
Scalable Signature Kernel Computations via
Local Neumann Series Expansions

Matthew Tamayo-Rios
Seminar for Applied Mathematics & AI Center

ETH Zurich, Switzerland

Alexander Schell
Department of Mathematics

Technical University of Munich, Germany

Rima Alaifari
Department of Mathematics

RWTH Aachen University, Germany

Abstract

The signature kernel [10] is a recent state-of-the-art tool for analyzing high-
dimensional sequential data, valued for its theoretical guarantees and strong empiri-
cal performance. In this paper, we present a novel method for efficiently computing
the signature kernel of long, high-dimensional time series via adaptively truncated
recursive local power series expansions. Building on the characterization of the
signature kernel as the solution of a Goursat PDE [17], our approach employs
tilewise Neumann-series expansions to derive rapidly converging power series
approximations of the signature kernel that are locally defined on subdomains
and propagated iteratively across the entire domain of the Goursat solution by
exploiting the geometry of the time series. Algorithmically, this involves solving a
system of interdependent Goursat PDEs via adaptively truncated local power series
expansions and recursive propagation of boundary conditions along a directed
graph in a topological ordering. This method strikes an effective balance between
computational cost and accuracy, achieving substantial performance improvements
over state-of-the-art approaches for computing the signature kernel. It offers (a) ad-
justable and superior accuracy, even for time series with very high roughness; (b)
drastically reduced memory requirements; and (c) scalability to efficiently han-
dle very long time series (one million data points or more) on a single GPU. As
demonstrated in our benchmarks, these advantages make our method particularly
well-suited for rough-path-assisted machine learning, financial modeling, and sig-
nal processing applications involving very long and highly volatile sequential data.

1 Introduction

Time series data is ubiquitous in contemporary data science and machine learning, appearing in
diverse applications such as satellite communication, radio astronomy, health monitoring, climate
analysis, and language or video processing, among many others [21]. The sequential nature of
this data presents unique challenges, as it is characterised by temporal dependencies and resulting
structural patterns that must be captured efficiently to model and predict time-dependent systems and
phenomena with accuracy. Robust and scalable tools for handling such data in their full temporal
complexity are thus essential for advancing machine learning applications across these domains. One
particularly powerful approach in this direction is the signature kernel [10, 17], the Gram matrix of a
high-fidelity feature embedding rooted in rough path theory and stochastic analysis [14, 8], which has
gained relevance as an increasingly popular tool in the modern analysis of sequential data [11, 13].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Conceptually, the signature kernel (of a family of multidimensional time series) is the Gram matrix
of the signature transform, a highly informative and faithful feature map that embeds time series into
a Hilbert space via their iterated integrals, thus uniquely capturing their geometry and essential time-
global characteristics in a hierarchical manner [9]. This structure situates the signature kernel naturally
within the framework of reproducing kernel Hilbert spaces (RKHS) and enables its practical utility
through kernel learning techniques. The rich intrinsic properties of the underlying signature transform
further confer several strong theoretical properties to the signature kernel, including invariance under
irregular sampling and reparametrization, universality and characteristicness, and robustness to noise
[6]. Its wide-ranging theoretical interpretability combined with its strong real-world efficiency have
elevated the signature kernel to a state-of-the-art tool for the analysis of time-dependent data [13].

However, existing methods for computing the signature kernel suffer from significant scalability
issues, particularly when dealing with long or highly variable time series.1 The reason is that
these methods typically either approximate truncations of the signature transforms via dynamic
programming [10] or solve a global Goursat PDE for the signature kernel using two-dimensional
FDM discretizations [17], which both involve at least quadratic storage complexity relative to the
length ℓ of the time series, thus resulting in prohibitive memory usage for long or very rough time
series. These limitations, and the quadratic complexity in the number of constituent time series
(a common kernel method bottleneck not specific to the signature kernel), can severely obstruct
the application of signature kernels to large-scale, real-world datasets; see, e.g., [19, 11] and the
references therein.

To address this, we introduce a novel approach to compute the signature kernel based on adaptively
truncated local (tilewise) Neumann series expansions of the solution to its characterizing Goursat
PDE; see Figure 1 for an overview. Partitioning the domain [0, 1]2 of this PDE solution into tiles
according to the data points of the input time series, we derive rapidly convergent power series
representations of the solution on each tile, with boundary data obtained from adjacent tiles. This
enables efficient computation of the signature kernel in terms of memory and runtime, while ensuring
superior accuracy and significantly improved scalability with respect to the length and roughness of
the kernel’s constituent time series. Since only local expansions are stored—rather than a global ℓ× ℓ
grid—memory usage grows much more slowly with ℓ, allowing the method to handle very long time
series, even up to a million points each on a single GPU, where PDE or dynamic-programming-based
solvers typically run out of memory. By explicitly leveraging the time-domain geometry of piecewise-
linear time series in this way, our method supports localized computations of the signature kernel that
are both highly parallelizable and memory-efficient, even for very long and rough time series.

Specifically, our main contributions are:

1. Neumann Series for the Signature Kernel: We propose a tilewise integral-equation
approach to construct recursive local power series expansions of the signature kernel, based
on boundary-to-boundary propagation and paired with an adaptive truncation strategy. This
leverages the kernel’s time-domain geometry to enable its computation with significantly
reduced memory requirements and computational cost without compromising accuracy.

2. Parallelizable Local Computation: Exploiting the piecewise-linear structure of the input
time series, we partition the full kernel domain into ordered tiles supporting parallel local
Neumann expansions with adjustable precision and minimal global communication.

3. Scalability to Very Long and Rough Time Series: Our method, termed PowerSig,
achieves scalability to very long (over 106 points on a single GPU) and highly volatile
(rough) time series, addressing key limitations of existing methods.

4. Empirical Validation On Benchmarks: We demonstrate the practical advantages of our
method through comprehensive benchmarks against several state-of-the-art signature kernel
solvers, demonstrating superior accuracy, runtime, and memory efficiency of our approach.

The remainder of this paper elaborates on these contributions, starting with a brief review of re-
lated work (Section 1.1), followed by a detailed description of our methodology (Section 2) and a
presentation of our experimental results (Section 3). Proofs are given in Appendix A.

1Variability of a (discrete-time) time series is quantified by the sum of squared differences between consecu-
tive points of the time series and referred to as its ‘roughness’.

2

The codebase for our method, including all implementation details, is provided in the supplementary
material and publicly available at: https://github.com/geekbeast/powersig.

1.1 Related Work

The computation of Gram matrices for signature-transformed time series was first systematically
studied by Király and Oberhauser [10], who identified the signature kernel as a foundational link
between rough path theory, data science, and machine learning—an interplay broadly envisioned
earlier by Lyons [12]. Chevyrev and Oberhauser [6] further extended these theoretical foundations,
and introduced a statistically robust variant of the signature kernel via appropriate time series scaling.
Computationally, Salvi et al. [17] significantly advanced beyond earlier dynamic programming
approaches for computing truncated kernels [10] by characterizing the (untruncated) signature kernel
through a linear second-order hyperbolic (Goursat) PDE. This approach, implemented in widely-used
libraries such as sigkernel and GPU-accelerated KSig [19], provided efficient signature kernel
computation through finite-difference PDE approximations.

However, PDE-based methods, despite providing highly parallelizable and fast routines for short-
to moderate-length time series, exhibit poor scalability due to quadratic memory usage, becoming
impractical for long or rough time series beyond a few thousand to tens of thousands of time steps
[19, 11] (our experiments confirm computational limits of approximately 103 steps for sigkernel
and 16×104 for KSig on 4090 RTX GPUs). Dynamic programming remains an option for computing
kernels of truncated signatures [10], although it likewise suffers from poor scalability. Recent efforts
to reduce this cost through random Fourier features or other low-rank approximations [20] often
degrade in accuracy for larger time-series length or time series of higher dimension.

Our proposed method, PowerSig, circumvents these issues through tilewise local power series
expansions of the signature kernel, avoiding the need for a global storage footprint that scales
quadratically with time series length. By viewing the Goursat PDE as a Volterra integral equation,
we can compute rapidly convergent Neumann series expansions of the kernel locally, storing only
series coefficients rather than full two-dimensional arrays. This localized strategy enables fast and
accurate signature kernel computations for extremely long (over 106 points) and high-dimensional
time series on single GPUs, significantly improving scalability and efficiency.

During the preparation of this manuscript, we came across a preprint by Cass et al. [5] which appeared
concurrently to the release of our first version. Their work is also based on recursive power series
expansions of the signature kernel, albeit on different mathematical and algorithmic premises. An
empirical and conceptual comparison between our method and theirs is provided in Section B.2.

2 Signature Kernels via Recursive Local Neumann Series

This section presents our tilewise Neumann-series expansion method for the signature kernel. We
begin by revisiting the PDE characterization of the signature kernel [17] (Section 2.1) and recast it as
an equivalent integral equation that allows for a recursive, tile-based decomposition of its solution
with only boundary values exchanged between adjacent tiles (Section 2.2). This local formulation
produces rapidly convergent nested power series expansions on each tile and supports an adaptive
truncation scheme to balance accuracy and computational cost (Section 2.3). By storing and passing
only local series coefficients, the method achieves substantial memory savings compared to global
PDE or dynamic-programming solvers (Section 3). Figure 1 summarizes the core idea.

2.1 The Signature Kernel

Let x = (x1, . . . ,xℓ) ⊂ Rd and y = (y1, . . . ,yℓ) ⊂ Rd be time series of common length ℓ ∈ N (if
lengths differ, one may pad the shorter time series by repeating its final entry). For any such time
series z := (z1, . . . ,zℓ), define its affine interpolant ẑ : [0, 1]→ Rd by

ẑ(t) := zk + (ℓ− 1)
(
t− k−1

ℓ−1

)
∆kz, t ∈

[
k−1
ℓ−1 ,

k
ℓ−1

]
, (k = 1, . . . , ℓ− 1),

where ∆kz := zk+1 − zk. (This is just the unique continuous piecewise linear function interpolating
the points z1, . . . ,zℓ.) The derivative of ẑ (defined almost everywhere on [0, 1]) is given by

ẑ′(t) := (ℓ− 1)∆kz, t ∈
(

k−1
ℓ−1 ,

k
ℓ−1

)
.

3

https://github.com/geekbeast/powersig

For later use, we now partition the unit square [0, 1]2 into tiles as follows. Set

σk :=
k − 1

ℓ− 1
and τl :=

l − 1

ℓ− 1
(k, l = 1, . . . , ℓ) ,

and define the open tiles and their closures (in the Euclidean topology on R2) as

Dk,l :=(σk, σk+1)×(τl, τl+1) and Tk,l := Dk,l = [σk, σk+1]×[τl, τl+1] . (1)

The tiled domain is then given by D :=
⋃ℓ−1

k,l=1Dk,l, with boundary ∂D = [0, 1]2 \ D.

Finally, let ⟨·, ·⟩ denote the Euclidean inner product on Rd. Building on the PDE characterization in
[17, Theorem 2.5], we can2 introduce our main object of interest as follows.
Definition 2.1 (Signature Kernel). The signature kernel of x and y is the unique continuous function
K ≡ Kx,y : [0, 1]2 → R solving the hyperbolic (Goursat) boundary value problem

∂2K(s, t)

∂s∂t
= ρx,y(s, t)K(s, t), (s, t) ∈ D,

K(0, ·) = K(·, 0) = 1,

(2)

where the coefficient function ρx,y : D → R is defined tilewise by

ρx,y(s, t) := ⟨x̂′(s), ŷ′(t)⟩, (s, t) ∈ Dk,l.

