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ABSTRACT

Learning a single model for multiple robotic manipulation tasks, particularly high-
precision tasks, has been a long-standing challenge in robotics research due to un-
certainties inherent in both the model and the data. These uncertainties, namely
epistemic uncertainty arising from model limitations and aleatoric uncertainty
stemming from data variability, hinder precise control. While the Robot View
Transformer (RVT) improves performance by re-rendering point clouds from fixed
viewpoints and processing structured 2D virtual images, it still suffers from oc-
clusion artifacts in rendering and limited action precision due to resolution con-
straints. To address these limitations, we propose the Super Robot View Trans-
former (S-RVT) framework, which integrates three novel components: the Super
Point Renderer (S-PR), the Super-resolution Multi-View Transformer (S-MVT),
and the Hierarchical Sampling Policy (HSP). The S-PR enhances the render-
ing process to mitigate occlusion artifacts, while the S-MVT integrates super-
resolution to the output heatmaps, enabling finer-grained manipulation. The HSP
efficiently samples multi-view heatmaps in 3D space to obtain accurate 3D poses.
These innovations collaboratively mitigate the challenges of occlusion and pre-
cision in manipulation tasks. Our experimental results demonstrate that S-RVT
achieves a success rate of 87.8 % across 18 manipulation tasks, surpassing the
state-of-the-art of 81.4 %. Notably, for high-precision manipulation tasks, S-RVT
exhibits nearly a two-fold improvement over existing methods, underscoring its
effectiveness in precise control scenarios. Our code and trained models will be
released to support further research.

Task description:      ‘Put the item in the top drawer’

Task description:   ‘Stack the blue block on the red block’
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Figure 1: Illustration of S-RVT executing high-precision tasks. Given a natural language task de-
scription, a single S-RVT model can perform multiple 3D manipulation tasks with remarkable accu-
racy. For instance, in the task of put the item in the top drawer, the gripper’s size is larger compared
to the drawer handle, requiring millimeter-level precision for successful grasping.

1 INTRODUCTION

Learning diverse manipulation tasks is fundamental and necessary for building intelligent embodied
agents. Multi-task learning in robotic manipulation has drawn significant interest in the community
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and made considerable progress, thanks to large-scale Imitation Learning (IL) demonstrations and
Reinforcement Learning (RL) simulators James et al. (2020); Mees et al. (2022); Yu et al. (2020);
Gu et al. (2023); Li et al. (2023); Gong et al. (2023); Padalkar et al. (2023); Wang et al. (2024).
These simulators and datasets fuel the development of Embodied Artificial Intelligence (EAI) by
enabling researchers to build and test algorithms in controlled environments that closely mimic real-
world conditions. In this work, we investigate the problem of multi-task imitation learning for robot
manipulation.

Multi-task Imitation Learning challenges robots to acquire diverse skills described by natural lan-
guage through human demonstrations. This approach encompasses tasks requiring semantic scene
understanding (e.g., take the steak off the grill), high-precision (e.g., put the ring on the azure spoke)
or long-horizon planning (e.g., put the item in the top drawer). Different from previous methods
like Diffusion Policy (DP) Chi et al. (2023), Action Chunking with Transformers (ACT) Zhao et al.
(2023) and their variations Fu et al. (2024); Ze et al. (2024); Ke et al. (2024); Ha et al. (2023);
Chen et al. (2023a); Xian et al. (2023), which learn task-specific policies, multi-task learning aims
to develop a single policy for various tasks. Multi-task Imitation Learning generally falls into two
categories: key-state based methods Shi et al. (2023); Xian et al. (2023); Gervet et al. (2023); Goyal
et al. (2023; 2024); Shridhar et al. (2023); Chen et al. (2023b) and key-trajectory based methods Ke
et al. (2024); Brohan et al. (2022; 2023); Huang et al. (2023). Key-state based methods decompose
demonstrations into critical discrete key poses, teaching the robot to predict the subsequent key pose
based on current observations. Key pose typically represents the gripper’s translation, rotation, and
state. Key-trajectory methods directly imitate the demonstrated trajectories. This study focuses on
key-state based methods for robotic manipulation.

Previous methods learn the key pose distribution from colored point cloud observation. Per-
Act Shridhar et al. (2023) employs a voxel-based representation to predict the next key pose, while
Act3D Gervet et al. (2023) introduces multi-resolution 3D feature field. Other methods, such as
Robot View Transformer (RVT) Goyal et al. (2023), tackle this problem by predicting multi-view
heatmaps from rendered RGB-D observations. These approaches have demonstrated impressive re-
sults on training and inference speed, semantic understanding and long-horizon planning. However,
they fall short in high-precision tasks like peg insert or shape place. RVT-2 Goyal et al. (2024)
addresses challenging precise manipulation tasks by a zoom-in process, and demonstrates promising
results in extensive experiments.

We advance beyond previous methods by addressing uncertainties inherent in both the model and
the data Kendall & Gal (2017); Kendall et al. (2018). These uncertainties are broadly categorized
into epistemic uncertainty, arising from limitations in the model, and aleatoric uncertainty, stem-
ming from inherent variability in the data. For instance, in the task of put the ring on the azure
spoke, the former uncertainty refers to the fact that the robot may misjudge the exact position of
the spoke due to insufficient or biased training data. The latter uncertainty indicates the robot fails
to predict the next key pose due to occlusions. The original RVT framework discretizes the action
space; however, such a coarse-grained action space is insufficient for accomplishing high-precision
manipulation tasks, which contributes to epistemic uncertainty. Additionally, the points of interest
on the manipulated objects are often occluded by the robot arm, making it difficult for the model to
infer the next key pose based on the current observation, thus increasing aleatoric uncertainty. To
address these uncertainties, we introduce the Super Robot View Transformer (S-RVT), a multi-task
framework designed for high-precision manipulation tasks.

