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Abstract

Previous studies have shown that demonstra-001
tions can significantly help Large Language002
Models (LLMs) perform better on the given003
tasks. However, this so-called In-Context004
Learning (ICL) ability is very sensitive to the005
presenting context, and often dozens of demon-006
strations are needed. In this work, we investi-007
gate if we can reduce the shot number while008
still maintaining a competitive performance.009
We present SeCoKD, a self-Knowledge Dis-010
tillation (KD) training framework that aligns011
the student model with a heavily prompted012
variation, thereby increasing the utilization of013
a single demonstration. We experiment with014
the SeCoKD across three LLMs and six bench-015
marks focusing mainly on reasoning tasks. Re-016
sults show that our method outperforms the017
base model and Supervised Fine-tuning (SFT),018
especially in zero-shot and one-shot settings by019
30% and 10%, respectively. Moreover, SeC-020
oKD brings little negative artifacts when eval-021
uated on new tasks, which is more robust than022
Supervised Fine-tuning.023

1 Introduction024

When scaling up Large Language Model (LLM)s,025

the ability of ICL emerges (Brown et al., 2020;026

Agarwal et al., 2024; Dong et al., 2022). Models027

can learn from a few demonstrations and thus can028

be generalized to various downstream tasks without029

updating the parameters (Wei et al., 2023). How-030

ever, the mechanism behind the few-shot learning031

ability remains unclear. Large language models032

are very sensitive to the quality of demonstrations,033

such as the number of demonstrations (Pan, 2023;034

Chen et al., 2023), the order of reasoning steps035

(Lu et al., 2021; Zhao et al., 2021), and the cor-036

rectness of labels (Halawi et al., 2023). Moreover,037

the design of a demonstration also plays an impor-038

tant role (Zhao et al., 2021; Wang et al., 2022; Fu039

et al., 2022; Wei et al., 2022). As a result, it is040

not trivial to design a proper demonstration and041

the importance of prompt engineering continues 042

to increase (Reynolds and McDonell, 2021; Dong 043

et al., 2022; Zhou et al., 2022). Currently, it is com- 044

mon to use dozens of demonstrations together to 045

overcome the possible weakness of a single prompt. 046

However, we argue that humans often do not need 047

more than two examples in the context of Q&A. 048

One demonstration can serve as a guideline and 049

show the correct format for answering the question, 050

but more similar demonstrations are irrelevant to 051

the correctness of the answer. In other words, hu- 052

mans do one-shot or zero-shot learning and they 053

are not few-shot learners. 054

In this paper, we propose a simple yet effective 055

KD method called SeCoKD, which stands for Self 056

Context Knowledge Distillation. Our method sig- 057

nificantly reduces the number of demonstrations 058

needed in the context by increasing the utiliza- 059

tion of a single demonstration. The intuition is 060

that since an LLM can answer a question correctly 061

when triggered by a certain amount of external in- 062

formation (few-shot learning), we could use less 063

information (one-shot learning) by aligning the 064

model space and the task space through self-KD. 065

It differs from internalizing knowledge; instead, it 066

promotes the model to utilize existing information 067

to activate its internal knowledge, a process previ- 068

ously achieved by providing a handful of examples. 069

First, we show that SeCoKD strongly improves 070

the model performance on zero-shot and one-shot 071

learning. We also consider the model trained with 072

supervised fine-tuning as a strong baseline. In com- 073

parison, our method achieves better performance, 074

especially when the original training set doesn’t 075

provide reasoning steps. For example, when per- 076

forming one-shot ICL on the ARC-C (Clark et al., 077

2018a) dataset, the Mistral-7B fine-tuned with our 078

method scores 60% accuracy, 10% higher than the 079

initial model and 3% higher than the SFT version. 080

Second, we demonstrate that SeCoKD not only 081

enhances performance on the training task but also 082
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Figure 1: Overview of the SeCoKD framework. The teacher model first generates high-quality rationale and answers
for a query through 8-shot ICL. Then a student is trained using fewer demonstrations and the teacher’s output.

