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Abstract

As machine learning (ML) systems expand in both scale and functionality, the security
landscape has become increasingly complex, with a proliferation of attacks and defenses.
However, existing studies largely treat these threats in isolation, lacking a coherent frame-
work to expose their shared principles and interdependencies. This fragmented view hinders
systematic understanding and limits the design of comprehensive defenses. Crucially, the
two foundational assets of ML—data and models—are no longer independent; vulnerabil-
ities in one directly compromise the other. The absence of a holistic framework leaves open
questions about how these bidirectional risks propagate across the ML pipeline. To address
this critical gap, we propose a unified closed-loop threat taxonomy that explicitly frames
model–data interactions along four directional axes. Our framework offers a principled lens
for analyzing and defending foundation models. The resulting four classes of security threats
represent distinct but interrelated categories of attacks: (1) Data→Data (D→D): including
data decryption attacks and watermark removal attacks. (2) Data→Model (D→M): including
poisoning, harmful fine-tuning attacks and jailbreak attacks; (3) Model→Data (M→D): in-
cluding model inversion, membership inference attacks, and training data extraction attacks;
(4) Model→Model (M→M): including model extraction attacks. We conduct a systematic
review that analyzes the mathematical formulations, attack and defense strategies, and ap-
plications across the vision, language, audio, and graph domains. Our unified framework
elucidates the underlying connections among these security threats and establishes a founda-
tion for developing scalable, transferable, and cross-modal security strategies—particularly
within the landscape of foundation models.

1 Introduction

The growth of machine learning (ML) has brought about not only more powerful and versatile systems
but also an increasingly intricate security landscape. A wide spectrum of threats has emerged—including
poisoning, evasion, extraction, and inference attacks—alongside a variety of defensive strategies designed
to counter them. While these contributions have advanced the field, they are often examined in isolation,
emphasizing case-specific mechanics rather than uncovering the underlying principles that connect them.
This siloed treatment fragments our understanding of adversarial behaviors, complicates efforts to reason
about their relationships, and hinders the development of defenses that remain effective across diverse attack
surfaces. In practice, both researchers and practitioners are left without a coherent framework to navigate
the accelerating expansion of ML vulnerabilities.

Underlying this complexity is the fact that the two essential building blocks of ML—data and models—are
deeply interdependent. Compromising data integrity can destabilize or corrupt models, while weaknesses in
models can expose private data or propagate errors downstream. Yet, existing surveys rarely capture this
mutual influence or explain how risks circulate through the end-to-end ML pipeline. This gap is especially
pressing in the context of foundation models, which underpin a wide range of applications and amplify
the consequences of security breaches. To address this challenge, we introduce a unified closed-loop threat
taxonomy that characterizes security dynamics along four directional flows between data (D) and model
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Figure 1: Taxonomy of attacks in AI security

(M): Data → Data (D→D), Data → Model (D→M), Model → Data (M→D), and Model → Model (M→M),
as illustrated in Figure 1.

The resulting four classes of security threats represent distinct but interrelated categories of attacks: (1)
D→D: This category encompasses attacks that directly manipulate or recover data content. A data-
decryption attack attempts to recover plaintext information without access to the secret key; a watermark-
removal attack seeks to eliminate embedded provenance or ownership identifiers; (2) D→M: poisoning and
harmful fine-tuning attacks injects malicious samples into training pipelines to induce targeted model misbe-
havior; and a jailbreak attack constructs adversarial inputs that bypass safety mechanisms, causing the model
to disregard policy constraints and carry out unintended behaviors; (3) M→D: model inversion, membership
inference attacks, and training data extraction attack reconstructs sensitive training content from the model’s
outputs/representations or infers data membership in the training data; (4) M→M: model extraction attack
replicates proprietary models via limited model queries.

These interdependencies are not merely incidental, they form a dynamic chain of influence wherein the
compromise of one component (data or model) can recursively propagate vulnerabilities throughout the
ML pipeline. Our study offers a comprehensive review of existing research, detailing the mathematical
formulations, adversarial and defensive methodologies, and applications spanning visual, linguistic, auditory,
and graph-structured data. They jointly form a closed loop of data and model interactions. Although each
threat category corresponds to a distinct class of attacks, these attacks are deeply interconnected and often
influence one another in non-trivial ways. On the one hand, certain attacks can amplify others. For example,
data poisoning attacks (D→M) can significantly increase a model’s vulnerability to membership inference
(M→D) (Chen et al., 2022; Wen et al., 2024b). Likewise, Carlini et al. (2021) show that training data
extraction can be reduced to membership inference, further reinforcing the practical linkage between these
threat categories. Similarly, successful model extraction (M→M) not only enables downstream attacks such
as training data recovery and model inversion (M→D) (Tramèr et al., 2016), but can also be leveraged to
synthesize adversarial samples (D→D) (Papernot et al., 2017). On the other hand, attacks may also interfere
with or weaken one another. For instance, (Wang et al., 2025) demonstrate that introducing backdoor attacks
(D→M) can reduce the effectiveness of subsequent model extraction (M→M), highlighting that interactions
across attack stages are not always additive. Together, these examples illustrate that security threats should
not be analyzed in isolation, but rather as components of a tightly coupled and dynamic closed-loop system.

As these threats cascade, treating each attack as independent is inadequate. Instead, they motivate a global
framework that captures the full feedback loop between data and model. This closed-loop perspective is
essential for designing robust, scalable, and cross-modal defenses, particularly in the foundation model era,
where data and model boundaries are deeply entangled and increasingly inseparable.

To highlight the unique scope and perspectives of our work that are not addressed in existing literature,
we provide a comprehensive comparison with prior surveys in Table 1. Existing surveys typically focus on
individual attack categories in isolation, lacking a holistic or closed-loop perspective. As a result, they do
not systematically characterize the interdependencies among different security threats or how vulnerabilities
propagate across stages of the learning pipeline. In contrast, our survey covers all four categories of data
and model interaction attacks, providing a unified and global perspective that reveals how different attack
surfaces interconnect and influence one another in foundation models.

Our contributions can be summarized as:
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Table 1: Comparison with prior surveys and taxonomies. Coverage across closed-loop attack direc-
tions and emphasis on foundation-model (FM), closed-loop analysis.
Survey D→D D→M M→D M→M Loop FM Scope and limitations

Training data
poisoning survey
(Tian et al., 2022)

× ✓ × × × × data poisoning attack

Model inversion
attack survey (Fang
et al., 2024)

× × ✓ × × ✓ model inversion attack

Membership
inference attack
survey (Hu et al.,
2022a)

× × ✓ × × ✓ membership inference attack

Harmful fine-tuning
attack (Huang et al.,
2024b)

× ✓ × × × ✓ large language model harmful fine-tuning
attack

Jailbreak attack (Yi
et al., 2024b)

× ✓ × × × ✓ large language model jailbreak attack

Model extraction
(stealing) survey
(Oliynyk et al., 2023)

× × × ✓ × × Deep coverage of model extraction and
Intellectual Property (IP) theft

Our survey
(closed-loop
taxonomy)

✓ ✓ ✓ ✓ ✓ ✓ Unifies threats as data-model feedback
loops; explicitly models bidirectional
propagation across the full foundation
model pipeline and multiple modalities

1. We provide a comprehensive survey that unifies all four data–model attack directions, offering a
holistic perspective on the interconnections across threat surfaces.

2. We systematically categorize and analyze representative attacks and defenses within a closed-loop
framework, highlighting common principles, differences, and emerging patterns.

3. We identify open challenges and promising research directions, providing guidance for developing
more generalizable and resilient defenses against future threats.

Paper Organization. Section 2 introduces D→D threats, including data decryption and watermark removal
attacks and defenses. Section 3 surveys D→M data poisoning, harmful fine-tuning and jailbreak attacks and
defenses. Section 4 explores M→D threats such as model inversion, membership inference, and training
data extraction attacks and defenses. Section 5 reviews M→M attacks, encompassing data-free, data-based,
and functionality and architecture cloning attacks and defenses. Section 6 presents attacks and defense
comparisons, interactions and inter-dependencies. Section 7 discusses other orthogonal views of AI security.
Section 8 discusses open challenges and future directions. Section 9 evaluates AI security empirically. Finally,
Section 10 concludes the paper by summarizing the unified framework and broader impact.

2 Data→Data (D→D)

2.1 Protection-Bypass Attacks

Protection-bypass attacks (Zou et al., 2022; 2025) have become increasingly prevalent in the modern machine
learning era, as unauthorized access, misuse, or circumvention of protective mechanisms can lead to severe
security and ethical risks. These attacks generally aim to transform protected data to bypass ownership
constraints—such as digital encryption and watermarking. Since classical adversarial attacks are already
well established and extensively surveyed in the literature (Xiao et al., 2018a;b; Xu et al., 2020; Chakraborty
et al., 2021), we do not emphasize them in this survey. Instead, we focus on two representative categories of
protection-bypass attacks: data decryption attacks and watermark removal attacks.
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The goal of data decryption attacks (Laad & Sawant, 2021) is to transform encrypted datasets in order to
gain unauthorized access or use. Such attacks attempt to recover the original data x from its protected
representation x̃ without possessing the secret key.

The goal of watermark removal attacks (Zhao et al., 2024a) is to transform a watermarked data x̃ (image, or
text) into another data x′ that preserves task utility while disabling watermark detection or decoding. The
attack operates solely through low-level (e.g., pixel- or feature-level) or content-level transformations of the
dataset, without accessing the model parameters. The scope includes visible marks (logos, stamps, overlays)
and invisible marks embedded in the spatial, frequency, or learned feature domains.

Common Procedures. Despite their differences, these attacks share a common operational structure. At-
tackers typically optimize a transformation that maps a protected input x̃ to an output x′, satisfying two
conditions: (i) the ownership constraint is removed (e.g., watermark undetectable, cipher broken, or safety
bypassed); (ii) the transformed data retains high visual or semantic fidelity to the original. For image data,
typical pipelines first localize protected regions (e.g., watermarked or encrypted areas) and then restore or re-
generate them. Traditional signal-processing operations such as compression, denoising, and filtering remain
strong baselines for disrupting watermark detectors, while modern attacks increasingly use generator-based
regeneration or latent-space resampling (e.g., encode–decode pipelines with diffusion models or VAEs) to per-
form end-to-end rewriting (Zhao et al., 2024a). For text data, token-level perturbations (insertion, deletion,
substitution), paraphrasing, back-translation, or guided rewriting can weaken watermark statistical signals
and evade detection (Piet et al., 2025). These rewriting-based transformations leverage semantic-preserving
reformulations to bypass ownership constraints while maintaining fluency and meaning.

2.2 Mathematical Formalization

General Objective: Let x ∈ X denote a clean data sample. A protection mechanism P transforms x into a
protected form x̃ by applying ownership or safety constraints such as encryption, watermarking: x̃ = P (x; k),
where k denotes a secret key (for encryption and authorized decryption), a watermark identifier, or may be
null (so P reduces to the identity). The adversary aims to construct an operator U ∈ U that maps x̃ to
a surrogate x′ = U(x̃) that (i) recovers the original content without the decryption key or (ii) removes or
invalidates embedded ownership marks. The attack objective can be written as:

max
U∈U

O[V (U(x̃)) = 1] (1)

s.t. S(x′, x) ≥ τ, C(U) ≤ B.

Here, V denotes a verification function that outputs 1 when the attack is successful and 0 otherwise. The
probability operator O is taken over the data distribution x, representing the likelihood that verification
still succeeds after the adversarial transformation. Specifically: for (i) data decryption attacks, V verifies
whether unauthorized decryption succeed. A successful attack means that the original data can be recovered
without the secret key k. For (ii) watermark removal attacks, V verifies whether the embedded watermark
remains detectable. A successful attack means that the watermark becomes undetectable.

