AlphaFlow, in which intermediate features of previous timesteps are re-used, leading
to improved efficiency. However, neither code or model weights are published and only a limited
subset of metrics is reported in the paper, prohibiting a direct comparison with BBFlow and other
baselines.

A.5 Ensemble generation for multi-chain proteins

Multimeric systems In order to assess BBFlow’s performance for multimers, we simulate five
multi-chain systems: a dimeric barnase-barstar (PDB: 1BGS), small homotrimer foldon (PDB: 1RFO),
homodimeric fructokinase in its apo state (PDB: 5EY7), heterodimeric nanobody-SARS-CoV2 RBD
complex (PDB: 7KGK) and heterodimeric nanobody-TNFRSF17 complex (PDB: 8HXR). We use
simulation settings analogous to ATLAS (App. A.10). Selected complexes span total residue count
between 80 and 590. We report BBFlow’s performance in Tab. A.4.
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Baselines for multi-chain proteins None of the baselines discussed in Sec. 1.1 or App. A.4
have been applied to multi-chain proteins before. Nonetheless, we tested the most relevant baseline,
AlphaFlow [16], for the multi-chain systems. By default, AlphaFlow does not allow to parse multi-
chain proteins. We thus modified the parser to accept multi-chain inputs.

More specifically, we took as an example a barnase-barstar complex (PDB: 1BGS), computed an MSA
(pair mode: unpaired_paired, msa mode: mmseqs2_uniref_env) by querying the ColabFold
mmseqs2 search server and used ColabFold’s multimer parsing functions (unserialize_msa(·)
followed by generate_input_feature(·)) to generate multimeric features that are compatible
with AlphaFold’s inference logics. We ran AlphaFlow inference with 10 timesteps by passing
multimeric features as input and observed that the model fails to sample physical, protein-alike states
despite good sequence coverage, as shown in Fig. A.1.

Table A.4: BBFlow’s performance for the five multi-chain proteins described in App. A.5, evaluated
in the settings of Tab. 1.

RMSF Pw-RMSD DCCM PCA

r (↑) MAE (↓) Med. (MD=1.2) MAE (↓) r (↑) W2 (↓)

BBFlow 0.82 0.31 (0.01) 1.40 0.41 (0.02) 0.85 0.71 (0.06)

Figure A.1: AlphaFlow predicts unphysical states for the multi-chain barnase-barstar complex (PDB:
1BGS) if its parser is modified to accept multi-chain proteins. In (A), we show an example state
sampled by AlphaFlow. (B) The parsed multimeric MSA features of the barnase-barstar complex
show broad sequence coverage with many sequence hits for each of the chains.

A.6 BBFlow-light model

We also train a BBFlow model with a set of hyperparameters different from those described in Sec. 4,
chosen to increase efficiency on the cost of accuracy. We call the model BBFlow-light and report its
performance in Tab. A.3. We find that it is around 200 times faster than AlphaFlow and around 10
times faster than AlphaFlow-T12L, dist while outperforming the distilled AlphaFlow models in most
accuracy metrics.

In contrast to the vanilla BBFlow, BBFlow-light consists of 3 CFA message passing blocks instead of
6 and reduced node- and edge-feature dimensions of 96 and 48, respectively. BBFlow has around
18.2 M learnable parameters, while BBFlow-light contains only 2.5 M.

A.7 Training algorithm

In Algorithm 1, we summarize the training procedure described in Sec. 3.

