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Abstract

Artificial neural network-based vision encoding models have made significant1

strides in predicting neural responses and providing insights into visual cognition.2

However, progress appears to be slowing, with many encoding models achieving3

similar levels of accuracy in predicting brain activity. In this study, we show that4

encoding models of human fMRI responses are highly vulnerable to small-scale5

adversarial attacks, revealing differences not captured using predictive accuracy6

alone. We then test adversarial sensitivity as a complementary evaluation measure7

and show that it offers a more effective way to distinguish between highly predictive8

encoding models. While explicit adversarial training can increase robustness of9

encoding models, we find that it comes at the cost of brain prediction accuracy.10

Our preliminary findings also indicate that the choice of model features-to-brain11

mapping might play a role in optimizing both robustness and accuracy, with sparse12

mappings typically resulting in more robust encoding models of neural activity.13

These findings reveal key vulnerabilities of current models, introduce a novel14

evaluation procedure, and offer a path toward improving the balance between15

robustness and predictive accuracy for future encoding models.16

1 Introduction17

Artificial neural networks (ANNs), loosely inspired by the architecture of the visual cortex, have18

become the leading models for understanding human vision [1–3]. These models excel not only19

at complex tasks like object recognition (e.g., ImageNet classification) but also provide a valuable20

framework for studying visual cognition more broadly [4–6]. ANN-based encoding models, which21

map neural network features to brain activity, have unlocked a key ability to predict responses at22

the level of single neurons [7], voxels [8], entire brain regions [9, 10], and even human and non-23

human primate behavior [11–13]. Early work established a link between a model’s performance on24

complex tasks (like ImageNet) and the ability to predict brain responses: better task performance25

typically translated to better brain/behavioral predictions [14, 1, 15]. However, this relationship has26

plateaued; despite continual improvements in task performance, gains in brain prediction accuracy27

(henceforth predictivity) have largely stalled. This observation raises critical questions: Are models28

with similar predictivity learning the same features, or are key differences going unnoticed? Is there a29

more effective metric that can reveal these differences and help us identify the better models, even30

when their predictivity appears to be equally high? In this work, we show that small, imperceptible31

(to humans) adversarial attacks on predictive encoding models can reveal meaningful differences,32

providing a sharper lens to evaluate their fidelity as models of the brain.33

The concern that encoding model predictivity has plateaued is not new [14, 9, 10, 15, 16]. This34

stagnation has sparked two major responses within the field. On one front, this challenge has driven35
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Figure 1: Motivation, central questions and example adversarial perturbations on encoding
models. A. Schematic illustrating the trend observed in previous studies: many encoding models
show similarly high predictions on brain data. Performance on ImageNet is shown on the x-axis, and
prediction accuracy on brain data is shown on the y-axis. A similar figure with actual data can be
found in previous work [1]. B. Strategy and central questions. For a given stimulus, we generate
a targeted noise pattern (and a randomized control) to assess how sensitive the encoding model is
to adversarial noise. C. Example of an adversarial perturbation applied to the FFA encoding model
(VGG16). The model’s prediction for the original face stimulus (top left) is significantly altered when
a targeted imperceptible noise pattern is added (top middle). The modified image produces a much
lower response (top right), similar to that for a non-preferred stimulus (bottom). The x-axis shows
images sorted by response, and the y-axis represents the FFA’s response. The red region highlights
the response for the preferred category (faces). D. Same as C, but for an example scene stimulus and
the PPA.

the development of entirely new models incorporating aspects of brain-like operations (like recurrence36

[17, 18, 2, 19, 20]) or by directly aligning with behavioral or neural data [21–23]. The second37

front challenges predictivity as the primary metric altogether, advocating for alternative evaluation38

methods like centered kernel alignment [24–27] or single-neuron selectivity [28, 29] to capture more39

nuanced aspects of brain-model alignment. In this work, we are advocating a slightly different40

strategy. Predictivity must remain a vital benchmark measure of our models: predictive models41

have enabled new understanding of brain function including the ability to modulate responses in the42

visual cortex [30–33]. However, predictivity alone is insufficient, especially when we are limited by43

data. We propose complementing predictivity measures with additional evaluation metrics. Here we44

introduce adversarial sensitivity as a potential tool for stronger model evaluations.45

