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Abstract

Task-agnostic prompt compression leverages001
the redundancy in natural language to reduce002
computational overhead and enhance informa-003
tion density within prompts, especially in long-004
context scenarios. Existing methods predomi-005
nantly rely on information entropy as the met-006
ric to compress lexical units, aiming to achieve007
minimal information loss. However, these ap-008
proaches overlook two critical aspects: (i) the009
importance of attention-critical tokens at the010
algorithmic level, and (ii) shifts in informa-011
tion entropy during the compression process.012
Motivated by these challenges, we propose013
a dynamic attention-aware approach for task-014
agnostic prompt compression (DAC). This ap-015
proach effectively integrates entropy and at-016
tention information, dynamically sensing en-017
tropy shifts during compression to achieve fine-018
grained prompt compression. Extensive experi-019
ments across various domains, including Long-020
Bench, GSM8K, and BBH, show that DAC021
consistently yields robust and substantial im-022
provements across a diverse range of tasks and023
LLMs, offering compelling evidence of its effi-024
cacy.025

1 Introduction026

Recent advent of In-Context Learning (ICL)027

(Brown, 2020; Dong et al., 2024), Chain-of-028

Thought (CoT) (Wei et al., 2022; Yao et al.,029

2024a,b), Retrieval Augmented Generation (RAG)030

(Lewis et al., 2020), and Autonomous Agent (Xi031

et al., 2023) technologies has significantly invigo-032

rated the landscape of applications based on Large033

Language Models (LLMs). While these method-034

ologies have expanded the capabilities of LLMs by035

activating domain-specific knowledge or enhancing036

memory capacities, they also introduce the chal-037

lenge of exceedingly long context lengths, which038

leads to a substantial increase in computation and039

memory consumption due to inherent self-attention040

mechanism.041

Efficient LLM is the technology that aims to 042

achieve computational efficiency while retaining 043

performance, which is accomplished through vari- 044

ous methods such as modifying model architec- 045

ture (Sun et al., 2024), parameter quantization 046

(Lin et al., 2024), key-value (KV) cache compres- 047

sion (Yang et al., 2024), and the utilization of soft 048

prompts (Mu et al., 2024), among others. Despite 049

the effectiveness of these methods, they often re- 050

quire modifications to the model, which is not fea- 051

sible for black-box LLMs, such as those accessible 052

only through APIs. In such cases, prompt compres- 053

sion, which seeks to shorten the prompt while pre- 054

serving essential information, represents the most 055

direct way. 056

Several studies consider essential information to 057

be the parts most relevant to the question or task, 058

thus proposing a task-aware manner for prompt 059

compression (Jiang et al., 2024; Xu et al., 2023; 060

Huang et al., 2024; Jung and Kim, 2024). Bene- 061

fiting from the sparsity of question-related infor- 062

mation in original prompts, these methods achieve 063

significant performance on specific benchmarks 064

with high compression ratios, even surpass the per- 065

formance of the original prompts in some cases. 066

However, these approaches are highly dependent 067

on the type of downstream task, leading to the fol- 068

lowing limitations: i) the prompt needs to be repeat- 069

edly compressed in scenarios involving multiple 070

questions or tasks, ii) it is challenging to define 071

user’s intent or questions in extended dialogic en- 072

gagements. 073

Task-agnostic prompt compression aims to com- 074

press prompts relying on the self-information of 075

the language without any additional clues (Li et al., 076

2023; Jiang et al., 2023; Pan et al., 2024). Previous 077

works primarily utilize coarse-grained information 078

entropy output by the logits layer of entire model 079

for compression. They do not delve into the inner 080

layers of LLMs for gathering finer-grained atten- 081

tion scores to enhance the compression process. In 082
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addition, these entropy-based methods treat infor-083