Our S-RVT framework comprises three key modules: the Super Point Renderer (S-PR), the Super-
resolution Multi-View Transformer (S-MVT), and the Hierarchical Sampling Policy (HSP). The
S-PR mitigates aleatoric uncertainty by addressing observational uncertainties, particularly catas-
trophic occlusion, where critical visual obstructions impede task completion. The S-MVT and HSP
work together to reduce epistemic uncertainty: S-MVT enhances model expressivity by generat-
ing super-resolution heatmaps with strong supervision, while HSP samples multi-view heatmaps in
3D space to obtain accurate 3D poses. By integrating these modules, S-RVT effectively reduces
both epistemic and aleatoric uncertainties, advancing the state-of-the-art in high-precision robotic
manipulation tasks. Notably, our method is a general boosting framework for virtual view-based
approaches. Thus, we integrate it with both the RVT Goyal et al. (2023) and RVT-2 Goyal et al.
(2024), yielding promising results across 18 challenging tasks in the RLBench benchmark James
et al. (2020). For RVT, our S-RVT improves the average success from 0.629 to 0.734. Furthermore,
our S-RVT2 achieves a success rate of 0.878, surpassing the state-of-the-art 0.814. In tasks requiring
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high-precision, such as peg insertion, we establish a remarkable success rate of 0.86, achieving a
relative 115 % improvement over the state-of-the-art performance of 0.40. We also demonstrate our
method’s effectiveness in real world, as illustrated in Figure 1.

2 RELATED WORK

In this section, we introduce the related work from three different perspectives: Transformers for
Manipulation, Multi-task Learning in Robotics and High-Precision Manipulation.

2.1 TRANSFORMERS FOR MANIPULATION

In the domain of robotic manipulation, transformer architectures Vaswani et al. (2017) have gained
significant traction, demonstrating their efficacy in enhancing control capabilities Johnson et al.
(2021); Chaplot et al. (2021); Clever et al. (2021); Yang et al. (2021). These models excel in pro-
cessing diverse sensory inputs Dasari & Gupta (2021); Jangir et al. (2022); Kim et al. (2021); Liu
et al. (2022); Zhao et al. (2023); Goyal et al. (2023); Singh et al. (2023); Simeonov et al. (2023),
leveraging their inherent ability to handle heterogeneous data streams. This multi-modal adapt-
ability has been further expanded through the integration of transformer backbones with diffusion
models Team et al. (2024); Chi et al. (2023); Ze et al. (2024); Xian et al. (2023), facilitating com-
plex, long-horizon motion planning. Notably, transformer-based approaches have shown remarkable
prowess in feature extraction from various input modalities. However, a recurring theme in exist-
ing literature is the necessity for extensive training datasets, typically encompassing hundreds of
task-specific demonstrations, to achieve robust performance. This data-intensive requirement un-
derscores the challenges associated with transformer deployment in robotic systems.

2.2 MULTI-TASK LEARNING IN ROBOTICS

Recent years have witnessed growing interest in the robotics community towards developing mod-
els capable of performing multiple tasks using a single model. Some researchers have focused on
achieving multi-task generalization by learning generalizable task or action representations Brohan
et al. (2022); Gubbi et al. (2020); Guhur et al. (2023); Kim et al. (2021); Lee et al. (2019). How-
ever, the limitations of these representations often restrict generalization to specific task categories.
More recent studies have expanded the scope by using language to specify a broader range of tasks,
while training policies on large-scale, pre-collected datasets Jang et al. (2022); Rohmer et al. (2013);
Schoettler et al. (2020); Shi et al. (2023); Simeonov et al. (2023); Radosavovic et al. (2023b); Nair
et al. (2022); Xiao et al. (2022); Radosavovic et al. (2023a); Wu et al. (2024); Black et al. (2024);
Gu et al. (2024). Concurrent research efforts have explored various approaches to enhance model
capabilities, including learning more effective visual representations through masked image model-
ing Xiao et al. (2022); Radosavovic et al. (2023b) or contrastive learning Nair et al. (2022); Sermanet
et al. (2018), as well as developing world models Seo et al. (2023); Hafner et al. (2020).

2.3 HIGH-PRECISION MANIPULATION

High-precision manipulation is crucial in tasks with stringent requirements for action accuracy. To
develop high-precision strategies, previous studies have employed various sensory modalities and
data-intensive learning algorithms. Initial investigations utilize proprioceptive data for learning peg-
in-hole task through imitation learning Gubbi et al. (2020). Subsequently, (Schoettler et al., 2020)
and (Tang et al., 2023) apply reinforcement learning algorithms to accomplish insertion tasks us-
ing visual sensory input or proprioceptive data. To enhance execution accuracy further, researchers
incorporate tactile feedback, including torque sensors Lee et al. (2019); Liu et al. (2020) and vision-
based tactile sensors Dong et al. (2021); Xu et al. (2023). However, these approaches rely on al-
gorithms requiring substantial training data (e.g., reinforcement learning or imitation learning from
hundreds of demonstrations) and are limited to learning a single model per task.

In contrast to prior methods, we adopt the multi-task learning paradigm of Robot View Transformer
(RVT) Goyal et al. (2023), which employs structured representations such as point cloud renderings
of virtual views. While RVT enables robots to acquire more robust skills with fewer demonstra-
tions, it falls short in tasks requiring high precision due to uncertainties in both observation and
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Virtual Camera

Point Cloud

Input

Instruction: “Put the ring on the azure spoke”

Super Point Renderer

Super-resolution Multi-View Transformer

CLIP Text 
Encoder

Supe-resolution Multi-View Heatmaps
RotationH

ierarchical 
Sam

pling Policy Translation

Gripper

Output

Figure 2: S-RVT framework. S-RVT takes RGB point cloud and natural language task description
as input. The process begins with the Super Point Renderer, which projects the 3D point cloud into
multi-view images by four virtual cameras of fixed positions. These images, along with language
features, are then fed into the Super-resolution Multi-View Transformer. This module outputs high-
resolution heatmaps representing the key pose translation in 2D projections, as well as the gripper’s
rotation and the state for the next key pose. Finally, the Hierarchical Sampling Policy is employed
to sample and convert the multi-view 2D heatmaps back into 3D translation coordinates.

action spaces. To address these challenges, we build upon RVT and propose three key innovations
aimed at enhancing precision in robotic manipulation tasks: Super Point Renderer, which mitigates
occlusions in point cloud renderings; Super-resolution Robot View Transformer, which generates
higher-resolution heatmaps for finer-grained operations; and Hierarchical Sampling Policy, which
samples multi-view heatmaps in 3D space to obtain precise 3D poses. These enhancements signifi-
cantly improve our model’s performance in high-precision manipulation tasks.