Adversarial perturbations have long plagued AI systems. Previous work has shown that tiny, imper-46

ceptible changes to an image can drastically alter model predictions [34–40]. This issue has driven47

extensive research into making AI models more robust, particularly for mission-critical applications.48

Yet the impact of adversarial perturbations has received surprisingly little attention in vision neuro-49

science. Some work has explored “robustified” encoding models, either through training directly on50

neural data [41] to estimate neural robustness or by employing explicit robust pre-training to modify51

percepts [42–44]. To our knowledge, no study has directly examined the vulnerability of encoding52

models to targeted adversarial perturbations, the relationship between adversarial sensitivity and53

predictivity, or the impact of model mapping choices on the model’s adversarial robustness. Under-54

standing the bounds of our encoding models is crucial for progress. If imperceptible changes can55

distort model predictions, it raises concerns about their reliability in capturing true neural processes56

and ability to generalize to unseen data.57
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The central contribution of our work is threefold: (A) we demonstrate that encoding models are58

susceptible to small-scale adversarial attacks (Figures 1, 3), (B) we show that adversarial sensitivity59

is a potentially more effective way to differentiate between encoding models than predictive accuracy60

alone (Figure 3), and (C) we find that the choice of feature-to-brain mapping in encoding model61

can impact adversarial sensitivity, with sparse mappings producing relatively more robust models of62

neural activity (Figure 5).63

2 Methods64

2.1 fMRI Dataset65

We used publicly available 7T fMRI data from the Natural Scenes Dataset (NSD) [45] for all analyses66

in this study. Specifically, we focused on the responses to 515 shared stimuli obtained from fMRI67

scans of eight subjects in category-selective brain regions. Each subject viewed these images three68

times over multiple experimental sessions. All analyses were conducted using version 3 of the dataset69

(betas_fithrf_GLMdenoise_RR), obtained directly from the NSD website. In this work we focused70

on the category-selective areas: fusiform face area (FFA) [46], extrastriate body area (EBA) [47],71

parahippocampal place area (PPA) [48], and the visual word form area (VWFA) [49]. To ensure the72

inclusion of only the most category-selective voxels, we applied a stringent threshold of tval > 7 for73

all analyses. Models were trained to predict the voxel and trial-averaged responses across subjects, as74

in previous work [9].75

2.2 Encoding Model76

Typical ANN-based encoding models consist of two components: embeddings from a specific layer of77

the artificial neural network (serving as the representational basis) and a trainable mapping function.78

This mapping is typically done through regularized linear regression, which projects the features into79

the response subspace of neural activity.80

Formally, we input each of our training images (see cross-validation schema next) into a represen-81

tational encoder f and extract the latent feature vector zl ∈ RCl×Hl×Wl . These features are then82

passed through our mapping function g : RCl×Hl×Wl → Rn, where n is the dimensionality of the83

predicted neural data. To build the encoder model, we freeze f (the weights of the representational84

encoder) and train the mapping g.85

Model architectures: We considered eight pre-trained artificial neural network architectures that have86

been previously validated against brain data. These include ResNet-50 [50], VGG16 [51], Inception87

v3 [52], SqueezeNet v1 [53] , AlexNet [54], CORnet-RT [55], DenseNet [56], and MobileNet-v288

[57].89

To investigate whether increasing robustness improves the prediction accuracy of the encoding models,90

we also used publicly available models that were robustified through adversarial training [58]. These91

models share the same architecture (ResNet-50) and learning rule but differ in the degree to which92

they are trained adversarially. More details on the robust models and their training can be found in93

[59].94

Encoding model mapping procedures: In this study, we experiment with five different mapping95

functions: ordinary least squares regression (OLS), lasso regression, ridge regression, a two-layer96

multi-layer perceptron (MLP), and a convolutional neural network (CNN). The first three mapping97

functions generate direct brain predictions, while the latter two involve learning at least one additional98

layer of features. These new features may enhance the model’s ability to predict brain responses and99

could provide more representational robustness. However, the regression methods are computationally100

faster and do not require extensive hyperparameter tuning for convergence. Our two-layer MLP and101

CNN both include one hidden layer with 128 units. Note that we used OLS mapping for the first half102

of the paper because it is the most computationally efficient and does not rely on any assumptions.103

Encoding model cross-validation procedure: We used the 515 shared images across all 8 subjects104

from the NSD dataset. We trained the model on a randomly chosen set of 400 images and all results105

in the study are based on predicted responses based on the held-out 115 images.106