An equivalent formulation defines ρx,y on all of [0, 1]2 via

ρx,y : [0, 1]2 ∋ (s, t) 7→ (ℓ− 1)2
ℓ∑

k,l=1

ρk,l1Dk,l
(s, t), ρk,l := ∆lx ·∆ky. (3)

In integral form, the boundary value problem (2) is then equivalent to the Volterra integral equation

K(s, t) = 1 +

∫ t

0

∫ s

0

ρx,y(u, v)K(u, v) dudv, (s, t) ∈ [0, 1]2. (4)

Standard fixed-point arguments (Appendix A.2) guarantee that (4) has a unique solution in C([0, 1]2),
the space of continuous functions on [0, 1]2. This yields the following well-known result:
Proposition 2.2. The Goursat problem (2) has a unique solution in C([0, 1]2); in particular, the
signature kernel of x and y is well-defined.

The advantage of the Volterra formulation (4) is that it naturally leads to a recursive power series
expansion for the signature kernel K, as we will now explain. A key step towards this observation,
which is also used in the proof of Proposition 2.2, is the following lemma:
Lemma 2.3. For any bounded, measurable function ϱ : I → R defined on a closed rectangle
I ≡ [a1, b1]× [a2, b2] ⊆ [0, 1]2, the integral operator Tϱ : (C(I), ∥ · ∥∞)→ (C(I), ∥ · ∥∞) given by

Tϱf(s, t) =

∫ t

a2

∫ s

a1

ϱ(u, v) f(u, v) dudv, (s, t) ∈ I,

has spectral radius zero, that is, r(Tϱ) := supλ∈σ(Tϱ) |λ| = 0. Here, C(I) denotes the space of
continuous functions on I , equipped with the supremum norm ∥f∥∞ := sup(s,t)∈I |f(s, t)|.

This fact will justify the use of Neumann series when inverting operators of the form id− Tϱ below.

2.2 A Recursive Local Power Series Expansion of the Signature Kernel

Our computational strategy is to approximate the signature kernel K by a directed family of local
power series expansions constructed recursively over the tiles (1). In the spirit of the Adomian
Decomposition Method (ADM) [1, 2, 22, 3, 4], we seek to establish a representation

K(s, t) =

∞∑
i,j=0

Ki,j(s, t) (5)

2Introducing the signature kernel of x and y as the solution to its characterizing PDE circumvents the need
to specify it as the inner product of the signature transforms of x and y, as originally formulated in [10, 17].

4

Figure 1: Summary of our method (PowerSig) for computing the signature kernel of two time
series via recursive local Neumann expansions. Panel A: The PDE ∂2K

∂s∂t = ρx,yK induces an
(x,y)-dependent partition of [0, 1]2 into tiles Tk,l. Arrows indicate the sequential propagation of
boundary conditions across tiles, with decreasing colour intensity corresponding to later propa-
gation steps. Tiles receiving arrows of the same colour form groups whose local series can be
computed in parallel. Panel B: On each given tile Tk,l, the kernel admits the recursive local Neu-
mann series expansion: κk,l(s, t) =

∑∞
n=0 T

n
k,l[κk−1,l(σk, ·) + κk,l−1(·, τl)− κk−1,l−1(σk, τl)] =∑∞

i,j=1 cij(s− σk)
i(t− τl)

j , which converges uniformly on (s, t) ∈ Tk,l. These tilewise expansions
depend on boundary values from neighbouring tiles (κk−1,l and κk,l−1), with arrows indicating the
directions of integration from boundaries to the tile interior. Panel C illustrates adaptive series
truncation and final kernel assembly. Tile shading intensity encodes local truncation depth, which is
adaptively determined by the magnitude of ρk,l ≡ (xk+1 − xk)(yl+1 − yl). Darker tiles indicate
the necessity for deeper (higher-order) expansions, while lighter tiles allow shallower truncation.

with terms Ki,j : [0, 1]
2 → R that are easy to compute and, for our purposes, take the form

Ki,j(s, t) =

ℓ−1∑
k,l=1

1T̂k,l
(s, t) c

(i,j)
k,l (s− σk)

i(t− τl)
j (6)

with some tile-dependent coefficient sequences

ck,l :=
(
c
(i,j)
k,l

∣∣ (i, j) ∈ N2
0

)
∈ ℓ1(N2

0), (7)

which are summable and (for (k, l) ̸= (1, 1)) defined recursively by

ck,l = ϕk,l

(
ck,l−1, ck−1,l

)
for maps ϕk,l : ℓ1(N2

0)
×2 → ℓ1(N2

0) (8)

where ϕk,1 (resp. ϕ1,l) depends only on its second (resp. first) argument.

The sets T̂k,l are half-open, T̂k,l :=
[
σk, σk+1

)
×
[
τl, τl+1

)
for k, l < ℓ − 1, and closed on the last

row/column (i.e. when k = ℓ− 1 or l = ℓ− 1), T̂k,ℓ−1 := Tk,ℓ−1, T̂ℓ−1,l := Tℓ−1,l. Thus (T̂k,l)
ℓ−1
k,l=1

defines a partition of the Goursat domain [0, 1]2.

We organize the recursion (8) over all (ℓ− 1)2 tiles, computing the coefficients (7) on each tile Tk,l

via a Neumann expansion from boundary data on the adjacent tiles Tk−1,l, Tk,l−1 (whose coefficients
(ck−1,l and ck,l−1) are already available). Section 2.2.2 details the procedure, beginning with the
bottom-left tile T1,1 in Section 2.2.1.

The goals of this scheme are twofold: (a) to choose the coefficients (7) so that the series (6) converge
rapidly on each tile, giving a power series representation of the signature kernel localizations

κk,l := K|Tk,l
: [σk, σk+1]× [τl, τl+1] ∋ (s, t) 7−→ K(s, t) ∈ R, (9)

and (b) to truncate these tilewise series expansions (9) so as to obtain a numerically stable and
efficient global approximation of the whole kernel K; see Section 2.3 for both.

5

2.2.1 Rapidly Convergent Power Series on the First Tile

On the first tile T1,1 = [0, σ2]× [0, τ2], we adopt (5)–(7) as an ansatz and assume3

κ1,1(s, t) =

∞∑
i,j=0

Ki,j(s, t), where Ki,j(s, t) = c
(i,j)
1,1 sitj (10)

with
∑

i,j |c
(i,j)
1,1 | < ∞ and only diagonal coefficients nonzero (c(i,j)1,1 = 0 for i ̸= j). Then∫

T1,1

∑
i,j |Ki,j(w)|dw <∞, and Fubini applied to the integral equation (4) gives

∞∑
i,j=0

Ki,j =

∞∑
i,j=0

K̃i,j with K̃i,j(s, t) :=

∫ t

0

∫ s

0

ρx,y(u, v)Ki−1,j−1(u, v) dudv (11)

and for K̃0,0 ≡ 1 pointwise on T1,1. Since ρx,y|T1,1
≡ ρ1,1 (see (3)), a simple induction yields

K̃i,j(s, t) =

{
ρi
1,1

(i!)2 · s
itj if i = j,

0 if i ̸= j,
pointwise on T1,1.

By the identity theorem for power series, (11) implies that the desired (c
(i,j)
1,1 | i, j ∈ N0) must read

c
(i,j)
1,1 =

ρi1,1
(i!)2

· δi,j , (12)

where δi,j is the Kronecker delta. On T1,1, the decomposition ansatz (10) thus yields the well-known
Lemma 2.4. On the first tile T1,1, the signature kernel (4) has the form:

K(s, t) =

∞∑
i=0

ρi1,1
(i!)2

siti =

{
J0

(
2
√
|ρ1,1| s t

)
, ρ1,1 < 0,

I0 (2
√
ρ1,1 s t) , ρ1,1 ≥ 0,

uniformly in (s, t) ∈ T1,1, (13)

where J0 and I0 are the Bessel and modified Bessel functions of the first kind of order 0, respectively.

The truncation error decays as O((n!)−2) in the order n, making the series (13) highly effective for
approximating κ1,1, especially when |ρ1,1| is moderate (larger |ρ1,1| need higher truncation orders).

2.2.2 Recursive Neumann Series for Propagating the Signature Kernel Across All Tiles

The recursion (8) for the local power series coefficients ck,l ≡ (c
(i,j)
k,l) ∈ ℓ1(N2

0) on the remaining
tiles starts from the base coefficients (12) and proceeds as follows.

For k, l = 1, . . . , ℓ− 1, define the (propagation) operators Tk,l : C(Tk,l)→ C(Tk,l) by

(Tk,lf)(s, t) =

∫ t

τl

∫ s

σk

ρk,lf(u, v) dudv, (s, t) ∈ Tk,l (14)

(cf. Lemma 2.3), and set T0,l := {0} × [τl, τl+1] and Tk,0 := [σk, σk+1]× {0}.
Proposition 2.5. For each k, l = 1, . . . , ℓ− 1, the restricted kernel κk,l = K|Tk,l

from (9) satisfies

κk,l =

∞∑
n=0

T n
k,l

(
κ
(σk, ·)
k−1,l + κ

(· ,τl)
k,l−1 − κ

(σk,τl)
k−1,l−1

)
uniformly on Tk,l, (15)

for κ(σ,τ)
k,l ≡ κk,l(σ, τ) and the ‘curried’ functions κ(σ, ·)

k,l : Tk,l ∋ (u, v) 7→ κk,l(σ, v) and κ
(· ,τ)
k,l :

Tk,l ∋ (u, v) 7→ κk,l(u, τ). Here, κ0,l := K|T0,l
and κk,0 := K|Tk,0

and κ0,0 ≡ K(0, 0) = 1.

The identities in (15) yield the desired tilewise power-series representation (5)–(6). On each tile, the
coefficients (7) are determined recursively from those on the tiles immediately to the left and below.
The following example illustrates this.

3This is an assumption only for the moment – we will establish (10) as a provable identity in Lemma 2.4.

6

Example 2.6 (Evaluating (15) on T1,1, T1,2, and T2,1). With σi = τi = i−1
ℓ−1 and κ0,i = κi,0 =

κ0,0 ≡ 1, the recursion (15) gives on the bottom-left corner tile T1,1 that

κ1,1 =

∞∑
n=0

T n
1,11 + Tm

1,11− Tm
1,11 =

∞∑
n=0

T n
1,11 uniformly on T1,1, (16)

where the operator T1,1 : f 7−→
[
(s, t) 7→

∫ t

0

∫ s

0
ρ1,1f(u, v) dudv

]
is applied repeatedly. Since

(T n
1,11)(s, t) =

(ρ1,1st)
n

(n!)2 for each n ∈ N0 (as can be readily verified by induction), the recursion (16)
precisely recovers the expansion (13). On the adjacent tile T1,2, the identity (15) yields

κ1,2(s, t) =

∞∑
n=0

[
T n
1,2κ

(σ1,t)
0,2 + T n

1,2κ
(s,τ2)
1,1 − T n

1,2κ
(σ1,τ2)
0,1

]
(s, t)

=

∞∑
n=0

[
T n
1,21 +

∞∑
i=0

ρi1,1τ
i
2

(i!)2
T n
1,2s̃

i − T n
1,21

]
(s, t) =

∞∑
i,j=0

ρi1,1ρ
j
1,2

(i+ j)!i!(ℓ− 1)i
si+j(t− τ2)

j ,

where the last equality used the definition of τ2 and that, for each iteration index n ∈ N0,

(T n
1,2s̃

i)(s, t) = ρ1,2

∫ t

τ2

∫ s

0

(T n−1s̃i)(u, v) dudv =
ρn1,2

(i+ 1)n̄n!
si+n(t− τ2)

n (17)

with (x)n̄ :=
∏n−1

i=0 (x+ i), as one verifies immediately (Lemma A.2). Analogous computations show

κ2,1(s, t) =

∞∑
k,l=0

ρl1,1ρ
k
2,1

(k + l)!l!(ℓ− 1)l
(s− σ2)

ktk+l

uniformly in (s, t) ∈ T2,1. ⋄

The observation (17) is recorded as Lemma A.2 for later use. Given the recursion (15), we now need
an explicit algorithm (ϕ) to extract the coefficients in (8) and thus build the approximations in (5).
The next section provides this (Propositions 2.7 and 2.8).