mation entropy as static while ignoring the dynamic084

shift during the compression process. Some low-085

entropy tokens may become high-entropy tokens086

after their dependent tokens are compressed.087

To address these challenges, we propose a dy-088

namic attention-aware approach for task-agnostic089

prompt compression (DAC). Specifically, we pro-090

pose a novel metric for prompt compression that ef-091

fectively integrates information from both entropy092

and the attention scores, enabling the compression093

process to be conducted in an attention-aware man-094

ner. Additionally, we propose a dynamic approach095

to iteratively identify tokens with significant en-096

tropy shifts during the compression. This method097

aims to minimize information loss more precisely,098

thereby preserving the information density in the099

compressed prompts.100

We evaluate the effectiveness of our approach101

across different domains, including LongBench102

for contextual understanding and GSM8K, BBH103

for reasoning and in-context learning. The exper-104

imental results demonstrate that our method sig-105

nificantly outperforms other entropy-based com-106

pression methods, achieving an improvement of107

4.03 points on LongBench. Moreover, it surpasses108

current state-of-the-art (SOTA) approaches by an109

average score of 1.33 on LongBench. Our method110

also exhibits robust generalization ability, as evi-111

denced by consistent performance improvements112

across a range of model series, from Qwen2 to113

LLaMA3.114

2 Related Work115

There are two primary approaches in prompt com-116

pression, which can be categorized based on the117

form of the compressed output: soft prompts118

and hard prompts. The soft prompts methods119

typically compress the original prompt into non-120

linguistic forms, such as special tokens or embed-121

dings. Wingate et al. (2022) proposed optimizing122

the KL divergence between the answers generated123

by the original and compressed prompts to achieve124

soft prompt compression. Mu et al. (2024) ad-125

dressed this challenge by introducing GIST tokens.126

Ge et al. (2023) propose ICAE, which pre-trained127

a compression model to transform prompts into128

compact memory slots that can be conditioned on129

by LLM. However, soft prompts often result in130

non-human-readable formats, leading to difficul-131

ties in interpretability of compressed content. Oth-132

erwise, these methods frequently require modifi- 133

cations of the model (pre-training or fine-tuning), 134

making them unsuitable for black-box LLMs. 135

The hard prompts methods achieve compression 136

by identifying and dropping low-information con- 137

tent from the original prompt. Li et al. (2023) first 138

introduced using information entropy to measure 139

the information content. They also considered the 140

most effective lexical units for compression and de- 141

termining using phrases through experiments. Sim- 142

ilarly, LLMLingua (Jiang et al., 2023) employs in- 143

formation entropy as the metric, proposing the use 144

of a budget controller to assign different compres- 145

sion rates to various parts of the prompt (instruc- 146

tion, demonstrations, and the question). Addition- 147

ally, they introduced iterative token-level prompt 148

compression, which segments the original prompt 149

and then performs fine-grained token-level com- 150

pression. These entropy-based methods effectively 151

identify and compress low-information content in 152

the original prompt, achieving satisfactory results 153

in downstream tasks. However, they do not fully ac- 154

count for the information contained in the attention 155

mechanism and the entropy shifts occurring during 156

the compression process. In contrast, LLMLin- 157

gua2 (Pan et al., 2024) takes a different approach 158

by training a specialized classification model ded- 159

icated to prompt compression. The compression 160

data used for training is distillated from a more 161

powerful LLM (i.e. GPT4). However, powerful 162

LLMs may not good at compression task, and train- 163

ing on a specific dataset may not generalize well to 164

other tasks. 165

Our proposed DAC method falls into this cate- 166

gory as well and more simular to entropy-based 167

methods. Differently, DAC employs a novel metric 168

that integrates information from both information 169

entropy and the attention mechanism, and further 170

introduces a dynamic approach for accurately iden- 171

tify low-information content. It is worth noting 172

that KV cache compression yields comparable ef- 173

fects to prompt compression. For a comprehensive 174

discussion of KV cache compression techniques, 175

please refer to Appendix C, as these approaches 176

are not directly related to our DAC methodology. 177

3 Preliminaries 178

3.1 Problem Formulation 179

We first formally define the compression process 180

with target budget. Denote original input tokens 181

as x = {xi}Li=1 and tokens after compression as 182
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Original Prompt
Instruction: Please reference the following 

examples to answer the math question.

Example 1:

Question: Bella has two times as many 

marbles as frisbees … what would be the total 

number of the items she will have if she 

currently has 60 marbles?

Let's think step by step

When Bella buys 2/5 times more marbles, 

she'll have increased the number of marbles by 

2/5*60 = 24

The total number of ...

The total number of deck cards she'll have is 

10+4 = 14

Together, Bella will have a total of 14+42+84 

= 140 items

The answer is 140

Example 2:

…

Example 8:

Question: You can buy 4 apples or 1 

watermelon for the same price…How much 

does 1 apple cost if your total bill was $66?

Let's think step by step

If 36 fruits …

Then we know the price of one apple (A) is 

$60/60= $1

The answer is 1

Bella has two times as many marbles as frisbees … 

Attention Score

Attention Metric

DAC

Small language model

Information Entropy

Entropy Metric

Compress Δτ
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D
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n
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Integrated Compression Metric

Bella has two times as many marbles as frisbees … 

Compressed Prompt

Question: Bella two times marbles 

frisbees. She also has0 morebees than 

deck cards …

what total 

's think step

When Bella buys /5 morebles, she'll have 

increased the ofbles by5*60 =4

If Bella has …

If buys, have* more.

 total deck is+

Together, of +

Answer

…

LLMs

Bella has two times as many marbles as frisbees … 

Attention Score

Attention Metric

Figure 1: Framework of our proposed DAC for task-agnostic prompt compression.

