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Abstract

Our current models for fundamental forces in
nature are “gauge theories”. These models are
suitable for systems where interactions are lo-
cal and where the local choice of coordinates
does not affect physical quantities. While recent
works have introduced gauge equivariant neural
networks, these models focus on tangent bundles
or quotient space and are not applicable to most
gauge theories appearing in physics. We pro-
pose an architecture for learning general gauge
invariant quantities. Our framework fills a gap in
the existing literature, providing a general recipe
for gauge invariance without restrictions on the
spaces of the measurement vectors. We evaluate
our method on a classical physical system, the
XY model, that is invariant to the choice of local
gauges. We make our code publicly available at
https://github.com/manosth/gauge-net/.

1. Introduction
Gauge theories (Baez & Muniain, 1994; Nakahara, 2018)
are one of the most consequential paradigms in modern
physics, providing a framework for understanding the fun-
damental interactions in the universe. They describe how
fields, like the electromagnetic and the gravitational fields,
interact with matter, forming the foundation of the Standard
Model of particle physics and general relativity. The key
point in systems described by gauge theories is that different
symmetry transformations can be applied at points in space,
without impacting the quantities we measure.
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Figure 1: Fiber bundles and gauge invariance. (a) Over-
lapping neighboring open sets U1, U2 ⊂ B can have differ-
ent bases in the fibers F1, F2 to represent the same feature
ϕ(p) at point p ∈ U1 ∩ U2. A gauge field A accounts for
such local (gauge) basis transformations in the fibers, ensur-
ing measured quantities are invariant under them. Examples
of gauge invariance: (b) The energy of locally interacting
magnets (XY model) changes little by small perturbation to
spins and is completely invariant under local basis changes.

In recent years, the principles of gauge theories have in-
spired advances in neural network architectures, particularly
through the introduction of gauge (Cohen et al., 2019b;
de Haan et al., 2021; Luo et al., 2022) and group equivariant
neural networks (Cohen & Welling, 2016; Dieleman et al.,
2016; Cohen & Welling, 2017; Weiler & Cesa, 2020; Sos-
novik et al., 2020). Models such as Gauge Equivariant Mesh
CNNs (de Haan et al., 2021) and others have been central to
applying group equivariance to structured data, such as im-
ages and meshes, demonstrating significant improvements
in tasks like image classification and 3D shape analysis.

However, existing approaches often restrict themselves to
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simpler geometric settings, such as homogeneous spaces
or quotient spaces (Kondor & Trivedi, 2018; Cohen et al.,
2019a), which are only special cases of the more complex
and varied structures found in theoretical physics. These
simplifications compromise the ability of models to handle
the more general and intricate gauge symmetries seen in
physical theories, where the base space can be any manifold
and the fibers are not necessarily linked by the symmetries of
the base space itself. Part of the reason for these limitations
may be that existing work often begins with the framework
of group equivariance (Cohen & Welling, 2016; Kondor &
Trivedi, 2018) and steerable networks (Cohen & Welling,
2017; Weiler et al., 2018), which generally assume a direct
correspondence between the group acting on the base space
and the actions within the fibers.

In this paper, we aim to bridge this gap by proposing an
architecture that does not rely on group equivariance on the
base space. Instead, we focus on local invariance under the
fiber symmetry group. By focusing on infinitesimal trans-
formations, we utilize the “connection” or “gauge field”–a
fundamental concept in gauge theories that describes how to
compare local fiber elements across different points in the
base space. This approach opens new avenues for applying
neural networks to problems grounded in physics and other
fields where local symmetries are essential.