maintains robustness across different tasks, unlike083

SFT, which can reduce accuracy on unseen tasks.084

This indicates that our method is more robust com-085

pared to SFT.086

Third, empirical experiments suggest that SeC-087

oKD simplifies tasks by converting difficult queries088

into easier ones when the same demonstration is089

provided. In contrast, while SFT occasionally out-090

performs SeCoKD in accuracy, its improvements091

are inconsistent: some queries that are initially easy092

for the base model become significantly more chal-093

lenging after SFT.094

In summary, the contributions of this study are095

as follows:096

• To the best of our knowledge, this work repre-097

sents the first approach deliberately designed098

to reduce the number of demonstrations used099

for ICL by enhancing the model’s ability to100

utilize a single demonstration.101

• We design a KD training pipeline called SeC-102

oKD and conduct comprehensive empirical103

experiments on various reasoning tasks in the104

ICL setting. In total, 6 datasets and 3 different105

models are used in this study.106

• We investigate the robustness of SeCoKD in107

comparison to the SFT and show that our108

method not only provides more consistent im-109

provements but also generalizes well to un-110

seen tasks.111

2 Related Work112

2.1 Few-Shot In-Context Learning113

Recent work (Radford et al., 2019) demonstrated114

that large Pretrained Language Models can per-115

form incredibly well on standard NLP tasks with- 116

out being fine-tuned on task-specific datasets. Fur- 117

thermore, Brown et al. (2020) suggested that the 118

performance can be improved by feeding extra in- 119

formation in the input context. It is typically done 120

by providing demonstrations of the same task. A 121

demonstration refers to a text sequence that con- 122

tains at minimum a query and its corresponding 123

answer, concatenated by a predefined pattern. Ad- 124

ditional information such as instructions and ratio- 125

nale can also be included. Although being compet- 126

itive in certain tasks, ICL suffers from instability. 127

Its performance depends heavily on the model size 128

(Wei et al., 2023), the overall format of sequences 129

(Min et al., 2022), number of demonstrations (Chen 130

et al., 2023; Halawi et al., 2023), etc. As a result, 131

there are no gold standards for designing context 132

and the studies about ICL are mostly empirical. 133

On one hand, some works showed that enriching 134

context can be beneficial. Agarwal et al. (2024) 135

proposed many-shot learning to make full use of 136

the allowed context length. With hundreds or thou- 137

sands of demonstrations, models constantly per- 138

form better than just using a few demonstrations. 139

On the other hand, Chen et al. (2023) revealed 140

that more demonstrations do not always bring ben- 141

efits. Instead, ICL with one proper demonstra- 142

tion may perform better than few-shot learning 143

using multiple random demonstrations. Towards 144

more efficient ICL, existing works focus on demon- 145

stration selection (Li and Qiu, 2023; Wu et al., 146

2022; Li et al., 2023b) or context compression 147

(Wingate et al., 2022; Ge et al., 2023). Zhang 148

et al. (2022) proposed a reinforcement learning ap- 149

proach to select a handful of demonstrations from 150
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up to 1000 examples. Pan et al. (2024) developed151