x̃ = {x̃i}L̃i=1, where x̃ is a subset of x. The com-183

pression rate can be derived from τ = L̃/L. Our184

goal is to find a subset chosen policy that the out-185

put of the generative process is comparable to the186

original prompt, which can be expressed by the187

formula:188

min
x,τ

D(P (ỹ|x̃), P (y|x)) (1)189

where function D(,) denotes the distance between190

two distributions such as KL divergence. ỹ repre-191

sents LLM generate results from the compressed192

context x̃, and y represents the original output de-193

rived from x.194

3.2 Information Entropy195

From an information-theoretic perspective, an ef-196

fective compression algorithm should strive to min-197

imize the loss of information. The information198

entropy of the token can be quantified as the output199

distribution during its autoregressive generation.200

This can be expressed as follow:201

It(x) = − log2 P (xt|x0, x1, ..., xt−1) (2)202

where It(x) represents the information entropy of203

token xt and P (x) denotes the output probability204

while generating token xt. Consequently, a token205

with a higher certainty in its probability distribution206

indicates a lower information entropy and thus con-207

veys less information, which can be the guidance208

during compression.209

3.3 Attention Scores 210

The attention mechanism is essential in the Trans- 211

former architecture, as it enables the model to focus 212

on critical segments of the input sequence, thereby 213

enhancing its capability to manage long-range de- 214

pendencies. We denote query matrix as Q ∈ Rn×d 215

and key matrix as K ∈ Rn×d in attention mech- 216

anism. Then the normalized attention matrix of 217

the i-th layer and the j-th head can be expressed as 218

Softmax

(
QijK

⊤
ij√

dh

)
∈ Rn×n. Suppose that each 219

element in this matrix is denoted as quv, then the 220

accumulated attention score vector of this matrix 221

can be calculated by: 222

F ij
score = (sij1 , s

ij
2 , . . . , s

ij
n ), s

ij
v =

n∑
u=1

quv (3) 223

where sijv denotes the accumulated attention score 224

of v-th token in the i-th layer and the j-th head. All 225

accumulated attention score vectors are aggregated 226

into the final one by computing the mean across all 227

layers and heads: 228

Fscore =
1

MN
·

N∑
i=1

M∑
j=1

F ij
score = (s1, s2, . . . , sn) (4) 229

4 Methodology 230

In this section, we introduce the Dynamic 231

Attention-aware Compression framework, as 232

shown in Figure 1. Prior to describing the frame- 233

work in detail, we first present two key observations 234

that motivated our approach. 235
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Figure 2: Left: The information entropy (red) and corresponding accumulated attention scores (blue) on one
sequence. It reveals that attention-critical tokens (with high accumulated attention scores) do not necessarily
possess high entropy. Right: The performance comparison across four methods: w.o. compression, random, w.o.
attention-critical tokens and our DAC method. Without attention-critical tokens, the model’s performance on all
three datasets significantly deteriorateseven performing worse than random selection methods. Our DAC method
effectively addresses this issue by identifying the attention-critical tokens.
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Figure 3: Left: Entropy differences highlight significant shifts in tokens whose preceding tokens were removed
during compression. Right: Compression ratio inversely correlates with entropy differences.

4.1 Observations236

Observation 1: Attention-critical Tokens Matter.237

We first observe the relationship between informa-238

tion entropy and accumulated attention score of239

each token throughout the inference process. In240

detail, we select Qwen2-7B as the base model,241

and employ a popular NarrativeQA benchmark.242

The visualization results on one of sequences are243

presented in the left of Figure 2. We initially244

identify tokens with higher accumulated attention245

scores (e.g., those exceeding a threshold of 1.0) as246

attention-critical tokens. Our observations reveal247

that a substantial number of these attention-critical248

tokens do not exhibit correspondingly high infor-249

mation entropy, suggesting the absence of a linear250

relationship between the two metrics. Quantitative251

analysis of 200 sequences from the NarrativeQA252

dataset also indicates an average Pearson correla-253

tion coefficient of 0.095 between the accumulated254

attention scores and information entropy. This find-255

ing implies that relying solely on information en-256

tropy as a criterion for compression might result in257

the exclusion of numerous attention-critical tokens.258

We further analyzed the implications of ignor-259

ing attention-critical tokens. We conducted experi- 260

ments on three single-document QA benchmarks: 261

NarrativeQA, QASPER, and MultiFieldQA and 262

compared four different methods using the F1 score 263

as the evaluation metric. These methods included: 264

w.o. compression, random select compression, w.o. 265

attention-critical tokens and our DAC method. The 266

compression rate was set to τ = 0.9. The results 267

are shown in the right of Figure 2. Our findings re- 268

vealed that w.o. attention-critical tokens in prompt 269

significantly degraded the model’s answering per- 270

formance, performing even worse than random se- 271

lect compression. A more effective perceptual com- 272

pression scheme should integrate both information 273

entropy and accumulated attention scores. The pro- 274

posed DAC method achieves superior performance 275

by implementing this integrated scheme. 276

Observation 2: Entropy Shift during Compres- 277

sion. Information entropy serves as a fundamen- 278

tal metric in past prompt compression methods. 279

Consequently, it is imperative to analyze character- 280

istics of the entropy changes during the compres- 281

sion process. To this end, Figure 3 (left) shows the 282

entropy before and after compression with the ratio 283
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of 0.9. The figure reveals that even with a relatively284