2. Related work
Here we briefly review recent work on symmetry learning,
equivariant networks, and gauge equivariance.

Equivariant frameworks. Certain frameworks have
enforced equivariance with arbitrary groups, tackled
groups with non-standard product structures, and have re-
considered the enforcement of strict equivariance. EMLP
(Finzi et al., 2021) provides a framework to create equiv-
arint multilayer perceptrons for arbitrary groups by solv-
ing a constrained optimization problem. Given a matrix
group an MLP can be constructed that is equivariant to that
group. However, it is unclear how this framework can be
extended to work with local gauges, and can’t handle large
data like fields as we consider in this work1. Bogatskiy
et al. (2020) introduced an equivariant neural network for
the Lorentz group; extending that line of though from the
Minkowski metric to arbitrary metrics (Ruhe et al., 2023b),
Ruhe et al. (2023a) introduced Clifford equivariant networks
and their steerable versions (Zhdanov et al., 2024). How-
ever, these works require explicit constructions for each
metric, in the case of the Lorentz networks, and ignore the
action of groups on both the base space and the fibers, in the
case of the Clifford networks. Wang et al. (2022) consider a

1These shortcomings are discussed in the official reprepository
of the paper.

setting where the equivariance is approximate and satisfies
∥f(ρX(g)(x)−ρY f(x)∥2 ≤ ϵ to account for imperfections
in measuring devices or experimental tools. The framework
can better model real world data, however requires explicit
knowledge of the desired symmetry.

Symmetry learning. The efficiency and generalization
properties of equivariant methods is limited in certain ap-
plication domains where we lack a model, the model is
not exact, or the symmetries are not immediately apparent.
Still, efficiency and generalization make learning the acting
symmetry desirable in these settings, and in many cases
the abundance of data makes it possible. Dehmamy et al.
(2021) introduce an architecture to learn continuous groups
through their Lie algebras and follow up works (Yang et al.,
2023b;a) make it more computationally efficient through
the introduction of GANs and consider latent symmetries,
but do not consider vector-valued fields. A different thrust
of works relies on sequential data to learn transformations
acting on the data; these include approaches focusing on the
bispectrum (Sanborn et al., 2023), topographic organization
(Keller & Welling, 2021), or disentanglement (Quessard
et al., 2020). However, in all of these instances sequential
data are required, with the added constraint that they need to
be orbit-separated: each sequence must be a product of the
same group action, leading to a, at least partially, supervised
flavor.

Gauge equivariance. Early works in the field tackled
equivariant learning on spaces with non-trivial curvature,
such as the sphere (Cohen et al., 2018; Esteves et al., 2018;
2020). However, a global coordinate system, or frame,
always exists in these works, unlike physical theories. Im-
portantly, Cohen et al. (2019a) introduced a mathematical
framework for equivariant learning on fiber bundles, though
their work is limited to homogeneous spaces and their quo-
tient groups. More recent works account for different local
frames for their respective applications. Cohen et al. (2019b)
consider gauge-equivariant learning on icosahedral approxi-
mations of spheres by engineering the transition maps be-
tween gauges. A growing body of work has considered
gauge equivariance on mesh grids (de Haan et al., 2021; He
et al., 2021; Basu et al., 2022; Park et al., 2023). In these
works, local gauges are assigned on discrete grid points
and the proposed architectures align the representations of
different grid points, with possibly the inclusion of attention
mechanisms (He et al., 2021; Basu et al., 2022; Park et al.,
2023). In their entirety, these works consider exclusively
tangent bundles, limiting the expressivity of the fibers, or
restrict the fibers to be quotient spaces, which doesn’t al-
low for complex fiber bundles found in physics, such as
SU(2) × U(1) fibers for the electroweak theory, or SU(3)
fibers for quantum chromodynamics. Finally, recent work
has studied gauge-invariant networks in simulated physical
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applications involving quantum lattice models (Luo et al.,
2023; Chen et al., 2022).

3. Background
In both physics and applied mathematics, the concept of a
“field” is fundamental to understanding how properties vary
across space. In simple terms, a field is a state variable that
depends on spatial coordinates. For instance, in an image,
each pixel p ∈ Z2 has a color f(p) ∈ F = [0, 1]3 with
values in the feature space F . This construction where to
each neighborhood of a base space (e.g. Z2) we attach a fea-
ture space (called “fibers”) is an example of a trivial “fiber
bundle” (Baez & Muniain, 1994) which we will formally
define later. This notion can be extended to more complex
data structures, like temperature or wind direction across
a region, electromagnetic fields in physics, or any other
variable distributed over a spatial domain.