2.3 Computing the Neumann Series Coefficients

To algorithmically extract the power-series coefficients from the tilewise Neumann recursions (15),
we encode the action of the propagation operators Tk,l on the monomial basis {sitj | (i, j) ∈ N2

0} ⊂
C(Tk,l) via a simple Vandermonde scheme: Define the power map η : [0, 1]→ ℓ∞(N0) by

η(r) = (ri | i ∈ N0) ≡ (1, r, r2, r3, · · ·),
and, for (cij)i,j≥0 ∈ ℓ1(N2

0), define the doubly-infinite matrices C ∈ L (ℓ∞(N0), ℓ1(N0)) by

C ≡
(
ci,j

)
i,j≥0

: a ≡ (aj)j≥0 7−→
(∑

j≥0cijaj

)
i≥0

=: C · a. (18)

By the Weierstrass M -test, each such C then induces a continuous function

C⟨σ,τ⟩ : [0, 1]2 ∋ (s, t) 7−→
〈
η(s), Cη(t)

〉
=

∑
i,j≥0cijs

itj ∈ R, (19)

where ⟨·, ·⟩ denotes the dual pairing between ℓ∞(N0) and ℓ1(N0). The localised kernels (9) can then
all be represented in the explicit form (19) for some recursively related coefficient matrices Ck,l:

Proposition 2.7. For each k, l ∈ {1, . . . , ℓ− 1}, there is Ck,l ≡
(
ci,jk,l

)
i,j≥0

∈ ℓ1(N2
0) such that

κk,l = Ck,l
⟨σ,τ⟩

∣∣∣
Tk,l

and Ck,l =

∞∑
n=0

Ck,l
n in ℓ1(N2

0), (20)

with κk,l = limm→∞
[∑m

n=0 C
k,l
n

]
⟨σ,τ⟩ uniformly on Tk,l. The sequence

(
Ck,l

n

)
n≥0
⊂ ℓ1(N2

0) is

recursively defined by Ck,l
n+1 = ρk,lLσk

Ck,l
n Rτl (n ∈ N0) (21)

with initial value Ck,l
0 :=

(
αiδi0 + βjδ0j − γδ0i · δ0j

)
i,j≥0

, (22)

7

for (αi) := Ck,l−1η(τl), (βi) :=
(
Ck−1,l

)†
η(σk) ∈ ℓ1(N0) and γ :=

〈
η(σk), C

k−1,lη(τl)
〉

and the
boundary coefficients C0,ι = Cι,0 := (δ0i ·δ0j)i,j≥0 for each ι ∈ N0. Identities (21) use the matrices

Lσ := (I −H(σ))S and Rτ := T (I −G(τ)),

I := (δij)i,j≥0, H(σ) := (σjδi0)i,j≥0, G(τ) := (τ iδ0j)i,j≥0, S :=4
(δi−1,j

i

)
i,j≥0

, T :=
(δi,j−1

j

)
i,j≥0

.

Numerically, the dominant cost in applying (15) is the double integration
∫ ·
τl

∫ ·
σk

, i.e., the multiplica-
tions Lσk

(·)Rτl in (21). This cost depends on the expansion center (sk, tl) in the representation

κk,l(s, t) =

∞∑
i,j=0

ci,jk,l;(sk,tl)(s− sk)
i(t− tl)

j
(
(s, t) ∈ Tk,l

)
. (23)

Proposition 2.7 establishes (23) for (sk, tl) = (0, 0) and yields a direct implementation via (20)–
(21). The next result shows that centering instead at the tile corner (sk, tl) = (σk, τl) sub-
stantially reduces computation while preserving uniform convergence. In what follows, ⊙ de-
notes the Hadamard product of doubly-infinite matrices (i.e., the entry-wise matrix multiplication
(ai,j)i,j≥0 ⊙ (bi,j)i,j≥0 := (ai,jbi,j)i,j≥0), and we abbreviate ℓ′ := ℓ− 1.
Proposition 2.8. For each k, l ∈ {1, . . . , ℓ′}, the localised solution (9) has the tile-centered expansion

κk,l(s, t) =

∞∑
i,j=0

c̃
(k,l)
i,j (s− σk)

i(t− τl)
j for C̃k,l ≡

(
c̃
(k,l)
i,j

)
i,j≥0

:= Ak,l ⊙Bk,l ⊙W, (24)

uniformly in (s, t) ∈ Tk,l, where W ≡ (wi,j)i,j≥0 with wi,j :=

(
max(i,j)−min(i,j)

)
!

max(i,j)!min(i,j)! , as well as

Ak,l :=
(
ρ
min(i,j)
k,l

)
i,j≥0

, and the matrix Bk,l ≡
(
b
(k,l)
i,j

)
i,j≥0

is defined by

b
(k,l)
i,i+r := α(k,l)

r and b
(k,l)
i,i−r := β

(k,l)
|r| , for each (i, r) ∈ N2

0 , (25)

with β
(1,1)
r = α

(1,1)
r := δ0,r for each r ∈ N0, and recursively (recalling (18) for notation),(

α(k,l)
r

)
r≥0

:= C̃k,(l−1) · η(1/ℓ′) and
(
β(k,l)
r

)
r≥0

:=
[
C̃(k−1),l

]† · η(1/ℓ′). (26)

Equations (24), (25), and (26) define an efficient, tile-centered implementation of (8). Proposition
A.3 provides rigorous a priori bounds for the induced Gram-matrix approximation error. The next
section presents a numerical evaluation of this method—covering accuracy, memory usage, and
runtime—and illustrates its applicability to downstream tasks on real data.

3 Numerical Experiments

We evaluate our method, PowerSig, in terms of accuracy, memory usage, and runtime. Specifically,
we compute the self-signature kernel of randomly drawn two-dimensional Brownian motion paths on
[0, 1] at increasing sampling frequencies, using sample lengths ℓ = 2k + 1 for k ≥ 0, constrained
only by GPU memory; comparisons are made against the state-of-the-art KSig library [19]. We use
KSig both with its truncated signature kernel and with its PDE-based solver at the default dyadic
order. Experiments were run on an NVIDIA RTX 4090 GPU (24 GB). Unless noted, PowerSig
truncation order for the tile-center local series (24) is fixed at 7, although higher orders are equally
feasible. Accuracy is reported as Mean Absolute Percentage Error (MAPE) relative to the KSig
truncated signature kernel (order 1, truncation level 21), memory is peak GPU usage, and runtime is
total execution time. Each point averages 10 independent runs.

Accuracy. Figure 2 compares the accuracy between PowerSig and the PDE-based solver from
KSig across two-dimensional Brownian motion paths of length up to 513 (the maximum length
manageable by the truncated signature kernel; left panel) and on two-dimensional fractional Brownian
motion paths of fixed length 51 across decreasing Hurst indices (from 0.4 down to 0.005; right
panel). PowerSig, despite employing only a modest truncation order, achieves superior accuracy and
remarkably low error levels as length and irregularity (‘roughness’) of the input time series increase.
PowerSig’s robust performance on time series with low Hurst indices further suggests significantly
enhanced numerical stability of the method, particularly for highly irregular (rough) trajectories.

4Here and in the definition of T we adopt the convention 0
0
:= 0.

8

Figure 2: Comparison of Mean Absolute Percentage Error (MAPE) between PowerSig and the PDE-
based solver from KSig. Left: for two-dimensional Brownian motion paths on [0, 1] across increasing
path lengths ℓ. Right: for two-dimensional fractional Brownian motions of fixed length ℓ = 51 across
increasingly irregular sample paths (decreasing Hurst index, swept through progressively rougher
regimes); the right panel reports MAPE relative to the signature kernel truncated at level 180.

Memory Usage and Runtime. Figure 3 highlights the practical advantages of PowerSig in terms
of GPU memory usage and runtime. Specifically, its localized, tile-based computation drastically
reduces memory overhead, enabling computations on paths of length ℓ = 524 289 with under 720 MB
GPU memory, which is orders of magnitude lower than both PDE- and dynamic-programming-based
methods. The inherent sparsity of the propagated Neumann-series expansions enables efficient mem-
ory management, allowing PowerSig to handle substantially larger-scale problems and overcome
the storage bottleneck associated with full-grid methods.

Figure 3: Peak GPU memory usage (left) and runtime (right) for computing the signature kernel on
two-dimensional Brownian motion paths, comparing PowerSig with the truncated-signature (KSig)
and PDE-based (KSig PDE) solvers. PowerSig achieves substantially lower memory consumption
and maintains computational feasibility for large ℓ, well beyond the limits of the alternative methods.

Time Complexity PowerSig retains the O(ℓ2d) runtime scaling of existing methods but signif-
icantly improves space complexity to O(ℓP), where P (polynomial truncation order) is typically
much smaller than ℓ. By storing only on a single diagonal of coefficient blocks, PowerSig enables
the processing of much longer paths than previously feasible with existing approaches.

Empirical Evaluation on Real and Large-Scale Settings

Beyond the above benchmarks, we also assess downstream performance and compare PowerSig
with recent low-rank and random Fourier Feature (RFF) approximations. Unless noted otherwise,
we use the default truncation policy and report averages over multiple independent runs. All figures,

9

implementation details, and full hyperparameter grids appear in the supplement (downstream figures
have been moved to Section B.1 of the supplement to comply with page limits).

(A) Bitcoin price regression (Salvi et al. [17]). Figure 4 shows train and test fits (two-day
rolling average) for kernel-ridge regression (MAPE) on the public bitcoin pricing dataset
featured in Salvi et al. in [17]. On the test set, PowerSig attains 2.81% MAPE versus
3.23% for the (RBF-assisted) KSig-PDE. For the underlying Gram-matrix construction,
peak memory for KSig-PDE scales as O(N2ℓ2) (with N windows and window length
ℓ), whereas PowerSig uses only O(ℓ2). For the present setup (N = 299, ℓ = 36), this
extrapolates to roughly ∼ 1.6,GB for KSig-PDE versus ∼!0.038,MB for PowerSig. This
illustrates that the near-exact regime enabled by PowerSig’s linear-in-length memory profile
yields tangible predictive gains at far lower resource cost, with particularly clear benefits
even at short window lengths.

(B) UEA Eigenworms classification and RFF/low-rank baselines. We benchmark PowerSig
and KSig-PDE against linear/RBF kernel SVMs and the recent specialized RFF-based
method RFSF-TRP from [20] on the standard Eigenworms dataset with input window
lengths L ∈ {16, 32, . . . , 1024}. As shown in Figure 5, PowerSig (and KSig-PDE up to
L = 128 before OOM) remains competitive and rises to 61.1% accuracy at L = 1024,
whereas RFSF-TRP attains a slightly higher peak of 62.5% at L = 128 but exhausts memory
for larger L, consistent with the storage advantages in Figure 3. These results show that
substantially extending the input window—enabled here at scale by PowerSig—can narrow
performance gaps often ascribed to inductive bias while maintaining feasibility.