Special Case I Data Decryption Attacks (Laad & Sawant, 2021). When the protection mechanism
is encryption, U = D is an decryption function: x′ = D(x̃) and V verifies whether the recovered sample x′

successfully reconstructs the original data, implying that the encryption has been effectively reversed. The
attack seeks to approximate the decryption process without access to the secret key, producing x′ ≈ x.

Special Case II Watermark Removal Attacks (Zhao et al., 2024a). When the protection mech-
anism is watermarking, U = A is a watermark removal attacks, i.e., x′ = A(x̃) and V is a detection or
decoding function D that verifies the presence of watermark. A successful attack means that the embedded
watermark is no longer detectable. At the same time, x′ should preserve utility for downstream tasks.
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2.3 Taxonomy and Techniques of Protection-Bypass Attacks

We broadly divide the D→D attacks into two major categories: 1) Data Decryption Attacks, which attempt
to recover original content from encrypted data; and 2) Watermark Removal Attacks, which aim to erase
ownership signals embedded in data.

2.3.1 Data Decryption Attacks

These attacks aim to recover or approximate original data from encrypted data without possessing the secret
key. We categorize them into four main families according to strategy and adversarial assumptions: (a) key-
recovery and cryptanalysis, exploiting brute-force, weak diffusion, or statistical dependencies in chaos-based
cryptosystems (Guan et al., 2005; Fridrich, 1998); (b) ciphertext-only and statistical reconstruction, where
attackers infer data distributions or visual content directly from ciphertext features, such as in GAN- or
feature-based ciphertext-only attacks (Sirichotedumrong & Kiya, 2020); (c) generative-model and learning-
based regeneration, leveraging pretrained generative priors (e.g., GANs or diffusion models) to reconstruct
visually plausible plaintexts (MaungMaung & Kiya, 2023); and (d) side-channel and leakage-based attacks,
where partial computational leakage (e.g., timing or memory access) undermines key secrecy or enables
partial recovery (Benhamouda et al., 2018).

2.3.2 Watermark Removal Attacks

Watermark removal seeks to erase ownership signals while maintaining perceptual or semantic fidelity. Ap-
proaches can be roughly divided by operating space: (a) pixel- and signal-space distortions apply JPEG
compression, filtering/denoising, noise injection, resampling, rotation, scaling, cropping, or affine transforms
as classical baselines (Wan et al., 2022; Begum & Uddin, 2020; Mousavi et al., 2014); (b) Mask-guided de-
tection and inpainting methods adopt a two-stage “localize–then–restore” paradigm based on decomposition
or refinement networks. In the first stage, the attacker explicitly detects or localizes the watermark region
by generating a mask that estimates the opacity, color, or spatial extent of the mark. In the second stage,
the masked area is filled in by an inpainting or restoration network to recover the original image content
hidden beneath the watermark (Liu et al., 2021; Liang et al., 2021; Zhao et al., 2022; Niu et al., 2023). (c)
Generator-based regeneration, where architectures such as convolutional, transformer, or disentangled net-
works (Li et al., 2021a; Sun et al., 2023) learn a single-branch end-to-end mapping that directly translates
a watermarked input into a clean output without producing any intermediate mask, and (d) latent-space
resynthesis, where diffusion or VAE models remove watermarks in the representation space (Su & Zhang,
2025; Zhao et al., 2024a; Liu et al.), this process effectively bypasses localized pixel- level traces of the wa-
termark. For text, (e) editing- and paraphrasing-based attacks, which weaken watermark signals by applying
semantics-preserving transformations such as word substitution, paraphrasing, or style rewriting that alter
token statistics or sentence structure to evade detection (Yang et al., 2025b; Kirchenbauer et al., 2023; Liu
et al., 2024a), while (f) Model-driven approaches infer or neutralize watermarking rules directly through
surrogate modeling or decoding-time neutralization (Pan et al., 2025). Recent surveys highlight a paradigm
shift from heuristic distortions toward learning-based regeneration methods that balance watermark removal
effectiveness with perceptual or semantic fidelity (Su & Zhang, 2025; Liu et al., 2024a; Wan et al., 2022).

2.4 Defensive Techniques

Defenses against data→data attacks share a common goal: preserve data ownership and safe use under
strong, adaptive adversaries. We organize defenses into two families aligned with the attacks reviewed
above: 1) against data decryption, strengthening ciphers and enabling privacy-preserving computation; and
2) against watermark removal, reinforcing embedding, detection, tamper localization/recovery, and proactive
protection.

2.4.1 Defenses against Data Decryption Attacks

Existing approaches fall into three broad classes: (a) Chaos–neural hybrids, which enlarge key space and re-
sist statistical or differential attacks by combining chaotic maps with neural networks (Lakshmi et al., 2021);
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(b) Autoencoder-/GAN-based encryption, which hide data via Cycle-GAN-based transformations that map
images into hard-to-invert hidden domains (Ding et al., 2020); (c) Privacy-preserving learning on encrypted
data using homomorphic encryption and secure multi-party computation, enabling distributed model train-
ing (Tang et al., 2019) and encrypted-domain inference (Bost et al., 2014) without ever exposing plaintext.
These directions complement system hygiene against side-channel leakage and integrity risks (Benhamouda
et al., 2018; Manikandan & Masilamani, 2018).

2.4.2 Defenses against Watermark Removal Attacks

We group defenses against Watermark Removal Attacks into four dimensions: (a) Robust embedding strength-
ens both visible and invisible watermark signals by integrating multiple embedding strategies. For visible
marks, recent works employ multi-level alpha blending, adaptive texture-aware placement, and randomized
geometric positioning to make watermark removal leave noticeable artifacts (Dekel et al., 2017). For in-
visible marks, robustness is achieved through transform-domain embedding (e.g., discrete cosine transform
modification of frequency coefficients (Barni et al., 1998)), spread-spectrum coding with redundancy across
channels (Cox et al., 1997), and synchronization patterns that maintain watermark alignment under rotation,
scaling, or cropping (Lin & Chang, 1997). Together, these designs form the foundation of modern invisible
and visible watermark protection (Wan et al., 2022).

(b) Robust Detection and Verification enhance the reliability of watermark verification through stronger
statistical testing, improved scoring, and resilient encoding. For text and code watermarking, recent studies
propose finite-sample hypothesis tests that avoid Gaussian approximations and enable more accurate detec-
tion under limited data conditions (Liu et al., 2024a; Yang et al., 2025b). Meanwhile, the work (Golowich
& Moitra, 2024) analyzes the vulnerability of pseudo-random indexing watermarks under editing attacks,
showing that robustness provably degrades with increasing edit distance. Together, these strategies form
a layered defense, coupling operational safeguards with theoretical robustness for trustworthy watermark
verification; (c) Manipulation detection and content recovery, which co-embed localization and self-recovery
signals to make tampering both detectable and, when possible, reversible for image and document integrity,
respectively (Ying et al., 2023; Cui et al., 2024); and (d) Proactive data protection (Unlearnable Examples),
which pre-perturbs data so that unauthorized training fails while preserving data utility, encompassing
robust/stable (Liu et al., 2024c), semantic or feature-space perturbation defenses (Meng et al., 2024), trans-
ferable, model-free, and surrogate-free (Sadasivan et al., 2023), and cross-modal extensions with theoretical
motivation (Jiang et al., 2024).

3 Data→Model (D→M)

Modern machine learning systems rely on large and diverse datasets to train foundation models. Because
training pipelines may include data from untrusted or unverified sources, they present significant security and
privacy risks. D→M attacks exploit this vulnerability by manipulating training, fine-tuning or inference data
to implant malicious behaviors or bypass safety alignment. Unlike D→D attacks that modify the data itself,
D→M attacks corrupt the learning or inference process, causing models to internalize unintended objectives
and degrade in reliability. We focus on three representative families of D→M attacks: data poisoning, harmful
fine-tuning and jailbreak.

The goal of data poisoning attacks is to corrupt the training data so that the model learns attacker-specified
behaviors or incorrect objectives. Unlike test-time adversarial examples that perturb inputs after deployment,
poisoning intervenes during model training or pre-training. Attackers modify samples, labels, or data flows
so that empirical risk minimization optimizes a malicious objective, causing the resulting parameters to
embed hidden biases or backdoors (Chen et al., 2017; Tian et al., 2022; Cinà et al., 2023). Such attacks can
degrade model accuracy, trigger targeted misclassification, or implant covert functionality that persists even
after alignment fine-tuning. They have been demonstrated across domains, from image and graph learning
to LLM instruction tuning (Geiping et al., 2021), highlighting the vulnerability of model optimization in
distributed and federated training settings.
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Fine-tuning has become the standard mechanism for adapting foundation models to specific tasks. However,
granting public or API-level access to fine-tuning pipelines introduces a new threat. The goal of harmful fine-
tuning attacks is to manipulate the fine-tuning stage of foundation models to bypass safety alignment and
induce undesired behaviors. Attackers upload small but malicious datasets, sometimes containing seemingly
benign samples, to bias the model toward unsafe or target-specific responses. Unlike full retraining, these
attacks require minimal data and computation yet can cause significant shifts in model behavior by exploiting
the sensitivity of alignment layers. Recent studies (Qi et al., 2024) demonstrate that even minimal fine-
tuning (using only a handful of carefully crafted examples) can drastically undermine alignment, suppress
refusal behaviors, and enable the generation of restricted content, highlighting the fragility of current safety
mechanisms.

The goal of jailbreak attacks (Liu et al., 2025a) is to bypass the safety alignment of large foundation mod-
els and trick them into producing harmful or restricted outputs. Unlike adversarial attacks that cause
simple misclassification, jailbreaks directly override ethical or safe policy constraints. By breaking built-in
safeguards, jailbreaks can lead to misinformation, malicious code, or other unauthorized behaviors.

3.1 Mathematical Formalization

A unified view of D→M attacks is that the adversary uses a model fθ, a benign dataset Dclean, together
with a generation strategy G(fθ, Dclean) to produce a small set of malicious training or fine-tuning samples
Dadv, which are then injected into the benign dataset Dclean back. The goal is that the later resulting
learning process yields parameters θ that satisfy an attacker-specified objective while remaining stealthy on
the model’s normal tasks. This interaction can be formulated as a bilevel optimization:

D∗
adv = G(fθ∗ , Dadv)

s.t. θ∗(Dclean ∪ Dadv) = arg min
θ

Ltrain(θ; Dclean ∪ Dadv)

S(Dadv, Dclean) ≥ τ.

Ltrain is the training (or fine-tuning) loss minimized on the dataset (Dclean ∪ Dadv); it encodes the attacker’s
objective (e.g., increasing the rate of unsafe responses, forcing misclassification on triggered inputs, or re-
ducing overall utility). The constraint S is a similarity metric that expresses stealth (e.g., small cardinality,
bounded perturbation, distributional similarity), τ is a quality threshold.

Special Case I The goal of data poisoning attacks (Tian et al., 2022) is to add or modify training
samples so that the learned model parameters θ∗ produce attacker-specified failures (untargeted degradation)
or targeted misbehaviour (backdoors). Concretely, the attacker constructs a poisoned dataset Dpoison —
generated via label manipulation, optimization-based perturbations, or related techniques — to optimize an
adversarial objective Ladv. Using the notation above, the poisoning optimization is:

D∗
adv = {(x′

j , y′
j)}m

j=1 = G(fθ∗ , Dadv)
G(fθ∗ , Dadv) := arg min

(x′,y′)
Ladv

(
θ∗(x′, y′); Dtarget

)
s.t. θ∗(Dpoison) = arg min

θ
Ltrain(θ; Dpoison),

Dpoison = Dclean ∪ {(x′
j , y′

j)}m
j=1, ∥x′

j − xj∥p ≤ ϵ.

where := denotes definition, (xj , yj) denotes a clean training sample and (x′
j , y′

j) its poisoned counterpart,
y′

j ̸= yj . Dtarget is a fixed set of target examples used to evaluate or trigger the adversarial objective
(not an optimization variable), m is the number of injected poisoning points, and ϵ controls the maximum
perturbation magnitude under the Lp norm.