In Section 3.5, we investigate the effect of L1 readout regularization on the adversarial robustness of107

the encoding model. We fit each model to the data using only one randomly chosen subject (subj2),108
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testing six different values of the regularization coefficient α (0.0001, 0.001, 0.005, 0.01, 0.05, 0.1).109

The α value that maximized predictive accuracy for this subject was selected for further analysis. Im-110

portantly, all model evaluations were conducted using an independent metric (adversarial sensitivity)111

and across all subjects.112

2.3 Evaluating encoding model robustness113

We evaluated adversarial robustness against the Fast Gradient Sign Method (FGSM) [35]. FGSM
attacks are bounded by the L∞ norm. That is, we find the maximum change δ (bounded by a
“perturbation budget” ϵ) predicted to change the response of a given voxel. A successful attack would
drastically (and unrealistically) change the predicted response of the encoding model. We quantified
the adversarial sensitivity si for a given voxel using the method described in [41]. Specifically, we
use a sensitivity metric si defined as:

si = max
||δ||≤ϵ

(g(f((x)))− g(f((x+ δ))))

There are two things to note about this metric. First, since si is a measure of model sensitivity, high114

values on this metric would indicate lower adversarial robustness. We indicate this in several of our115

plots. The second is that since the metric does not have an upper bound, the results must not be116

interpreted across regions. While other forms of adversarial attacks exist in the literature, we focus117

on FGSM for simplicity and consistency.118

2.4 Encoding Model Discriminability119

We evaluate the ability of both metrics – adversarial robustness and model predictivity – to dis-120

crimininate encoding models of the brain. For each of the eight models evaluated, we compute121

the average sensitivity across all subjects and brain regions. We explore whether the spread of the122

adversarial robustness distribution of the encoding models will be greater than the spread of the123

model predictivity distribution (i.e., “adversarial robustness” serves as a better discriminative tool).124

To evaluate this, we test the variance and sparseness of both adversarial sensitivity and predictivity.125

Normalized Variance: Since the scale of “sensitivity” (unbounded) and “predictivity” (bounded −1126

to 1) are different, we cannot directly compare the variances. Instead, we first divide all accuracy127

and sensitivity values by their respective maximum value before reporting the variances (hence128

normalized variance).129

Sparseness: We use the sparseness metric defined in [60, 61]. Specifically, for a distribution of130

values P (r), sparseness (S) is computed with the following:131

S = 1− E[r]2

E[r2]
,

where E[·] denotes the expectation operator.132

3 Results133

Our investigation focuses on category-selective regions—specifically face, body, scene, and word-134

selective areas (FFA, EBA, PPA, and VWFA, respectively) from the Natural Scenes Dataset (NSD).135

These regions were chosen because of the extensive work on developing encoding models for them and136

because they provide the necessary foundational intuition for interpreting changes due to adversarial137

perturbations (Figure 1C, 1D). We specifically focus on very small image perturbations (ϵ ≤ 3/255)138

lower than the resolution limit of the human eye and hence imperceptible to humans. This is because139

the response of brain voxels to these targeted noise patterns remains currently unknown. Restricting140

our analysis to small magnitudes ensures that the adversarial sensitivities we detect are real and141

meaningful.142

3.1 Several ANN-based encoding models predict voxel responses equally well143

We first set out to replicate the previous finding that encoding models exhibit similar accuracy in144

predicting brain responses. To do this, we examined eight pre-trained neural network architectures145
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Figure 2: Several encoding models have equally high predicitivity on fMRI data A. Schematic
outlining the construction of a typical encoding model. Features from an intermediate model layer
(shown in red) are used to build a linear mapping function (indicated as “mapping”) to predict
responses in specific brain regions. B. Example scatterplot showing predicted (x-axis) versus
observed responses for AlexNet in the EBA. The dotted line represents the x = y line, and each
dot corresponds to a stimulus that was not used in model training (cross-validated). C. Bar plot
showing various candidate encoding model architectures (x-axis) and their ability to predict responses
to unseen images (y-axis). The black sideways triangle indicates the ceiling performance (median
Spearman-Brown corrected split-half correlation across subjects and brain regions). Bars represent
the mean response, with error bars showing the SEM across models and brain regions.