3 METHOD

Our approach presents a general boosting strategy for virtual view-based methods. By addressing
both epistemic and aleatoric uncertainties, we advance previous virtual view-based methods, includ-
ing RVT and RVT2, specifically for high-precision manipulation tasks. In this section, we eluci-
date the overarching concept of our method by focusing on the S-RVT model rather than S-RVT2,
because S-RVT2 only adds a zoom-in process compared to S-RVT. We first present the problem
formulation, followed by a detailed description of our three key strategies: Super Point Renderer,
Super-resolution Robot View Transformer, and Hierarchical Sampling Policy. We discuss the loss
function at the end of this section.

3.1 PROBLEM FORMULATION

Our method falls under the category of key-state based manipulation. In this approach, the trajectory
of the robot’s end-effector is represented by a sequence of key poses. For instance, given the task
description open the top drawer, the sequence of key poses can be decomposed into pre-grasp for
the top drawer handle, grasp pose, and pull pose for the drawer.

The training set Dtrain consists of pairs of task descriptions and corresponding sequences of ob-

servations, key poses and gripper states, i.e., Dtrain = {[lk, (o(k)i ,T
(k)
i , g

(k)
i )]

Nk

i=1}
M
k=1, where lk is

the task description for the k-th demonstration, o(k)i is the RGB point cloud observation at step i,
T

(k)
i ∈ SE(3) is the end-effector pose, g(k)i is the gripper state (open or closed) and Nk is the

episode length for the k-th demonstration. Our model is trained on these trajectory data to learn a
mapping from the current observation and task description to the next key pose and gripper state.
Specifically, during training, the model receives the current task description lk and the current RGB
point cloud observation o

(k)
i , and learns to predict the next key pose T

(k)
i+1 and gripper state g

(k)
i+1.

During testing, the robot uses the trained model to predict the next key pose T̂i+1 ∈ SE(3) and the
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gripper state ĝi+1 based on its current task description l and the RGB point cloud observation oi,
where i denotes the index of the current step. Once predicted, this pose is input to a motion planner,
which generates a trajectory towards it. Upon reaching the predicted pose T̂i+1, the system acquires
a new point cloud observation and proceeds to predict the subsequent key pose. This iterative pro-
cess continues until either the success condition is met, or the execution steps exceed a predefined
limit, or a collision occurs.

3.2 SUPER POINT RENDERER

Task:    put the ring on the azure spoke 

Challenge:      align the ring with the spoke through precise rotation   

S-PR down viewPR top viewTask

Occluded

Visible

Virtual Camera

PR Rendered Views

S-PR Rendered Views
2 3

1

4

1 2 3

3

4

41 2

Figure 3: Visualization of the results from Super Point Renderer and
Point Renderer Goyal et al. (2023; 2024). The fourth rendered result
with dotted box is non-exsitent in original RVT-2 Goyal et al. (2024).
We visualize it here for better comparison.

To enable precise robotic
manipulation and address
the occlusion and perspec-
tive distortion challenges,
we propose the Super Point
Renderer (S-PR) module.
The S-PR transforms RGB-
D point cloud observations
into 2D virtual images. We
implement multi-view ren-
dering from different view-
points {top, front, right,
down} to ensure compre-
hensive scene coverage.

Specifically, we first intro-
duce an occlusion handling policy for the right and down views. We preprocess the point cloud
using CUDA-accelerated DBSCAN clustering in the color space to filter out occluding elements
like the tabletop while retaining task-relevant features. The robotic arm is retained as its pose pro-
vides valuable information about task progression. Second, we use an orthographic camera model
to project the point cloud onto the image plane, preserving geometric relationships without perspec-
tive distortion. This rendering process comprises three key steps and is implemented in CUDA for
acceleration which is introduced by Goyal et al. (2023). 1) The 3D points are projected onto the 2D
image plane by converting them into image coordinates using GPU-accelerated matrix operations.
2) Z-ordering is applied to identify the point with the smallest depth for each pixel. 3) Screen-space
splatting is used to model the points as finite-radius discs rather than singular pixels. As illustrated
in Figure 3, in tasks such as put the ring on the azure spoke, standard point rendering fails to provide
clear visual cues due to occlusions, making it difficult for the model to learn necessary rotations.
Our S-PR mitigates this problem by multi-view rendering from different viewpoints, enhancing the
model’s understanding in complex manipulations. In Figure 3, the filtered down view of our S-PR
avoids the occlusions and explicitly shows the azure spoke and ring positions.

3.3 SUPER-RESOLUTION MULTI VIEW TRANSFORMER

The task descriptions are processed through the CLIP (ResNet-50) text encoder to extract features,
which, together with the rendered multi-view images, are then fed into the Super-resolution Multi-
View Transformer (S-MVT). As shown in Figure 2, S-MVT generates super-resolution heatmaps;
we denote the super-resolution factor as sr. Additionally, S-MVT outputs the rotation and gripper
opening predictions for the next key pose. Specifically, the virtual images and language features
are processed through an MVT structure similar to that in RVT, producing feature maps. These
feature maps undergo upsampling to produce an sr-fold super-resolution heatmap, representing the
probability distribution of possible 3D poses projected onto the 2D plane. Our upsampling employs
an Efficient Up-convolution Block (EUCB), which uses Depthwise Separable Convolution (DWC)
to reduce computational cost and parameter count while improving output resolution and preserving
feature details. To predict the rotation and gripper state, we sample features from the image patch
corresponding to the projected 3D position of the predicted next key pose on the virtual view. These
sampled features are then processed through an MLP to estimate the rotation and gripper opening.
This conditional sampling approach is employed because the gripper’s rotation and opening are
intrinsically linked to its translation, thereby yielding more plausible predictions. The details of our
model architecture are discussed in Appendix A.1.
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3.4 HIERARCHICAL SAMPLING POLICY

Coarse Sampling Fine Sampling

1

0.5

0

Figure 4: Illustration of Hierarchical Sampling Policy. To
generate 3D key pose from 2D multi-view heatmaps, we de-
sign a coarse-to-fine sampling policy. Initially, sampling
points are uniformly distributed in the 3D space. These
points are then projected onto each heatmap, and the loca-
tion with the highest sum of probability values across all
views is selected as the coarse prediction. Subsequently, in
the fine sampling stage, a more detailed sampling is con-
ducted in the vicinity of this coarse prediction, yielding the
final estimation of the key pose translation.