a task-agnostic prompt compression technique that152

achieved a compression ratio of up to 5x without153

losing much performance. However, there is no154

existing approach to improve the model’s internal155

ability to handle arbitrary demonstration, which156

can lead to a more fundamental solution. To fill157

this research void, we focus on reducing the num-158

ber of demonstrations as much as possible while159

maintaining performance and robustness.160

2.2 Distillation of Language Models161

Knowledge Distillation (Hinton et al., 2015; Gou162

et al., 2021) is a technique in machine learning163

that involves transferring knowledge from a larger,164

more complex model (often referred to as the165

"teacher" model) to a smaller, more efficient model166

(known as the "student" model). The goal is to en-167

able the student model to achieve performance sim-168

ilar to or close to that of the teacher model but with169

reduced computational cost and lower resource re-170

quirements. Xu et al. (2024) recently summarized171

three main motivations for applying KD in context172

of LLM: a) trying to let the open-source models173

mimic and learn from the more powerful closed–174

source model, b) offering compressed and efficient175

models, c) enhancing models using self-generated176

data through self KD.177

The last point is an emerging research topic since178

the recent LLMs can generate high-quality data that179

can be used for self-improvement. In Sun et al.’s180

(2024) work, the authors synthesized around 360k181

training samples with LLaMA-65b and later fine-182

tuned the same model with these data. Thanks183

to the self-alignment between the model and the184

generated data, their model surpassed many models185

trained with human-curated samples. Extending186

the idea of self-improvement, we propose to use the187

same model to generate a high-quality rationale for188

a query that serves as the most aligned supervision189

to train a student model.190

3 SeCoKD Overview191

The primary training objective of SeCoKD is to192

have the student model emulate the teacher model,193

which is activated by a handful of demonstrations.194

Concretely, let D = {d1, d2, d3...dn} denotes a195

set of demonstrations and d ⊆ D denotes a subset.196

(x, y, θ) are the input query, true label, and model197

parameters, respectively. In the setting of few-shot198

learning we have PM = (y | x,D, θM) for the199

model M. After applying our training method, we 200

showcase that the updated Model M′ also performs 201

well with a high PM′ = (y | x,d, θM′). Since we 202

focus on a self-distillation manner and we fine- 203

tune the model with LoRA, the expression can 204

be rewritten as PM′ = (y | x,d, θLoRA, θM). As 205

depicted in Figure 1, the whole pipeline can be 206

divided into two steps. First, the teacher model 207

is prompted with a set of demonstrations and a 208

query. Each demonstration contains a question, a 209

rationale, and an answer. The reasons to include 210

some reasoning steps are two-fold: a) It is shown 211

that Chain-of-Thought (CoT) prompting increases 212

the reasoning ability of LLMs and thus the perfor- 213

mance will be better (Wei et al., 2022; Shao et al., 214

2023). b) We need more tokens generated from 215

the teacher model as supervision of the student 216

model. For each task, we use a carefully curated 217

demonstration set as gold samples. We then extract 218

the reasoning part and the answer from the teacher 219

model’s output and save them for later use. 220

In the second step, we randomly sample a subset 221

of the available demonstrations, concatenate it with 222

the same query as in the first step, and use this 223

sequence as input for the student model. Then we 224

apply Sequential-Level KD (Kim and Rush, 2016) 225

to fine-tune the student model. 226

To explain the whole pipeline mathematically, 227

we first obtain the teacher output as 228

r = g(fteacher (D, x)) (1) 229

where f(·) is the generation function and D is the 230

demonstration pool. We use the extraction function 231

g(·) to obtain the teacher-forcing supervision for 232

the student model. Our training objective is to find 233

parameters θ of the student model S that maximize 234

the sequential-level log-probability sum: 235

MSeq(θ) = E(pre,r)∼D [logSθ(r̂ = r;pre)]

= ED

[
Lr∑
i=1

logSθ (r̂i = ri;pre, r<i)

]
(2) 236

where pre denotes the student input, containing 237

the selected demonstrations and the query. Given 238

this objective, the corresponding loss function to 239

be minimized can be framed as: 240

L(θ) = − 1

N

N∑
j=1

L
(j)
r∑

i=1

logSθ

(
r̂
(j)
i = r

(j)
i | p(j), r(j)<i

)
(3) 241
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Demonstration Selection We develop two strate-242

gies to select demonstrations for the student model.243

SeCoKD-S randomly samples one demonstration244

out of the demonstration pool. This represents the245

extreme case where we hypothesize that one exam-246

ple can already provide enough guidance for the247

model. SeCoKD-M, on the other hand, samples248

a different number of demonstrations from 1~4249

for the student model, providing a stronger initial250

guidance.251

4 Experimental Settings252

We aim to evaluate the performance of SeCoKD253

compared to directly supervised fine-tuning and254

the base model. Inspired by Wei et al. (2022), we255

choose 6 popular benchmarks, covering topics of256

arithmetic reasoning, commonsense reasoning, and257

symbolic reasoning. We conducted experiments258

with some of the most advancing LLMs. However,259

we could only test the models with less than 10260

billion parameters due to the computation limits.261

4.1 LLMs262

We evaluate our method on three GPT-like auto-263

regressive transformer language models. We use264

the 4-bit quantized version to save computation re-265

sources (Dettmers et al., 2022). The Llama 2-7B266

(Touvron et al., 2023) is one of the most popu-267

lar open-source LLMs. Llama 3-8B (AI@Meta,268

2024) is the latest member in the Llama family269

and appears to be the SOTA in various bench-270

marks. We also use the Mistral-7B (Jiang et al.,271

2023) which leverages the sliding window atten-272

tion (SWA) mechanism to handle variants sequence273

lengths effectively. We conducted all experiments274

on a single NVIDIA V100 (40G) GPU. For the275

training, we use the same LoRA1 (Hu et al., 2021)276

configuration for all models, and the trainable pa-277

rameters thus reduce to around 0.18% of the full278

size. All results reported are the average of three279

runs and training-related hyperparameters are listed280

in A.2.281

4.2 Datasets282

We evaluate all methods on 6 benchmarks listed283

in Table 1. For mathematical reasoning tasks, we284

selected three datasets. The GSM8K (Cobbe et al.,285

2021) contains 8.5K high-quality and diverse text-286

based grade school math problems. The SVAMP287

1https://huggingface.co/docs/diffusers/en/
training/lora

Dataset Rationale Multiple
Choice

ARC-C curated ✓
CSQA ✓ ✓
SVAMP same as GSM8K
AQUA-RAT ✓ ✓
GSM8K ✓
COIN-FLIP ✓

Table 1: We need to apply CoT prompting in our train-
ing pipeline. We reuse the existing demonstrations for
GSM8K, COIN-FLIP, SVAMP and CSQA tasks from
Wei et al. (2022). For ARC-C we manually curate 8
gold demonstrations. The full demonstrations are listed
in A.3
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu
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cy