that have been reported extensively in prior work [14, 10, 9]. For each model, we focused on146

features from an intermediate layer, selecting the layer that had previously been shown to achieve the147

highest cross-validated accuracy in predicting responses from category-selective regions based on148

an independent fMRI dataset [9]. This choice removed experimenter degrees of freedom. Next, we149

constructed encoding models by mapping the features from a subset of images to brain responses150

using a linear mapping function (see Methods for details on cross-validation procedures). This entire151

process is depicted schematically in Figure 2A.152

Overall, we found that these ANN-based encoding models were highly effective at predicting brain153

responses to held-out images (replicating previous findings [10, 9]). This is illustrated for an example154

brain region (EBA) in Figure 2B (R = 0.76, P<0.00001). Across all regions we considered, the155

models were able to predict nearly all of the explainable variance in the observed data. The prediction156

accuracy for each model architecture (Figure 2C, bars) was very close to the estimated noise ceiling157

(Figure 2C, sideways triangle, derived from corrected split-half correlations). Importantly, all models158

appeared to perform similarly well at predicting responses to unseen images. These results replicate159

the earlier observation that a wide range of encoding models are approximately equal in their ability160

to predict responses in the brain.161

3.2 All ANN-based encoding models are susceptible to small scale adversarial attacks162

How susceptible are encoding models to adversarial attacks? To address this, we engineered an163

imperceptible noise pattern specifically designed to alter the predicted response for a given brain164

region, along with a randomized noise pattern of the same magnitude and statistical properties as165

a control. We discovered that even the slightest targeted noise, unseen by the human eye, could166

completely derail the encoding model’s predicted response. This is shown for an example encoding167

model (VGG16) for the FFA and PPA in Figures 1C and 1D. Initially, the model’s prediction for the168

unaltered image from the preferred category (faces for FFA, scenes for PPA) was high. This agrees169

with our expectation about images from the preferred category. However, adding a small amount of170

targeted noise was enough to push the predicted response well outside the preferred category range171

to the extreme end of the observed response spectrum. As a negative control, we used a shuffled172

version of the same targeted noise. Importantly, this shuffled noise pattern, despite having the same173

summary statistical properties of the noise, did not alter the predicted response to the same extent174

(delta = 0.01).175
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Figure 3: Adversarial sensitivity effectively discriminates between encoding models. A. Example
of adversarial attacks applied directly to the encoding models. Each attack shows the unaltered
image (left), the targeted noise and shuffled noise (middle panels top and bottom respectively), and
model predictions for these images B. The effect of perturbation strength (x-axis) on the model’s
adversarial sensitivity (y-axis). Each colored line represents a different candidate encoding model
architecture. The dots show the mean sensitivity, and the shaded areas represent the standard error
across subjects and brain regions. The black line indicates the negative control using randomized
noise. The triangle above marks the perturbation strength used for the subsequent analyses. C. Bar
plots showing the adversarial sensitivity (y-axis) for all encoding models at a perturbation strength of
3/255. The models are arranged in the same order as in Figure 2C for direct comparison. D. Barplots
showing the discriminability between models using adversarial sensitivity and predictivity. Top: Bar
plots illustrating model discriminability using predictivity (R) and adversarial sensitivity (si). Top:
Discriminability based on the sparseness measure (y-axis). Bottom: Discriminability based on a
normalized variance measure (y-axis).

We quantified the adversarial sensitivity for each model by measuring the change in predicted response176

to the adversarially perturbed image. Figure 3B shows these results for all encoding models. As177

the strength of the perturbation (ϵ) increased (x-axis), the adversarial sensitivity also increased (as178

expected). Note that in this context, higher sensitivity indicates lower adversarial robustness for179

the model. These findings demonstrate that all tested ANN models were vulnerable to targeted180

adversarial attacks. In fact, for most models, even a small perturbation with ϵ = 3/255 was enough181

to significantly alter the predicted response.182

3.3 Adversarial sensitivity better discriminates between ANN-models than predictivity183

Next, we evaluated whether adversarial sensitivity could serve as a more effective tool for distin-184

guishing between candidate encoding models of the brain. We present these analyses for ϵ = 3/255,185

although all subsequent inferences hold across other values as well. The results for adversarial sensi-186

tivity across all encoding models at ϵ = 3/255 are displayed in Figure 3C. To facilitate comparison,187

the models are arranged in the same order as shown in Figure 2C.188

To assess the effectiveness of adversarial sensitivity compared to predictivity, we employed two189

different measures. First, we measured the sparseness [61] of the adversarial sensitivity and predictiv-190

ity metrics across models. Sparseness was chosen since it is a scale invariant measure and can be191

used to directly compare between predictivity and adversarial sensitivity (see Methods for details).192