Untargeted Data Poisoning vs. Targeted Backdoor Poisoning. Untargeted data poisoning aims to degrade a
model’s overall performance without enforcing any specific misbehavior. The attacker injects corrupted or
mislabeled training samples so that the learned decision boundary becomes inaccurate across many inputs.
The goal is broad degradation (such as reducing accuracy, increasing uncertainty) rather than controlling
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how the model behaves on specific inputs. These attacks are often difficult to detect because the poisoned
data may appear statistically similar to clean data, yet collectively distort the learning process.

In contrast, targeted backdoor poisoning is designed to induce specific, attacker-chosen behaviors while
preserving normal performance on clean data. During training, the attacker injects a small number of
poisoned samples containing a hidden trigger (e.g., a pattern, patch, or token) and assigns them a target
label. After training, the model behaves normally on standard inputs but produces attacker-controlled
outputs whenever the trigger is present.

Special Case II The goal of harmful fine-tuning attacks (Halawi et al.) is to compromise an aligned
or pre-trained model by providing a small fine-tuning dataset Dadv (via API or shared service) so that the
adapted parameters θft exhibit unsafe or biased behavior while retaining nearly unchanged performance on
benign tasks, here G constructs Dadv by following a set of predefined rules and procedures. The attack can
be formulated as:

D∗
adv = {(xj , y′

j)}m
j=1 =G(fθ∗ , Dadv) := W ({(xj , yj)}m

j=1)
s.t. θ∗ = θ0,

Here W denotes the attacker’s data-modification rules mapping a clean example (x, y) to a harmful example
(x, y′). θ0 are the original parameters. Typical attacker targets include removing refusal behavior, inserting
triggers, or shifting outputs toward biased content. Such attacks can exploit parameter-efficient fine-tuning
modules (e.g., LoRA adapters or prompt layers (Gao et al., 2024a)), often requiring only a few crafted
examples and can be hard to detect.

Special Case III The goal of jailbreak attacks (Liu et al., 2025a) is to bypass the safety alignment of
large foundation models, coercing them into generating harmful or restricted outputs by overriding built-in
policy constraints rather than merely inducing prediction errors. A jailbreak attack can be formulated as a
special case of the D→M paradigm in which the model parameters remain fixed, and the attacker instead
manipulates input prompts to induce policy-violating behaviors at inference time. Let fθ denote a deployed
(aligned) language model with fixed parameters θ, and let Dclean denote a set of benign user prompts. The
attacker constructs adversarial prompts Dadv using a generation function G, such that

Dadv = G(fθ, Dclean),

The attacker’s objective is instead defined over the model’s responses, aiming to induce policy-violating or
unsafe outputs:

max
Dadv

Ladv

(
fθ; Dadv

)
s.t. S(Dadv, Dclean) ≥ τ,

where S(Dadv, Dclean) ≥ τ is a stealth constraint, S(·, ·) measures semantic similarity, fluency, or perceptual
closeness, and τ controls the degree of stealth. where Ladv measures jailbreak success, such as reducing
refusal likelihood or increasing the probability of generating restricted content.

Attacker Knowledge. We use the term detector to denote the algorithm used to identify ownership signals,
and the key refers to the hidden parameter or seed controlling embedding and decoding. The strength of
an attack depends on the attacker’s knowledge of the protection mechanism (Kirchenbauer et al., 2023).
In a black-box setting, the adversary can only query a detector and observe binary outputs, with no access
to the secret key or model internals. In a gray-box setting, partial information such as the architecture or
general watermarking algorithm is available, but the secret key remains unknown. In a white-box setting, the
attacker has full access to the detection system and can directly manipulate internal parameters to design
optimized attacks.

Attack effectiveness is typically evaluated along two axes. First, post-attack verifiability measures the remain-
ing strength of ownership or alignment constraints after the attack, i.e., the probability that the verification
function V still outputs 1 following transformation by U . Lower verifiability indicates more successful re-
moval or circumvention of the protection mechanism. For example, in watermarking, this corresponds to
post-attack detectability or decoding accuracy. Second, utility preservation assesses how much of the origi-
nal data’s perceptual, semantic, or functional quality is retained for downstream tasks. A successful attack
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achieves low verifiability while maintaining high utility, highlighting the inherent trade-off between stealth
and fidelity.

3.2 Taxonomy and Techniques of Data→Model Attacks

In practice, data→model attacks fall into three broad families: 1) data poisoning refers to the manipulation
of training data such that standard learning procedures inadvertently optimize an adversarial objective; 2)
harmful fine-tuning uses small, carefully curated datasets to degrade a model’s safety alignment or to implant
malicious behaviors; and 3) jailbreak attacks, which bypass alignment or safety rules in foundation models
to force them to produce restricted or harmful content. In the following, we highlight the key taxonomic
axes, common operational mechanisms, and representative works.

3.2.1 Data Poisoning Attacks

Poisoning attacks manipulate training data to implant malicious behaviors or degrade model reliability. They
can be systematically characterized along four orthogonal dimensions—adversarial goals, label visibility, at-
tacker knowledge, and training paradigm—as discussed in recent comprehensive surveys (Tian et al., 2022;
Nguyen et al., 2024b; Rodríguez-Barroso et al., 2023). Below, we summarize each axis and its representa-
tive techniques. (a) Adversarial Goals. Poisoning objectives are commonly divided into availability attacks,
which reduce overall model utility (e.g., accuracy or calibration), and integrity attacks, which implant tar-
geted behaviors such as backdoors or hidden triggers that activate only under specific conditions (Gu et al.,
2017). Recent work further identifies more subtle objectives, such as degrading model confidence or cali-
bration without label manipulation (Chaalan et al., 2024). (b) Label Visibility. Depending on whether the
attacker manipulates labels, poisoning can be either dirty-label or clean-label. Dirty-label attacks explicitly
flip or corrupt training labels, whereas clean-label attacks preserve ground-truth labels but perturb inputs to
mislead the learned decision boundary—typically by generating adversarial-like examples that induce feature
collisions (Shafahi et al., 2018). (c) Attacker Knowledge. The strength and strategy of poisoning attacks vary
with the attacker’s access level. In white-box settings, full access to model parameters and gradients enables
optimization-based attacks, typically formulated as bilevel optimization and often approximated through
influence functions (Koh et al., 2022). Gray-box attackers possess partial information (such as model archi-
tecture or aggregation rules in federated learning) and adapt their poisons accordingly (Rodríguez-Barroso
et al., 2023). In contrast, black-box attackers lack internal access but can still exploit transferability from
surrogate models (Zhu et al., 2019), demonstrating that effective poisoning remains feasible even without
visibility into gradients or training data (Chen et al., 2023a; Liu & Lai, 2021). (d) Training Paradigm.
Poisoning manifests differently across learning paradigms. In conventional centralized training, attackers
can directly manipulate datasets by injecting crafted samples or flipping labels (Ramirez et al., 2022). In
federated learning, poisoning (Xie et al.) arises through malicious client updates or model replacement,
where even a single compromised participant can bias the global aggregation and degrade overall model
integrity (Nguyen et al., 2024b). Similar paradigm-specific threats extend beyond vision to other modali-
ties—graphs (node or edge injection) (Cinà et al., 2023; Tao et al., 2021), time series (temporal or phase
triggers) (Lin et al., 2024), and language (rare-token, syntactic, or instruction-pattern triggers that persist
through fine-tuning) (Kurita et al., 2020). At the scale of foundation models, even tiny poisoning ratios can
survive model-level safety alignment and propagate through subsequent updates (Bowen et al., 2025; Carlini
et al., 2024a), highlighting the need for domain-aware validation pipelines in high-stakes applications such
as biomedical large language models (Alber et al., 2025).

3.2.2 Harmful Fine-tuning Attacks

Harmful fine-tuning manipulates the adaptation stage of aligned models using small curated datasets, lead-
ing to unsafe or biased behaviours while retaining benign utility. Existing studies reveal several recur-
ring patterns, summarized below. (a) Malicious Data Poisoning. Attackers deliberately insert adversar-
ial prompt–response pairs into the fine-tuning dataset to overwrite safety alignment. As demonstrated in
work (Yi et al., 2024a), applying reverse alignment—either via Reverse Supervised Fine-Tuning or Reverse
Preference Optimization—can fine-tune safety-aligned open-access LLMs to undermine refusal behaviors and
weaken built-in safeguards. (b) Benign-Data–Induced Misalignment. Even datasets without explicit harmful
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content can degrade safety: outlier yet non-toxic examples, distributional biases, or latent correlations in
seemingly benign corpora may erode alignment to a degree comparable with adversarial fine-tuning (He
et al.). These results highlight that alignment failure can arise naturally from poor data curation rather
than from deliberate attacks. (c) Parameter-Efficient and Model-Specific Pathways. Attackers exploit archi-
tectural properties and lightweight adaptation mechanisms to inject harmful logic efficiently. Single-edit or
adapter-based backdoors, targeted knowledge editing, and PEFT-as-attack demonstrate how small parame-
ter updates can trigger disproportionate behavioral changes (Chen et al.). (d) API Exploitation and Service
Abuse. In hosted environments, attackers exploit fine-tuning APIs to upload covert malicious data. Recent
work (Halawi et al.) shows that pointwise-undetectable datasets, mixed compliance–refusal fine-tuning objec-
tives, and constrained black-box jailbreaks can degrade safety even without access to model weights. Related
findings indicate that open fine-tuning interfaces remain an inherent security risk for both commercial and
open-source LLMs. Beyond these categories, recent studies reveal that harmful fine-tuning can also emerge
in more subtle forms. Emergent misalignment may appear during narrow-domain or agentic fine-tuning,
where self-updating models gradually drift toward unsafe policies (Hahm et al., 2026; Wallace et al., 2025;
Shao et al., 2025b). Together, these observations show that even small, seemingly benign datasets (whether
maliciously designed or inadvertently mis-specified) can reliably steer large foundation models toward unsafe
or biased behaviors, underscoring the fragility of current alignment processes.

3.2.3 Jailbreak Attacks

Jailbreaks bypass alignment or safety mechanisms to force models to output restricted or harmful content
that would normally be blocked, posing a major threat to LLMs and multimodal models. They can be char-
acterized by: (a) attacker access, distinguishing white-box gradient-guided suffix generation from black-box
prompt rewriting and role-play prompting (Geisler et al.); (b) attack timing, including training-stage back-
door injection and inference-stage adversarial prompting (Chao et al., 2024); (c) prompt manipulation strate-
gies, such as template completion, scenario nesting, cipher-based rewriting, or genetic optimization (Chao
et al., 2024); and (d) system-level extensions, where multimodal or agentic systems are compromised through
adversarial cross-modal cues or external tools/APIs/ memory manipulation for autonomous agents (Xu et al.,
2024b; Liu et al., 2025a). Subsequent studies have expanded jailbreak analyses to multimodal systems.
(Dong et al., 2023) systematically evaluate adversarial image attacks against Google’s Bard, revealing that
small, imperceptible perturbations can bypass both face- and toxicity-detection modules, thereby exposing
critical vulnerabilities in visual-language alignment and safety filtering of commercial MLLMs. More recently,
research has shown that such system-level vulnerabilities also extend to agentic architectures. For example,
(Li et al., 2025a) demonstrate that even commercial LLM-based web and scientific agents are vulnerable to
trivial yet dangerous prompt-injection and redirection attacks. These attacks demonstrate how behavioral
safeguards can be circumvented even without modifying model parameters.