low compression ratio, a significant proportion of285

tokens exhibit substantial shifts in entropy (marked286

by blue vertical lines). This phenomenon implies287

that past non-dynamic approach may ignore these288

critical entropy shifts, thereby compromising the289

effectiveness of the compression method. It is also290

noted that, for the majority of these tokens exhibit-291

ing substantial shifts, their preceding tokens have292

been dropped during compression. This observa-293

tion also inspires an efficient way to address the294

entropy shift.295

Figure 3 (right) presents the Pearson correla-296

tion between the original and compressed entropy297

across varying compression ratios. The results298

demonstrate that as the compression ratio increases,299

these shifts become more pronounced. This finding300

illustrates the necessity of developing a dynamic301

compression method that can adaptively respond to302

entropy changes, thus enabling a higher compres-303

sion rate while maintaining LLM performance.304

4.2 Dynamic Attention-aware Compression305

Based on observation 1, we first propose a metric306

that integrates both information entropy and accu-307

mulated attention scores for prompt compression.308

We explore two fusion strategies: additive fusion309

(Eq.(5)) and multiplicative fusion (Eq.(6)). In the310

additive fusion, a parameter α is introduced to bal-311

ance the contributions of the information from both312

sides, and the optimal α is determined through ex-313

perimentation.314

Ma
t = (1− α) · It(x) + α · st (5)315

Mm
t = It(x) · st (6)316

Based on the insights derived from observation317

2, we propose a dynamic method for prompt com-318

pression. Specifically, rather than completing the319

compression in a single step based on the metric,320

we divide the process into multiple stages. At each321

stage, we recalculate the information entropy for322

usage in the current stage to reduce the impact of323

the significant entropy shifts observed in observa-324

tion 2.325

Additionally, since observation 2 revealed that326

most tokens with significant entropy shifts have327

their preceding tokens compressed, we address this328

issue by limiting the compression of consecutive329

tokens. This strategy offers two primary benefits:330

it helps prevent unexpected compression due to331

the change of entropy within the same compres- 332

sion stage, and it provides a dynamically adjusted 333

compression rate. That is, the compression rate 334

for each round is dynamically adjusted based on 335

the compression pattern from the previous round, 336

expressed as: 337

△τ = τ1/D +△P (7) 338

△τ and D in the equation represents the compres- 339

sion rate in current stage and the dynamic iterations 340

respectively, while △P denotes the percentage of 341

tokens retained in the previous stage due to the 342

limiting of consecutive compression. 343

After getting the compression rate in current 344

stage, we first use a percentile-based filtering ap- 345

proach for compression. In detail, the threshold of 346

integrated metric can be calculated by: 347

T△τ = np.percentile([M0], . . . , [Mn],△τ) (8) 348

Next, We filter out those tokens whose fusion met- 349

ric exceeds the threshold or whose preceding token 350

has already been compressed, and add them to the 351

set x̃ as the compression result in the current stage, 352

denoted as: 353

x̃ = {x̃i | M(x̃i) ≥ T△τ ∨ x̃i−1 /∈ x̃}(9) 354

The compression procedure is completed by per- 355

forming above steps in multiple stage upon a preset 356

dynamic iterations. The overall procedure of DAC 357

can be referred to Algorithm 1. 358

5 Experiments 359

5.1 Experiments Setup 360

Datasets We comprehensively evaluate the utility 361

preservation of LLM with different prompt com- 362

pression methods from two different aspects: (i) 363

Contextual Understanding: we utilize four types 364

of tasks from the LongBench (Bai et al., 2024): 365

Single-document QA, Multi-document QA, Sum- 366

marization, and Few-shot Learning. Each task 367

category includes three specific benchmarks. (ii) 368

Reasoning and In-context Learning: We employ 369

GSM8K (Cobbe et al., 2021) and Big Bench Hard 370

(BBH) (Suzgun et al., 2023) datasets. Consistent 371

with prior studies, we adopt Exact Match (EM) as 372

evaluation metric. 373

Baselines We take three most effective prior stud- 374

ies as baselines: 375

Selective-Context (Li et al., 2023): Selective- 376

Context employs the information entropy of the 377
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Algorithm 1 Dynamic Attention-aware Prompt
Compression (DAC).
Input: Prompt to compress x = {xi}Li=1; Target compression
rate τ ; Dynamic iterations D; A small language model SLM ;
1: Calculate the accumulated attention score of each token

via Eq.(3) and Eq.(4)
2: for i = 1, 2, . . . , D do
3: Calculate the compression rate △τ via Eq.(7)
4: Update the information entropy by SLM and Eq.(2)
5: Calculate the integrated metric Mi for each token via