SeCoKD_S SeCoKD_M BASE SFT

Figure 2: Comparison of 4 methods with different shot
numbers. The X-axis represents the number of demon-
strations. The Y-axis shows the average accuracy of all
six tasks. SeCoKD significantly outperforms the other
two baselines in zero-shot and one-shot scenarios.

(Patel et al., 2021) applies different types of vari- 288

ations to the existing math problems and creates 289

a more robust benchmark. In AQUA-RAT (Ling 290

et al., 2017), the answers to the math problems 291

are multiple choices. This introduces diversity 292

into our experiments. For the commonsense rea- 293

soning tasks, we selected ARC-C (Clark et al., 294

2018b) which contains relatively difficult natural 295

grade-school level questions, and the CSQA (Tal- 296

mor et al., 2019) which utilized crowd-workers to 297

create multiple-choice questions that cover a wide 298

range of topics. We chose the Coin-Flip dataset 299

introduced by Wei et al. (2022) for the symbolic 300

reasoning task. In this task, the model is asked if 301

a coin is still heads-up after n people flip it. For 302

each task, we randomly sample 800 pieces of data 303

for training and 200 for testing. 304
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Figure 3: Few-Shot performance on each task. The X-axis represents the number of demonstrations. Our methods
SeCoKD-S and SeCoKD-M perform much better in zero-shot and one-shot compared to the two baselines.

5 Results and Discussion305

5.1 Results for Few-Shot ICL306

Figure 2 shows an overall comparison between307

SeCoKD and baseline methods. The underlying308

model here is Llama 3-8B and more results regard-309

ing different LLM structures can be found in A.1.310

First, while all fine-tuned models perform better311

than the base model, the two variants SeCoKD-S312

and SeCoKD-M are better than SFT in most sce-313

narios. We observe the largest margins in the zero-314

shot case, meaning that context information is suc-315

cessfully compressed. Second, we notice that the316

difference between the SeCoKD-S and SeCoKD-317

M is quite small. This means that in the distil-318

lation process, the model does not need a strong319

initial context to align with the guidance from the320

teacher. In the following experiments, we only use321

the SeCoKD-S to reduce computational resources.322

Last, starting from Four-Shot, adding more demon-323

strations seems to have no more positive impact on324

the performance of all methods. This observation325

is consistent with the study from Min et al. (2021).326

In their work, ICL brings only marginal improve-327

ments also after around 4 demonstrations. This328

indicates that there is a performance upper bond329

for the model that can be lifted by training, not by 330

ICL. 331

In Figure 3 we look separately at performance 332

comparison on each dataset. We could see that in 333

all tasks, the base model struggles in the zero-shot 334

case, delivering the poorest performance. However, 335

when providing more demonstrations, the perfor- 336

mance is significantly increased up to an upper 337

bound. After that, more demonstrations seem to 338

have limited help, sometimes even degrading the 339

performance for example for the AQUA-RAT task. 340

The models trained with SFT also perform gener- 341

ally not well in the zero-shot settings except for 342

the COIN-FLIP task. It even degrades the model’s 343

performance on ARC-C. When providing more 344

demonstrations, SFT can offer only limited im- 345

provement. Conversely, models trained with SeC- 346

oKD exhibit significantly better zero-shot perfor- 347

mance across all tasks. Furthermore, the one-shot 348

accuracy with SeCoKD already achieves optimal 349

performance, indicating that more than one demon- 350

stration is unnecessary due to the effectiveness of 351

the KD pipeline. 352

Table 2 presents a comparison of one-shot ac- 353

curacy on six different tasks across three mod- 354

els: Llama 3-8B, Llama 2-7B, and Mistral-7B. 355
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ARC-C CSQA SVAMP AQUA-RAT GSM8K COIN-FLIP