Intuition for gauge invariance. In the example of images,
the basis for the fibers needs to be the same for all of the
fibers to ensure colors are defined consistently. However,
in many problems in physical sciences, the quantities of
interest may be invariant under local basis transformations,
called “gauge transformation”. Gauge theory is a paradigm
for modelling such systems. A simple, analogy can be drawn
from the field of image processing. For instance, consider
the task of digit recognition in MNIST. When these images
undergo small local distortions–small diffeomorphisms–the
identity of the digits remains unchanged.

Example: XY model. In physics, a clear illustration of
gauge theory principles can be seen in the XY model (Na-
gaosa, 2013), a system of 2D magnets (spins) interacting on
a lattice (Figure 1c). 2. Let sj = exp[iθj ] ∈ C (with
θj ∈ [0, 2π]) denote the continuous spin state at node
j ∈ B = {1, . . . , N} of the lattice. Here, the lattice B
is the “base space” and the C at each j where the sj take
values are the “fibers”. Given the overall spin configuration
s = {si}Ni=1, the energy is defined as

H(s) = −
∑
ij

Jijs
T
i sj =

1

2

∑
ij

Jij∥si − sj∥2 −N (1)

where J is the coupling matrix (the adjacency matrix of the
lattice in this case). Clearly, the XY system’s energy is in-
variant under global rotation in the fiber spaces sj → eiαsj
(the same transformation on all the fibers). But, importantly,
it also is invariant under local rotations, where in different
neighborhoods of the lattice, the neighboring fibers are ro-
tated together in such a way that sTi sj is not changed. This
local symmetry is the “gauge invariance” of the XY model.

2In Appendix B.1 we provide further context as to how Fig-
ure 1b is generated.

But to allow for the fiber basis at each point to transform in-
dependently, we need to introduce a “gauge field” A which
cancels the difference in gauge (basis) at neighboring points.
To do so, we define the energy as

H(s, A) =
1

2

∑
ij

Jij∥(1 +Aij)si − sj∥2 −N (2)

and define the local transformations of s and A as (see
Appendix A)

sj → eiαjsj ,

Aij → ei(αj−αi)(1 +Aij)− 1. (3)

This way, the energy of the system remains invariant un-
der local rotations of the angle defining the spins. This
observation is essential for designing neural network archi-
tectures that can recognize and respect local symmetries and
transformations.

Continuous XY model. Now consider the case where
instead of a discrete lattice the spins are defined as a con-
tinuous complex field S : R2 → C, where the base space
is B ∼ R2 and the fibers are the same as before. The po-
sition index i has become x and its neighbors j become
x + δx, with infinitesimal δx. Expanding to first order in
δx, si − sj = −δx · ∇S(x). Similarly, Aij becomes a
function δxA(x), which determines the fiber basis transfor-
mation from x to x + δx. From this, the energy becomes
H =

∫
dx2∥(∇+A)S(x)∥2. Under a gauge transformation

S(x) → eiα(x)S(x), A → A− i∇α (4)

which keeps the overall energy unchanged. This concept
illustrates how gauge fields absorb local changes in the fiber
space to ensure that global properties, like energy, remain
consistent.

3.1. Gauge symmetry

Differential geometry Informally, a manifold is a space
that locally resembles Rn. We define an n-dimensional
manifold B as a topological space equipped with charts
(local mappings) fα : Uα → Rn, where Uα ⊂ B are open
sets that cover B. These charts are such that the transition
function fα ◦ f−1

β is smooth where it is defined.