Figure 3D (top) shows that model sparseness was significantly higher for adversarial sensitivity193

than for predictivity, indicating better discriminability across models. A problem with sparseness194

however is that it is highly sensitive to outliers. To allay this concern, we adopted a second, more195
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Figure 4: Robust training reduces the predictive accuracy of fMRI encoding models. A.
Schematic illustration of the analysis. In this step, we replace the original features (shown in
red) with features that have been robustified through adversarial training. B. Bar plots showing
that increasing the level of adversarial training (x-axis) improves the adversarial sensitivity of the
encoding models (y-axis). C. Bar plots showing that increasing the level of adversarial training
(x-axis) reduces the predictive accuracy of encoding models on fMRI data (y-axis).

intuitive variance measure (normalized to match the scale between sensitivity and predictivity). As196

shown in Figure 3D (bottom), the normalized variance was also higher for adversarial sensitivity197

compared to predictivity. Together, these measures present a consistent picture: adversarial sensitivity198

distinguishes between encoding models more effectively than predictivity alone.199

3.4 Increasing model robustness via adversarial training does not improve model predictivity200

So far, we have demonstrated two key findings: 1) commonly used encoding models are sensitive201

to imperceptible adversarial noise, and 2) adversarial sensitivity can serve as a tool to distinguish202

between predictive models. How can we build better, more robust encoding models? The natural203

thing to try is to simply replace the current model architecture with a more robust one. In this section,204

we explored what happens when we use robustified models. To test this question, we fixed the model205

architecture (ResNet50) and parametrically varied the strength of adversarial training using publicly206

available robustified models [58]. This strategy is illustrated schematically in Figure 4A.207

As expected, we found that robust models were indeed less vulnerable to added adversarial noise.208

Figure 4B shows how adversarial sensitivity decreases as the strength of adversarial training increases.209

Are robustified models effective at predicting fMRI responses? Here, we observed a trade-off: as210

the models became more robust, their ability to predict fMRI responses declined. This reduction211

was quite significant and is shown across all models and regions. These results suggest that while212

adversarial training does improves robustness, it may do so at the cost of reduced predictivity for213

brain data.214

3.5 Sparse mappings tend to improve adversarial robustness of encoding models without215

sacrificing model predictivity216

A less well-understood aspect of encoding models is the effect of the specific choice of mapping217

between model features and neural responses. We wondered if certain mapping functions could218

improve an encoding model’s sensitivity to targeted noise. There are many potential linear and219

non-linear mapping functions to explore. To constrain our choices, we first evaluated five different220

mapping methods: ordinary least squares (no regularization), Lasso (L1) regression (sparse), Ridge221

(L2) regression, a two-layer multi-layer perceptron (MLP), and a convolutional neural network.222

We chose two candidate encoding models (VGG16 and ResNet50) for this initial exploration of223

mapping methods. An issue with these is that many of these methods involve choosing appropriate224

hyparameters. Hyperparameters were selected based on prediction accuracy (see Methods), but we225

focus our attention on an independent metric: adversarial sensitivity. The results are presented in226

Table 1. Across both models, we found evidence of a significant boost in adversarial sensitivity when227

using a sparse mapping.228

Would this observation generalize to other models? To explore this, we compared the sensitivity of all229

eight models using L1 (sparse) and OLS (no regularization) mapping-based encoding models across230

7



Adversarial sensitivity for different model-to-brain mapping functions
Model OLS L1 (Lasso) L2 (Ridge) 2-layer MLP CNN
VGG16 1.453 .891 1.453 1.358 1.734
ResNet50 1.782 .821 1.782 1.286 1.051

Table 1: Effect of readout functions on adversarial sensitivity. L1 regularization on the readout
performed best. The weight of the regularization term, α, was chosen as the value which maximized
predictive accuracy from a set of candidate values; see Methods.
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Figure 5: Sparse model-to-brain mappings tend to lower adversarial sensitivity of encoding
models . A. Schematic illustration of the analysis. Here, we evaluate the model-to-brain mappings
(highlighted in red) B. Bar plots showing adversarial sensitivity (y-axis) for all models tested. The dots
and connected lines represent an encoding model for a specific subject and brain region. * indicates
statistical significance (paired t-test, P < 0.001) between OLS and sparse mappings. Models in
bold indicate improved adversarial sensitivity for sparse (L1) mappings compared to OLS-based
mappings.