Llama 3
-8B

Base 0.6 0.66 0.53 0.39 0.41 0.74
SFT 0.62 0.61 0.41 0.36 0.46 0.65

SeCoKD-S 0.67 0.69 0.66 0.44 0.58 0.85
SeCoKD-M 0.68 0.67 0.66 0.48 0.57 0.94

Llama 2
-7B

Base 0.4 0.42 0.29 0.14 0.05 0.51
SFT 0.34 0.41 0.22 0.18 0.08 0.55

SeCoKD-S 0.48 0.52 0.3 0.15 0.19 0.62
SeCoKD-M 0.45 0.53 0.32 0.14 0.18 0.63

Mistral
-7B

Base 0.5 0.68 0.53 0.25 0.28 0.61
SFT 0.58 0.7 0.65 0.32 0.44 0.59

SeCoKD-S 0.59 0.68 0.62 0.27 0.6 0.74
SeCoKD-M 0.60 0.69 0.65 0.28 0.58 0.78

Table 2: Comparison of one-shot accuracy on different tasks and different models. Bold values represent the best
results within a model structure. We could see that in most cases SeCoKD performs the best.

The methods compared are Base, SFT, SeCoKD-356

S, and SeCoKD-M. SeCoKD generally performs357

best across different tasks and models, showing the358

highest accuracy in most cases. For instance, in359

the ARC-C task, SeCoKD-M achieves 68% accu-360

racy with the Llama 3 model, outperforming the361

Base method at 60% and SFT at 62%. Similarly,362

in the GSM8K task, SeCoKD-M reaches 60% ac-363

curacy with the Mistral model, while Base and364

SFT score 28% and 44%, respectively. SeCoKD-365

S often closely follows SeCoKD-M or performs366

slightly better, such as in the CSQA task with367

Llama 3, where SeCoKD-S scores 69% compared368

to SeCoKD-M’s 67%. In contrast, Base and SFT369

methods typically show lower performance com-370

pared to SeCoKD methods, with SFT sometimes371

even performing worse than the Base model, es-372

pecially in the Llama 2 model, where SFT scores373

41% in the CSQA task compared to the Base’s 42%.374

Overall, SeCoKD methods, significantly improve375

one-shot accuracy across various tasks compared to376

Base and SFT methods, especially in more complex377

models like Llama 3 and Mistral.378

5.2 Robustness of SeCoKD379

We demonstrate the superiority of SeCoKD over380

SFT by highlighting its robustness in cross-task381

testing scenarios. Our approach involves tuning a382

model on each individual task and then evaluating383

it not only on the test set of the same task but also384

on the test sets of other tasks. The rationale behind385

this experiment is twofold: 1. A model that is effec-386

tively trained on a specific task should exhibit the387

best performance on that task compared to other388

model variants. 2. The training objective aims to en- 389

hance the model’s ability to utilize demonstrations. 390

Therefore, ideally, training on one task should also 391

positively impact the model’s performance on other 392

tasks. 393

ARC
-C

CSQ
A

SV
AMP

AQ
UA-R

AT
GSM

8K

COIN-FL
IP

ARC-C

CSQA

SVAMP

AQUA-RAT

GSM8K

COIN-FLIP

0.67 0.67 0.47 0.42 0.37 0.76

0.70 0.69 0.54 0.43 0.42 0.79

0.67 0.69 0.66 0.40 0.57 0.81

0.66 0.68 0.51 0.44 0.44 0.76

0.71 0.64 0.57 0.41 0.58 0.69

0.69 0.65 0.55 0.42 0.49 0.85

SeCoKD

ARC
-C

CSQ
A

SV
AMP

AQ
UA-R

AT
GSM

8K

COIN-FL
IP

ARC-C

CSQA

SVAMP

AQUA-RAT

GSM8K

COIN-FLIP

0.62 0.66 0.49 0.42 0.42 0.80

0.61 0.61 0.51 0.45 0.42 0.75

0.66 0.64 0.41 0.40 0.37 0.81

0.67 0.63 0.51 0.36 0.43 0.78

0.69 0.63 0.51 0.36 0.46 0.73

0.59 0.59 0.52 0.44 0.37 0.65
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Figure 4: Cross-task tests of one-shot performance on
different benchmarks. The Y-axis is the training task,
and the X-axis represents the testing task. The cell
value represents the absolute accuracy and we use the
red boxes to highlight the best score in a column. For
example, the top right cell shows the evaluation accuracy
on the COIN-FLIP task when the model is trained on
the ARC-C task.