A.8 Role of the hyperparameter ξ

We study the effect of the hyperparameter ξ that controls the interpolation strength between the
equilibrium structure and the unconditional prior in Eq. 8. Smaller ξ values correspond to noisier
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Algorithm 1 Training of BBFlow

Require: Dataset D = {(xeq, {x(i)1 }Mi=1)}, with one equilibrium structure xeq ∈ SE(3)N , and
several conformations x(i)1 ∈ SE(3)N per protein

Require: Model x̂θ
1: while training do
2: (xeq, x1) ∼ D ▷ Sample equilibrium structure and one conformation
3: x0 ∼ p0(· | xeq) ▷ Sample noise from conditional prior (Eq. 8)
4: t ∼ U(0, 1) ▷ Sample flow matching time
5: xt = γ(x0, x1, t) ▷ Interpolated state xt ∈ SE(3)N , γ: geodesic between x0 and x1
6: v = vSE(3)(xt, t|x1) ▷ Calculate ground-truth flow vector v ∈ Txt

SE(3)N from Eq. 3
7: x̂1 = x̂θ(xt, t, xeq) ▷ Calculate model output x̂1 ∈ SE(3)N

8: v̂ = vSE(3)(xt, t|x̂1) ▷ Calculate predicted flow vector v̂ ∈ Txt
SE(3)N from Eq. 3

9: LFM = ∥v − v̂∥2SE(3) + Laux(x1, x̂1) ▷ Flow matching loss
10: Update parameters using ∇θLFM
11: end while

initial states x0, increasing ensemble diversity but also making training more challenging. Conversely,
larger ξ values bring x0 closer to the equilibrium structure, facilitating convergence but potentially
reducing ensemble diversity.

Training-time ablation. To quantify this tradeoff, we trained separate BBFlow models using
different values of ξ. As shown in Tab. A.5, models trained with smaller ξ produce more diverse
ensembles (higher RMSF), while those with larger ξ converge faster but exhibit reduced structural
variability. We found that ξ = 0.2 provides a good balance between accuracy and diversity, and use
this value in all reported experiments.

Table A.5: Ablation of models trained with different values of the hyperparameter ξ. Smaller ξ
increases ensemble diversity but slows convergence. Units and settings as in Tab. 1.

RMSF r (↑) RMSF MAE (↓) RMSF (MD=1.48) Pw-RMSD MAE (↓) DCCM r (↑) PCA W2 (↓)

ξ = 0.1 0.88 0.54 1.53 0.87 0.86 1.35
ξ = 0.4 0.89 0.44 1.39 0.89 0.85 1.33

Inference-time ablation. We further evaluated the model trained with ξ = 0.2 using different ξ
values during inference. As seen in Tab. A.6, reducing ξ increases diversity (larger RMSF and PCA
W2) but reduces agreement with molecular dynamics reference data. Increasing ξ has the opposite
effect, leading to more constrained ensembles.

Table A.6: Inference-time ablation of ξ using the model trained with ξ = 0.2. Smaller ξ increases
ensemble diversity but reduces agreement with MD reference structures. Units and settings as in
Tab. 1.

ξ RMSF r (↑) RMSF MAE (↓) RMSF (MD=1.48) Pw-RMSD MAE (↓) DCCM r (↑) PCA W2 (↓)

0.01 0.70 7.61 11.16 10.83 0.73 2.85
0.05 0.81 3.89 5.43 5.38 0.78 2.06
0.1 0.88 1.32 2.62 2.21 0.84 1.51
0.2 0.90 0.42 1.49 0.77 0.87 1.33
0.3 0.89 0.47 1.37 1.02 0.86 1.69
0.4 0.86 0.64 1.65 1.31 0.80 2.12
0.5 0.79 0.80 1.82 1.50 0.74 3.00
0.6 0.73 0.82 1.70 1.65 0.70 4.51

A.9 Backbone dihedral distributions

In addition to the metrics above, we investigate the distribution of backbone dihedral angles across
ensembles, commonly visualized in the field by Ramachandran plots. We show the Ramachandran
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(a)

(b)

Figure A.2: Ramachandran plot, i.e. histogram of backbone dihedrals, for MD and generated
ensembles of the representative proteins 6xrxA (a) and 6nl2A (b) from the ATLAS test set. We report
Wasserstein distances of the distributions for the entire ATLAS test set in Tab. A.7.

plot of generated ensembles for a representative protein in Fig. A.2 and report the median of
the Wasserstein distance to the MD distribution across the ATLAS test set in Tab. A.7. We find
that BBFlow samples dihedral angles that deviate slightly more from MD than ESMFlow-T and
AlphaFlow-T, but is competitive with the distilled models and those without templates.