(C) Long-horizon periodic signals (industrial/sensing proxy). Motivated by predictive main-
tenance (near-periodic gearbox/turbine vibrations) and narrow-band I/Q radio signals, we
generate synthetic near-periodic time series with adjustable period length. For representative
instances (see, e.g., Figure 7), SVM-regression error decreases monotonically as input
windows span multiple periods. As shown in Figure 6, PowerSig sustains this behavior at
window lengths beyond the reach of conventional or low-rank signature-kernel methods,
while peak memory grows linearly with window length.

(D) High-dimensional scaling. Complementing Figure 3, we fix path length ℓ = 4096 and vary
dimension d from 2 to 8192. Figure 8 shows stable accuracy and near-perfect linear runtime
from d = 64 to 4096 (slightly sublinear outside), with memory following our one-strip
tiling profile. This corroborates the practicality of PowerSig in high-dimensional sensing
and multivariate finance.

Overall, across real regression and classification tasks and stress tests in length and dimension,
PowerSig delivers competitive or superior accuracy, strong robustness to rough and long inputs, and
demonstrated scalability, while using substantially less memory than alternative methods.

4 Conclusion

We introduced PowerSig, a method for computing signature kernels of piecewise-linear time series
via localized Neumann–series expansions. Recasting the kernel-defining Goursat PDE as a Volterra
equation yields uniformly convergent, tile-centered power-series expansions of the kernel that propa-
gate only boundary data along a directed tile graph and admit efficient adaptive per-tile truncation
(Lemma 2.3, Prop. 2.5, Prop. 2.8, Prop. A.3). The resulting design achieves linear-in-length memory
O(ℓP), preserves the standard O(ℓ2d) runtime, and supports straightforward parallelism.

Empirically, PowerSig matches or exceeds state-of-the-art PDE- and DP-based solvers in accuracy,
remains stable on highly irregular (low-Hurst) inputs, and scales to path lengths previously infea-
sible on commodity GPUs. On downstream tasks it delivers competitive or improved predictive
performance at substantially lower memory cost.

Future work includes tighter extraction of tile-boundary coefficients, adaptive scheduling across
tiles to leverage hardware concurrency, and refined truncation policies guided by local roughness.
Additional directions include extending beyond piecewise-linear interpolation (e.g., to higher-order
segments or learned segment maps), integrating certified a posteriori error control, and broadening
applications in finance, sensing, and long-horizon sequence modeling.

10

Acknowledgements

The authors thank Csaba Tóth for helpful discussions on benchmarking signature kernel downstream
tasks. The authors are also grateful to the program chair and three anonymous reviewers for their
helpful and constructive comments and suggestions. A.S. acknowledges funding from the Bavarian
State Ministry of Sciences and the Arts in the framework of the bidt Graduate Center for Postdocs.

References
[1] George Adomian. A new approach to nonlinear partial differential equations. Journal of

Mathematical Analysis and Applications, 102(2):420–434, 1984.

[2] George Adomian. Solving frontier problems of physics: the decomposition method, volume 60.
Springer Science & Business Media, 1994.

[3] Jamshad Ahmad and Mariyam Mushtaq. Exact solution of linear and non-linear Goursat
problems. Universal Journal of Computational Mathematics, 3:14–17, 2015.

[4] Fouzia Birem, Aissa Boulmerka, Hafida Laib, and Chahinaz Hennous. Goursat problem in
hyperbolic partial differential equations with variable coefficients solved by Taylor collocation
method. Iranian Journal of Numerical Analysis and Optimization, 14(2):613–637, 2024.

[5] Thomas Cass, Francesco Piatti, and Jeffrey Pei. Numerical Schemes for Signature Kernels.
arXiv preprint arXiv:2502.08470, 2025.

[6] Ilya Chevyrev and Harald Oberhauser. Signature moments to characterize laws of stochastic
processes. Journal of Machine Learning Research, 23(176):1–42, 2022.

[7] Heinz Werner Engl. Integralgleichungen. Springer-Verlag, 2013.

[8] Peter K Friz and Nicolas B Victoir. Multidimensional stochastic processes as rough paths:
theory and applications, volume 120. Cambridge University Press, 2010.

[9] Ben Hambly and Terry Lyons. Uniqueness for the signature of a path of bounded variation and
the reduced path group. Annals of Mathematics, pages 109–167, 2010.

[10] Franz J Király and Harald Oberhauser. Kernels for sequentially ordered data. Journal of
Machine Learning Research, 20(31):1–45, 2019.

[11] Darrick Lee and Harald Oberhauser. The Signature Kernel. arXiv preprint arXiv:2305.04625,
2023.

[12] Terry Lyons. Rough paths, signatures and the modelling of functions on streams. arXiv preprint
arXiv:1405.4537, 2014.

[13] Terry Lyons and Andrew D McLeod. Signature methods in machine learning. arXiv preprint
arXiv:2206.14674, 2022.

[14] Terry J Lyons. Differential equations driven by rough signals. Revista Matemática Iberoameri-
cana, 14(2):215–310, 1998.

[15] Sean McKee, Tao Tang, and Teresa Diogo. An Euler-type method for two-dimensional Volterra
integral equations of the first kind. IMA Journal of Numerical Analysis, 20(3):423–440, 2000.

[16] Michael Reed and Barry Simon. I: Functional analysis, volume 1. Academic press, 1981.

[17] Cristopher Salvi, Thomas Cass, James Foster, Terry Lyons, and Weixin Yang. The Signature
Kernel is the solution of a Goursat PDE. SIAM Journal on Mathematics of Data Science, 3(3):
873–899, 2021.

[18] Amol Sasane. A friendly approach to functional analysis. World Scientific, 2017.

[19] Csaba Tóth, Danilo Jr Dela Cruz, and Harald Oberhauser. A User’s Guide to KSig: GPU-
Accelerated Computation of the Signature Kernel. arXiv preprint arXiv:2501.07145, 2025.

11

[20] Csaba Tóth, Harald Oberhauser, and Zoltán Szabó. Random fourier signature features. SIAM
Journal on Mathematics of Data Science, 7(1):329–354, 2025.

[21] Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. arXiv preprint arXiv:2407.13278,
2024.

[22] Abdul-Majid Wazwaz. The decomposition method for approximate solution of the Goursat
problem. Applied Mathematics and Computation, 69(2-3):299–311, 1995.

A Mathematical Proofs

A.1 Proof of Lemma 2.3

Proof of Lemma 2.3. By definition of r(Tϱ), we need to show that the spectrum of Tϱ is σ(Tϱ) =
{0}, i.e., that zero is the only element in the spectrum of Tϱ. This is equivalent to establishing that
for all λ ∈ C\{0}, the operator λ id− Tϱ is a bijection with a bounded inverse. Here, id denotes the
identity on C([0, 1]2). To show this, we note that it suffices to prove that

λ id− Tϱ : C(I)→ C(I)

is a bijection: since C(I) is a Banach space, the inverse mapping theorem implies that in this case,
the inverse is a bounded operator. Thus, it is left to show that

(λ id− Tϱ)K = F (27)

is uniquely solvable in C(I) for all λ ∈ C\{0} and all F ∈ C(I).

One way to establish this result is via the Picard iteration, through proving that (see [15]) the Picard
iterates Kn given recursively by

Kn+1(s, t) = F (s, t) +

∫ s

0

∫ t

0

ϱ(u, v)Kn(u, v) dudv, K0(s, t) ≡ 0,

form a Cauchy sequence in (C(I), ∥·∥∞):

|Kn+1(s, t)−Kn(s, t)| ≤
(
1

2

)n

∥F∥∞ eβ(s+t), (s, t) ∈ I,

where β = (2 ∥ϱ∥∞)
1/2.

This guarantees the existence of the limit K∗ := limn→∞ Kn as an element in C(I). Since each Kn

is bounded by

|Kn(s, t)| = |Kn(s, t)−K0(s, t)| ≤
n−1∑
i=0

|Ki+1(s, t)−Ki(s, t)| ,

≤
n−1∑
i=0

2−i ∥F∥∞ eβ(s+t) ≤ 2 ∥F∥∞ eβ(s+t),

which is an integrable function on I , it follows by dominated convergence that

K∗(s, t) = lim
n→∞

Kn+1(s, t) = F (s, t) +

∫ s

0

∫ t

0

lim
n→∞

ϱ(u, v)Kn(u, v) dudv,

= F (s, t) +

∫ s

0

∫ t

0

ϱ(u, v)K∗(u, v) dudv,

so that K∗ solves the integral equation (27). As noted in [15], uniqueness can be established with
another proof by induction. We give a precise argument for the convenience of the reader.

For this, suppose that there exists another solution K ∈ C(I) to (27) different from K∗. Then,

Kn+1(s, t)−K(s, t) =

∫ s

0

∫ t

0

ϱ(u, v) (Kn(u, v)−K(u, v)) dudv. (28)

12

As suggested in [15], showing

|Kn(s, t)−K(s, t)| ≤ 2−n ∥K∥∞ eβ(s+t),

is sufficient for establishing uniqueness of the solution of (27). For the proof by induction, note that
the case n = 0 holds trivially since K0 ≡ 0. The induction step n 7→ n+ 1 is also straightforward:

|Kn+1(s, t)−K(s, t)| =
∣∣∣∣∫ s

0

∫ t

0

ϱ(u, v) (Kn(u, v)−K(u, v)) dudv

∣∣∣∣ ,
≤ ∥ϱ∥∞ 2−n ∥K∥∞

∫ s

0

∫ t

0

eβ(u+v) dudv,

≤ ∥ϱ∥∞ 2−n ∥K∥∞ β−2
(
eβs − 1

) (
eβt − 1

)
,

≤ 2−(n+1) ∥K∥∞ eβ(s+t),

where the first line is an application of (28). Therefore, in C(I), a solution to (27) always exists and
is unique. Together with employing the inverse mapping theorem, this concludes that the spectral
radius of Tϱ is zero.

A.2 Proof of Proposition 2.2

Proof. We can reformulate (2) as the equivalent integral equation (4), which in turn is equivalent to

(id− Tρx,y)K = u0

for id the identity on C([0, 1]2) and u0 the constant one-function u0 ≡ 1 and the integral operator

Tρx,y :
(
C([0, 1]2), ∥·∥∞

)
−→

(
C([0, 1]2), ∥·∥∞

)
, f 7−→

[
(s, t) 7→

∫ t

0

∫ s

0

ρx,y(u, v) f(u, v) dudv

]
.

The operator Tρx,y is clearly linear and bounded, and has spectral radius zero, r(Tρx,y) = 0, by

Lemma 2.3. Consequently (cf. [16, Theorem VI.6]), we have limn→∞

∥∥∥T n
ρx,y

∥∥∥1/n = r(Tρx,y) = 0,
implying that

∀ q ∈ (0, 1) : ∃nq ∈ N : ∥T n
ρx,y
∥ < qn, ∀n ≥ nq.

Consequently, the Neumann series
∑∞

n=0 T
n
ρx,y

is ∥ · ∥-convergent and, hence,

(id− Tρx,y) is invertible with (id− Tρx,y)
−1 =

∞∑
n=0

T n
ρx,y

.

This, however, implies that K is indeed the only solution of (4), additionally satisfying

K = (id− Tρx,y)
−1u0 =

∞∑
n=0

T n
ρx,y

u0.

Remark A.1. Note that the n-th Picard iterate is related to the Neumann series via

Kn =

n∑
i=0

T i
ρx,y

K1.