Definition 3.1 (Fiber bundle). A fiber bundle is a triple
E = (B,F , π) consisting of a total space E , a base space B,
and a projection map π : E → B. For each point p ∈ B, the
set

Fp = {q ∈ E : π(q) = p} (5)

is called the fiber over p. A “section” of the fiber bundle is a
map ϕ : B → E such that for any point p ∈ B, it holds that
π(ϕ(p)) = p.
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Figure 2: Energy distribution (a) and samples of final configurations (b-d) for the XY model. Energy is correlated with
vorticity: low, mid, and high energy states have low, mid, and high levels of vorticity, respectively.

In physics, sections are called fields. A trivial fiber bundle
is a particular case where the total space E is simply the
product of the base space B and the fiber F . For instance, an
image is a section of a trivial fiber bundle. In the problems
we are interested in, the fiber space has a symmetry group
which acts on it. A principal bundle is a special type of
fiber bundle particularly significant in gauge theories. In a
principal bundle, each fiber is a homogeneous space—an
orbit of a group G acting smoothly, freely, and transitively.
Gauge theories primarily deal with principal bundles, as they
are crucial for defining connections (gauge fields). These
connections describe how to “transport” elements within the
fiber from one point in the base space to another.

Connections in Fiber Bundles A connection 3 on a fiber
bundle is a mathematical tool that allows us to define how
to “transport” elements along paths within the base space
B, while respecting the fiber structure. As illustrated in
Figure 1, different local bases in the fibers leads to conflict-
ing representations of fields. A connection enables us to
compare elements of the fiber over different points in B,
effectively defining a “covariant derivative”. The key idea is
that the standard derivative ∂µ does not account for the dif-
ference in the basis of fiber Fp and Fp+δx. A gauge field A
modifies the standard derivative ∂µ to a covariant derivative
Dµ to maintain consistency between the local frames.

Dµ = ∂µ +Aµ. (6)

Gauge equivariance Let G denote the the symmetry
group of all Fp, and let g : B → G be set of group trans-
formations which can act on a section (field) ϕ : B → E to
yield ϕ′(p) = g(p)ϕ(p). To achieve gauge equivariance, the

3The term “connection” is used slightly differently among math-
ematicians, who use it for the covariant derivative D, compared
to physicists, using it for the gauge field A. To avoid confusion
we will mostly use the terms covariant derivative for D and gauge
field for A.

covariant derivative needs to be gauge (or group) equivari-
ant, i.e., D′(g · f) = g ·Df . This implies a constraint on
the vector potentials of the form

A′ = gAg−1 − (∇g)g−1. (7)

This concept is fundamental in physics and differential ge-
ometry, as it enables us to compare elements of the fiber
over different points in B, defining a “covariant derivative”.

In a more formal setting, Aµ can be seen as a one-form on
the base manifold that takes values in the Lie algebra of
the gauge group G. This Lie algebra-valued one-form is
defining how the gauge transformations adjust the fields and
their derivatives, ensuring all physical predictions remain
invariant under local transformations of the gauge group.

4. Experiments
As we discussed in Section 3, the XY model can be ex-
pressed as a gauge field and its energy is invariant to local
(and global) transformations. We propose an architecture
that constructs features that are, by design, gauge-invariant.
Using the gauge-invariant features, we make local energy
predictions, which are then aggregated to solve the problem
of energy estimation in the XY model.

Embedded XY Some processes, such as embedding, can
induce a natural gauge on the fiber bundle. For example,
assume that we have the XY model and we have identified
the fibers with the tangent spaces, meaning Fp ≃ TBp ≃
R2. Now, suppose we map the XY system to a sphere in
R3. This naturally results in a nontrivial gauge. To see this,
choose the basis for TBp to be the tangents in spherical
coordinates (ϕ, θ), where ϕ ∈ [0, 2π) is the azimuthal angle
and θ ∈ (0, π) is the polar angle. The tangent vectors
∂(ϕ,θ)(p) ≡ (∂/∂ϕ(p), ∂/∂θ(p)) form the local basis for
TBp. To see how ∂(ϕ,θ) varies from p to p+ δp, we can use
the embedding coordinates p⃗ = (x, y, z) and express ∂(ϕ,θ)
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Figure 3: (a) Gauge-invariant architecture. Each neigh-
borhood computes a gauge-corrected local estimate for the
energy, which are then aggregated for the total energy of
the configuration H(s). (b) Performance of neural network
architectures on energy regression for the XY model. Our
method, GaugeNet, is shown in bold.

in terms of ∂p⃗ = (∂x, ∂y, ∂z).We have

∂(ϕ,θ) =
∂(x, y, z)

∂(ϕ, θ)
∂(x,y,z) = J∂(x,y,z) (8)

where J is the Jacobian of the transformation.