3.3 Defensive Mechanisms

3.3.1 Defense against Data Poisoning

Defenses against data poisoning aim to preserve model integrity despite the presence of malicious or corrupted
data. They can be broadly organized by where the intervention occurs: during training or at inference.
Across all settings, effective defense combines anomaly detection, robust optimization, and trust-aware data
filtering to limit the adversary’s impact.

(a) Training-Time Defenses. Training-stage defenses focus on identifying or neutralizing poisoned data be-
fore or during optimization. Data-level regularization via augmentation (e.g., Mixup, CutMix) helps dilute
backdoor triggers and reduces memorization of malicious patterns (Borgnia et al., 2021). At the loss-function
level, robust learning objectives derived from noisy-label and meta-learning literature—such as ITLM (Iter-
ative Trimmed Loss Minimization) (Shen & Sanghavi, 2019), GCE (Zhang & Sabuncu, 2018), reweighting-
based methods (Ren et al., 2018), Co-teaching (Han et al., 2018), and MentorNet (Jiang et al., 2018)—limit
the influence of high-loss or inconsistent samples. Feature-space filtering methods like De-Pois (Chen et al.,
2021a) further cluster examples by representation consistency to remove those with mismatched feature–label
semantics. A framework Neural Attention Distillation (NAD) (Li et al.) was proposed to use a finetuned
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teacher network to guide a backdoored student model via attention alignment on a small clean subset.
Building on this line, Li et al. (Li et al., 2021b) introduced Anti-Backdoor Learning (ABL), a training-time
paradigm that aims to train clean models directly on poisoned data. However, most training-time defenses
remain largely ineffective against clean-label or stealthy backdoor attacks, in which poisoned samples appear
statistically benign and evade standard anomaly detectors (Koh et al., 2022; Geiping et al., 2021).

(b) Inference-Time Defenses. Inference-time defenses operate after model deployment and aim to detect or
mitigate triggered behavior at test time. A first line of defense is anomaly detection, which removes outlier
samples using statistical or representation-based criteria such as clustering, spectral signatures, or isolation
forests (Cinà et al., 2023). Uncertainty-based filtering evaluates prediction entropy or stability under per-
turbations: low-entropy or invariant outputs often reveal the presence of triggers. Typical examples include
STRIP for vision (Gao et al., 2019), which uses entropy-based uncertainty signals to identify poisoned inputs.
Other work (Liu et al., 2023) tests robustness under input corruptions (noise, blur, occlusion), exploiting
the observation that poisoned examples remain unusually stable under such changes. A complementary
direction is knowledge-guided validation, which cross-checks model predictions against external knowledge
sources, such as biomedical knowledge graphs, to flag implausible outputs (Alber et al., 2025).

3.3.2 Defense against Harmful Fine-tuning

Defenses against harmful fine-tuning aim to preserve model safety and alignment even when adversaries
attempt to retrain or adapt models with malicious or misleading data. Existing methods can be broadly
grouped into three complementary directions. (a) Alignment-Stage Immunization. These approaches fortify
models during the initial alignment phase to make them intrinsically resistant to future harmful fine-tuning.
Representative methods enhance weight stability, representation invariance, or regularization against ad-
versarial updates—such as perturbation-aware and layer-wise robustness training (Vaccine (Huang et al.,
2024c), T-Vaccine (Liu et al., 2025b)), loss-based regularization and proximal optimization (Booster (Huang
et al., 2025c), LISA (Huang et al., 2024a)), and representation-level noise injection (RepNoise (Rosati et al.,
2024b)). Formal analyses further define theoretical immunization conditions (including resistance, stability,
and generalization) that guide preventive alignment strategies (Rosati et al., 2024a). (b) In-Training Safe-
guards. These defenses are applied at fine-tuning time to monitor and mitigate malicious model updates
in real time. Self-Degraded Defense (SDD) (Chen et al., 2025c) pre-emptively trains models by pairing
harmful prompts with benign, high-quality responses, thereby reducing the model’s sensitivity to malicious
data while preserving its normal capabilities. For parameter-efficient fine-tuning (PEFT), PEFTGuard (Sun
et al., 2025) detects backdoored adapters by directly transforming and classifying their weight tensors (e.g.,
LoRA) with a parameter-only meta-classifier, and identifying backdoor-specific patterns with near-perfect
accuracy across tasks. Bayesian data scheduler (Hu et al., 2025) incorporates probabilistic safety control
by assigning weights to samples according to their posterior safety attributes during fine-tuning, effectively
suppressing the influence of unsafe or malicious data on model adaptation. (c) Post-Tuning Repair. When
harmful fine-tuning has already occurred, post-hoc repair methods attempt to recover safety without re-
training from scratch. Antidote (Huang et al., 2025a) prunes harmful parameters identified via importance
scoring, effectively restoring alignment with minimal loss in utility. Such an approach treats fine-tuning as
reversible damage, focusing on repairing rather than preventing misalignment.

3.3.3 Defenses against Jailbreak Attacks

We organize jailbreak attack defenses into three main categories based on the protection level: (a) Prompt-
level screening and rewriting—detecting risky or injected inputs via fine-tuned classifiers and heuristic filters,
and sanitizing or rewriting them before the model processes the prompt (Jacob et al., 2024); (b) Model-level
alignment and steering—reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022) and
related safety fine-tuning enhance model alignment and refusal behavior, while decoding-time constraints
and internal-signal detectors further mitigate unsafe generations (Ouyang et al., 2022); and (c) System-level
guardrails—benchmark-driven guard models, multi-stage filters for multimodal LLMs, tool/memory gover-
nance for agents, and continuous runtime monitoring at deployment (Huang et al., 2024d; Chao et al., 2024).
Recent advances expand this line of work: AIR-BENCH 2024 (Zeng et al.) introduces a regulation-aligned
auditing framework that evaluates model refusal behaviors and compliance across real-world risk categories;
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T2VSafetyBench (Miao et al., 2024) extends evaluation to text-to-video generative models, revealing mul-
timodal jailbreak vulnerabilities; and AEGIS-LLM (Cai et al.) demonstrates that incorporating auxiliary
agent roles and leveraging automated prompt optimization can enhance system robustness without com-
promising task utility. In practice, these defenses must account for diverse attack settings—including both
white- and black-box access, and attacks occurring at training or inference time—such as suffix optimization,
backdoor injection, role-play or cipher-based prompt rewriting, and evolutionary prompt search (Liu et al.,
2025a).

4 Model→Data (M→D)

Attacks in the Model→Data direction aim to infer the information that a trained model implicitly encodes
about its training data. Rather than stealing parameters or manipulating the model externally, these at-
tacks exploit what the model memorizes—its ability to reveal, reconstruct, or statistically expose private
training data set samples. Such leakage undermines data confidentiality and consent, as even deployed or
API-restricted models may inadvertently disclose sensitive content through their outputs, embeddings, or
confidence patterns. Within this category, we highlight three representative families of privacy-violating
attacks: model inversion attacks, membership inference attacks, and training data extraction attacks.

The goal of model inversion attacks (Fredrikson et al., 2015; Yang et al., 2025a; Dibbo, 2023) is to reconstruct
sensitive information about the training data directly from a trained model. By exploiting confidence scores,
embeddings, or gradients, an adversary can approximate original data features or even recover realistic
samples such as faces or text segments. Early studies assumed white-box access, but recent work shows that
inversion can succeed in black-box APIs by leveraging systematic output patterns. These attacks reveal how
models encode detailed traces of their training data even without direct access to the dataset itself.

The goal of membership inference attacks is to determine whether a specific data instance (or an entire
subset) was used in a model’s training process. By probing the model and analyzing statistical differences
between “seen” and “unseen” samples—often manifested in confidence scores, loss values, or hidden represen-
tations—attackers can infer a data’s participation in sensitive datasets such as medical or personal records.
Recent research extends these attacks beyond conventional classifiers to LLMs and diffusion models, where
memorization and overfitting amplify data membership signals.

The goal of training data extraction attacks is to induce a model to directly reproduce fragments of its original
training data, rather than merely inferring or reconstructing them statistically. Through carefully crafted
prompts, triggers, or fine-tuning procedures, adversaries can compel LLMs or diffusion models to regenerate
exact text passages, images, or identifiers memorized during pre-training. Unlike inversion or membership
inference, these attacks cause the model to emit verbatim training content, posing severe risks to privacy,
copyright, and regulatory compliance in generative systems.

4.1 Mathematical Formalization

Model→Data attacks exploit information memorized within trained models to recover or expose private
training data. Given a model fθ trained on Dtrain, the objective G of the attacker is to extract training data
set information xinfo from the outputs or representations of the model fθ:

xinfo = G(fθ), s.t. xinfo ∼ T (Dtrain)

Here T (Dtrain) denotes the information about the training dataset that the attacker seeks to recover or infer
from the model (e.g., specific samples, attributes, or membership signals). Constraints capture model access
level and query limits. Different instantiations of G yield three major M→D families: model inversion attack,
membership inference attack, and training data extraction attack.

Special Case I Model Inversion Attacks (Yang et al., 2025a). At a high level, model inversion attacks
attempt to run the model backward. Instead of using a trained model to predict an output from a given
input, the attacker starts from a desired output (e.g., a class label or prediction) and tries to recover an input
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that would produce that output under the model. The attacker treats the input x itself as an optimization
variable and searches for a reconstructed sample x̂ whose prediction under the model matches the target
output. Under such attacks, xinfo is the reconstructed data x̂ that aligns with the distribution of Dtrain.
Given a target output y∗, this is done by minimizing an inversion objective that balances two goals and the
attacker defines an inversion objective function G as:

x̂ = G(fθ) := arg min
x

[
Linv(fθ(x), y∗) + λ R(x)

]
,

s.t. x̂ ∼ T (Dtrain).

where := denotes definition, Linv enforces output consistency with the target y∗, and R regularizes the
realism of reconstructed samples. Both white-box (gradient-based) and black-box (API-query) settings can
reveal sensitive attributes or even approximate original training samples. Here, y∗ denotes the target output
(label or response) with respect to which the attacker seeks an input x̂ whose model prediction matches y∗,
and T (Dtrain) represents the distribution of the training dataset.

Special Case II Membership Inference Attacks (MIA) (Hu et al., 2022a) determine a a binary
membership signal xinfo whether a specific data sample x∗ was part of the training dataset Dtrain. Formally,
the attacker designs a discriminator g (or classifier) that takes the model fθ outputs or representations to
predict whether x∗ belongs to Dtrain. The objective of G can be written as:

g∗ = G(fθ) := arg min
g

Lmem
(
g(fθ(x∗)), m∗)

,

s.t. g(fθ(x∗)) ∈ [0, 1].

where Lmem denotes the membership classification loss (e.g., binary cross-entropy), and m∗ ∈ {0, 1} is the
ground-truth membership label indicating whether the target sample x∗ belongs to the training dataset.
The trained discriminator outputs g(fθ(x∗)) lies in [0, 1] and is defined with respect to the training-data
information T (Dtrain).

Special Case III Training Data Extraction Attacks (Xu et al., 2024a) aim to induce a generative
model to directly output training samples or fragments of them. Unlike model inversion attacks, which
reconstruct inputs by solving an optimization problem, training data extraction attacks rely on repeatedly
querying the model with carefully chosen prompts or sampling strategies. The attacker does not modify
the model parameters, but instead interacts with the model in a way that increases the likelihood that its
generated outputs closely match examples from the training data.