Eq.(5) or Eq.(6)
6: Find the △τ -percentile threshold T△τ via Eq.(8)
7: for j in range(x̃) do
8: if M(x̃j) < T△τ then
9: if x̃j−1 /∈ x̃ then

10: P = P + 1
11: else
12: x̃.delete(x̃j)
13: end if
14: end if
15: end for
16: Update differential compression ratio △P by

P/len(x)
17: end for
Output: The compressed prompt x̃.

most effective lexical units (phrases) as the mertic378

for compression.379

LLMLingua (Jiang et al., 2023): LLMLingua first380

involves a budget controller that assigns different381

compression strategies to various components of382

the prompt (instruction, demonstrations, and the383

question). Subsequently, it performs iterative token-384

level prompt compression, by which the prompt is385

segmented, and each segment is compressed se-386

quentially based on the information entropy of the387

tokens.388

LLMLingua2 (Pan et al., 2024): LLMLingua2389

first distills compressed data from GPT4 using390

MeetingBank dataset. It then trains a specialize391

small model for prompt compression based on a392

transformer encoder architecture.393

To ensure a fair comparison, all compression394

rates in experiments are actual compression rates.395

For those methods that dynamically adjust the com-396

pression rate based on the input prompt, we adjust397

the target compression rate to ensure that the fi-398

nal number of compressed tokens is approximately399

consistent across different methods.400

Implementation Details Our experiments are401

conducted on two kinds of LLMs. The main re-402

sults are performed on the Qwen2 series mod-403

els1. Specifically, the SLM used for compression404

is Qwen2-0.5B, and the LLM used for evaluation405

is Qwen2-7B. Additionally, to study DAC’s adap-406

1https://github.com/QwenLM/Qwen

tation to various LLMs, we also use the LLaMA3 407

series models2 to measure the impact of differ- 408

ent models (see Section 5.5). For these experi- 409

ments, the SLM is LLaMA 3.2-1B, and the LLM 410

is LLaMA 3.1-8B. The Dynamic times D in al- 411

gorithm is set by D = Linput/100, with the maxi- 412

mum value of 15. All experiments are conducted on 413

an NVIDIA A800 GPU. We use greedy decoding 414

to ensure the stability of the experimental results. 415

The experimental environment includes the follow- 416

ing configurations: CUDA Version 12.0, PyTorch 417

version 2.4.0, and HuggingFace’s Transformers3 418

with version 4.45.1. 419

5.2 Fusion Strategies 420

In section 4.2, we discussed two fusion strategies 421

for integrating information entropy and accumu- 422

lated attention scores: additive fusion with param- 423

eter α and multiplicative fusion. In this section, 424

we conduct experiments to find the appropriate 425

fusion strategy. We consider five situations: addi- 426

tive with α = 0.2, 0.4, 0.6, 0.8 and multiplicative. 427

The experiments are conducted on single-document 428

QA task from the Longbench, and the results are 429

shown in Figure 4. The results show that the best 430

performance is achieved with additive fusion with 431

α = 0.8. Therefore, subsequent experiments will 432

adopt this fusion strategy. 433
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multiplicative

Figure 4: The performance of DAC method with differ-
ent fusion strategies.

5.3 Main Results 434

Table 1 shows the comparative performance of pro- 435

posed DAC method against the baselines on Long- 436

bench with two compression rates (τ = 0.2 and 437

τ = 0.5 ). Overall, DAC method outperforms the 438

baselines in the task types of single-document QA, 439

summarization, and few-shot learning, as well as 440

in the overall average score. 441

2https://github.com/meta-llama/llama3
3https://github.com/huggingface/transformers
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LongBench

Single-Doc QA Multi-Doc QA Summarization Few-shot LearningMethods

Nar.QA Qasper Mul.QA AVG Hot.QA 2Wi.QA Musique AVG GovRe. QMSum M.News AVG TREC Tri.QA SAMSum AVG

All

AVG

Compression rate τ = 0.5

Selective-Context 18.75 35.07 28.90 27.57 38.30 36.07 21.28 31.88 25.83 24.11 24.77 24.90 29 81.80 38.07 49.62 33.50

LLMLingua 20.36 28.26 27.69 25.44 40.11 35.69 21.00 32.27 26.19 23.5 24.71 24.80 40 78.07 39.15 52.41 33.73

LLMLingua-2 24.25 35.22 38.70 32.72 43.61 38.11 26.80 36.17 26.15 25.54 25.78 25.82 35 77.6 40.37 50.99 36.43

DAC 24.85 33.46 40.12 32.81 42.37 39.57 22.44 34.79 30.4 25.95 25.77 27.37 50 80.00 38.14 56.05 37.76

Compression rate τ = 0.2

Selective-Context 16.83 29.25 25.57 23.88 36.58 33.09 18.08 29.25 22.3 23.57 21.77 22.55 21.5 75.92 37.67 45.03 30.18