We remark that this convergence result is independent of any bound on ρx,y and extends a classical
result for Volterra equations in one dimension [7, Theorem 4.1]. In particular, Tρx,y need not be
a contractive mapping. Repetition of the above argument similarly results in the converegence of∑∞

n=0 k
−n−1T n

ρx,y
, which corresponds to the fixed point iteration for solving (k id− Tρx,y)K = f,

for any k ̸= 0 and any f ∈ C(I). ⋄

13

A.3 Proof of Lemma 2.4

Proof. The (bivariate) power series k1,1 : (s, t) 7→
∑∞

i=0

ρi
1,1

(i!)2 s
iti converges uniformly absolutely

on [0, 1]2 ⊃ T1,1, since
∑∞

i=0

∣∣ ρi
1,1

(i!)2 s
iti

∣∣ ≤ e|ρ1,1| for all (s, t) ∈ [0, 1]2. In particular, k1,1

is partially differentiable with mixed derivatives (∂s∂tk1,1)(s, t) = ρ1,1
∑∞

i=1

ρi−1
1,1 i2

(i!)2 (st)i−1 =

ρx,y(s, t)k1,1(s, t), for all interior points (s, t) of T1,1. Thus, k1,1 solves the boundary value prob-
lem (2) on the tile D1,1, as does K. By the uniqueness of solutions to (2), we conclude that
k1,1|T1,1

= K|T1,1
, which establishes (13).

A.4 Proof of Proposition 2.5

Proof. Let us note first that any point (s, t) ∈ [0, 1]2 can be decomposed as

(s, t) = (s̃, t̃) + (σk(s), τl(t))

with (s̃, t̃) ∈ T̂1,1 and position indices (k(s), l(t)) := (⌊s(ℓ− 1)⌋+1, ⌊t(ℓ− 1)⌋+1) ∈ {1, . . . , ℓ}2
determined by the location of (s, t) within the tiling (T̂k,l). Hence, and by the Volterra identity (4),

K(s, t) = K(σk(s), t) +K(s, τl(t))−K(σk(s), τl(t)) +

∫ t

τl(t)

∫ s

σk(s)

ρk(s),l(t)K(u, v) dudv (29)

for all (s, t) ∈ [0, 1]2. Defining the ‘boundary maps’ γk,l : Tk,l → R (k, l = 1, . . . , ℓ− 1) by

γk,l(s, t) = K(σk, t) +K(s, τl)−K(σk, τl), (s, t) ∈ Tk,l, (30)

the identity (29) can be expressed as

K(s, t) = γk(s),l(t)(s, t) + (Tk(s),l(t)κk(s),l(t))(s, t), (s, t) ∈ [0, 1]2. (31)

Since for each (s, t) ∈ T̂k,l, it holds that (k(s), l(t)) = (k, l), equation (31) further is equivalent to
the following (k, l)-indexed system of identities in C(Tk,l),

(id− Tk,l)κk,l = γk,l (k, l = 1, . . . , ℓ− 1). (32)

From Lemma 2.3 and basic operator theory (cf. [18, Thm. 2.9]), we know the identities (32) are
invertible for κk,l and the respective inverse operators can be written as a Neumann series in Tk,l,

κk,l = (id− Tk,l)
−1γk,l =

∞∑
n=0

T n
k,lγk,l, (33)

where the above series converges wrt. ∥ · ∥∞;Tk,l
, the sup-norm on C(Tk,l).

For the recursive structure of the κk,l-identities (33), note that, for any fixed (s, t) ∈ Tk,l, we have
(σk, t) ∈ Tk−1,l ∩ Tk,l and (s, τl) ∈ Tk,l ∩ Tk,l−1, where by definition T0,l = {0} × [τl, τl+1] and
Tk,0 = [σl, σl+1]× {0} and T0,0 := {(0, 0)}. Consequently, the boundary map (30) evaluates to

γk,l(s, t) = κk−1,l(σk, t) + κk,l−1(s, τl)− κk−1,l−1(σk, τl), (s, t) ∈ Tk,l, (34)

with κ0,l := K|T0,l
, κk,0 := K|Tk,0

, κ0,0 ≡ 1. Combining (34) and (33) proves (15).

Lemma A.2. Let φ(l)
σ : [0, 1]2 ∋ (s, t) 7→ (s − σ)l and φ

(l)
τ : [0, 1]2 ∋ (s, t) 7→ (t − τ)l, for any

given l ∈ N0. Then for each n ∈ N0 and all µ, ν ∈ {1, . . . , ℓ− 1}, we have that

T n
µ,ν

(
φ(l)
σµ

∣∣
Tµ,ν

)
(s, t) =

ρnµ,ν
(l + 1)n̄n!

(s− σµ)
l+n(t− τν)

n, (s, t) ∈ Tµ,ν , and

T n
µ,ν

(
φ(l)
τν

∣∣
Tµ,ν

)
(s, t) =

ρnµ,ν
(l + 1)n̄n!

(s− σµ)
n(t− τν)

l+n, (s, t) ∈ Tµ,ν .

14

Proof of Lemma A.2. This follows immediately by induction. Indeed: the case n = 0 is clear, and
for n ∈ N we get

T n
µ,ν

(
φ(l)
σµ

∣∣
Tµ,ν

)
(s, t) = ρµ,ν

∫ t

τν

∫ s

σµ

T n−1
µ,ν

(
φ(l)
σµ

∣∣
Tµ,ν

)
(u, v) dudv

= ρµ,ν

∫ t

τµ

∫ s

σν

ρn−1
µ,ν

(l + 1)n−1(n− 1)!
(u− σµ)

l+n−1(v − τν)
n−1 dudv

=
ρnµ,ν

(l + 1)n−1(n− 1)!

∫ t

τν

(v − τν)
n−1 dv

∫ s

σµ

(u− σµ)
l+n−1 du

=
ρnµ,ν

(l + 1)n−1(n− 1)!

(t− τν)
n

n

(s− σµ)
l+n

l + n
for each (s, t) ∈ Tµ,ν ,

as claimed. The proof for T n
µ,ν

(
φ
(l)
τν

∣∣
Tk,l

)
is entirely analogous.

A.5 Proof of Proposition 2.7

Proof. We proceed by induction on the tile position (k, l). For this, note first that, for all σ, τ ≥ 0,

Lσ =
(
δij − σjδi0

)
i,j≥0

·
(

δi−1,j

i

)
i,j≥0

=
(∑∞

k=0(
δik−σkδi0

k)δk−1,j

)
i,j≥0

=
(δi,j+1−σj+1δi0

j+1

)
i,j≥0

=: (ℓij(σ))i,j≥0, and (35)

Rτ =
(

δi,j−1

j

)
i,j≥0

· (δij − τ iδ0j)i,j≥0 =
(∑∞

k=0(
δkj−τkδ0j

k)δi,k−1

)
i,j≥0

=
(δi,j−1−τ i+1δ0j

i+1

)
i,j≥0

=: (rij(τ))i,j≥0. (36)

Then for the base case (k, l) = (1, 1), we have that (C0,l
⟨σ,τ⟩ = Ck,0

⟨σ,τ⟩ = C0,0
⟨σ,τ⟩ ≡ 1 and hence)

C1,1
0 = (δ0i · δ0j)i,j≥0 and further, by (21), that

L0C
1,1
0 R0 = (ℓij(0))i,j≥0 ·

(∑∞
n=0(δ0i · δ0n)rnj(0)

)
i,j≥0

= (ℓij(0))i,j≥0 ·
(
δ0ir0j(0)

)
i,j≥0

=
(∑∞

n=0ℓin(0)r0j(0) · δ0n
)
i,j≥0

=
(
ℓi0(0)r0j(0)

)
i,j≥0

=
(
δi,1 · δ1,j

)
i,j≥0

.

Hence
[
C1,1

1

]
⟨σ,τ⟩

(21)
=

[
ρ1,1L0C

1,1
0 R0

]
⟨σ,τ⟩ = ρ1,1st, whence (20)|(k,l)=(1,1) holds by Lemma 2.4

(and via induction on n) if, for any fixed n ∈ N≥2,(
ρn
1,1

(n!)2 δinδnj

)
i,j≥0

= ρ1,1L0

(
ρn−1
1,1

((n−1)!)2 δi,n−1δn−1,j

)
i,j≥0

R0. (37)

Denoting αij :=
ρn−1
1,1

((n−1)!)2 δi,n−1δn−1,j for each i, j ≥ 0, the right-hand side of (37) reads

ρ1,1L0 ·
(∑∞

µ=0αiµrµj(0)
)
i,j≥0

= ρ1,1
(∑∞

ν,µ=0ℓiν(0)ανµrµj(0)
)
i,j≥0

. (38)

Now by (35) and (36), we obtain for any fixed i, j, ν, µ ≥ 0 that

ℓiν(0)ανµrµj(0) = ανµ · δi,ν+1

ν+1
δµ,j−1

µ+1 =
αi−1,j−1

ij · δi−1,νδµ,j−1.

This allows us to evaluate (38) to

ρ1,1
(∑∞

ν,µ=0ℓiν(0)ανµrµj(0)
)
i,j≥0

= ρ1,1
(
αi−1,j−1

)
i,j≥0

= ρ1,1

(
ρn−1
1,1

((n−1)!)2ij δinδnj

)
i,j≥0

,

proving (37) as desired.

With the base case (k, l) = (1, 1) thus established, take now any (k, l) ∈ {1, . . . , ℓ − 1}2 with
k + l > 2, and suppose that (20) holds for (k − 1, l) and (k, l − 1) and (k − 1, l − 1) (induction
hypothesis). Then κk̃,l̃ = C k̃,l̃

⟨σ,τ⟩

∣∣∣
Tk̃,l̃

for each (k̃, l̃) ∈ {(k− 1, l), (k, l− 1), (k− 1, l− 1)}, whence

and by Proposition 2.5 we have that

κk,l =

∞∑
n=0

T n
k,l

(〈
η(σk), C

k−1,lη(·)
〉
+
〈
η(·), Ck,l−1η(τl)

〉
+

〈
η(σk), C

k−1,l−1η(τl)
〉)

(39)

15

uniformly on Tk,l. Since T 0
k,l = id|C(Tk,l)

, the 0th summand in (39) reads

⟨η(σk), C
k−1,lη(·)

〉
+
〈
η(·), Ck,l−1η(τl)

〉
+

〈
η(σk), C

k−1,l−1η(τl)
〉
=

[
Ck,l

0

]
⟨σ,τ⟩

for the initial matrix Ck,l
0 from (22). Consequently, the claim (20) follows if, for any fixed n ∈ N,[

Ck,l
n+1

]
⟨σ,τ⟩

∣∣∣∣
Tk,l

= Tk,l

([
Ck,l

n

]
⟨σ,τ⟩

∣∣∣
Tk,l

)
. (40)

Abbreviating un+1 := Tk,l

([
Ck,l

n

]
⟨σ,τ⟩

∣∣∣
Tk,l

)
and Ck,l

n =: (cij)i,j≥0, note that by definition,

un+1(s, t) = ρk,l
∑
i,j≥0

cij

∫ t

τl

∫ s

σk

s̃it̃j ds̃dt̃ = ρk,l
∑
i,j≥0

cij
(i+ 1)(j + 1)

(si+1 − σi+1
k)(tj+1 − τ j+1

l)

(41)
for each (s, t) ∈ Tk,l (see (14) and (19)). Abbreviating (ĉij) :=

(
cij

(i+1)(j+1)