Table A.7: Similarity of Ramachandran dihedral distribution across generated ensembles. We
calculate the Wasserstein-2 distance between the dihedral angle distribution induced by MD and the
respective generated ensemble and report medians across the ATLAS test set.

Metric AlphaFlow BioEmu AlphaFlow-T EsmFlow-T AlphaFlow-TD AlphaFlow-T12L,D BBFlow

Rama. W2 (↓) 0.53 0.66 0.48 0.47 0.51 0.55 0.52
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A.10 De novo proteins dataset

Protein generation As described in Sec. 4.2, we assess the performance of BBFlow on a set of de
novo proteins. We sample 20 protein backbones with FrameFlow [52] and RFdiffusion [45] for each
length L ∈ [60, 65, . . . , 512]. For each individual generated backbone, we carry out a self-consistency
evaluation pipeline as previously proposed [51, 25] by designing 8 sequence with ProteinMPNN [10]
and refolding candidate sequences with ESMfold [27]. We then compute the length distribution of
the ATLAS dataset and select 50 refolded backbones that have a self-consistency RMSD (scRMSD)
of ≤ 2.0 Å to the originally generated backbone that follow a size distribution similar to the ATLAS
dataset [42] each for FrameFlow and RFdiffusion.

MD setup MD simulations are performed using GROMACS v2023 [1], utilizing the CHARMM27
all-atom force field. Proteins are embedded in a periodic dodecahedron box, ensuring a minimum
separation of 1 nm from the box boundaries. The simulation system is hydrated using the TIP3P
water model [18], and the ionic strength is adjusted to a NaCl concentration of 150 mM. An initial
energy minimization is carried out for 5000 steps. The system undergoes NVT equilibration for 1 ns
with a timestep of 2 fs, employing the leap-frog integrator. Temperature control is achieved at 300K
using the Berendsen thermostat. This is followed by NPT equilibration for 1 ns, where the pressure
is maintained at 1 bar using the Parrinello-Rahman barostat. The production run of the simulation
extends over three 100 ns replicas. Throughout the simulations, covalent bonds involving hydrogen
are constrained using the LINCS algorithm [13]. Long-range electrostatic interactions are treated
using the Particle-Mesh Ewald (PME) method.

A.11 ConfDiff inference setup

We evaluate ConfDiff using the ConfDiff-OF-r3-MD model, which is fine-tuned on the ATLAS
dataset, available on GitHub3. We use the default hyperparameters for generating conformations.

A.12 Additional figures

As extension of Fig. 5, we show the tradeoff between accuracy and speed with more accuracy metrics
in Fig. A.3.

The construction of the conditional prior is visualized in Fig. A.4.

We show an extension of Fig. 2 to all metrics from Tab. 1 in Fig. A.6.

In Fig. A.5, we show the RMSF profiles of the multimers displayed in Fig. 4.

In Tab. A.8, we report the inference time of AlphaFlow’s backbone and sidechain module, compared
with BBFlow.

Figure A.3: Trade-off between accuracy and speed of MD emulation. While other methods are
either efficient or accurate, BBFlow performs well at both. As extension of Fig.5, we show the
accuracy metrics RMSF MAE, pairwise RMSD MAE and PCA W2 (all favorable if smaller). Both
the accuracy metrics and inference time are averaged over the ATLAS test set. The other metrics
(Pearson correlations and Median pw-RMSD) do not show such clear trends in terms of correlation
with inference time and can be found in Tab. 1.

3https://github.com/bytedance/ConfDiff, commit 9cfae1c14121e423d8d455d03506c7e8ee580e48
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Figure A.4: Construction of the conditional prior (Eq. 8). For a given equilibrium structure as
condition xeq, we sample noise xuncond from the unconditional prior puncond and interpolate along the
geodesic between xuncond and xeq (Eq. 9) to obtain a sample x0 from the proposed conditional prior
p0(·|xeq). In the experiments, we choose the hyperparameter ξ = 0.2; in the figure, we show a state
sampled with ξ = 0.5 for better visualization.