LLMLingua 18.35 21.78 24.65 21.59 38.43 32.85 21.95 31.08 22.91 22.38 22.5 22.60 30 77.83 36.07 47.97 30.81

LLMLingua-2 19.47 30.45 25.86 25.26 40.26 33.32 21.85 31.81 21.56 24.32 22.48 22.79 24 78.92 33.23 45.38 31.31

DAC 18.16 27.84 30.18 25.39 38.68 31.72 22.49 30.96 25.73 23.32 23.59 24.21 31 80.41 38.47 49.96 32.63

Original Prompt 27.08 41.1 50.23 39.47 56.92 55.65 36.56 49.71 35.2 26.02 24.35 28.52 78 87.19 45.03 70.07 46.94

Zero-Shot 14.92 18.09 19.11 17.37 17.11 25.88 6.35 16.45 19.92 10.27 8.55 12.91 3 73.43 30.89 21.59 17.08

Table 1: Performance of different methods under different compression rates on the LongBench (Qwen2-7B). The
results of original prompt and zero-shot experiments are also shown at the bottom.

Table 2 presents the comparative results on the442

GSM8K and BBH datasets. It can be seen that443

the DAC method achieves the best performance in444

most cases. With the compression rate τ = 0.5, the445

DAC method’s performance on GSM8K decreases446

by only 0.84 compared to the original prompt,447

demonstrating its performance retention in reason-448

ing tasks. We also notice that although the DAC449

method is behind LLMLingua by 0.67 on the BBH450

dataset with τ = 0.5, it outperforms LLMLingua451

by 0.8 with τ = 0.2. This demonstrates that the452

introduction of the dynamic mechanism of informa-453

tion entropy enables DAC to perform better with454

high compression rates.455

The experimental results also suggest that com-456

pression methods based on information entropy457

may be more generalized. Training specialized458

small models for compression, such as LLMLin-459

gua2, may suffer from reduced generalization due460

to limitations in the training datasets. For instance,461

while LLMLingua2 performs very well on Long-462

Bench, especially for multi-document QA tasks, it463

falls short compared to entropy-based method on464

GSM8K and BBH datasets.465

5.4 Ablation Study466

To validate the effectiveness of each component in467

the proposed DAC method, we conducted ablation468

studies with three different configurations: DAC469

w/o Attention-aware Metric indicates that the accu-470

mulated attention score is not involved, and only471

information entropy is used as the metric for com-472

pression. DAC w/o Dynamic Procedure indicates473

that the dynamical observation of entropy shift is474

Methods GSM8K BBH
Compression rate τ = 0.5

Selective-Context 61.33 50.07
LLMLingua 72.86 54.98
LLMLingua-2 67.85 47.74
DAC 74.37 54.31

Compression rate τ = 0.2
Selective-Context 60.12 46.66
LLMLingua 65.73 49.61
LLMLingua-2 66.49 44.16
DAC 67.85 50.41
Original Prompt 75.21 60.70
Zero-Shot 42.61 37.75

Table 2: Performance of different methods under differ-
ent compression rates on the GSM8K and BBH dataset
(Qwen2-7B).

not used, and the entropy is calculated only once in 475

the beginning instead. DAC w/o Limiting Consecu- 476

tive Compression indicates that consecutive tokens 477

are allowed to be compressed in same stage of dy- 478

namic procedure. The results are shown in Table 479

3. 480

First, it can be observed that the F1 score of 481

Single-Doc QA drops the most when DAC is w/o 482

Attention-aware Metric. This significant decline 483

occurs when only information entropy is used, with- 484

out considering attention between tokens. This is 485

consistent with our observation 1, which states that 486

not only should information entropy be used as 487

a guideline for compression, but it is also crucial 488

to retain tokens that are important in the attention 489

mechanism. A metric that can integrate both high- 490

level information entropy and low-level informa- 491

tion in algorithm itself can significantly enhance 492

7



Single-Doc QA

DAC 32.81
- w/o Attention-aware Metric 28.16
- w/o Dynamic Procedure 29.84
- w/o Limiting Consecutive Compression 31.88

Table 3: Ablation study on single-document QA with
compression rates τ = 0.5.

Methods
LongBench ALL

AVGSin.QA Mul.QA Summ. Few.