We obtain multi-view heatmaps
through S-MVT, where each heatmap
represents the probability distribution
of possible 3D poses projected onto
the 2D plane. Our goal is to predict
a precise 3D pose from these multi-
view 2D probability distributions. A
straightforward approach would be
to uniformly distribute particles in
3D space at the resolution of the 2D
views, project these particles onto
different 2D planes, obtain the cor-
responding grid probability values,
sum the probabilities from different
views, and select the particle with
the highest cumulative probability as
the prediction result. However, for
high-resolution heatmaps, uniformly
distributing particles in 3D space
at increasing resolutions leads to
higher particle density, causing GPU
memory overflow. To address this
issue, we develop the Hierarchical Sampling Policy. First, we sample at a lower resolution to obtain
a coarse predicted pose. Subsequently, we perform a higher-density sampling in the vicinity of
this initial prediction to refine the pose estimate, as depicted in Figure 4. This approach enables
high-precision operations in robotic manipulation tasks, such as accurately inserting a charging
plug into a socket.

3.5 LOSS FUNCTION

As illustrated in Figure 2, our model generates three outputs: multi-view heatmaps, rotation of the
next key pose, and gripper state. For heatmap supervision, we project the ground-truth (GT) 3D
key pose onto various viewpoints to obtain GT heatmaps. While cross-entropy loss is effective for
standard heatmaps, it is inadequate for super-resolution heatmaps. We attribute this to the increased
resolution (e.g., 1 projected pixel out of 10002 total pixels) making it challenging for the network to
focus on sparse, difficult samples. To address this, we implement focal loss Lin (2017), denoted as
lt, which emphasizes these challenging samples. The focal loss is defined as:

lt = −
∑

[α(1− ĥ)γh log(ĥ) + (1− α)ĥγ(1− h) log(1− ĥ)], (1)

where ĥ is the predicted probability of the flattened multi-view heatmaps, h represents the GT 3D
translation projected onto multi-view one-hot heatmaps, α is the balancing factor, and γ is the focus-
ing parameter. For rotation and gripper state prediction, we formulate these tasks as classification
problems and employ cross-entropy loss, denoted as lr and ls respectively. Specifically, we super-
vise the rotation by quantizing Euler angles into discrete bins. The cross-entropy loss for rotation
and gripper state is defined as:

lr = −
∑

[r log(r̂) + (1− r) log(1− r̂)], ls = −
∑

[s log(ŝ) + (1− s) log(1− ŝ)], (2)

where r̂ and ŝ represent discrete Euler angles and gripper state, r indicates the GT one-hot Euler
angles and s denotes the GT gripper state.

Given the disparate pattern of these three prediction tasks, simply summing their losses lead to
imbalanced learning. To mitigate this, we employ Uncertainty Weighting Kendall et al. (2018) to
balance the learning across different losses. This approach allows the model to learn the optimal
weighting for each task by considering the homoscedastic uncertainty associated with them. Specif-
ically, we define the total loss function as:

L =
1

2σ2
t

lt +
1

2σ2
r

lr +
1

2σ2
s

ls + lnσt + lnσr + lnσs. (3)
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Avg. Avg. Close Drag Insert Meat off Open Place Place Push
Models Success ↑ Rank ↓ Jar Stick Peg Grill Drawer Cups Wine Buttons
Image-BC (CNN) Jang et al. (2022) 1.3 9.5 0 0 0 0 4 0 0 0
Image-BC (ViT) Jang et al. (2022) 1.3 9.7 0 0 0 0 0 0 0 0
C2F-ARM-BC James et al. (2022) 20.1 8.6 24 24 4 20 20 0 8 72
HiveFormer Guhur et al. (2023) 45.3 6.9 52.0 76.0 0.0 100.0 52.0 0.0 80 84
PolarNet Chen et al. (2023b) 46.4 6.3 36.0 92.0 4.0 100.0 84.0 0.0 40 96
PerAct Shridhar et al. (2023) 49.4 6.1 55.2 ± 4.7 89.6 ± 4.1 5.6 ± 4.1 70.4 ± 2.0 88.0 ± 5.7 2.4 ± 3.2 44.8 ± 7.8 92.8 ± 3.0
Act3D Gervet et al. (2023) 65.0 4.2 92.0 92.0 27.0 94.0 93.0 3.0 80 99
RVT Goyal et al. (2023) 62.9 4.4 52.0 ± 2.5 99.2 ± 1.6 11.2 ± 3.0 88.0 ± 2.5 71.2 ± 6.9 4.0 ± 2.5 91.0 ± 5.2 100.0 ± 0.0
RVT-2 Goyal et al. (2024) 81.4 2.6 100.0 ± 0.0 99.0 ± 1.7 40.0 ± 0.0 99.0 ± 1.7 74.0 ± 11.8 38.0 ± 4.5 95.0 ± 3.3 100.0 ± 0.0
S-RVT (ours) 73.4 2.7 77.3 ± 2.1 100.0 ± 0.0 15.3 ± 4.7 100.0 ± 0.0 78.0 ± 4.2 10.7 ± 3.3 97.3 ± 2.1 100.0 ± 0.0
S-RVT2 (ours) 87.8 1.5 100.0 ± 0.0 100.0 ± 0.0 86.0 ± 2.2 100.0 ± 0.0 81.3 ± 6.0 39.3 ± 7.3 95.3 ± 3.0 100.0 ± 0.0