Figure A.5: RMSF profiles of three dimeric proteins whose DCCM matrices are depicted in Fig. 4
computed either with MD or BBFlow. Chain boundaries are indicated by black vertical lines.

Table A.8: Inference time by module of a single AlphaFlow and BBFlow forward pass on a 300
residue protein. The sidechain module of AlphaFlow is entirely separate from the backbone module
and only takes a fraction of the backbone module’s runtime. Inference time is therefore dominated by
the backbone prediction task, for which BBFlow achieves a speedup.

Module Backbone [s] (↓) Sidechain [s] (↓)

AlphaFlow-T 32.5 0.12
BBFlow 0.8 –

A.13 Exhaustive evaluation tables

We report the performance of BBFlow and baselines including the new metrics introduced in [16]
(see Sec. A.3) in Tab. A.9 and Tab. A.11.

A.14 Societal impact

We consider the societal impact of this work as mostly positive since understanding protein dynamics
is essential for the development of new drugs, therapies and even materials, which outweighs potential
risks.
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Figure A.6: Additional metrics for the performance of BBFlow, AlphaFlow-T and AlphaFlow-T12L,dist
on the ATLAS test set for different protein lengths. We divide the protein lengths in three bins and
calculate per-residue RMSF, RMSF MAE, RMSF correlation r, per-protein RMSD, the absolute
error of pairwise RMSD and PCA W2 of each protein with length in the respective bin. The boxes
depict minimum, maximum, median, and the 0.25 and 0.75 quantile.

Figure A.7: Performance of BBFlow, AlphaFlow-T and AlphaFlow-T12L,dist on the de novo protein
dataset for different protein lengths. We divide the protein lengths in three bins and calculate per-
residue RMSF, RMSF MAE, RMSF correlation r, per-protein RMSD, the absolute error of pairwise
RMSD and PCA W2 of each protein with length in the respective bin. The boxes depict minimum,
maximum, median, and the 0.25 and 0.75 quantile.
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Table A.9: Evaluation on the ATLAS dataset including the metrics introduced in [16] (see Sec. A.3).
RMSF and RMWD are calculated from Cα atoms.

AlphaFlow BioEmu ConfDiff AlphaFlow-T EsmFlow-T AlphaFlow-T12L,dist BBFlow

Pairwise RMSD (=2.9) 2.89 4.29 3.43 2.18 2.0 1.4 3.09
Pairwise RMSD r 0.48 0.23 0.62 0.94 0.85 0.76 0.82
Pairwise RMSD MAE 1.35 2.84 1.45 0.91 1.22 1.8 0.77

Cα RMSF (=1.48) 1.51 2.34 2.0 1.17 0.94 0.68 1.49
Global RMSF r 0.58 0.46 0.7 0.91 0.84 0.74 0.84
Per target RMSF r 0.86 0.83 0.88 0.92 0.92 0.9 0.9
Per target RMSF MAE 0.59 1.29 0.62 0.41 0.52 0.85 0.42

Global DCCM r 0.8 0.73 0.85 0.88 0.87 0.85 0.84
Per target DCCM r 0.86 0.80 0.86 0.89 0.89 0.87 0.87
Per target DCCM MAE 0.15 0.19 0.14 0.12 0.12 0.13 0.15

Root mean W2-distance 2.38 3.36 2.56 1.72 1.91 2.13 1.93
– Translation contrib. 2.17 2.51 2.02 1.47 1.52 1.73 1.65
– Variance contrib. 1.18 1.99 1.22 0.82 0.92 1.2 0.93
MD PCA W2-distance 1.47 1.65 1.41 1.28 1.48 1.6 1.33
Joint PCA W2-distance 2.26 2.90 2.19 1.58 1.76 1.93 1.72

% PC-sim > 0.5 43.85 24.49 37.76 44.6 47.94 39.12 40.1
Weak contacts J 0.62 0.46 0.63 0.62 0.59 0.56 0.57
Transient contacts J 0.41 0.36 0.39 0.47 0.47 0.24 0.29

Time [s] 32.0 1.9 20.2 32.6 11.2 1.2 0.8

Table A.10: Evaluation on the de novo dataset including the metrics introduced in [16] (see Sec. A.3).
RMSF and RMWD are calculated from Cα atoms.