Given a generative model fθ that defines a conditional distribution pθ(x | q) over outputs given a query
or prompt q, the attacker constructs an extraction operator E that interacts with fθ to recover samples
consistent with the training-data information T (Dtrain). In this case, xinfo corresponds to the generated
samples that the attacker extracts from the model, in this case, denotes as x̃, which are expected to align
with the training data distribution T (Dtrain). The objective of G can be expressed as:

E∗ = G(fθ) := arg min
E

Ex̃∼fθ(·|E)
[
Lrec

(
x̃, T (Dtrain)

)]
,

s.t. x̃ = fθ(· | E∗) ≈ T (Dtrain).

Here, ≈ denotes approximately equal to, E denotes the attacker’s extraction operator (e.g., a query generator,
decoding policy, or sampling strategy) that issues prompts or queries to fθ. Given a model fθ, the attacker
can obtain a x̃ through E, which is approximately equal to certain information contained in T (Dtrain); Lrec
measures reconstruction fidelity or semantic similarity between generated outputs x̃ and the target training
information T (Dtrain). In practice, E may operate targetedly—optimizing queries toward a specific sample
x∗ or identifying memorized content associated with known attributes—or untargetedly, by probing the
model to elicit any memorized fragments through repeated sampling.

Access assumptions The signals available to the adversary vary with the threat model: (a) White-box ac-
cess (Fredrikson et al., 2015): full gradients or hidden activations can be exploited to optimize reconstructions
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directly. (b) Black-box access: the adversary can only interact with the model through its outputs. Two
common variants are: (b.1) probability access (Zhang et al., 2020), where softmax scores or logits are re-
turned and provide richer information for inversion; and (b.2) label-only (Kahla et al., 2022), where only the
top-1 predicted class is visible, making query efficiency critical.

4.2 Taxonomy and Techniques of Model→Data

4.2.1 Model Inversion Attacks

Model inversion attacks (MIAs) aim to reconstruct sensitive training data or its representative features
from a model’s accessible information, such as outputs, gradients, or embeddings. Recent studies (Dibbo,
2023; Yang et al., 2025a) have established MIAs as one of the core privacy threats linking models back to
their data, with diverse forms depending on the attacker’s objective, access, and prior knowledge. Below
we outline these key dimensions and the main technical paradigms observed across modalities. (a) Target
Type. Depending on the reconstruction granularity, attacks may operate at the instance level, recovering
individual samples (Fredrikson et al., 2015; 2014); the class level, reconstructing category prototypes or
feature representations (Hitaj et al., 2017); or the distribution level, approximating the overall data manifold
through semantic or statistical priors (Chen et al., 2021b). (b) Access Level. Depending on access, white-box
settings reveal gradients or hidden activations (Zhang et al., 2020; Hu et al., 2023a; Wei et al., 2024b;a),
black-box settings expose only logits or labels (Kahla et al., 2022; Hu et al., 2023b), and mixed cases exploit
side channels or shared embeddings (Chanpuriya et al., 2021). (c) Prior Knowledge. Attackers may leverage
auxiliary in-domain information memorized by the model itself (Carlini et al., 2019), or employ synthetic
priors—such as noise-based reconstructions or randomly generated queries—to approximate the target label
data distribution (Truong et al., 2021; Tramèr et al., 2016).

Across various settings, methods can be broadly categorized into five families. (a) Optimization-based in-
version reconstructs inputs by maximizing confidence or minimizing feature discrepancy on target labels,
often regularized by perceptual or total-variation priors (Zhang et al., 2020; Mahendran & Vedaldi, 2015).
(b) Learning-based inversion further trains up-convolutional networks to directly map feature representa-
tions back to images (Dosovitskiy & Brox, 2016). (c) Generative inversion (Wang et al., 2021a) employs
conditional GANs or variational inference to sample plausible reconstructions. (d) Representation-space
inversion (Tragoudaras et al., 2025) decodes intermediate embeddings into the input domain, while (e)
prompt- or explanation-guided inversion (Morris et al., 2024; Zhao et al., 2021) leverages logits, gradients,
or attribution maps to refine reconstruction quality.

While early work focused on vision, similar mechanisms now extend to text (Morris et al., 2024), graphs (Zhou
et al., 2023), time series, and medical signals (Subbanna et al., 2021; Ghimire et al., 2018). Diffusion models
exhibit both data extraction (Carlini et al., 2023) and prompt-level inversion behaviors (Mahajan et al.,
2024). At the foundation scale, increasing capacity amplifies memorization (Carlini et al., 2021), enabling
instance-level leakage even through limited-access interfaces (Dibbo, 2023; Carlini et al., 2022). Model
inversion can target single samples, classes, or distributions, exploiting gradients, logits, or representations
to reverse the data–model mapping (Dibbo, 2023; Wei et al., 2025).

4.2.2 Membership Inference Attacks

Membership inference attacks aim to determine whether a particular sample—or a collection of samples—was
included in a model’s training data set. By exploiting prediction behavior, hidden activations, or gradients,
these attacks expose whether the model memorize specific data, revealing data participation information
and thus breaching data privacy. Current approaches can be broadly grouped into four families: (a) output-
based black-box attacks, (b) internal-signal and white-box attacks, (c) data-extraction–driven leakage, and
(d) domain- or system-specific extensions. (a) output-based black-box attacks. These methods rely only on
model outputs such as likelihoods, confidence scores, or generated text. Prompt- and perturbation-based
attacks (Fu et al., 2025) probe stability in next-token probabilities or generations to separate members from
non-members. Likelihood-based detection at the dataset/corpus level is re-evaluated and formalized by a
new inference method (Maini et al., 2024). In retrieval-augmented generation (RAG) systems, membership
can be inferred from the semantic similarity and perplexity between retrieved knowledge and generated text,
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revealing private entries in the external database (Li et al., 2025c). Complementarily, black-box provenance
detection frameworks for LLMs—e.g., DPDLLM—identify whether text likely appeared in pre-training with-
out logit access (Zhou et al., 2024). (b) Internal-Signal and White-Box Attacks. When gradients, weights,
or activations are observable, stronger inference becomes possible. Gradient- and parameter-based meth-
ods (Pang et al., 2023; Suri et al., 2024) leverage differential signals to expose training membership, while
neuron-level attribution analysis (Unveiling the Unseen) (Li et al., 2024a) identifies internal activations cor-
related with membership cues. Statistical testing frameworks such as Low-Cost High-Power Membership
Inference Attacks (RMIA) (Zarifzadeh et al., 2024) further improve sensitivity and robustness under limited
reference models. For large language models, memTrace (Makhija et al., 2025) extracts membership signals
from hidden-state dynamics and attention patterns. At the other end of the access spectrum, OSLO (Peng
et al., 2024) demonstrates that even label-only interfaces enable high-precision inference via transfer-based
adversarial perturbations. Finally, explainability mechanisms themselves can act as side channels, as attri-
bution maps and confidence changes from explanators reveal membership information (Liu et al., 2024b).
(c) Data extraction and inversion leakage. These attacks reveal a continuum between membership inference
and explicit data reconstruction. Diffusion and language models can directly regenerate training samples
through repeated prompting or sampling (Carlini et al., 2023; 2021), showing that memorization and mem-
bership inference are deeply entangled. (d) Domain-specific and system-level extensions. Beyond standard
classifiers, membership inference has been explored in graph contrastive learning, recommender systems,
and biometric recognition (Wang & Wang, 2024; Zhong et al., 2024). Comprehensive evaluations (DeAlcala
et al., 2024; Zhu et al., 2024a) identify key influencing factors across centralized and federated settings, while
information-theoretic and learning-based calibration analyses (Zhu et al., 2025b; Shi et al., 2024) provide
finer-grained quantification of leakage. Membership inference spans a continuum from black-box query-
ing to gradient-level forensics, connecting with data extraction, inversion, and unlearning analysis. Across
modalities and model scales, these studies collectively show that memorization remains a fundamental and
quantifiable privacy risk in modern machine learning.

4.2.3 Training Data Extraction Attacks

Training data extraction aims to recover verbatim training data from deployed models and can be grouped
by the adversary’s access level and manipulation capability. Existing work mainly focuses on query-based
extraction, which elicits memorized content via prompt engineering and sampling artifacts. Black-box adver-
saries craft prompts or exploit sampling errors to trigger memorized responses. Sequence-level studies (Xu
et al., 2024a) show that shorter prefixes and larger models tend to leak more. Recent work by Nasr et
al. (Nasr et al., 2025) introduces two scalable attacks (divergence and finetuning) that enable large-scale
recovery of proprietary training data even under restricted, publicly accessible interfaces. Building on this
direction, More et al. (More et al., 2025) examine more realistic adversarial settings, showing that prompt
sensitivity, access to multiple checkpoints, and downstream tasks can amplify extraction risks, revealing
a stronger composite adversary that better captures real-world threat conditions. Parallel efforts extend
these attacks to generative diffusion models: Carlini et al. (Carlini et al., 2023) demonstrate training-image
extraction from diffusion models.

4.3 Defensive Techniques.

4.3.1 Defenses against Model Inversion Attacks

These defenses aim to protect the privacy and confidentiality of the data used to train or query a model.
They can be broadly categorized into three complementary directions: (a) Training-Time Privacy Regular-
ization. The dominant approach is differentially private stochastic gradient descent (DP-SGD) (Abadi et al.,
2016), which injects calibrated noise into gradient updates to bound each sample’s contribution. While DP
provides formal privacy guarantees, it often degrades accuracy. Complementary strategies introduce implicit
regularization: information-bottleneck–inspired methods such as bilateral dependency optimization (Peng
et al., 2022) constrain representations to retain only task-relevant features, and stochastic mechanisms such
as dropout (Srivastava et al., 2014) mitigate overfitting and implicitly reduce memorization. (b) Inference-
Time Output Obfuscation. Since most inversion attacks rely on observable outputs, these defenses modify
predictions to conceal exploitable signals. Label smoothing (Müller et al., 2019) reduces confidence gaps
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across classes and improves calibration, while adversarial regularization (Wen et al., 2021) or randomized
post-processing of logits weakens gradient-based reconstruction cues. (c) Post-Deployment Detection and
Perturbation Frameworks. Runtime defenses focus on detecting inversion-like queries or embedding irre-
versible transformations into model internals. Semantic perturbation–based frameworks (Zhu et al., 2024b)
analyze query embeddings and behavioral consistency, introducing statistical signatures that help distinguish
or distort inversion-derived surrogates.

4.3.2 Defenses against Membership Inference Attacks

These defenses aim to eliminate the statistical gap between members and non-members observable from
model outputs, gradients, or representations. Existing studies fall into four major categories: (a) unlearning
and token-level mitigation, (b) ensemble and distillation strategies, (c) noise injection and regularization,
and (d) generative and adversarial training.