Selective-Context 26.40 24.78 21.98 55.47 32.16
LLMLingua 27.81 24.68 23.13 57.63 33.31
LLMLingua-2 32.51 27.93 22.74 56.08 34.82
DAC 32.68 28.08 22.92 58.01 35.42

Original Prompt 37.35 36.36 27.39 71.01 43.03
Zero-Shot 14.83 17.23 13.61 42.29 21.99

Table 4: The comparision results on LongBench using
the LLaMA3 series models (compression rates τ = 0.5)

the performance. Then compared with DAC w/o493

Dynamic Procedure, it reveals that the introduced494

dynamic procedure can identify essential informa-495

tion during the compression process, which would496

be missed without dynamic detection of entropy.497

Finally, it also can be found that DAC w/o Limiting498

Consecutive Compression will degrade the perfor-499

mance slightly. We conjecture that this could be500

due to the inappropriate compression of a subse-501

quent token, which was caused by the dropping of502

its preceding token and then resulting entropy shift.503

5.5 Different Models504

To ensure the effectiveness of our method across505

different model types, we conducted experiments506

on other models. Specifically, here we use LLaMA507

3.2-1B as the SLM for compression and LLaMA508

3.1-8B as the LLM for evaluation. The experimen-509

tal results are shown in Table 4. For simplicity,510

we report the average scores across different task511

types. The experimental results are shown in Table512

4. It can be observed that DAC also demonstrates513

excellent performance on LLaMA3 series models,514

achieving state-of-the-art results in most task types515

and in the overall average score.516

5.6 Overhead Analysis517

We analyzed the overhead introduced by compres-518

sion using different methods. Specifically, the pro-519

filling of overhead is conducted on a random sam-520

ple from the GovReport benchmark, which con-521

tains 12,908 tokens of prompt. The length of the522

output tokens is set to 500, and the compression523

rate is 0.2. We followed the experimental setup for 524

section 5.3, where the SLM is Qwen2-0.5B and the 525

LLM is Qwen2-7B. 526

0 10 20 30 40 50
Time (seconds)

DAC

LLMLingua2

LLMLingua

Selective-
Context

Full prompt

Comparison of Compress and Inference Time

Compress Time
Inference Time

Figure 5: The comparison of compress and inference
time using different methods

For each compression method, we plot the time 527

taken for compression and the actual inference time. 528

We also record the time required for using the full 529

prompt. The results are shown in Figure 5. As 530

can be seen, the DAC method, due to the introduc- 531

tion of the dynamic procedure, takes longer time 532

in compression compared to other methods, as in- 533

dicated by blue in the bar chart. However, this 534

additional time is quite small when compared to 535

the time saved by compression (compared to the 536

full prompt). Additionally, it is worth noting that 537

the parameter of LLM in production is often much 538

larger than 7B, which further amplify the benefits 539

of compression in terms of reduced inference time 540

and memory. 541

6 Conclusion 542

This paper addresses task-agnostic prompt com- 543

pression by proposing a dynamic attention-aware 544

method. This approach aims to overcome the limi- 545

tations identified in existing work, achieving fine- 546

grained compression through the integration of in- 547

formation across different levels. We conduct ex- 548

tensive experiments and analyses across various 549

domains, including contextual understanding, rea- 550

soning, and in-context learning. Our approach out- 551

performs strong baselines across various domains 552

and different series of LLMs, while introducing 553

only acceptable additional overhead. The results 554

indicate significant practical implications of our 555

method for enabling LLMs to save computational 556

costs and handle longer contexts effectively. 557
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Limitations558

There are also some limitations in our approach: (1)559

The current implementation of DAC requires ob-560

taining attention matrices from all layers and heads,561

which necessitates the development of a method to562

identify the most representative attention matrices563

for more efficient information fusion. Addition-564

ally, DAC is not compatible with high-efficiency565

attention methods (e.g., Flash Attention) as it does566

not require calculating attention scores. The ap-567

plication of DAC on such methods will result in568

additional attention score calculations. (2) While569

the existing dynamic procedure supports adjusting570

the number of dynamic iterations based on con-571

text length, it hits an upper limit when the context572

becomes excessively long. This can lead to perfor-573

mance degradation as the granularity of perception574

becomes coarser. A potential solution could in-575

volve developing a method that senses information576

density to adaptively adjust the number of dynamic577

iterations, thereby maintaining performance even578

with very long contexts.579
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A Why Small Models Can Be Used for734

Compression735

Previous works have typically employed a small736

language model for compression but has not exten-737

sively discussed the underlying reasons. In this sec-738

tion, we provide empirical evidence to support why739

the entropy from a smaller model can effectively740

aid a larger model in identifying salient informa-741

tion.742

We conducted experiments on the ArXiv corpus743

(Li et al., 2023) using various sizes of the Qwen2744

models, ranging from 0.5B to 72B parameters, to745

analyze their entropy outputs. For clearer visual-746

ization, we focused on the initial tokens, as illus-747

trated in Figure 8. Despite substantial differences748

in model size, all models exhibit remarkable consis-749

tency in their entropy across different texts. Figure750

6 presents the quantitative results of entropy sim-751

ilarities using Pearson correlation. Here, we con-752

sider the entropy output from Qwen2-72B as the753

ground truth (GT) and compare it with the entropy754

outputs from smaller models. The x-axis represents755

different articles. The data show that while the sim-756

ilarity to GT increases with model size, even the757

smallest 0.5B model achieves an average similarity758

of 0.835. The consistent entropy patterns across759

different model sizes demonstrate that the critical760

information captured by large models can be effi-761

ciently approximated by smaller models.762

Figure 6: Quantitative analysis of the entropy similar-
ities between different model parameter sizes (Qwen2
series models).