AlphaFlow BioEmu ConfDiff AlphaFlow-T EsmFlow-T AlphaFlow-T12L,dist BBFlow

Pairwise RMSD (=1.59) 8.08 7.9 7.27 1.25 1.2 0.68 1.47
Pairwise RMSD r 0.2 0.13 0.24 0.86 0.86 0.83 0.7
Pairwise RMSD MAE 7.4 8.29 7.26 0.38 0.43 0.97 0.32

Cα RMSF (=0.91) 7.09 7.56 6.35 0.74 0.68 0.41 0.87
Global RMSF r 0.27 0.25 0.28 0.86 0.86 0.83 0.77
Per target RMSF r 0.47 0.6 0.62 0.89 0.89 0.87 0.84
Per target RMSF MAE 4.76 4.24 3.82 0.25 0.28 0.58 0.26

Global DCCM r 0.52 0.53 0.54 0.79 0.8 0.77 0.77
Per target DCCM r 0.58 0.64 0.65 0.85 0.86 0.83 0.83
Per target DCCM MAE 0.22 0.21 0.21 0.11 0.1 0.11 0.14

Root mean W2-distance 10.17 7.32 8.39 1.02 0.98 1.27 1.2
– Translation contrib. 8.01 4.25 6.91 0.9 0.85 1.0 1.06
– Variance contrib. 5.5 5.2 4.29 0.45 0.47 0.73 0.54
MD PCA W2-distance 1.64 1.53 1.72 0.66 0.63 0.75 0.67
Joint PCA W2-distance 9.08 5.23 7.32 0.95 0.89 1.13 1.09

% PC-sim > 0.5 9.86 7.46 16.09 48.05 50.19 40.99 39.37
Weak contacts J 0.38 0.39 0.44 0.61 0.61 0.57 0.57
Transient contacts J 0.17 0.23 0.15 0.55 0.56 0.38 0.32

Time [s] 32.0 1.9 20.2 32.6 11.2 1.2 0.8
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Table A.11: Evaluation of ensemble generation methods from App. A.4 as MD emulators on the
ATLAS dataset including the metrics introduced in [16] (see Sec. A.3). RMSF and RMWD are
calculated from Cα atoms.

MDGen Str2Str ESMDiff BioEmu BBFlow-light BBFlow

Pairwise RMSD (=2.9) 1.34 13.29 5.36 4.29 2.6 3.09
Pairwise RMSD r 0.48 0.15 0.22 0.23 0.81 0.82
Pairwise RMSD MAE 2.05 9.36 4.95 2.84 0.86 0.77

Cα RMSF (=1.48) 0.62 10.98 3.0 2.34 1.38 1.49
Global RMSF r 0.49 0.28 0.31 0.46 0.82 0.84
Per target RMSF r 0.72 0.52 0.69 0.83 0.89 0.9
Per target RMSF MAE 0.81 7.8 1.57 1.29 0.48 0.42

Global DCCM r 0.35 0.46 0.71 0.73 0.83 0.84
Per target DCCM r 0.54 0.52 0.75 0.80 0.86 0.87
Per target DCCM MAE 0.23 0.26 0.19 0.19 0.16 0.15

Root mean W2-distance 2.59 9.58 4.84 3.36 2.04 1.93
– Translation contrib. 2.15 4.74 3.48 2.51 1.75 1.65
– Variance contrib. 1.32 8.11 2.63 1.99 0.96 0.93
MD PCA W2-distance 1.86 1.63 1.84 1.65 1.32 1.33
Joint PCA W2-distance 2.47 6.49 3.94 2.90 1.81 1.72

% PC-sim > 0.5 13.74 2.5 21.1 24.49 37.43 40.1
Weak contacts J 0.5 0.3 0.49 0.46 0.5 0.57
Transient contacts J 0.27 0.12 0.36 0.36 0.31 0.29

Time [s] 0.15 10.5 0.39 1.9 0.14 0.77

Table A.12: Ablation study including the metrics introduced in [16]. Extension of Tab. 3.