Put in Put in Put in Screw Slide Sort Stack Stack Sweep to Turn
Models Cupboard Drawer Safe Bulb Block Shape Blocks Cups Dustpan Tap
Image-BC (CNN) Jang et al. (2022) 0 8 4 0 0 0 0 0 0 8
Image-BC (ViT) Jang et al. (2022) 0 0 0 0 0 0 0 0 0 16
C2F-ARM-BC James et al. (2022) 0 4 12 8 16 8 0 0 0 68
HiveFormer Guhur et al. (2023) 32.0 68.0 76.0 8.0 64.0 8.0 8.0 0.0 28.0 80
PolarNet Chen et al. (2023b) 12.0 32.0 84.0 44.0 56.0 12.0 4.0 8.0 52.0 80
PerAct Shridhar et al. (2023) 28.0 ± 4.4 51.2 ± 4.7 84.0 ± 3.6 17.6 ± 2.0 74.0 ± 13.0 16.8 ± 4.7 26.4 ± 3.2 2.4 ± 2.0 52.0 ± 0.0 88.0 ± 4.4
Act3D Gervet et al. (2023) 51.0 90.0 95.0 47.0 93.0 8.0 12.0 9.0 92.0 94
RVT Goyal et al. (2023) 49.6 ± 3.2 88.0 ± 5.7 91.2 ± 3.0 48.0 ± 5.7 81.6 ± 5.4 36.0 ± 2.5 28.8 ± 3.9 26.4 ± 8.2 72.0 ± 0.0 93.6 ± 4.1
RVT-2 Goyal et al. (2024) 66.0 ± 4.5 96.0 ± 0.0 96.0 ± 2.8 88.0 ± 4.9 92.0 ± 2.8 35.0 ± 7.1 80.0 ± 2.8 69.0 ± 5.9 100.0 ± 0.0 99.0 ± 1.7
S-RVT (ours) 60.7 ± 4.7 100.0 ± 0.0 89.3 ± 2.1 54.0 ± 3.3 100.0 ± 0.0 54.7 ± 5.5 72.7 ± 3.3 54.7 ± 3.3 60.7 ± 1.6 96.0 ± 2.5
S-RVT2 (ours) 70.7 ± 4.1 98.7 ± 2.0 98.0 ± 2.2 88.0 ± 2.5 84.0 ± 5.1 71.3 ± 8.1 80.7 ± 5.8 90.0 ± 3.3 97.3 ± 2.0 99.3 ± 1.6

Table 1: Comparisons of our S-RVT and S-RVT2 with state-of-the-art methods. S-RVT2 outper-
forms RVT-2 Goyal et al. (2024) by achieving a 6.4 % higher average success rate, while S-RVT
demonstrates a 10.5 % improvement compared to RVT Goyal et al. (2023). For tasks demanding
high-precision manipulation, such as Insert Peg and Sort Shape, our methods achieve success rates
approximately 2 times of the state-of-the-art approaches.

The terms σt, σr, and σs represent the learned task-dependent uncertainties. By optimizing this loss
function, the model dynamically adjusts the weighting of each task’s loss based on its uncertainty,
effectively balancing the learning process across tasks. The logarithmic terms act as regularizers,
preventing the uncertainties from becoming excessively large.

4 EXPERIMENT

We evaluate the performance of S-RVT and S-RVT2 through a series of comprehensive experiments
conducted in both simulation and real world. This section is structured as follows: experimental
setup, the results from simulation, ablations, and real-world experiments.

4.1 EXPERIMENTAL SETUP

In this study, we employ a widely-used benchmark for multi-task manipulation. This benchmark,
originating from RLBench James et al. (2020), has been adopted by several related studies Shridhar
et al. (2023); Goyal et al. (2023; 2024); Gervet et al. (2023). It encompasses 18 diverse tasks,
ranging from non-prehensile actions like push buttons to common pick-and-place operations such
as place wine, and high-precision tasks like insert peg. Each task is accompanied by a language
description and consists of 2 to 60 variations, including handling objects of different colors or in
various locations. The experiments use a Franka Panda robot equipped with a parallel jaw gripper.
Both the task environment and the robot are simulated using CoppelaSim Rohmer et al. (2013). The
system processes RGB-D images at a resolution of 128 × 128, captured by four noiseless cameras
positioned at the robot’s front, left shoulder, right shoulder, and wrist. For training and evaluating
the S-RVT model, we use the same dataset as employed in PerAct Shridhar et al. (2023) and RVT-
2 Goyal et al. (2024) studies. Specifically, 100 demonstrations per task are used for training, while
25 previously unseen demonstrations / trajectories are for testing.

4.2 SIMULATION EXPERIMENT

We train S-RVT using a single node with 8 NVIDIA 3090 GPUs. The training process for S-RVT
and S-RVT2 consists of 80K steps, employing a cosine learning rate decay schedule with an initial
warmup period of 2K steps. We set the batch size to 256 (32 × 8) and the initial learning rate to
1.8× 10−4. For evaluation, we use the final trained model. Given that RLBench James et al. (2020)
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Row ID Method SPR HSP Focal Uncer. # Views SR # Avg. Succ. Diff. wrt. base
1 S-RVT2 ✓ ✓ ✓ ✓ 4 4 87.8 0
2 S-RVT2 ✗ ✓ ✓ ✓ 4 4 82.3 - 5.5
3 S-RVT2 ✓ ✗ ✓ ✓ 4 4 86.9 - 0.9
4 S-RVT2 ✓ ✓ ✗ ✓ 4 4 87.2 - 0.6
5 S-RVT2 ✓ ✓ ✓ ✗ 4 4 86.1 - 1.7
6 S-RVT2 ✓ ✓ ✓ ✓ 3 4 81.9 -5.9
7 S-RVT2 ✓ ✓ ✓ ✓ 5 4 84.1 -3.7
8 S-RVT2 ✓ ✓ ✓ ✓ 4 2 87.0 -0.8
9 S-RVT2 ✓ ✓ ✓ ✓ 4 1 86.9 -0.9