B Impact of compression rate763

To assist users in achieving a balanced trade-off be-764

tween utility preserving and efficiency, we present a765

detailed analysis of how various compression rates766

affect the performance of our DAC method. The767

experiments are conducted on the GSM8K dataset,768
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Figure 7: The performance of DAC at various compres-
sion rates on GSM8K (Qwen2-7B).

and the results are shown in the Figure 7. It can be 769

observed that when the compression rate exceeds 770

0.5 (1/τ < 2), the model’s utility preservation is 771

relatively good. For scenarios that prioritize low 772

compression rates and can tolerate a certain degree 773

of performance degradation, setting 1/τ to around 774

8 offers a feasible solution. 775

C KV Cache Compression 776

Another line of related work is KV cache compres- 777

sion (Shi et al., 2024), as we consider attention 778

mechanism in DAC method. Many previous stud- 779

ies about KV cache compression have analyzed 780

the characteristics in attention matrices of LLM. 781

H2O (Zhang et al., 2023) observed that the ac- 782

cumulated attention scores of all tokens follow a 783

power-law distribution, indicating that only a small 784

subset of tokens is highly significant in the gener- 785

ation. Scissorhands (Liu et al., 2023) revealed the 786

’persistence of importance’, indicating that tokens 787

identified as important in initial remain significant 788

throughout subsequent stages of inference. Pyra- 789

midInfer (Yang et al., 2024) further explores the 790

distinct attention characteristics across different 791

layers within LLM, and identified that deeper lay- 792

ers exhibit greater redundancy. 793

The insights from these studies have inspired us 794

to integrate information from the attention mecha- 795

nism into our prompt compression methods. Nev- 796

ertheless, the main objectives of these prior works 797

are distinct from those of our research. 798

D Compression Case Study 799

We present various compresstion examples in Fig- 800

ure 9 and Figure 10 using DAC. In each example, 801

tokens preserved at a compression rate of 0.2 are 802

highlighted in dark red, while those preserved at a 803

compression rate of 0.5 are shown in light red. 804
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Figure 8: Visualization of the entropy similarities between different model parameter sizes (Qwen2 series models).

Original Prompt
Question: A group of 4 fruit baskets contains 9 apples, 15 oranges, and 14 bananas in the 

first three baskets and 2 less of each fruit in the fourth basket. How many fruits are there?

Let's think step by step

For the first three baskets, the number of apples and oranges in one basket is 9+15=24

In total, together with bananas, the number of fruits in one basket is 24+14=38 for the first 

three baskets.

Since there are three baskets each having 38 fruits, there are 3*38=114 fruits in the first 

three baskets.

The number of apples in the fourth basket is 9-2=7

There are also 15-2=13 oranges in the fourth basket

The combined number of oranges and apples in the fourth basket is 13+7=20

The fourth basket also contains 14-2=12 bananas.

In total, the fourth basket has 20+12=32 fruits.

The four baskets together have 32+114=146 fruits.

The answer is 146

Figure 9: Cases study on GSM8K dataset.
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Original Prompt

Distinguish deductively valid arguments from formal fallacies.

Q: "It is not always easy to see who is related to whom -- and in which ways. The following argument 

pertains to this question: To begin with, Lesley is a close friend of Fernando. Moreover, being a close 

friend of Fernando or a schoolmate of Lowell is sufficient for being a great-grandfather of Leroy. It 

follows that Lesley is a great-grandfather of Leroy."

Is the argument, given the explicitly stated premises, deductively valid or invalid?

Options:

- valid

- invalid

A: Let's think step by step.

(1) Lesley is a close friend of Fernando: Lesley = friend(Fernando).

(2) Being a close friend of Fernando or a schoolmate of Lowell is sufficient for being a great-

grandfather of Leroy: If X = friend(Fernando) OR SCHOOLMATE(Lowell), then X = great-

grandfather(Leroy).

Hypothesis: Does it follow that Lesley is a great-grandfather of Leroy: Lesley = great-

grandfather(Leroy)?

Let’s see whether the Hypothesis can be deduced from the arguments (1) and (2) by logical 

reasoning?

By (1), we have Lesley = friend(Fernando). By (2), we have if Lesley = friend(Fernando), then Lesley 

= great-grandfather(Leroy).

So, it is true that Lesley is a great-grandfather of Leroy. So the answer is valid.

Figure 10: Cases study on formal_fallacies of BBH dataset.
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