(a) Unlearning and Token-Level Mitigation. Selective unlearning treats memorized content differently from
general knowledge. Tokens for Learning, Tokens for Unlearning (Tran et al., 2025) jointly optimizes learn-
ing and unlearning objectives by categorizing tokens into hard and memorized, reducing membership leakage
with minimal impact on language modeling performance. Other unlearning methods apply targeted forget-
ting or data editing to erase memorized content while preserving task utility. (b) Ensemble and Distillation
Strategies. These methods aggregate or transfer knowledge across multiple models to dilute membership
signals. Multi-teacher and repeated distillation frameworks (Zheng et al., 2021; Shejwalkar & Houmansadr,
2021) transfer softened or masked predictions from teacher models to students, mitigating overconfident be-
haviors and enabling tunable privacy–utility trade-offs. Ensemble-based defenses such as MIAShield (Jarin
& Eshete, 2023) mitigate membership inference by preemptively excluding models trained on the queried
sample, thereby eliminating strong membership signals while preserving utility. (c) Noise Injection and
Regularization. A widely used direction is to perturb training or inference signals to blur member/non-
member distinctions. Noise injection methods (e.g., Weighted Smoothing (Tan et al., 2023)) adaptively add
perturbations to high-risk samples, while regularization-based defenses (e.g., MIST (Li et al., 2024b) and
NeuGuard (Xu et al., 2022)) constrain model representations or neuron activations to reduce membership
inference vulnerability. Graph perturbation (Wang et al., 2023a) obscures membership signals by injecting
noise into graph structures, while enhanced Mixup (Chen et al., 2021c) and weight pruning (Wang et al.,
2021b) regularize models to reduce overfitting and memorization. (d) Generative and Adversarial Training.
Generative defenses leverage GAN- or VAE-based frameworks to generate synthetic data to train or regu-
larize generative models, in order to obscure membership signals while preserving utility (Hu et al., 2022b;
Mukherjee et al., 2021; Yang et al., 2023b). Digestive neural networks (Lee et al., 2021) sanitize shared
gradients in federated settings, and adversarial regularization (Nasr et al., 2018) jointly trains a classifier
and adversary to produce membership-resistant representations.

4.3.3 Defenses against Training Data Extraction Attacks

Large language and diffusion models may memorize and expose sensitive training examples through over-
fitting or sampling. Defenses, therefore, aim to suppress memorization, distort membership signals, or
detect exposed content. Existing works can be grouped into four complementary directions. (a) Training-
Time Regularization and Noise. These defenses modify the optimization process to ensure similar behavior
between members and non-members. Differentially private fine-tuning (e.g., DP-SGD or DP-Adam) (Du
et al., 2025) provides formal privacy guarantees against data leakage and, when combined with low-rank
adaptation (LoRA), achieves a favorable privacy–utility trade-off. (b) Architectural and Ensemble Isola-
tion. Re-architecting models to decouple knowledge across data subsets prevents any single component from
over-memorizing, as demonstrated by SELENA (Tang et al., 2022), which trains multiple sub-models on over-
lapping subsets and uses self-distillation to align their behaviors. (c) Query- and Output-Level Perturbation.
Post-training defenses perturb model queries or responses to obfuscate membership signals. QUEEN (Chen
et al., 2025a) adaptively perturbs sensitive queries and reverses gradients to corrupt extraction attempts
in model-stealing scenarios. Beyond query perturbation, output watermarking offers another form of post-
generation modification. Panaitescu et al. (Panaitescu-Liess et al., 2025) show that output watermarking
can significantly reduce the probability of verbatim memorization, thereby preventing copyrighted text gen-
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eration. (d) Memorization Detection and Auditing. Rather than suppressing leakage, these defenses identify
and monitor it. Diffusion-model audits (Wen et al., 2024a) detect memorized samples via prompt-conditioned
prediction analysis, while LLM auditing frameworks such as ContextLeak (Choi et al.) insert canaries or
triggers to trace data exposure during fine-tuning and in-context learning.

5 Model→Model (M→M)

5.1 Model Extraction Attacks

Model Extraction Attacks (MEAs) (Liang et al., 2024) pose a critical threat to the confidentiality and
intellectual property (IP) of machine learning models, particularly in the context of Machine Learning as a
Service (MLaaS) (Kesarwani et al., 2018). Model extraction attacks aim to clone a deployed machine-learning
model by repeatedly querying it and observing its outputs. An attacker does not need access to the model’s
parameters or training data, only the ability to send inputs (e.g., images or text) and receive predictions. By
carefully choosing queries and collecting the corresponding outputs, the attacker can train a new surrogate
model that closely mimics the behavior of the original one. This surrogate can approximate not only the
model’s decision boundaries, but sometimes its architecture or parameters, undermining commercial value
and IP protection. Over time, this stolen model can achieve similar accuracy and functionality, effectively
reproducing the victim’s intellectual property. Model extraction is particularly concerning because it enables
downstream misuse: the extracted model can be analyzed offline, fine-tuned for harmful purposes, or used
to launch further attacks such as model inversion or data leakage, all while bypassing access controls and
usage limits of the original system.

MEAs can be broadly classified into two main categories: (1) Functionality Stealing (Truong et al., 2021):
the adversary aims to replicate the prediction performance of the victim model, producing a substitute that
yields consistent outputs. Depending on the availability of data, functionality stealing can be further divided
into: (a) Data-based Model Extraction (DBME), where attackers leverage knowledge of the training dataset
used for training the target victim model or a surrogate dataset to query the victim model and distill its
knowledge; and (b) Data-free Model Extraction (DFME), where no prior knowledge of the target victim
model’s training data is known and the synthesis of the attacker’s query data is iteratively refined using
the victim model’s outputs as feedback. (2) Architecture Stealing (Rolnick & Kording, 2020): the goal is
to infer the internal design of the victim model, such as its layer structure or hyperparameters. Unlike
functionality stealing, which focuses on prediction performance, architecture stealing targets the proprietary
network design itself, enabling adversaries to reconstruct or optimize their own models.

5.2 Mathematical Formalization

Attacker’s Knowledge and Objective. In a model extraction attack, the adversary interacts with a
victim model V (x; θV ) solely through its API. By submitting a set of queries X = {xi}i=m

i=0 , attacker
receives corresponding outputs: yi = V (xi; θV ), i = 1, . . . , m, which may be either probability vectors
(soft-labels) or top-1 predictions (hard-labels), depending on the API configuration. Using the collected pairs
{(xi, yi)}i=m

i=1 , the attacker then trains a substitute (clone) model C(x; θC) with the goal of reproducing
the predictive behavior of V . Formally, the surrogate model’s parameters are learned by solving: θ⋆

C ∈
arg minθC

∑m
i=1 L(xi, yi, θC), where L is an appropriate loss function (e.g., distillation loss or cross-entropy

loss). Based on whether prior information of training data is available, MEAs can be categorized into
data-based (DBME) and data-free (DFME) approaches.

Defender’s Knowledge and Objective Defender’s aim is to maintain the victim model’s accuracy on its
in-distribution (ID) dataset while simultaneously degrading the utility of any cloned model trained through
the extraction attack. In practice, the defender operates under limited knowledge: the precise attack strategy,
the architecture of the clone model, and whether a query is benign or adversarial are typically unknown. A
common assumption is that adversarial queries originate from out-of-distribution (OOD) data (Kariyappa
& Qureshi, 2020a), since the original training set is private and rarely exposed to API users. Nevertheless,
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effective defenses should also remain applicable when attackers have access to in-distribution queries, ensuring
robustness across both DBME- and DFME-style attacks.

5.3 Taxonomy and Techniques of MEAs

We categorize model extraction attacks into two main types (data-based and data-free) which differ in whether
the attacker has prior access to the victim model’s training data.

5.3.1 Data-Based Attacks

Data-based extraction begins from public or domain-related inputs, leveraging semantic priors for faster
convergence and higher sample utility.

(a) One stream of work focuses on query selection and augmentation. The seminal JBDA approach (Papernot
et al., 2017) introduced Jacobian-based dataset augmentation, training surrogate model from black-box
label outputs to approximate decision boundaries. Copycat CNN (Correia-Silva et al., 2018) shows that
using non-problem-domain natural images can replicate the functionality of target models. ActiveThief (Pal
et al., 2020) integrates K-center and active learning to select uncertain samples, achieving higher agreement
with fewer queries. Augmentation and ensembles can further increase the informativeness of each query.
For example, Army of Thieves (Jindal et al., 2024) employs ensemble-based consensus entropy and label
disagreement to guide query selection. Meanwhile, AugSteal (Gao et al., 2024b) combines Grad-CAM-
based data filtering and MPCL active selection with a FusionAug module (GridMix + MulAug) to enhance
functional similarity under hard-label constraints. Finally, MARICH (Karmakar & Basu, 2024) matches the
victim model output distribution via entropy- and divergence-based objectives, achieving high fidelity to the
victim model’s performance.

(b) A second stream explicitly probes the decision boundary of the victim model. CloudLeak (Yu et al., 2020)
employs adversarial and active-learning–based queries to explore regions near classification boundaries, while
BEST (Li et al., 2022) refines this idea with entropy-driven uncertain examples to capture both accuracy and
robustness regions. SPSG (Zhao et al., 2024b) leverages superpixel segmentation and low-variance gradient
estimation to approximate boundary information efficiently under limited queries. Other approaches, such as
InverseNet (Gong et al., 2021) and LOKT (Nguyen et al., 2024a), reconstruct the victim’s data distribution
respectively through input inversion and label-space generative transfer.

(c) A third category of attacks leverages extra signals (e.g., explanations) to enhance the effectiveness of
model extraction. Explanation-based attacks such as XaMEA (Yan et al., 2023) exploit explanation signals
(e.g., saliency maps) to enhance surrogate fidelity, while PtbStolen (Zhang et al., 2023a) steals encoder
representations via feature-vector matching on perturbed samples. At the system level, even when only
hard labels are accessible, query-based knockoff and Jacobian-augmentation attacks remain feasible (Tramèr
et al., 2016). Similarly, limited access to RNN hidden states can suffice for replication (Takemura et al.,
2020).

Foundation models (Data-Based) For LLMs, in-context imitation attacks (Li et al., 2024c) demonstrate
that even without gradient access, medium-sized models can reproduce specialized abilities such as code
summarization and synthesis by querying black-box APIs with carefully designed prompts. Here, traditional
datasets are replaced by curated prompt sets and task suites, indicating that prompt programming itself
can function as a data-based extraction strategy. Together with earlier observations on boundary probing
and attribution-guided attacks, these results highlight that restricting access to the API interface alone is
insufficient to prevent high-fidelity cloning.

5.3.2 Data-Free Attacks

Data-free model extraction (DFME) synthesizes Q without access to in-distribution data. Then, the gen-
eration strategies accelerated progress: MAZE (Kariyappa et al., 2021a) guides a generator toward regions
of maximal model disagreement via zeroth-order gradient estimation; and DFMS-HL (Sanyal et al., 2022)
adapts to hard-label constraints with class-diversity regularization and adversarial alignment terms. DFMS-
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DG (He et al., 2024) utilizes denoising diffusion GANs to generate diverse, high-quality samples that improve
clone model accuracy even against adversarially trained targets. DFCL-APIs (Yang et al., 2024a) extends
the study of model extraction to the continual learning paradigm.

While generator-driven methods remain central to DFME, recent approaches enhance them with explicit
optimization and sample selection strategies. For example, ES Attack (Yuan et al., 2022) and Truong et
al. (Truong et al., 2021) iteratively refine synthetic queries through alternating estimation and synthesis steps
to distill the victim model, while DFHL-RS (Yuan et al., 2024) generates high-entropy examples near decision
boundaries and reuses them to reduce costs under hard-label constraints. Because DFME is highly budget-
sensitive, several methods emphasize query efficiency: IDEAL (Zhang et al., 2022) decouples generation
from distillation, requiring only one query per synthetic sample, whereas E3 (Zhu et al., 2025a) improves
efficiency via language-guided sample selection, multi-resolution training, and temperature tuning, achieving
comparable fidelity with merely about 0.5% of the queries needed by conventional GAN-based methods; and
DualCOS (Yang et al., 2024b) incorporates active sampling and disagreement-based objectives to maximize
sample reuse. Under label-only APIs, QUDA (Lin et al., 2023) employs deep reinforcement learning with
weak generative priors; and DisGUIDE (Rosenthal et al., 2023) drives divergence in clone outputs to increase
informativeness while reducing query counts. DFME also extends beyond classification: Yue et al. (Yue et al.,
2021) demonstrate that generating synthetic queries can effectively replicate victim recommender models.