10 S-RVT2 ✗ ✗ ✗ ✗ 3 1 81.4 -6.5
Row ID Method SPR HSP Focal Uncer. # Views SR # Avg. Succ. Diff. wrt. base

11 S-RVT ✓ ✓ ✓ ✓ 4 4 73.4 0
12 S-RVT ✗ ✓ ✓ ✓ 4 4 70.0 - 3.4
13 S-RVT ✓ ✗ ✓ ✓ 4 4 66.9 - 6.5
14 S-RVT ✓ ✓ ✗ ✓ 4 4 68.1 - 5.3
15 S-RVT ✓ ✓ ✓ ✗ 4 4 71.7 - 1.7
16 S-RVT ✓ ✓ ✓ ✓ 3 4 69.2 -4.2
17 S-RVT ✓ ✓ ✓ ✓ 5 4 71.4 -2.0
18 S-RVT ✓ ✓ ✓ ✓ 4 2 67.1 -6.3
19 S-RVT ✓ ✓ ✓ ✓ 4 1 63.5 -9.9
20 S-RVT ✗ ✗ ✗ ✗ 3 1 60.2 -13.2

Table 2: Ablations on S-RVT and S-RVT2. Starting from the third column, we investigate the impact
of SPR, HSP, focal loss, uncertainty weighting, the number of virtual views, and the upscaling factor
in super-resolution on model performance. We report the model’s performance on average success
rate across 18 simulation tasks and the difference with the base model.

employs a sampling-based motion planner, each model is evaluated 5 times on each task, and we
report both the mean performance and variance.

We compare our S-RVT and S-RVT2 with various baselines. These include image-to-action behav-
ioral cloning models, Image-BC (CNN) Jang et al. (2022); Shridhar et al. (2023) and Image-BC
(ViT) Jang et al. (2022); Shridhar et al. (2023), utilizing CNN and ViT backbones respectively. Ad-
ditionally, we compare against models specifically designed for 3D object manipulation, such as
C2F-ARM-BC James et al. (2022), PerAct Shridhar et al. (2023), HiveFormer Guhur et al. (2023),
RVT Goyal et al. (2023), PolarNet Chen et al. (2023b), Act3D Gervet et al. (2023) and RVT-2 Goyal
et al. (2024). All baselines, S-RVT and S-RVT2 are trained and evaluated using 128 × 128 input
images, whereas Act3D Gervet et al. (2023) employs 256× 256 images.

Our S-RVT demonstrates significant improvements over RVT Goyal et al. (2023) across 18 tasks in
RLBench, achieving a 10.5% increase in average success rate. S-RVT2 outperforms RVT-2 Goyal
et al. (2024), with the success rate rising from 81.4% to 87.8%, a 6.4%, as illustrated in Table 1. For
high-precision manipulation tasks, such as Insert Peg, S-RVT2 exhibits performance 2.3 times su-
perior to the state-of-the-art. Similarly, in the Sort Shape task, S-RVT2 achieves a 2× improvement.

4.3 ABLATION STUDY

We conduct comprehensive ablation study to demonstrate the effectiveness of each component in
our method. The results are presented in Table 2. Row 1 and Row 11 in Table 2 represent the results
with the standard setup of our S-RVT2 and S-RVT. We perform the following ablations for both
S-RVT and S-RVT2:

• SPR: whether the Super Point Renderer is used. As shown in Row 2 and Row 12 of Table 2,
removing SPR leads to performance drops of 5.5 % for S-RVT2 and 3.4 % for S-RVT. This
indicates that SPR contributes to the model’s ability to handle occlusions.

• HSP: whether the Hierarchical Sampling Policy is employed. From Row 3 and Row 13, we
observe that without HSP, the performance decreases by 0.9 % for S-RVT2 and 6.5 % for S-RVT.
The substantial drop in S-RVT suggests that HSP is crucial for accurate 3D pose estimation.
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• Focal: whether focal loss is used. Comparing Row 4 and Row 14 to the base models, we find
performance decreases of 0.6 % for S-RVT2 and 5.3 % for S-RVT when focal loss is not utilized.
This demonstrates that focal loss effectively enhances super-resolution heatmap supervision.

• Uncer.: whether uncertainty weighting is employed to balance losses. The results in Row 5 and
Row 15 show performance drops of 1.7 % for both S-RVT2 and S-RVT without uncertainty
weighting. This suggests that uncertainty weighting helps in balancing losses.

• # Views: the quantity of virtual views utilized and test the following configurations:
– 3 views (top, front, right): As seen in Row 6 and Row 16, using only 3 views results in

performance drops of 5.9 % for S-RVT2 and 4.2 % for S-RVT. Fewer views may lead to
insufficient spatial information.

– 4 views (top, front, right, down): This configuration yields the best performance and is used
in our base models.

– 5 views (top, front, left, right, down): As shown in Row 7 and Row 17, adding an extra
view does not improve performance and leads to decreases of 3.7 % for S-RVT2 and 2.0 %
for S-RVT. The additional left view may introduce redundancy or conflicting information,
potentially overwhelming the model with unnecessary data.

These results suggest that using 4 views provides the optimal balance between performance and
computational cost.

• SR #: the upsampling ratio of the output heatmap compared to the input S-MVT virtual view by
experimenting with:

– 2× upsampling: As seen in Row 8 and Row 18, reducing the upsampling ratio to 2× causes
performance drops of 0.8 % for S-RVT2 and 6.3 % for S-RVT. This indicates that lower-
resolution heatmaps may lead failure cases in high-precision tasks.

– 1× upsampling: In Row 9 and Row 19, 1× upsampling further decreases performance by
0.9 % for S-RVT2 and 9.9 % for S-RVT.

This indicates that higher resolution heatmaps (4× upsampling) are beneficial for model perfor-
mance, particularly for tasks requiring fine precision and detailed spatial understanding.