)
i,j≥0

and using that

(si+1 − σi+1
k)(tj+1 − τ j+1

l) = si+1tj+1 − σi+1
k tj+1 − τ j+1

l si+1 + σi+1
k τ j+1

l

for all i, j ≥ 0, we can immediately rewrite (41) as uk+1 = C̃⟨σ,τ⟩

∣∣∣
Tk,l

for the coefficient matrix

C̃ := ρk,l
(
ĉi−1,j−1 − γ̂i−1|: · δ0j − γ̂:|j−1 · δi0 + γ̂:|: · δi0δ0j

)
i,j≥0

,

where γ̂i|: :=
∑∞

j=0 ĉijτ
j+1
l and γ̂:|j :=

∑∞
i=0 ĉijσ

i+1
k (i, j ≥ 1) and γ̂−1|: = γ̂:|−1 = ĉ−1,j =

ĉi,−1 := 0 (i, j ≥ 0), and γ̂:|: :=
∑

i,j≥0σ
i+1
k τ j+1

l . Hence, the desired identity (40) follows if

C̃ = ρk,lLσk
Ck,l

n Rτl . (42)

For a proof of (42), note simply that, by definition of Lσ and Rτ (cf. (35) and (36)),

Lσk
Ck,l

n Rτl =
(∑

µ,ν≥0ℓiµ(σk)cµνrνj(τl)
)
i,j≥0

=
(∑

µ,ν≥0(δi,µ+1 − σµ+1
k δi0)

cµν

(µ+1)(ν+1) (δν,j−1 − τν+1
l δ0j)

)
i,j≥0

=
(
ĉi−1,j−1 −

∑∞
ν=0ĉi−1,ντ

ν+1
l δ0j −

∑∞
µ=0ĉµ,j−1σ

µ+1
k · δi0 +

∑
µ,ν≥0σ

µ+1
k τν+1

l · δi0δ0j
)
i,j≥0

=
(
ĉi−1,j−1 − γ̂i−1|: · δ0j − γ̂:|j−1 · δi0 + γ̂:|: · δi0δ0j

)
i,j≥0

.

This implies (42) and hence concludes the overall proof of the proposition.

A.6 Proof of Proposition 2.8

Proof. We combine Lemma A.2 with a similar reasoning as for Proposition 2.7.
Proceeding by induction on η := k + l, we will show that, uniformly in (s, t) ∈ Tk,l,

κk,l(s, τl) =

∞∑
r=0

α(k,l)
r (s− σk)

r and κk,l(σk, t) =

∞∑
r=0

β(k,l)
r (t− τl)

r (43)

for each k, l ∈ {1, . . . , ℓ− 1} (which, in particular, implies that α(k,l)
0 (= κk,l(σk, τl)) = β

(k,l)
0), and

use this to then prove (24). Starting with the base case η = 2, note that (43)|(k,l)=(1,1) is immediate

from the boundary conditions in (2) and the definition of α(1,1)
0 and β

(1,1)
0 . Thus, for (k, l) = (1, 1),

κk,l =

∞∑
n=0

 ∞∑
i=0

α̃
(k,l)
i T n

k,l(φ
(i)
σk
) +

∞∑
j=0

β
(k,l)
j T n

k,l(φ
(j)
τl

)

 (44)

16

by combination of (43) with Proposition 2.5, which holds uniformly on Tk,l and for the zero-
starting sequence

(
α̃
(k,l)
i

)
i≥0

:=
(
(1 − δi,0)α

(k,l)
i

)
i≥0

. Denoting un :=
∑∞

i=0 α̃iT
n
k,l(φ

(i)
σk) +∑∞

j=0 βjT
n
k,l(φ

(j)
τl) for each n ∈ N0, we obtain that, pointwise for each (s, t) ∈ Tk,l,

un+1(s, t) = (Tk,l(un))(s, t) = ρk,l

∞∑
i,j=0

ĉ
(k,l)
ij

∫ s

σk

(s̃− σk)
i ds̃

∫ t

τl

(t̃− τl)
j dt̃

=

∞∑
i,j=0

(s− σk)
i+1

ρk,lĉ
(k,l;n)
ij

(i+ 1)(j + 1)
(t− τl)

j+1 =
〈
η(s− σk),

(
ρk,lSĈ

k,l
n T

)
η(t− τl)

〉
,

(45)
where from the second equality onwards we assumed that un = ⟨η(· − σk), Ĉ

k,l
n η(· − τl)⟩ for some

Ĉk,l
n ≡ (ĉ

(k,l;n)
ij) ∈ ℓ1(N2

0) (induction hypothesis). Since indeed

u0 =

∞∑
i=0

α̃
(k,l)
i (s− σk)

i + β
(k,l)
i (t− τl)

i = ⟨η(· − σk), Ĉ
k,l
0 η(· − τl)⟩ (46)

for Ĉk,l
0 :=

(
α
(k,l)
i δi0 +β

(k,l)
j δ0j −κk−1,l−1(σk, τl)δ0i · δ0j

)
i,j≥0

, combining (46),(45), (44) proves

κk,l =
〈
η(· − σk), Ĉ

k,lη(· − τl)
〉∣∣∣

Tk,l

for Ĉk,l :=

∞∑
n=0

ρnk,lS
nĈk,l

0 Tn, (47)

by induction on n ∈ N0. (Note that at this point, (47) is established for (k, l) = (1, 1) only.)

Since (Sn)i,j =
j!δi,j+n

(j+n)! and (Tn)i,j =
i!δj,i+n

(i+n)! for each i, j ≥ 0 and n ∈ N0 by definition of S, T ,

(
SnĈk,l

0 Tn
)
i,j≥0

=


β
(k,l)
j−i (j−n)!

n!j! , i = n and j ≥ n,
α

(k,l)
i−j (i−n)!

i!n! , i ≥ n and j = n,

0, else.

Consequently, the matrix entries of Ĉk,l =: (ĉ
(k,l)
ij)i,j≥0 each read

ĉ
(k,l)
i,j =


ρ
min(i,j)
k,l β

(k,l)
j−i (j−min(i,j))!

min(i,j)!j! , j ≥ min(i, j)

ρ
min(i,j)
k,l α

(k,l)
i−j (i−min(i,j))!

i! min(i,j)! , i ≥ min(i, j)

 =
(
Ak,l ⊙Bk,l ⊙W

)
i,j

, (48)

implying Ĉk,l = C̃k,l, as desired. But then, in particular – recalling (47) and the definitions (26) –

κk,l+1(s, τl+1) =
〈
η(s− σk), Ĉ

k,lη(τl+1 − τl)
〉

=
〈
η(s− σk), (α

(k,l+1)
r)r≥0

〉
ℓ2(N) =

∞∑
r=0

α(k,l+1)
r (s− σk)

r, and analogously

κk+1,l(σk+1, t) =
〈
(β(k+1,l)

r)r≥0, η(t− τl)
〉
ℓ2(N) =

∞∑
r=0

β(k+1,l)
r (t− τl)

r,

uniformly in (s, t) ∈ Tk,l. This—together with the fact that κk,1(s, τ1) = 1 (=
∑∞

r=0 α
(k,1)
r (s−σk)

r

for (α(k,1)
r)r≥0 := (δ0,r)r≥0 and all s ∈ [σk, σk+1], for each k = 1, . . . , ℓ− 1) and κ1,l(σ1, t) = 1

(=
∑∞

r=0 β
(1,l)
r (t− τ1)

r for (β(1,l)
r)r≥0 := (δ0,r)r≥0 and all t ∈ [0, 1], for each l = 1, . . . , ℓ− 1)—

implies that (43) holds also for η = 3. In fact, the above argumentation—as stated—proves that
if (43) holds for some fixed k, l ∈ {1, . . . , ℓ − 1}, then both (47) and (48) hold for this (k, l) and
also (provided max(k, l) ≤ ℓ − 2) that (43) holds for (k + 1, l) and (k, l + 1). This proves the
proposition.

17

A.7 Gram Matrix Approximation Error

The remarks on local truncation error in Section C.3 can be directly extended to yield an explicit
prior bound on the approximation error for the Gram matrix of a given family of time series: the
double-sum structure of the local approximation error (59) allows for direct control through modified
Bessel tails, which can then be scaled from component-wise to matrix-level bounds.

Note that an estimate very similar to the one underlying the following proof was first presented in [5].

Proposition A.3. Let G ≡ (Gij) :=
(
Kx(i),x(j)(1, 1)

)
i,j=1,...,m

be the signature-kernel Gram

matrix for a family X ≡
(
x(i) ≡ (x

(i)
l)l=1,...,ℓ | i = 1, . . . ,m

)
of time series in Rd. Let further

ĜN :=
(
κ̂
[N]

ℓ−1,ℓ−1;x(i),x(j)(1, 1)
)
i,j=1,...,m

, where κ̂[N]
ℓ−1,ℓ−1 is defined as in (24) but for the matrices

C̃k,l
N := A

[N]
k,l ⊙B

[N]
k,l ⊙WN

(
k, l ∈ {1, . . . , ℓ− 1}

)
with A

[N]
k,l :=

(
ρ
min(i,j)
k,l

)
0≤i,j≤N

and WN := (wi,j)0≤i,j≤N and B
[N]
k,l ≡

(
b
(k,l)|N
i,j

)
0≤i,j≤N

for

b
(k,l)|N
i,i+r := α(k,l)|N

r and b
(k,l)|N
i,i−r := β

(k,l)|N
|r| , for each (i, r) ∈ N2

0 ,

where β
(1,1)|N
r = α

(1,1)|N
r := δ0,r for each r ∈ N0 and, recursively (recalling (26) for notation),(

α(k,l)|N
r

)N
r=0

:= C̃
k,(l−1)
N ·η(1/(ℓ−1)) and

(
β(k,l)|N
r

)N
r=0

:=
[
C̃

(k−1),l
N

]†·η(1/(ℓ−1)),

for each k, l ∈ {1, . . . , ℓ− 1}. Then we have the (truncation induced) approximation error estimate∥∥∥G− ĜN

∥∥∥ ≤ γm,∥X∥∞

∥X∥N+1
∞ ζN

(N + 1)!2
, (49)

with ∥ · ∥ the Frobenius norm, ∥X∥∞ := max1≤i,j≤m; 1≤k,l≤ℓ−1

∣∣∆kx
(i)∆lx

(j)
∣∣, and with

γm,∥X∥∞ := m
2

2ℓ−2∏
ν=0

I0

(
2
√

ν∥X∥∞
ℓ−1

)
and ζN :=

[
1 + 2ℓ−2

N+2

](2

ℓ− 1

)N+1

.