Dataset We generated 10, 000 samples, each representing
a field configuration s ∈ R100×100. Original spin configu-
rations were i.i.d. samples from a uniform distribution and
iterated over 10, 000 gradient steps to reach each final con-
figuration. The dataset consists of data pairs {(si, yi)}10,000i=1

with yi = H(si) ∈ R being the energy of each final con-
figuration, which we consider as the target variable for a
regression task. The XY model has multiple energy basins
that the system can converge to. In Figure 2 we plot the
overall distribution of the energies and samples of low-,
mid-, and high- energy configurations. For details about the
data-generating procedure see Appendix B.2 and for more
samples from the dataset see Appendix B.3.

Architecture To construct an architecture that is inher-
ently invariant to the choice of gauge, we opted to construct
gauge invariant features. Inner products are preserved under
gauge transformations, assuming i, j are expressed in the

same local gauge. The challenge, then, is to ensure that
quantities are expressed in the same gauge when computing
the inner products. To that end, in light of Equation (2), we
introduce a small, one hidden layer MLP that estimates the
misalignment in gauges from the node positions.

After correcting for the difference in gauge, for every local
neighborhood at a node i, we compute the inner products
between the central node and its neighbors. To model the
local contribution of each neighborhood of the XY model
configuration to the overall energy, we adopt a simple two
hidden layer MLP to estimate the local energy. Then the
local energies are summed, yielding the overall estimate for
the configuration H(s). An illustration of the architecture,
which we call GaugeNet, is given in Figure 3a.

Baselines We compare against high-performing general
architectures and equivariant neural networks. As a general
architecture, we use ResNet18 (He et al., 2016) as a baseline.
For the equivariant baselines, we compare against EMLP
(Finzi et al., 2021) equipped with SO(2)-invariance.

Results In Figure 3b, we show the performance of the
architectures relative to their parameters. We see that Gau-
geNet provides significant performance gains over baselines,
reducing the loss by almost a factor of 100. At the same time,
our model is parameter efficient, requiring almost 10, 000×
less parameters than the next smallest model. EMLP strug-
gles to provide accurate predictions as it models global,
instead of local invariances and suffers from large parame-
ter counts due to its full connectivity. While great general
purpose architectures, ResNets do not have any local invari-
ance properties to allow them to perform favorably. Finally,
EGNN is more parameter efficient than the other baselines
due to its graph structure and performs all computations
locally. However, despite its equivariance properties, it does
not exploit the problem structure adequately to accurately
predict the configuration’s energy, and still requires orders
of magnitude more parameters than GaugeNet.

5. Conclusion and discussions
In this work we presented GaugeNet to solve the energy es-
timation problem in the XY model, utilizing the problem’s
structure to construct gauge-invariant features. As inner
products are preserved under gauge transformations, at each
neighborhood we compute the inner products between the
central node and its neighbors, which we use as features.
As the energy is location-agnostic, our model makes local
energy estimations at every neighborhood, which are aggre-
gated for the final prediction. GaugeNet provides significant
performance gains over baselines which include both equiv-
ariant and general purpose architectures, for only a small
fraction of the parameters.
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A. XY Model Gauge Symmetry
In the XY model on a discrete lattice we defined the energy as

H(s, A) =
1

2

∑
ij

Jij∥(1 +Aij)si − sj∥2 −N (9)

and define the local transformations of s as

s′j = eiαjsj . (10)