all architectures. Note that the hyperparameters here were determined based on prediction accuracy231

from one subject, and the results were independently evaluated on adversarial sensitivity from all232

subjects (see Methods). This preliminary analysis revealed an interesting trend: sparse mappings233

produced significantly more robust models in 5 out of 8 model architectures. While this suggests that234

sparse mappings may enhance adversarial robustness, it is important to emphasize that these results235

are still preliminary and additional testing is needed to confirm whether this pattern holds across a236

larger sample, different model types, and independent analysis methods. Nonetheless, these early237

findings hint at the potential of sparse mappings to provide a meaningful boost in robustness.238

4 Discussion239

In this study, we investigated how susceptible commonly used ANN-based vision encoding models240

were to small-scale adversarial perturbations. We found that all high-performing models were241

vulnerable to imperceptible, small-scale adversarial noise (Figure 3). We also demonstrated that242

adversarial sensitivity, more effectively than prediction accuracy, could be used to differentiate243

between models (Figure 3). However, increasing model robustness through adversarial training came244

at the expense of reducing their ability to predict fMRI responses (Figure 4). Finally, we found early245

evidence that a simple sparse mapping approach on the mapping function could significantly improve246

adversarial robustness (Figure 5). These findings reveal key limitations of current encoding models247

and suggest new strategies for enhancing their performance.248

Our adversarial attacks had two key features. First, the perturbations were deliberately kept small to249

focus on imperceptible changes. Our pilot analyses, based on an 8-degree viewing angle, suggest the250

detection threshold for adversarial images to be around ϵ = 8/255. While a formal estimate on a251

larger sample is underway, we assumed that small perturbations, as those used in this study, would252

not alter brain voxel responses (though see [41]). This allowed us to test the model’s vulnerability253

in a regime where the visual system should remain stable, highlighting its susceptibility to subtle254

adversarial noise. However, these assumptions require formal testing in future work. The second255

key feature is that our method targeted the encoding models directly (instead of the model features).256

This approach enabled us to assess vulnerabilities in the model’s representational mappings to brain257

activity, not just the image embeddings. While previous studies have examined the relationship258

between model robustness and neural predictions in monkeys [44], or the link between spatial features259
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and neural representations [62, 63], our work extends these findings by exploring how adversarial260

perturbations directly affect model representations most predictive of human fMRI brain responses.261

One interpretation of our results is that current high-performing, predictive encoding models are262

fundamentally flawed given how drastically they fail when exposed to targeted adversarial noise.263

While this is true, our aim is not merely to highlight these vulnerabilities. It is not entirely unexpected264

that these models are susceptible to adversarial perturbations, given what we know about neural265

networks in general. However, we propose leveraging adversarial sensitivity as a tool to guide the266

development of more accurate and resilient models. In fact, we find that adversarial sensitivity267

provides an additional layer of insight into model performance, helping to distinguish between highly268

predictive encoding models.269

By analyzing how different models respond to adversarial perturbations, we start to uncover their270

limitations and use new insights into the development of more robust brain models. To this end, we271

tested two strategies. While adversarial training is widely used in the AI community to enhance272

model resilience, we found that it came at a significant cost to model predictivity (see also [44]). As273

models became more robust, their ability to accurately predict brain responses declined substantially.274

This trade-off highlights a compromise that must be carefully considered when developing models275

for neuroscience applications. In contrast, we found that a relatively simple sparse mapping between276

model features and brain representations was enough to significantly reduce the adversarial sensitivity277

of most encoding models, usually outperforming more complex non-linear mapping methods. We278

hope to explore these differences further in future work.279

Taken together, our results expose the critical vulnerabilities of ANN-based predictive encoding mod-280

els to adversarial perturbations, highlight adversarial sensitivity as a powerful tool for differentiating281

between models, and suggest a promising path for enhancing model robustness. As we continue282

our search for brain-like models, striking the right balance between robustness and predictivity will283

be crucial. Our work provides a foundation for tracking this balance, offers new model evaluations,284

and offers prescriptions to guide the development of more accurate and resilient models that can be285

applied to study human cognition even beyond vision.286
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