4.4 REAL-WORLD EXPERIMENT

In this subsection, we present our exper-
# of # of # of

Task vari. train test Succ.
Put item in drawer 3 20 10 50 %
Stack blocks 5 25 10 70 %
Place fruit on plate 3 15 10 80 %
Plug charger 1 15 10 60 %
All tasks 12 90 40 65 %

Table 3: Results of S-RVT. We conduct experiments
on four tasks in real-world settings, recording the
number of variations for each and the number of hu-
man demonstrations collected for training. We per-
form 10 test episodes for each task, reporting the suc-
cess rate achieved in evaluation.

iments in real world. We discuss four
aspects: the experimental setup, dataset,
training and evaluation details, and results.

Experimental Setup. Our experimen-
tal setup for real world comprises a
1400mm × 700mm table, with a UFAC-
TORY xArm v7 robotic arm and gripper
fixed at the center of the table’s long edge.
An Intel RealSense L515 LiDAR camera
is mounted at a fixed third-person view-
point. We perform extrinsic calibration
between the camera frame and the robot
base frame to enable the transformation of
RGB-D point cloud from the camera to the
robot base. The S-RVT model processes RGB-D point cloud in the robot base frame and generates
the key pose for the subsequent action, encompassing translation, rotation, and gripper state. Fol-
lowing each action execution, the robotic arm acquires a new RGB-D point cloud, and this process
iterates until either task completion or reaching the maximum number of execution steps (25).

Dataset. We conduct experiments on the following tasks in real world: put item in drawer, stack
blocks, place fruit on plate, and plug charger. These tasks encompass various challenges, includ-
ing semantic understanding (e.g., place fruit on plate), long-sequence decisions (e.g., put block in
drawer and stack blocks), and high-precision manipulations (e.g., plug charger). The variations of
each task are discussed in Appendix A.2. We collect 20, 15, 20, and 15 demonstrations for the tasks
put block in drawer, stack blocks, place fruit on plate, and plug charger, respectively. The number
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Experimental Setup

Stack the blue block on the green block

Put the item in the top drawer Place the lemon on the plate

Plug in the charger

Arm

Camera

0

0
1

2

4

5

1
2

0

1

2

0

1

3

Figure 5: Illustration of the experimental setup and tasks in real world. The setup comprises a
robotic manipulator and a third-person RGB-D camera. Four manipulation tasks are implemented:
put item in drawer, stack blocks, place fruit on plate, and plug charger.

of demonstrations for each task is determined by its complexity and the degree of variability in task
configurations. For instance, put block in drawer is a complex multi-step task, while stack blocks
presents high variability due to the numerous possible color combinations of the blocks.

Training and Evaluation Details. A single model is trained for all four tasks, with training con-
ducted over 100 epochs using a fixed learning rate of 5 × 10−4. The final trained model is utilized
for result evaluation. During testing, object positions and orientations are varied from those in the
training data to assess generalization. A total of 10 test episodes are conducted. Task completion is
defined as successful if achieved within 25 steps; exceeding this step limit or encountering collisions
results in failure. Success signals are given by environment, for instance, in the place fruit on plate
task, success is determined by the presence of the fruit within the plate.

Results. As shown in Table 3, despite using few number of human demonstrations, we still achieve a
high success rate in real world. This demonstrates the generalization capability of our S-RVT in imi-
tation learning. However, there are still some failure cases, which we attribute mainly to two factors.
First, since we use only one third-person view camera, keypoints may become completely occluded
during the experiment; for example, when the gripper is grasping an apple, it may entirely block
the plate, causing the model to fail to predict the next key pose. Second, due to the limited number
of demonstrations, the model’s semantic understanding and discriminative ability are relative weak;
for instance, the model may confuse similar objects like yellow pear and yellow lemon.

5 CONCLUSION

In this paper, we address the limitations of previous virtual view-based methods, focusing on occlu-
sion problems and resolution constraints in the action space. To overcome these challenges, we in-
troduce the Super Robot View Transformer (S-RVT). Our approach incorporates a Super Point Ren-
derer that re-renders 3D point cloud into virtual images from fixed viewpoints, reducing information
loss due to occlusion. The Super-resolution Multi View Transformer (S-MVT) then processes these
images to generate high-resolution heatmaps representing 3D key pose translation probabilities on
2D planes. Finally, we employ a Hierarchical Sampling Policy (HSP) to sample and determine the
3D key pose. Our method demonstrates substantial improvements across 18 tasks, increasing perfor-
mance from 81.4% to 87.8% compared to the previous state-of-the-art. Notably, for tasks requiring
high-precision manipulation, our approach achieves a two-fold improvement in effectiveness. While
current virtual view-based methods typically predict discrete key poses for the gripper, our future
work will explore the potential for continuous trajectory prediction, further advancing the field of
robotic manipulation.
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A APPENDIX

This section presents detailed information on the following aspects: 1) the model architecture of the
Super-resolution Multi-View Transformer (S-MVT), 2) the real-world experiment, 3) data augmen-
tation and 4) visualization of simulation results.
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Task description: Put the ring on the azure spoke
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Self-
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Figure 6: Model architecture of Super Multi-View Transformer (S-MVT). S-MVT takes multi-view
virtual images and task descriptions as inputs. The multi-view virtual images undergo image patch-
ing and self-attention to extract image features. These image features are subsequently concatenated
with language features derived from the task description. The concatenated features are then pro-
cessed through another self-attention to generate heatmap features. The heatmap features are up-
sampled to produce super-resolution multi-view heatmaps. Leveraging the 3D translation predicted
by the Hierarchical Sampling Policy (HSP), conditioned sampling is performed on the heatmap fea-
tures. Finally, the sampled features are processed through two separate MLPs to estimate the rotation
and gripper state.

Stack the blue block on the green block Place the mango on the plate

Rendered virtual views Super-resolution heatmaps Composited pictures

Figure 7: Visualization of intermediate results in real-world tasks. We visualize two different tasks
in real world: stack the blue block on the green block and place the mango on the plate. For the
former task, the next key pose is to grasp the blue block, as predicted gripper coordinate indicates.
For the latter task, the next key pose is to grasp the mango.