Foundation models (Data-Free) DFME is no longer vision-only. In language, Lion (Jiang et al.,
2023b) employs adversarial knowledge distillation with a feedback loop that generates hard instructions
to efficiently distill GPT-style models using only 70K queries, achieving ChatGPT-level performance with
minimal supervision. Random or task-agnostic queries can also suffice for BERT-based APIs (Krishna et al.,
2020). Beyond text, LCA (Shao et al., 2025a) leverages Stable Diffusion’s latent prior for adversarial query
synthesis, combining latent augmentation with membership-aware sampling to produce high-utility prompts
in text and multimodal settings.

In both data-based and data-free settings, recent studies (Jagielski et al., 2020; He et al., 2021; Dai et al.,
2023) have proposed extraction methods that generalize well across domains and remain effective even with a
limited number of queries. Foundation models further amplify these risks because their prompt interaction in-
terfaces and few-shot generalization make high-fidelity cloning more practical. These developments highlight
the need for defense-in-depth strategies—including dynamic output perturbation, query-pattern monitoring,
attribution filtering, and robust watermarking—that are adapted to the attacker’s query regime.

5.4 Defensive Techniques.

Existing model extraction defenses can be broadly categorized into two classes: prevention defenses, which
actively degrade the extraction process, and verification/detection defenses, which passively monitor or verify
whether model extraction has occurred.

5.4.1 Model extraction prevention defenses (active defenses)

These defenses aim to reduce the value of queries or limit the fidelity of stolen models. Representative
strategies include:

(a) Model output perturbation. A primary line of work modifies API outputs to reduce the information avail-
able to an attacker. Techniques include selective output perturbation, response filtering, or adaptive shaping
that perturbs outputs only for abnormal queries while preserving accuracy on legitimate ones. Examples
include AdvFT (Zhang et al., 2024), which perturbs feature representations of out-of-distribution (OOD)
queries; CIP (Zhang et al., 2023b), which combines energy-based OOD scoring with selective poisoning and
traceable watermarking; AMAO (Jiang et al., 2023a), which integrates adversarial training, adaptive out-
puts, and embedded watermarks; ModelGuard (Tang et al., 2024), which adaptively optimizes perturbations
to balance information leakage and prediction utility; and Noise Transition Matrices (Wu et al., 2024), which
inject lightweight structured noise.
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(b) Training-time defenses. Some defenses alter the model itself during training to make model extraction
harder. Defensive training strategies (Wang et al., 2023b; Hong et al., 2024) inject robustness by learning
causal or distributionally robust representations that hinder surrogate learning. Architectural modifica-
tions include DNF (Luan et al.) with early exits, and InI (Guo et al., 2023) which dynamically isolates
suspicious queries to block gradient-based extraction. MeCo (Wang et al., 2023b) further employs distribu-
tionally robust defensive training with a data-dependent perturbation generator to resist data-free extraction.
AAUG (Wang et al., 2024a) which introduces an attack-aware and uncertainty-guided training objective to
reduce the accuracy of stolen models, and Beowulf (Gong et al., 2024) introduces adversarial dummy classes
during training, which reshape decision boundaries to mislead surrogate models and degrade the fidelity of
surrogate models. RL-based meta-policies (Orekondy et al., 2019) adapt label shaping dynamically, while
ensemble defenses (Kariyappa et al., 2021b) diversify decision boundaries to resist approximation. Active
watermarking (Wang et al., 2024b) fine-tunes models to embed probabilistic signals that actively degrade
the performance of cloned models.

5.4.2 Model extraction verification/detection defenses (passive defenses)

These defenses do not prevent model extraction directly, but provide evidence or detection signals.

(a) Query-level monitoring and anomaly detection. Detection-based methods identify extraction attempts
in real time. Statistical defenses such as PRADA (Juuti et al., 2019) analyze query distributions, while
SEAT (Zhang et al., 2021) and HODA (Sadeghzadeh et al., 2023) leverage query similarity to detect struc-
tured exploration. More advanced anomaly detectors include SAME (Xie et al., 2024), which uses autoen-
coder reconstruction error, and adaptive detection-and-response methods (Kariyappa & Qureshi, 2020a).
Although effective, these methods can be bypassed if adversaries disguise their query distribution (Aziz-
malayeri et al., 2022).

(b) Verification-based watermarking. Another class of defenses embeds verifiable signals into models so that
ownership can be established after suspected theft. Earlier trigger-set or boundary-based approaches (Adi
et al., 2018; Zhang et al., 2018) and subsequent schemes such as DeepSigns (Darvish Rouhani et al., 2019)
enable IP owners to query a suspect model and check for expected responses. These methods include both
training-time and API-level watermarking, providing strong ownership verification but offering no direct pre-
vention against model extraction. For generative models, WDM (Peng et al., 2023) embeds watermarks into
diffusion U-Nets, while adversarial or lexical watermarking (He et al., 2022) inserts detectable linguistic or
statistical patterns that later facilitate ownership verification. Representative approaches such as EWE (Jia
et al., 2021) and DAWN (Szyller et al., 2021) further embed persistent signals that survive in surrogate
models, thereby enabling reliable ownership tracing. More recently, LIDet (Zhao et al.) extends this line of
work to large language models, using text-level watermarks to detect intellectual property infringement in
suspect LLMs under black-box access.

In summary, model extraction defenses fall into two complementary categories. Prevention defenses actively
interfere with the attacker by shaping API outputs, or modifying training objectives, thereby lowering
the fidelity or usability of stolen models. Verification and detection defenses, in contrast, do not stop
extraction but provide monitoring signals (e.g., anomaly detection on queries) or verifiable marks for post-
hoc attribution. In practice, robust protection often combines both: prevention raises the attack cost and
reduces the value of extraction, while verification provides the evidence and legal traceability once theft has
occurred.

5.5 From Functional Imitation to Structural Theft

So far, Model→Model (M → M) discussion has focused on model functional cloning, where the goal is to
reproduce the victim’s input–output behavior. More recent attacks target structural recovery, inferring model
architectures, parameters, or training settings. This shift changes the objective (from output agreement to
structural fidelity) and increases risk: recovering model internals lowers the cost of subsequent attacks and
can defeat defenses that rely solely on restricting API outputs.
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Structural and Parametric Extraction (a) From structural inference to architecture reconstruction.
Early studies demonstrated that black-box outputs can leak model architecture and training attributes.
Rolnick et al. (Rolnick & Kording, 2020) exploited the piecewise linearity of ReLU networks to analytically
reconstruct their layer topology and parameters, yielding functionally equivalent models. (b) Practical weight
recovery via learning and analysis. Jagielski et al. (Jagielski et al., 2020) combined surrogate imitation
with direct analytical recovery, achieving near-exact weight reconstruction for multi-layer ReLU networks
using only a few thousand queries. Carlini et al. (Carlini et al., 2020) reformulated parameter recovery as
a differential-cryptanalysis problem, highlighting the feasibility of fine-grained extraction under black-box
access. (c) Partial reconstruction in large-scale production models. Extending to commercial settings, Carlini
et al. (Carlini et al., 2024b) showed that even limited API feedback (e.g., log probabilities or logit bias) suffices
to reconstruct key components of large-scale LLMs with high fidelity and modest cost, underscoring practical
risks for deployed models.

6 Attacks and Defense Comparisons, Interactions and Inter-dependencies

6.1 Attacks and Defenses Comparisons

We map representative defense strategies to the attack classes they are capable of mitigating in Table
3. Rather than treating defenses in isolation, this table highlights how different defense families, including
data sanitization, defensive training, watermarking, output perturbation and alignment fine-tuning—interact
with multiple attacks. This mapping therefore offers practitioners a practical guide for understanding which
defenses apply to which threat classes. It reveals that most defenses are not isolated countermeasures, but
instead influence multiple attacks.

6.2 Attack Interactions and Dependencies

A key insight of our unified closed-loop perspective is that security threats in foundation models do not
operate in isolation. Instead, attacks across the data space (D) and model space (M) are interdependent,
forming feedback loops in which vulnerabilities in one class systematically facilitate, amplify or weaken
threats in another. We identify several cross-class connections that substantiate this closed-loop unified
view.

Poisoning (D→M) → Membership Inference (M→D) Data poisoning attacks manipulate the train-
ing or fine-tuning data to corrupt the learned feature–label relationships encoded in model parameters
(D→M). Beyond degrading predictive performance, such corruption can amplify privacy attacks. In par-
ticular, poisoned representations can increase overfitting, making it easier for adversaries to exploit output
statistics for membership inference (M→D) (Chen et al., 2022; Wen et al., 2024b). The resulting privacy
leakage further illustrates how model manipulation in the training phase can manifest as data exposure at
inference time.

Model Extraction (M→M) → Membership Inversion, Training Data Recovery (M→D) and
Adversarial Data Generation (D→D). Successful model extraction yields a high-fidelity surrogate
model that approximates the behavior of the target system (M→M). This surrogate not only enables training
data recovery attacks and model inversion (M→D) (Tramèr et al., 2016), but can also be used to synthesize
adversarial data samples that closely follow the original training data distribution (D→D) (Papernot et al.,
2017). Such adversarially generated data may subsequently bypass data filtering or safety checks, illustrating
the interaction between model compromise and data-space exploitation.

Model Inversion (M→D) → Watermark Removal (D→D). Model inversion attacks aim to recon-
struct training data or data-like samples from a deployed model. Although the recovered samples may not
be exact replicas of the original training instances, they often preserve salient semantic and distributional
characteristics of the underlying data. As a result, an adversary can retrain a new model using inversion-
generated data and claim that the model was trained solely on independently obtained, legitimate data since
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Table 2: Comparison of attack categories in the unified closed-loop taxonomy. We summarize
threat-model assumptions, attacker capabilities, typical evaluation metrics, and computation cost across the
four directional attack classes (D→D, D→M, M→D, M→M).
Attack class Threat-model as-

sumptions
Attacker capabili-
ties required

Typical success
metrics

Computational cost

D→D Access to protected
data or prompts; goal
is to bypass ownership
or safety constraints
while preserving con-
tent or utility.

Ability to apply
transformations to
inputs (regeneration,
rewriting, adversarial
prompting, etc); usu-
ally no need for victim
model weights.

Bypass success rate
(e.g., decrypt success;
watermark detection
failure; jailbreak suc-
cess), plus fidelity or
utility preservation
and downstream task
performance.

Low to moderate
computation cost:
input transformation
or rewriting; jailbreak
often needs iterative
prompt search; wa-
termark removal may
involve generative
regeneration.

D→M Adversary can influ-
ence training or fine-
tuning data to im-
plant targeted misbe-
havior or erode align-
ment.

Inject or modify a sub-
set of training sam-
ples to create mali-
cious training data.

Attack success (at-
tack success rate,
targeted misclassi-
fication, backdoor
trigger success); clean
utility (clean accuracy,
helpfulness); safety
metrics (refusal rate
drop, unsafe prompt
completion rate).

Moderate to high com-
putation cost: requires
training or fine-tuning
data modification by
optimization.

M→D Adversary queries
a trained model to
recover memorized
training information
(samples, attributes or
membership).

Black-box (query
outputs) or white-box
(gradients or repre-
sentations) access;
optimization over
inputs or prompts.

Data reconstruction
quality; membership
information accu-
racy/AUC.

Often high compu-
tation cost: many
queries and/or iter-
ative optimization;
generative extraction
can require generative
model training.

M→M Adversary aims
to replicate a de-
ployed proprietary
model via queries
(data-free/data-
based/architecture
cloning).

Query access to vic-
tim; ability to train
surrogate; optionally
synthesize queries
through optimization
or generative models;
sometimes partial ar-
chitecture knowledge.