Figure 4 shows the accuracy of the Llama 3 394

model on different tasks. When comparing within 395

a column, it is evident that SeCoKD generally 396

achieves the highest accuracy on the task used for 397

training, with the exception of the commonsense 398

reasoning task ARC-C. Here the model trained with 399

the mathematical reasoning task GSM8K performs 400

the best, 4% better than the model trained with 401

ARC-C task. In this case, the model trained on 402

the mathematical reasoning task GSM8K outper- 403

forms the one trained on ARC-C by 4%. However, 404

training with SFT does not yield the best results 405
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Figure 5: Cross-task evaluation of one-shot performance
across different benchmarks. The Y-axis indicates the
training task, while the X-axis represents the testing
task. To assess the impact of the training method on
model performance, we subtract the baseline accuracy
from the accuracy achieved post-training. A red cell
color indicates that the trained model outperforms the
base model, whereas blue cells signify a decline in per-
formance after training.

for the specific task in most cases. For instance,406

in the AQUA-RAT evaluation, the model trained407

on CSQA performs nearly 10% better than the one408

trained on AQUA-RAT. For the COIN-FLIP task,409

this performance gap can reach up to 15%.410

We also utilize cross-task testing to showcase the411

high robustness of SeCoKD by visualizing the per-412

formance gap between post-training and baseline413

models in Figure 5. The color scale indicates the414

change in post-training compared to the baseline415

in terms of one-shot accuracy, with red indicating416

improvement and blue indicating a decline. We417

can see that SeCoKD has a more significant pos-418

itive transfer effect, as evidenced by the broader419

spread of red cells across the heatmap, suggesting420

it generalizes better across tasks compared to SFT.421

5.3 Simplifying tasks with SeCoKD422

In this section, we emphasize the benefits of SeC-423

oKD by showing that training with this method424

makes a task easier to solve. Inspired by Chen425

et al. (2023), we also provide a metric to make the426

measurement of easiness more tangible.427

positive and negative demonstration Following428

the definitions in Chen’s paper, a positive demon-429

stration helps the model to answer correctly in the430

setting of one-shot learning. A negative demonstra-431

tion, in contrast, results in a false answer.432

Easy, Hard, and Hard∗ sample For each task,433

there are in total eight existing or hand-crafted gold434

demonstrations. We conduct one-shot experiments435

using these demos and classify the sample into436

three categories based on the number of positive437

65.0%

23.0%
12.0%
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68.0%

17.0%
15.0%

CSQA

59.0%

28.0%
13.0%

SVAMP

25.0% 32.0%

43.0%

AQUA-RAT

16.0% 37.0%

47.0%

GSM8K

43.0%

52.0%
5.0%

COIN-FLIP

Easy Hard Hard*

Figure 6: Queries in a dataset are categorized into three
classes, representing their easiness to be solved with one-
shot ICL. Hard∗ means none of the existing demon-
strations can lead to a correct answer. We can see that
all datasets are very biased.

demonstrations n: 438

• easy: n ⩾ 6. 439

• hard: 6 > n > 1. 440

• hard∗: 1 ≥ n. 441

In the following experiments, we focus on the 442

Mistral model, the conclusions drawn from the 443

other two models are similar. Figure 6 visualizes 444

the initial category distribution. We can see that the 445

AQUA-RAT dataset stands out with a large portion 446

of Hard* tasks (43%), indicating that it is predomi- 447

nantly challenging. Only a quarter of the dataset is 448

categorized as Easy. GSM8K is also highly chal- 449

lenging with the smallest Easy category (16%) and 450

a majority of samples falling under Hard (37%) and 451

Hard* (47%), highlighting the dataset’s complexity. 452

As a result, we could observe very low one-shot 453

accuracy for these two datasets in Table 2, both 454

below 30%. The majority of the data in ARC-C, 455

SVAMP, and CSQA is classified as Easy, suggest- 456

ing that a significant portion of the samples can be 457

easily addressed using demonstrations in one-shot 458

learning. However, there is still a notable portion 459

that ranges from hard to very hard, indicating a 460

substantial amount of more challenging tasks. 461
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ARC-C CSQA SVAMP AQUA-RAT GSM8K COIN-FLIP
SeCoKD 1.22 0.96 2.18 1.35 3.56 4.57

SFT 0.58 0.29 0.93 1.01 1.08 0.71

Table 3: Improvement Scores of SFT and SeCoKD. Larger is better.