BBFlow a b c d e

Pairwise RMSD (=2.9) 3.09 2.58 2.35 2.62 2.4 11.12
Pairwise RMSD r 0.82 0.74 0.81 0.83 0.82 0.04
Pairwise RMSD MAE 0.77 1.15 0.9 0.82 0.93 7.08

Cα RMSF (=1.48) 1.49 1.55 1.3 1.25 1.34 8.26
Global RMSF r 0.84 0.72 0.81 0.85 0.81 0.19
Per target RMSF r 0.9 0.88 0.9 0.9 0.87 0.44
Per target RMSF MAE 0.42 0.52 0.48 0.42 0.54 5.88

Global DCCM r 0.84 0.82 0.85 0.85 0.84 0.48
Per target DCCM r 0.87 0.85 0.86 0.88 0.85 0.55
Per target DCCM MAE 0.15 0.16 0.16 0.14 0.16 0.23

Root mean W2-distance 1.93 2.09 1.95 1.97 2.19 7.81
– Translation contrib. 1.65 1.75 1.7 1.67 1.82 4.22
– Variance contrib. 0.93 1.04 0.98 0.94 1.03 6.3
MD PCA W2-distance 1.33 1.46 1.44 1.32 1.47 1.32
Joint PCA W2-distance 1.72 1.93 1.8 1.82 1.96 4.53

% PC-sim > 0.5 40.1 37.39 46.77 41.82 38.4 9.2
Weak contacts J 0.57 0.52 0.45 0.55 0.52 0.31
Transient contacts J 0.29 0.3 0.32 0.31 0.26 0.1
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As stated in the abstract, the main practical contribution is the improved
performance of the proposed method in the tradeoff between accuracy and speed, which we
show in Section 4.1 and discuss in Section 4.5. We also show that the method is, indeed,
applicable to multi-chain proteins (Section 4.3). Other contributions stated in the abstract –
the conditional prior, geometric encoding and formulation of MD emulation as structure
design task, independent of pre-trained weights – we explain in Section 3 and also perform
an ablation study in Section 4.4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed method were discussed in a dedicated para-
graph at the end of Section 4.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not introduce any novel theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full explanation of the experiments is provided in Section 4 and Appendix A.11.
The source code of the implementation, generated de-novo and multimer datasets and model
weights will be published together with the camera ready version of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The ATLAS dataset used for training the model is publicly available [42]. The
source code of the implementation, generated de-novo and multimer datasets and model
weights will be published together with the camera ready version of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We use the same split of the ATLAS dataset as AlphaFlow, which is publicly
available on the GitHub page linked in Section 4. We state that we use the same model
hyperparameters as FrameDiff and Geometric Algebra Flow Matching except for those
specified in Section 4. The source code of the implementation of the method proposed in
this work will be published together with the camera ready version of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We calculate errors obtained by bootstrapping the conformational ensembles
as described in Section 4 and report them if they are above the displayed precision.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the hardware used for the experiments at the
beginning of Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No human subjects or data with privacy concerns was used. Training was only
performed on standard academic datasets. Societal impact is considered mostly positive
(Section A.14).
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Societal impact is considered mostly positive (Section A.14).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The presented method does not enable the direct design of proteins with a
certain function, so risk of misuse is considerably low.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: Our work is based on the implementations of FrameFlow and AlphaFlow,
which were published under the MIT license, which allows to create derivative works. The
license terms will be followed when publishing our own implementations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets have been introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowd sourcing or research with human subjects performed.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No insitutional review board approval required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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