Proof. We proceed along the aforementioned lines, starting with the trivial norm inequality∥∥G− ĜN

∥∥ ≤ m max
1≤i,j≤m

ε
[N]
ij , for ε

[N]
ij :=

∣∣Kx(i),x(j)(1, 1)− κ̂
[N]

ℓ−1,ℓ−1;x(i),x(j)(1, 1)
∣∣. (50)

Now, for any fixed (i, j) ∈ {1, . . . ,m}×2, the error ε[N]
ij reads, see (the last display of) Section A.6,

ε
[N]
ij =

∣∣κℓ−1,ℓ−1(1, 1)− κ̂
[N]
ℓ−1,ℓ−1(1, 1)

∣∣ = ∣∣∣∣∣
∞∑
r=0

ξℓ
′,ℓ′

r (1− τℓ−1)
r+ ξ̃ℓ

′,ℓ′

r (1− σℓ−1)
r

∣∣∣∣∣ (51)

for some coefficient sequences ξℓ
′,ℓ′ ≡ (ξℓ

′,ℓ′

r)r≥0 and ξ̃ℓ
′,ℓ′ ≡ (ξ̃ℓ

′,ℓ′

r)r≥0 (where we suppressed the
dependence on (i, j) and N and denoted ℓ′ := ℓ− 1 to ease notation). By linearity of the Goursat
PDE (2) and its uniqueness-of-solution, we find by comparing coefficients (see Section A.6) that:
ξℓ

′,ℓ′ = αℓ′,ℓ′−α̂ℓ′,ℓ′

N and ξ̃ℓ
′,ℓ′ = βℓ′,ℓ′−β̂ℓ′,ℓ′

N for the formerly defined coefficients αk,l ≡ (α
(k,l)
r)r≥0

and α̂k,l
N ≡ (α

(k,l)|N
r)r≥0 and βk,l ≡ (β

(k,l)
r)r≥0 and β̂k,l

N ≡ (β
(k,l)|N
r)r≥0, and that (as we recall)

(αk,l, βk,l) = Ak,l(α
k,l−1, βk−1,l) and (α̂k,l

N , β̂k,l
N) = Âk,l(α̂

k,l−1
N , β̂k−1,l

N)

for the (bounded) linear ‘ADM-type’ Goursat-solution operators Ak,l, Âk,l : ℓ1(N0)
×2 → ℓ1(N0)

×2

defined (recursively) in Proposition 2.8 and (via projection ℓ1(N0) ↠ RN+1) Proposition A.3, respec-

18

tively. In this conceptualization, the coefficients (ξℓ
′,ℓ′, ξ̃ℓ

′,ℓ′) of the approximation error (51) read:

(ξℓ
′,ℓ′, ξ̃ℓ

′,ℓ′) = Aℓ′,ℓ′(α
ℓ′,ℓ′−1, βℓ′−1,ℓ′)− Âℓ′,ℓ′(α̂

ℓ′,ℓ′−1
N , β̂ℓ′−1,ℓ′

N)

=
(
π(N,∞)◦Aℓ′,ℓ′

)
(αℓ′,ℓ′−1, βℓ′−1,ℓ′) +

[(
π[0,N]◦Aℓ′,ℓ′

)
(αℓ′,ℓ′−1, βℓ′−1,ℓ′)− Âℓ′,ℓ′(α̂

ℓ′,ℓ′−1
N , β̂ℓ′−1,ℓ′

N)
]

=
(
π(N,∞)◦Aℓ′,ℓ′

)
(αℓ′,ℓ′−1, βℓ′−1,ℓ′) +

(
π[0,N]◦Aℓ′,ℓ′

)
(αℓ′,ℓ′−1 − α̂ℓ′,ℓ′−1

N , βℓ′−1,ℓ′ − β̂ℓ′−1,ℓ′

N)

=
(
π(N,∞)◦Aℓ′,ℓ′

)
(αℓ′,ℓ′−1, βℓ′−1,ℓ′) +

(
π[0,N]◦Aℓ′,ℓ′

)
(ξℓ

′,ℓ′−1, ξ̃ℓ
′−1,ℓ′)

=
(
π(N,∞)◦Aℓ′,ℓ′

)
(αℓ′,ℓ′−1, βℓ′−1,ℓ′) +

(
π[0,N]◦Aℓ′,ℓ′

)[
(ξℓ

′,ℓ′−1, ξ̃ℓ
′−1,ℓ′)≤N

]
(52)

+
(
π[0,N]◦Aℓ′,ℓ′

)[
(ξℓ

′,ℓ′−1, ξ̃ℓ
′−1,ℓ′)>N

]
,

for the projection π[0,N] : ℓ1(N0)
×2 ∋ a ≡

(
a
(1)
r , a

(2)
r

)
r≥0
7→ (a

(1)
r 1[0,N](r), a

(2)
r 1[0,N](r))r≥0 =:

a≤N ∈ ℓ1(N0)
×2 and its defect π(N,∞) := idℓ1(N0)×2 − π[0,N], with a>N := π(N,∞)(a) for each

a ∈ ℓ1(N0). Note that the third of the above identities holds by the linearity of Ak,l and since the
operators π[0,N] ◦ Ak,l and Âk,l coincide on the subspace π[0,N](ℓ1(N0)

×2).

Denoting the summands in (52) by ς(1), ς(2), and ς(3), resp., direct (but tedious) computations show:

max
ν=1,2

∣∣ς(1)|νr

∣∣ ≤ φ(2ℓ′ − 1)
(2ℓ′|xij |)r

r!2(ℓ′)r
, (53)

max
ν=1,2

∣∣ς(2)|νr

∣∣ ≤ I0

(
2
√

(2ℓ′−1)|xij |
ℓ−1

)
(2ℓ′|xij |)r

2(ℓ′)rr!2
max

ξ=ξℓ′,ℓ′,ξ̃ℓ′,ℓ′ ; r̃≥0

r̃!2(ℓ′)r̃|ξr̃|
((2ℓ′ − 1)|xij |)r̃

, (54)

max
ν=1,2

∣∣ς(3)|νr

∣∣ ≤ η̃ℓ′,N I0

(
2
√

(2ℓ′−1)|xij |
ℓ−1

)
(2ℓ′|xij |)r

2(ℓ′)rr!2
max

ξ=αℓ′,ℓ′,βℓ′,ℓ′ ; r̃≥0

r̃!2(ℓ′)r̃|ξr̃|
((2ℓ′ − 1)|xij |)r̃

, (55)

|ηℓ
′,ℓ′

r | ≤ φ(2ℓ′ − 2)
((2ℓ′ − 1)|xij |)r

r!2(ℓ′)r
(
η = α, β

)
(56)

for each r ∈ N0, with I0 : x 7→ I0(x) the modified Bessel function of the first kind of order
zero (cf. Lemma 2.4) and |xij | := max1≤k,l≤ℓ−1 |∆kx

(i)∆lx
(j)|, and for the function φ(u) :=

1
2

∏u
ν=0 I0(2

√
ν|xij |/ℓ′)) and η̃ℓ′,N :=

(2ℓ′−1)N+1|xij |N+1

(ℓ′)(2N+2)(N+1)!2
; see Sections A.5 and A.6 and cf. also

[5, Props. 3.2, 3.3, 3.4]. Applying the estimates (53), (54), (55), (56) (on the size of the additive
components ς(i) in (52)) back to (51) via the triangle inequality and the auxiliary estimates∣∣ς(2)r + ς(3)r

∣∣
1,1
≤

∑
µ=2,3; ν=1,2

∣∣ς(µ)|νr

∣∣ ≤ [
θξ,ξ̃ I0

(
2
√

(2ℓ′−1)|xij |
ℓ−1

)
+ φ(2ℓ′ − 1)η̃ℓ′,N

]
(2ℓ′|xij |)r

(ℓ′)rr!2
,

≤ φ(2ℓ′ − 1)
≈
ηℓ′,N

(2ℓ′|xij |)r

(ℓ′)rr!2

2ℓ′−1∑
n=0

nN+1 ≤ φ(2ℓ′ − 1)
≈
ηℓ′,N

(2ℓ′)N+2 − 1

N + 2

(2ℓ′|xij |)r

(ℓ′)rr!2
(r ∈ N0)

(57)
with θξ,ξ̃ := maxξ=ξℓ′,ℓ′,ξ̃ℓ′,ℓ′ ; r̃≥0

r̃!2(ℓ′)r̃|ξr̃|
((2ℓ′−1)|xij |)r̃ and ≈

ηℓ′,N :=
η̃ℓ′,N

(2ℓ′−1)N+1 , then yields the error bound

ε
[N]
ij ≤

N∑
r=0

|ξℓ
′,ℓ′

r + ξ̃ℓ
′,ℓ′

r |(ℓ′)−r +

∞∑
r=N+1

|ξℓ
′,ℓ′

r + ξ̃ℓ
′,ℓ′

r |(ℓ′)−r (58)

=

N∑
r=0

∣∣ς(2)r + ς(3)r

∣∣
1,1

(ℓ′)−r +

∞∑
r=N+1

∣∣ς(1)r

∣∣(ℓ′)−r

≤ φ(2ℓ′ − 1)

[
≈
ηℓ′,N

(2ℓ′)N+2 − 1

N + 2

N∑
r=0

(2ℓ′|xij |)r

(ℓ′)2rr!2
+

∞∑
r=N+1

(2ℓ′|xij |)r

(ℓ′)2rr!2

]

≤ φ(2ℓ′)

[
2N+2|xij |N+1

(ℓ′)N (N + 1)!2(N + 2)
+

2N+1|xij |N+1

(ℓ′)N+1(N + 1)!2

]
= φ(2ℓ′)ζN

|xij |N+1

(N + 1)!2
.

19

Note that the second and third inequality in (57) follow from (54) and (55) via a straightforward in-
duction, see also [5, Prop. 3.3]. The desired inequality (49) now follows immediately by combination
of (58) and (50), using also that the function [0,∞) ∋ u 7→ I0

(
2
√
νu

ℓ−1

)
is monotone.

B Benchmarking

B.1 Downstream Experiments: Additional Figures

Complete implementation details and hyperparameter grids for the experiments underlying the
following figures (see Section 3) are available in the PowerSig GitHub repository at

https://github.com/geekbeast/powersig

Figure 4: Bitcoin price regression (two-day rolling average). Top: training fit; bottom: test fit.
PowerSig attains 2.81% MAPE (under the default linear static kernel) compared to 3.23% MAPE
for the RBF-assisted KSig-PDE, while using only a fraction of the device memory.

20

https://github.com/geekbeast/powersig

Figure 5: UEA Eigenworms classification across window lengths L. Test accuracy versus input
window length L for PowerSig, KSig-PDE, and the RFF baseline RFSF-TRP. PowerSig remains
competitive and scales to L = 1048 with 61.1% accuracy; KSig-PDE is competitive up to L = 128
before running out of memory (OOM). RFSF-TRP attains a slightly higher peak of 62.5% at L = 128
but OOMs for larger L, consistent with the storage advantages in Fig. 3. This shows that extending
the input window, enabled here at scale by PowerSig, can narrow performance gaps often ascribed
to inductive bias while preserving feasibility.

Figure 6: On long-horizon periodic signals, SVM-regression error versus input-window length
for synthetic near-periodic time series with adjustable period. For representative instances, error
decreases monotonically as windows span multiple periods. PowerSig sustains this favorable trend
at window lengths beyond the reach of conventional or low-rank signature-kernel baselines, while
maintaining peak memory that grows linearly with window length.

21

Figure 7: Representative near-periodic synthetic time series with adjustable period length (indus-
trial/sensing proxy) used in the long-horizon experiments above. This instance illustrates the quasi-
periodic structure across multiple cycles on which SVM-regression is evaluated; as input windows for
SVM-regressors span several periods, their error decreases monotonically, with PowerSig sustaining
this trend at longer windows while preserving linear peak-memory growth (Figure 6).

B.2 Comparison Against polysigkernel

We benchmarked and contrasted our method (PowerSig) against the concurrent work
polysigkernel from Cass et al. [5]. Both our approach and theirs were developed independently
and released within two weeks of each other, with our preprint and theirs sharing the same arXiv
month stamp.