Improvement Score To measure the change in462

data distribution with regard to the three categories,463

we develop a metric called improvement score (IS):464

IS = exp

(
1

N

N∑
i=0

(ni −mi)

D

)
(4)465

where n and m represent the number of posi-466

tive demonstrations obtained using the fine-tuned467

model and the base model, respectively. D is the468

size of the demonstration set which is 8 in our469

case. A higher IS value indicates that more demon-470

strations are considered positive for a given query,471

making the query an easier task. This metric is ad-472

vantageous because it evaluates the transformation473

of individual samples into easier ones, rather than474

just comparing the overall data distribution. Essen-475

tially, IS measures the proportion of samples that476

become easier to handle, offering a more nuanced477

assessment of the training method.478

From Table 3, it is evident that SeCoKD consis-479

tently outperforms SFT across all datasets. SeC-480

oKD demonstrates particularly high scores in the481

COIN-FLIP and GSM8K datasets. While SFT oc-482

casionally achieves better accuracy scores, it often483

leads to a significant portion of previously easy484

tasks becoming more difficult, which is an undesir-485

able outcome. For instance, as shown in Table 2,486

the Mistral model trained with SFT achieves an487

accuracy score of 0.32 on the AQUA-RAT dataset,488

whereas SeCoKD scores slightly lower at 0.28.489

However, SFT has an Improvement Score (IS) of490

1.01, which is smaller than the IS achieved by the491

SeCoKD method. This indicates that despite the492

higher accuracy, SFT makes the tasks more chal-493

lenging overall. SeCoKD, on the other hand, excels494

at preserving previously positive tasks while effec-495

tively converting difficult tasks.496

6 Conclusion497

We introduce SeCoKD, a Knowledge Distillation498

framework that enhances the In-Context Learning499

abilities of Large Language Models using fewer500

demonstrations. Our experiments show that SeC-501

oKD significantly improves model performance,502

robustness, and efficiency compared to traditional 503

methods like Supervised Fine-tuning. 504

SeCoKD-trained models excel with minimal 505

demonstrations, achieving optimal accuracy with 506

just one demonstration. They outperform base 507

models by an average of 10% in one-shot ICL 508

scenarios and show enhanced robustness without 509

negative cross-task performance impacts, which 510

is a common issue with SFT. Cross-task testing 511

highlights SeCoKD’s robustness and generaliza- 512

tion, with models performing well not only on their 513

training tasks but also on other tasks. This indi- 514

cates effective compression and alignment of task- 515

relevant knowledge. SeCoKD models also simplify 516

complex tasks, demonstrating a higher capability to 517

internalize and utilize fewer demonstrations. This 518

benefit is quantified through metrics distinguish- 519

ing positive and negative demonstrations and clas- 520

sifying task difficulty based on model responses. 521

Overall, SeCoKD offers a promising solution for 522

enhancing LLM performance in few-shot and zero- 523

shot learning contexts, providing a more efficient 524

and scalable approach for leveraging demonstra- 525

tions in language model training. 526

7 Limitations 527

While SeCoKD shows significant promise, there 528

are several limitations to consider. Firstly, the 529

scope of our experiments is limited to models with 530

fewer than 10 billion parameters due to computa- 531

tional constraints. This restriction may limit the 532

generalizability of our findings to larger models, 533

which are increasingly prevalent in current research 534

and applications (Chung et al., 2022; Wei et al., 535

2023). Secondly, the benchmarks used in this study 536

are focused primarily on reasoning tasks. While 537

these benchmarks are diverse, extending the eval- 538

uation to include a broader range of tasks, such 539

as language generation (Li et al., 2023a), summa- 540

rization (He et al., 2023), or translation (Zhu et al., 541

2024), would provide a more comprehensive un- 542

derstanding of SeCoKD’s effectiveness. Moreover, 543

more cross-studies would help to assess the sustain- 544

ability of SeCoKD’s performance improvements 545

over different types of tasks. Thirdly, in this study, 546
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we primarily focus on the self-KD settings, we save547

the opportunity to study distillation between differ-548

ent scales of models for future work. Finally, the549

computational overhead associated with training550

using SeCoKD, especially in resource-constrained551

environments, needs further investigation. Address-552

ing these limitations in future research will be es-553

sential for fully realizing the potential of SeCoKD554

and extending its applicability to a wider range of555

LLMs and tasks.556
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A Example Appendix777

A.1 Further Results on Few-Shot Learning778

Figure 7 and Figure 8 show the average perfor-779

mance comparison using Llama2 7B and Mistral780

7B models. For the Llama2 model, we see a huge781

improvement when training with SeCoKD. How-782

ever, our main conclusion stays unchanged: com-783

pared to SFT and the base model, SeCoKD has784

a much better performance in the zero-shot and785

one-shot settings.
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Figure 7: Comparison of 4 methods using Llama2 with
different shot numbers. The X-axis represents the num-
ber of demonstrations. The Y-axis shows the average
accuracy of all six tasks.