A.1 MODEL ARCHITECTURE OF S-MVT

As illustrated in Figure 6, our Super-resolution Multi-View Transformer maps the input multi-view
virtual images and task description to the translation, rotation, and gripper state of the next key pose.
Initially, we patchify the multi-view virtual images and process them through four attention layers
to obtain multi-view image features. We then concatenate these features with language features
extracted by CLIP text encoder. The resulting combined feature vector is processed through another
four attention layers to generate heatmap features. This heatmap features undergo super-resolution
upsampling to produce multi-view super-resolution heatmaps.

To determine the rotation and gripper state of the next key pose, we employ conditional sampling.
During the training phase, we project the ground-truth 3D translation onto the heatmap plane and
select the heatmap feature corresponding to the projected 2D coordinates. This feature is then pro-
cessed through two separate MLPs to output the rotation and gripper state, respectively. In the
inference phase, we utilize the Hierarchical Sampling Policy (HSP) to predict the 3D translation,
which serves as a condition for sampling the feature. This sampled feature is subsequently pro-
cessed through MLPs to obtain the rotation and gripper state.
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Figure 8: Visualization of intermediate results in simulation task put the ring on the azure spoke,
including a series of key poses.

Rendered virtual views Super-resolution heatmaps Composited pictures
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Figure 9: Visualization of intermediate results in simulation task take the steak off the grill, including
a series of key poses.

A.2 THE REAL-WORLD DATASET

The following are variations of different tasks in real world.

• Put the item in the # drawer: top, middle, bottom.

• Put the # on the plate: lemon, mango, avocado.

• Stack the # block on the # block: red on blue, red on yellow, red on green, blue on yellow, blue on
green, blue on orange, yellow on blue, yellow on green, yellow on orange, green on red, green
on yellow, green on blue.

• Plug in the charger.

We also show our intermediate results of real-world tasks: stack the blue block on the green block
and place the mango on the plate in Figure 7. For observation in Figure 7, the next key pose is grasp
the blue block and grasp the mango respectively. We visualize the rendered virtual views, heatmaps
and their combinations. The top view of heatmap clearly shows the trained model focuses on the
task relevant object and produce feasible output. We use three views: top, front, right in real-world
settings for simplicity, while in simulation, we use four views for better performance.
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# of # of # of Model
Task vari. train test RVT RVT-2 S-RVT S-RVT2
Put item in drawer 3 20 10 30 % 50 % 50 % 60 %
Stack blocks 5 25 10 70 % 70 % 70 % 80 %
Place fruit on plate 3 15 10 70 % 80 % 80 % 90 %
Plug charger 1 15 10 10 % 70 % 60 % 80 %
All tasks 12 90 40 45 % 67.5 % 65 % 77.5 %

Table 4: Results of S-RVT and S-RVT2 compared to RVT Goyal et al. (2023) and RVT-2 Goyal
et al. (2024). We conduct experiments on four tasks in real-world settings, recording the number of
variations for each and the number of human demonstrations collected for training. We perform 10
test episodes for each task, reporting the success rate achieved in evaluation.

A.3 DATA AUGMENTATION

We implement two types of data augmentation in both simulation and real world:

1. Point Cloud Augmentation: We apply random transformations to the input RGB point
cloud to enhance the model’s learning of interest point positions relative to language in-
structions and the rotation of subsequent key poses. These transformations include:
• Random translation with a magnitude of 0.125 relative to the point cloud dimensions.
• Random rotation around the z-axis up to 45 degrees.

2. RGB Image Augmentation: For the rendered RGB images, we introduce random perturba-
tions to the pixel values. Specifically, we add a random noise term ϵ to each pixel value,
where:

Iaugmented = Ioriginal + ϵ, ϵ ∼ U(−0.05, 0.05). (4)

Here, Iaugmented and Ioriginal represent the augmented and original pixel intensities, re-
spectively, and ϵ is sampled from a uniform distribution between -0.05 and 0.05.

A.4 VISUALIZATION OF SIMULATION RESULTS

We visualize the simulation results in Figure 8 and Figure 9. The two pictures show intermediate
results of task put the ring on the azure spoke and take the steak off the grill. We also attach a video
describing the robot executing task in simulation in the supplementary materials.

A.5 REAL WORLD BASELINES

We compare our S-RVT and S-RVT2 with baseline methods of RVT Goyal et al. (2023) and RVT-
2 Goyal et al. (2024), as illustrated in table 4.Our S-RVT achieves notable enhancement over RVT
in high-precision manipulation tasks, such as the plug charger task, with success rate improvements
of 50 %.

A.6 DATA EFFICIENCY

Data scarcity and heterogeneity are major challenges in current manipulation tasks. To address
heterogeneity, researchers have experimented with uniquely designed model architectures that train
small-parameter networks for each specific embodiment while keeping the backbone network pa-
rameters fixed. This approach offers a pathway to mitigating data heterogeneity. Nevertheless, data
scarcity is a more fundamental problem. Unlike the era of internet AI where large datasets are read-
ily available online, robotics researchers cannot easily obtain vast amounts of data from the internet.
Consequently, there is a growing interest in how to train robust and highly generalizable robots using
limited data.

Existing methods like Diffusion Policy (DP) generate robust actions through denoising processes
but require hundreds of human demonstrations to achieve convergence. Similarly, Action Chunking
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with Transformers (ACT) collects human demonstrations through specialized mechanical setups,
yet it still needs dozens of demonstrations to perform tasks robustly. In contrast, our proposed S-
RVT framework addresses data efficiency by transforming raw observations into point cloud space
and applying translation and rotation augmentations, significantly enhancing the diversity of virtual
images. This allows our model to achieve convergence with as few as 10 demonstrations per task in
real-world experiments. Moreover, the model learns correlations across multiple tasks, presenting
possibilities for scaling up.

A.7 FUTURE WORK

In future work, we aim to address camera occlusion in real-world scenarios from both temporal
and spatial perspectives. Temporally, since objects are not continuously occluded throughout the
sequence, enabling S-RVT to retain memory of past observations is valuable. Spatially, deploying
multiple cameras from different viewpoints help mitigate occlusion. Regarding the limited num-
ber of demonstrations, generating additional demonstrations from synthetic data could enable the
training of a robust robot using only a few real-world demos.
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