Using the public JAX implementation of polysigkernel, we ran identical experiments on com-
putation time and memory usage over two standard benchmarks: (α) fixed-length (= 512) paths of
increasing dimension, ranging from 2 to 4096, and (β) 2D Brownian motion paths of length 2 to 512.
The results, shown in Figures 8 and 9, respectively, show that both solvers achieve essentially identical
accuracy throughout while PowerSig performs better in runtime and memory usage. In benchmark
(β), PowerSig was on average 3.1% faster and required 23% less memory than polysigkernel on
oscillatory time series of length 512 (averaged over 10 iid samples). In benchmark (α), PowerSig
exhibited a comparable computational advantage, being 8.5% faster on average at dimension 512,
with similar memory usage.

Figure 8: Scaling wrt. dimension (benchmark (α)): Runtime and peak memory at fixed length
ℓ = 512 with dimension ranging from d = 2 to d = 4096. PowerSig is 8.5% faster on average at
dimension 512, with similar memory usage.

22

Figure 9: Scaling wrt. time series length (benchmark (β)): Runtime and peak memory on 2D
Brownian paths with length ranging from ℓ = 2 to ℓ = 512 for PowerSig and polysigkernel.
Accuracy is essentially identical, while PowerSig is 3.1% faster on average and uses 23% less
memory at length 512 (mean over 10 iid samples).

Let us clarify why these empirical differences occur and how our underlying methods differ in
concept despite propagating the same local power-series map: polysigkernel starts from an
explicit Riemann-function formula to rewrite the Goursat solution as a sum of integrated modified
Bessel functions I0 [5, Thm. 3.1 (Polyanin)] which, after expanding each I0 in its well-known power
series, allows the kernel on every rectangle to be reduced (using integration-by-parts and a change of
variables) to two univariate centred power series in s and t, for which the resulting coefficient arrays
can then be generated by the closed-form recurrence ΛC;[σk,σk+1]×[τl,τl+1] in [5, Props. 3.1, A.1, A.2].
Truncating these expansions up to some fixed degree N yields a recursive polynomial approximation
scheme (polysigkernel) for which the authors provide local and global truncation error bounds [5,
Prop. 3.4; Thm. 3.2]. (A lower-performant Chebyshev-interpolation scheme for polynomial boundary
data is also discussed in [5, Section 3.3].) Our approach, by contrast, approaches the same PDE from
a functional-analytic view: Using the Volterra formulation of the Goursat problem, we express the
kernel propagator through an integral operator of spectral radius zero (Lemma 2.3) to obtain a concise,
three-step Neumann recursion (Proposition 2.5) whose iterates build the same local power series
coefficient-by-coefficient in a way that allows for their immediate coefficient extraction on the fly
(Proposition 2.8). The resulting iteration adapts per tile and stops once the next term is below machine
precision (typically 5–8 iterations; no global cut-off N required), leading to a one-strip memory
profile that is below the quadratic footprint of the reference polysigkernel implementation.

In summary, polysigkernel obtains each tile’s coefficients from a closed-form Bessel (or Cheby-
shev) recurrence evaluated up to a user-chosen degree N , whereas PowerSig builds the same
coefficients adaptively via a Neumann iteration that stops once the next term drops below machine
precision. Both implement the same local propagation map and are analytically interchangeable per
tile, with their different constructions yielding distinct practical profiles with a modest but consistent
performance edge for PowerSig our matched head-to-head benchmarks (Figures 9 and 8).

C Summary of PowerSig: Methodology, Implementation, and Limitations

C.1 Algorithm

The core idea behind our proposed signature kernel approximation method, PowerSig, is illustrated
in Figure 1 of the main text. A summarizing description, in pseudocode, of an efficient Python
implementation of this method—also used for our benchmarks—is provided in Figure 10 below.

C.2 On Benchmarking

We benchmarked algorithms systematically in terms of runtime, memory usage, and accuracy. To
ensure consistency and reproducibility, we developed a standardized benchmarking framework

23

Algorithm: PowerSig
1: procedure PROCESSDIAGONALS(X[0 .. cols−1], Y [0 .. rows−1], order)
2: Initialize s(0)[0]← [1, 0, . . . , 0]
3: Initialize t(0)[0]← [1, 0, . . . , 0]
4: for d← 0 to rows+ cols− 3 do
5: start_row ← max(0, d− (cols− 1))
6: end_row ← min(d, rows− 1)
7: L← end_row − start_row + 1
8: Initialize s(d+1)[0 .. L], t(d+1)[0 .. L] as zero vectors
9: for k ← 0 to L− 1 do

10: i← start_row + k
11: j ← d− i
12: if i+ 1 < rows and j + 1 < cols then
13: Compute ρ← ⟨X[j + 1]−X[j], Y [i+ 1]− Y [i]⟩
14: Form Toeplitz matrix U from t(d)[k] (first column) and s(d)[k][1 :] (first row)
15: Form Rij ← ρmin(i,j) for i, j = 0, . . . , order
16: vcol ← [α0, . . . , αorder]T , α = 1

cols−1

17: vrow ← [β0, . . . , βorder], β = 1
rows−1

18: snew ← vrow · (U ◦R)
19: tnew ← (U ◦R) · vcol
20: if j < cols− 1 then ▷ Before right edge
21: if k > 0 then
22: s(d+1)[k + 1]← snew
23: else
24: s(d+1)[0]← [1, 0, . . . , 0] ▷ Initial condition
25: end if
26: t(d+1)[k]← tnew
27: else ▷ At or after right edge
28: s(d+1)[k]← snew
29: if k > 0 then
30: t(d+1)[k − 1]← tnew
31: else
32: t(d+1)[k]← [1, 0, . . . , 0] ▷ Initial condition at far edge
33: end if
34: end if
35: end if
36: end for
37: end for
38: end procedure

Figure 10: Our implementation of PowerSig, shown here, is based on the algorithmic approach that
we developed in Section 2 and summarized in Figure 1.

24

comprising a base benchmarking class, a custom context manager, and a proxy wrapper of the
CuPy allocator. While this setup directly supported PyTorch and CuPy, special considerations were
necessary for JAX, as its XLA backend does not natively allow resetting peak memory usage between
runs. We circumvented this limitation by isolating each JAX benchmarking run in a separate Python
subprocess, ensuring accurate GPU memory measurements and preventing JAX’s default behavior of
pre-allocating 75% of GPU memory. Additionally, to prioritize numerical accuracy required by our
experiments, we configured JAX explicitly to use 64-bit (f64) floating-point precision, overriding its
default preference for computational speed.

C.3 Error Analysis and Limitations

We identify two primary limitations of our proposed method for computing signature kernels:
numerical stability (truncation errors) for very large |ρx,y| (see also Proposition A.3 for details), and
computational overhead due to JAX recompilation.

Truncation Error Our computation of the signature kernel effectively involves linear operations to
evaluate polynomial expansions, the latter given by the power series (24) for which by construction:

κ
[N]
k,l (s, t) :=

N∑
i,j=0

c̃
(k,l)
i,j (s− σk)

i(t− τl)
j ≡

N∑
i,j=0

ρ
min(i,j)
k,l (s− σk)

i(t− τl)
j∏N

µ=1+j−min(i,j)
ν=1+i−min(i,j)

µν

(
(s, t) ∈ Tk,l

)
,

for any truncation order N ∈ N. Evaluating this at the tile boundary point (σk+1, τl+1) then yields:∥∥∥κk,l − κ
[N]
k,l

∥∥∥
∞;Tk,l

≲
∞∑

i,j=N+1

|ρk,l|min(i,j)(∆σ)i(∆τ)j (59)

for ∆σ := σk+1−σk and ∆τ := τl+1−τl. As ∆σ,∆τ → 0 with increasing time series length, terms
involving (∆σ)i and (∆τ)j will rapidly fall below machine precision at a speed counterbalanced by
the magnitude of the |ρk,l| values; large values of |ρk,l| significantly amplify the truncation errors
(59), necessitating higher polynomial orders N (which again are bounded by numerical precision).

However, truncation errors are typically localized, decaying rapidly across tiles, which helps to limit
the overall impact of a few tiles with higher error on the accuracy of the final solution. To further
mitigate truncation issues, our implementation configures JAX to use 64-bit floating-point precision
(f64) and includes a mechanism for estimating the minimal required truncation order N to meet a
specified truncation error tolerance. Roughly speaking, we evaluate the intermediate ADM coefficient
matrix for the maximum |ρk,l| in the grid and then compute the sum of all entries in the last column,
scaled by ∆σN , and in the last row, scaled by ∆τN . This provides a bound on the truncation error
and allows for a straightforward search over N = 8, . . . , 64 to identify a suitable truncation order for
a given set of kernel-constituting time series.

A more detailed discussion of approximation errors, including a rigorous analysis of the local
truncation errors (59), is provided in Section A.7.

JAX Recompilation JAX’s compilation mechanism can incur significant overhead when pro-
cessing batches of time series with varying lengths (“jagged” datasets). One potential mitigation
strategy—using re-interpolating to pad each series to a uniform length—is not ideal, as it may distort
the underlying temporal spacing and thus affect signature kernel computations. However, most
datasets are trimmed and chunked to the same length so this is typically a minor limitation as long
as cardinality of the set of input shapes is not approximately the same as the number of time series
being compared.

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction include the claims made in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the appendix (see supplementary material), we address truncation error and
JAX recompilation as potential limitations in applying our approach.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

26

Justification: The theoretical results of the paper are presented as fully proven lemmas and
propositions, with all assumptions explicitly stated as premises of those results. All proofs
can be found in Appendix A of the supplementary material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Accurately benchmarking signature kernel implementations across diverse
frameworks (e.g., NumPy, CuPy, JAX, Torch) in terms of runtime, GPU, and CPU memory
usage is notably challenging. To address this, our open-source library provides a context-
manager-based benchmarking framework, featuring abstract base classes that facilitate
reproducibility and transparent benchmarking. Additionally, we supply all utilized seeds,
runtime parameters, and data assets to ensure reliable evaluation and reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

27

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See the answer to Question 4. All source code and parameters are supplied in
the supplementary zip folder “powersig-code.zip”.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, see the answers to questions 4 and 5. We also include hardware con-
figuration and JAX optimization settings as a file in our code-documenting zip-folder
“powersig-code.zip”.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We benchmarked 10 rounds per algorithm with 1 warm-up round. We tried
adding error bars around the mean but they were so tight that they didn’t render well on
the graphs so we removed them as they didn’t add much value in contrasting the relative
performance of the algorithms.

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes and we used workstations with high consumer grade GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and can confirm our compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

29

https://neurips.cc/public/EthicsGuidelines

Justification: This paper presents foundational research and is not tied to specific applications,
let alone deployments, that we are aware of as having any notable societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, the release of our algorithm does not pose any
immediate high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Creators or original owners of assets used in the paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

30

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The only new asset we introduce is the library for computing signature kernels
and the benchmarks themselves. It itself only relies on other open-source libraries for
implementation and benchmarking.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

31

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

32

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work

	Signature Kernels via Recursive Local Neumann Series
	The Signature Kernel
	A Recursive Local Power Series Expansion of the Signature Kernel
	Rapidly Convergent Power Series on the First Tile
	Recursive Neumann Series for Propagating the Signature Kernel Across All Tiles

	Computing the Neumann Series Coefficients

	Numerical Experiments
	Conclusion
	Mathematical Proofs
	Proof of Lemma 2.3
	Proof of Proposition 2.2
	Proof of Lemma 2.4
	Proof of Proposition 2.5
	Proof of Proposition 2.7
	Proof of Proposition 2.8
	Gram Matrix Approximation Error

	Benchmarking
	Downstream Experiments: Additional Figures
	Comparison Against polysigkernel

	Summary of PowerSig: Methodology, Implementation, and Limitations
	Algorithm
	On Benchmarking
	Error Analysis and Limitations