Here, we will derive how A should transform such that the energy remains invariant. Thus, we want

H(s, A) = H(s′, A′) (11)

We will match every term in the sum, such that for every pair i, j we have

∥(1 +Aij)si − sj∥2 = ∥(1 +A′
ij)s

′
i − s′j∥2

= ∥(1 +A′
ij)e

iαisi − eiαjsj∥2

= ∥eiαj
(
e−iαj (1 +A′

ij)e
iαisi − sj

)
∥2

= ∥e−iαj (1 +A′
ij)e

iαisi − sj∥2 (12)

From this we can equate the gauge parts and obtain

1 +Aij = e−iαj (1 +A′
ij)e

iαi

1 +A′
ij = eiαj (1 +Aij)e

−iαi

A′
ij = eiαj (1 +Aij)e

−iαi − 1 (13)

which is shows how the gauge field transforms. We can readily verify that when all αi = 0, we recover A′ = A. Also, note
that since A has to take values in the Lie algebra of the gauge group, Aij = MijL, where L = i =

√
−1 is the basis of

u(1), the Lie algebra of U(1). Since U(1) is Abelian, eiαA = Aeiα and so

A′
ij = ei(αj−αi)(1 +Aij)− 1. (14)

For global transformations, where αi = α, we again recover A′ = A. This only happens for Abelian gauge symmetries.

B. Implementation details
B.1. Effect of gauge transformations

In Section 3 we discussed that the spin configuration in the XY model changes as si → eiαisi under a gauge transformation,
where the gauge field αi is smoothly changing. To generate the transformed XY configuration in Figure 1 we considered a
simple gauge field that changes with a low frequency across the x and y dimensions. Specifically, let αix , αiy be the x, y
components of αi

αix = 0.25 · cos
(
2π x

n

)
,

αiy = 0.25 · cos
(
2π 2y

n

)
,

where n is the size of the grid. In this example, we assume the two components act independently on the spin configuration,
and thus the transformed angle of each vector is θg = θ + αix + αiy . The two components of αi alongside the effective
gauge field are shown in Figure 4.

B.2. Data generation

Each data sample consists of a pair (xi, yi) with xi ∈ R100×100 and yi ∈ R denoting the spin configuration at each grid
point and the energy of the configuration. Dropping the sample index for clarity, each xkl ≡ θkl represents the angle of the
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Figure 4: (a) Low-frequency components of the gauge field along the x (top) and y (bottom) directions. (b) Effective gauge
field, comprising of an angular offset θg = θ + αix + αiy .

spin vector at that grid point and skl =

[
cos(θkl)
sin(θkl)

]
. Each angle is originally sampled as random variable θkl ∼ 2πU with

U ∼ Unif . We then run η = 10, 000 gradient steps optimizing the energy of the configuration H(s) = −∑
ij Jijs

T
i sj .

The XY model has many low energy states and convergence to these states depends on the temperature of the system. In
order to get a diverse distribution of energies suitable for a learning task, we need to sample different system temperatures.
In order simulate different temperatures, we varied the learning rate of the optimizer lr ∈ {100, 10, 1, 0.1, 0.01}. Higher
learning rates correspond to higher temperatures where the system is more likely to reach the ground state (where all charges
are aligned). To ensure convergence of the descent procedure for all learning rates, we choose a target learning rate that
showed consistent converging behavior (lrfinal = 0.01) and designed a linear learning rate schedule where the target is

reached after κ = 100 learning rate updates. Specifically, we set γ =
(

lr
lr final

) 1
κ

and we updated the learning rate every η
κ

gradient steps. We used the Adam optimizer and uniformly at random choose a learning rate for each data sample. The
process to generate N = 10, 000 samples took ∼10 hours on a NVIDIA GeForce RTX 3090 Ti.

B.3. XY model samples

9
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Figure 5: Final configurations in the XY model dataset alongside their energies (as the plot titles). Samples were picked at
random from the full dataset (N = 10, 000).
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