786

A.2 Hyperparameters787

Table 4 summarizes the Lora configurations we788

used in our study. We used a relatively small rank789

(fewer trainable parameters) since we do not want790

to teach the model new associations beyond its791

knowledge. We target the 4 main linear layers792
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Figure 8: Comparison of 4 methods using Mistral with
different shot numbers. The X-axis represents the num-
ber of demonstrations. The Y-axis shows the average
accuracy of all six tasks.

of a transformer block but we did not tune this 793

hyperparameter. 794

For training, we used the paged_adamw_32bit 795

optimizer as suggested in the QLoRA pa- 796

per(Dettmers et al., 2023). The batch size for train- 797

ing and evaluation is two because of the computa- 798

tional limitation. The learning rate is set to 1e-4 799

with a warmup ratio of 0.02. The best checkpoint 800

evaluated on the testing set is saved as the final 801

result. 802

r (rank) 32
lora_alpha 64
target_modules [ "q_proj", "k_proj", "out_proj","v_proj"]
lora_dropout 0.05
bias "none"

Table 4: Lora configuration for all models.

A.3 Full Demonstrations 803

We reuse the existing demonstrations for GSM8K, 804

COIN-FLIP, and CSQA tasks from Wei et al. 805

(2022). For SVAMP, we use the same set of demon- 806

strations as for GSM8K since they are both mathe- 807

matical reasoning tasks with similar formats. For 808

ARC-C we present the curated demonstrations in 809

Table 5. 810

11



1. Question:George wants to warm his hands quickly by rubbing them. Which skin surface will produce
the most heat? (A) dry palms. (B) wet palms. (C) palms covered with oil. (D) palms covered with lotion.
Answer: Dry surfaces will more likely cause more friction via rubbing than other smoother surfaces,
hence dry palms will produce the most heat. The answer is: (A)
2. Question:Which factor will most likely cause a person to develop a fever? (A) a leg muscle relaxing
after exercise. (B) a bacterial population in the bloodstream. (C) several viral particles on the skin. (D)
carbohydrates being digested in the stomach. Answer: Option (B), bacterial population is the most likely
cause for a person developing fever. The answer is: (B)
3. Question:Which change in the state of water particles causes the particles to become arranged in a fixed
position? (A) boiling. (B) melting. (C) freezing. (D) evaporating. Answer: When water is freezed, the
particles are arranged in a fixed position; the particles are still moving for all other options. The answer is:
(C)
4. Question:When a switch is used in an electrical circuit, the switch can (A) cause the charge to build. (B)
increase and decrease the voltage. (C) cause the current to change direction. (D) stop and start the flow of
current. Answer: The function of a switch is to start and stop the flow of a current. The answer is: (D)
5. Question:Which of the following statements best explains why magnets usually stick to a refrigerator
door? (A) The refrigerator door is smooth. (B) The refrigerator door contains iron. (C) The refrigerator
door is a good conductor. (D) The refrigerator door has electric wires in it. Answer: Since iron is a
ferromagnetic material that is strongly attracted to magnets The answer is: (B)
6. Question:Which of these do scientists offer as the most recent explanation as to why many plants and
animals died out at the end of the Mesozoic era? (A) worldwide disease. (B) global mountain building.
(C) rise of mammals that preyed upon plants and animals. (D) impact of an asteroid created dust that
blocked the sunlight. Answer: The most accepted and supported explanation among scientists for the
mass extinction event at the end of the Mesozoic era is (D) the impact of an asteroid that created dust
blocking sunlight. This event led to drastic changes in climate and ecosystems, making it impossible for
many species to survive. The answer is: (D)
7. Question:A boat is acted on by a river current flowing north and by wind blowing on its sails. The boat
travels northeast. In which direction is the wind most likely applying force to the sails of the boat? (A)
west. (B) east. (C) north. (D) south. Answer: The boat travels northeast, and the river current flows north.
This implies that to achieve a northeast direction, the boat must receive an additional force component to
the east. The answer is: (B)
8. Question:Which landform is the result of the constructive force of a glacier? (A) valleys carved by a
moving glacier. (B) piles of rocks deposited by a melting glacier. (C) grooves created on a granite surface
by a glacier. (D) bedrock hills roughened by the passing of a glacier. Answer: The constructive process
results in the accumulation of debris and rocks, contributing to the formation of new landforms such as
moraines, which are essentially piles of rocks and soil deposited by glaciers. The answer is: (B)

Table 5: Full prompts for the ARC-C dataset.
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