Fidelity and utility of
stolen model (accu-
racy, KL divergence of
logit matching); query
efficiency (e.g., num-
ber of queries).

High computation
cost: dominated by
query budget and
surrogate training
compute; adaptive
query synthesis can
reduce queries but
adds generation cost.

it is not directly traceable to the original training set. This effectively enables watermark removal and own-
ership obfuscation, as the resulting model may evade existing IP verification or data provenance mechanisms
(Zong et al., 2024).

Backdoor Attacks (D→M) weakens Model Extraction (M→M) (Wang et al., 2025) proposes a
defensive strategy that intentionally poisons the model extraction process by embedding a backdoor into any
surrogate model trained from stolen outputs. Instead of preventing queries, the defender modifies the victim
model’s output so that its predictions subtly encode malicious signals while preserving normal task accuracy
for benign users. When an attacker performs model extraction using these outputs, the resulting surrogate
unintentionally learns a hidden backdoor, which can later be triggered to induce targeted misbehavior.
This effectively makes model extraction vulnerable to controlled misuse and demonstrates that backdoor
mechanisms can serve as an active defense against model extraction by poisoning the downstream learning
process.
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Table 3: Mapping of defense methods to the attacks they address, with effectiveness and limitations.
Defense Method Attack(s) Addressed Effectiveness Limitations

Data Sanitization data poisoning attack,
backdoor attack, harmful
fine-tuning attack

Partially effective Ineffective once a model
is trained; vulnerable to
adaptive or clean-label
poisoning; may remove
useful data and hurt util-
ity

Defensive training Adversarial attack, data
poisoning attack, model
inversion attack, model
extraction attack and
membership inference
attack

Partially effective High computational cost;
limited scalability; may
reduce accuracy on clean
data

Watermarking model extraction attack
(ownership verification)

Detection-only (passive) passive and cannot pre-
vent model extraction
from happening

Output perturbation model extraction attack,
membership inference at-
tack

Partially effective Degrades utility; vulner-
able to adaptive attacks;
costly at inference

Alignment fine-tuning harmful fine-tuning at-
tack, jailbreak attack

Partially effective Vulnerable to prompt-
based bypasses and ad-
versarial fine-tuning; ex-
pensive and not robust
under distribution shift

Detection Adversarial attack,
harmful fine-tuning at-
tack, jailbreak attack,
model extraction attack

not preventive Reactive only; requires
reliable detection signals

Harmful Fine-Tuning (D→M) → Jailbreak Attack (D→M). Harmful fine-tuning attacks directly
modify model parameters by injecting malicious or misaligned data during fine-tuning (D→M). Such
parameter-space corruption often weakens alignment and safety constraints. As a result, the fine-tuned
model becomes more susceptible to jailbreak-style prompt manipulations in deployment, enabling harmful
outputs Qi et al. (2024). In this case, a model-space attack reshapes the data-space vulnerability surface,
feeding back into D→D misuse.

7 Other Categorization Perspectives

7.1 Attack Objectives: Privacy, Integrity, and Availability

From the perspective of security consequences, AI security attacks are commonly categorized into three
classes: privacy, integrity, and availability attacks. Privacy attacks aim to extract or infer sensitive infor-
mation about the training data, model parameters, or data subjects without authorization. In machine
learning, this includes attacks such as model inversion, membership inference, and model extraction, which
compromise confidentiality even when the system functions normally. Integrity attacks seek to manipulate
or corrupt the model’s behavior or outputs, causing it to produce incorrect, biased, or attacker-controlled
predictions. Examples include data poisoning, backdoor attacks, and adversarial examples, which under-
mine the correctness and trustworthiness of the model. Availability attacks aim to degrade or deny access
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Table 4: Mapping representative attacks in our taxonomy to security objectives (privacy, integrity, availabil-
ity). A checkmark indicates that the attack commonly targets the corresponding security objective.

Attack Privacy Integrity Availability
Adversarial examples × ✓ ×
Data decryption attack ✓ × ×
Watermark removal attack × ✓ ×
Data poisoning × ✓ ×
Harmful fine-tuning × ✓ ×
Jailbreak × ✓ ×
Training data extraction ✓ × ×
Model extraction ✓ × ×
Model inversion ✓ × ×
Membership inference ✓ × ×

to the model or service, making it unusable or unreliable for legitimate users. In ML systems, this includes
denial-of-service (DoS) attacks, resource-exhaustion via crafted inputs, etc.

While our taxonomy organizes attacks based on their interaction with the data and model components,
the classical security objectives (privacy, integrity and availability) provide an orthogonal lens centered
on attacker goals. This dimension focuses on the intended consequence of an attack. Taken together, the
combination of our structural taxonomy and the these objectives provides a multi-dimensional understanding
of the modern AI threat landscape. We provide this categorization and comparison in Table 4.

7.2 Attack Timing: Training-Time, Inference-Time, and Deployment-Time Attacks

Attack timing provides another orthogonal dimension that describes when adversaries interact with the
system. This perspective complements our primary taxonomy by clarifying the lifecycle of an attack.

• Training-time attacks modify the data or optimization process during training (e.g., poisoning,
backdoors, harmful fine-tuning).

• Inference-time attacks exploit crafted queries to manipulate predictions or extract information during
inference (e.g., adversarial examples, extraction, jailbreak prompting).

• Deployment-time attacks target system updates, configurations, and integration points (e.g., model
extraction through API queries, membership inference).

We provide this categorization and comparison in Table 5.

8 Discussion and Future Directions

This survey advocates a closed-loop view of AI security in the era of foundation models, where data- and
model-centric attacks are deeply interconnected rather than isolated. While existing studies have made
important progress on individual threats, real-world deployments increasingly face simultaneous, adaptive,
and composed attacks. Below, we outline concrete and open research directions that move beyond single-
attack analysis and toward holistic, system-level defenses.

8.1 Defending Against Simultaneous and Composed Attacks

Open Problems. Most existing defenses are designed and evaluated against a single attack (e.g., extraction
or jailbreak or inversion). A critical open problem is how to design defenses that are robust to multiple
attacks occurring concurrently or sequentially. Several important open questions remain unresolved.
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Table 5: Mapping representative attack categories in our taxonomy to attack timing (training / inference /
deployment). A checkmark indicates that the attack can be instantiated at the corresponding phase.

Attack Category Training-time Inference-time Deployment-time
Adversarial examples × ✓ ×
Data decryption ✓ × ×
Watermark Removal ✓ ✓ ×
Data poisoning ✓ × ×
Jailbreak × ✓ ✓
Harmful fine-tuning ✓ × ×
Training data extraction × ✓ ✓
Model extraction × ✓ ✓
Model inversion × ✓ ✓
Membership inference × ✓ ✓

• How can a defense mitigate multiple attack objectives simultaneously without assuming prior knowl-
edge of which attack is active?

• How should defenses adapt when attackers jointly optimize multiple goals, such as maintaining
jailbreak success while extracting model information?

Technical Barriers. Defending against multiple attacks raises several fundamental challenges:

• Multiple defense interference: Defenses optimized for one threat can degrade robustness against oth-
ers (e.g., adversarial training may inadvertently amplify the effectiveness of model extraction attacks.
(Khaled et al., 2022)). This occurs because many attacks share underlying internal representations,
so mitigating one vulnerability can unintentionally weaken protection against another.

• Conflicting objectives: Security, alignment, privacy, and utility objectives are often incompatible,
making joint optimization difficult.

Evaluation Methodology. We argue that future work should adopt multi-attack testing protocols, where:

• Multiple attacks are launched concurrently or sequentially (e.g., jailbreak + model extraction, data
poisoning → membership inference).

• Defenses are evaluated using joint metrics such as worst-case attack success, cross-attack amplifica-
tion, and utility degradation.

• At least one defense-aware adaptive multi-attack attacker is included to test robustness under strate-
gic adaptation.

8.2 Closed-Loop Defense Design and Adaptation

Open Problems. A promising direction is to move from static defenses to closed-loop adaptive defenses
that evolve with model updates and attacker behavior. Open problems include: (1) Online detection of
attacker behavior drift under non-stationary query distributions. (2) Learning defense policies that dynam-
ically choose interventions (e.g., refusal, perturbation, detection) under utility and latency constraints. (3)
Continual recalibration of defenses after fine-tuning, alignment updates, or retrieval-augmented deployment.

Technical Barriers. Several challenges include delayed feedback about attack success, high false-positive
rates under attack data distribution shifts, and the risk that adaptive defenses introduce new vulnerabilities.

Evaluation Methodology. We recommend streaming evaluation protocols that measure detection success rate,
cumulative harm, and long-term utility under adaptive attackers rather than static test sets.
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8.3 Joint Optimization of Security, Alignment, and Utility

Open Problems. Most defenses implicitly optimize a single axis (e.g., privacy or alignment). An important
open problem is how to jointly optimize security, alignment, and utility. We expect to formalize multi-
objective optimization frameworks that expose trade-offs explicitly and develop harm-aware metrics that go
beyond attack success rate to measure downstream impact.

Technical Barriers. The lack of composable guarantees across different defense mechanisms and the mismatch
between existing metrics and real-world harm remain major obstacles.

Evaluation Methodology. Future evaluations should report full trade-off curves, including utility loss, compute
overhead, robustness under adaptive attacks, failure severity and alignment.

8.4 Benchmarking

A major gap is the absence of unified benchmarks that reflect closed-loop and multi-attack realities. We
expect to build comprehensive benchmarks that explicitly model attack chaining across data and model
stages. We also expect standardized reporting of budgets, access levels, and defense costs.

Outlook. Developing shared benchmarks and evaluation protocols for simultaneous and composed attacks
will be essential for advancing trustworthy foundation models. We hope this survey motivates the community
to move beyond isolated threat analysis toward holistic, closed-loop security research.

9 Experimental Evaluation

9.1 Empirical Evaluation for Various Attacks

Empirical Evaluation for D→D Table 6 presents a quantitative comparison of representative watermark
removal methods on the LVW and CLWD datasets, which differ in watermark complexity from grayscale
patterns to diverse colored images. The evaluated approaches include conditional GAN-based methods,
attention-based models, and general image content removal networks adapted for watermark removal, and are
evaluated using PSNR, SSIM, RMSE, and weighted RMSE under a unified experimental protocol, following
the evaluation setup in (Liang et al., 2021).

Empirical Evaluation for D→M Table 7 evaluates model robustness under different harmful data ratios
in the user fine-tuning stage, following the harmful fine-tuning threat model in (Huang et al., 2024c). Specif-
ically, models are first aligned using supervised fine-tuning on safe samples from the BeaverTails dataset, and
then fine-tuned on downstream benign tasks where a proportion p of harmful instructions from BeaverTails
is injected into the training data. Experiments are conducted with a fixed fine-tuning sample size (n = 1000
by default), and performance is measured using Harmful Score and Fine-tune Accuracy on the corresponding
downstream tasks, with results averaged across multiple independent runs.

Complementarily, Table 8 reports the overall role-playing, safety, and jailbreak robustness under LoRA fine-
tuning, following the experimental setup in (Zhao et al., 2025). Evaluations are performed on two instruction-
tuned backbones, namely LLaMA-3-8B-Instruct and Gemma-2-9B-it, under a unified LoRA configuration.
Role-play performance is measured on RoleBench using RAW and SPE scores, while safety is assessed on
AdvBench, BeaverTails, and HEx-PHI, together with jailbreak robustness evaluated across multiple attack
settings. All results are averaged over 10 representative roles.

Empirical Evaluation for M→D Table 9 reports the performance of representative membership infer-
ence attack (MIA) methods on the WIKIMIA benchmark across multiple pre-trained LLMs, following the
experimental setup in (Fu et al., 2025). The evaluation covers seven target LLMs spanning different model
families. All methods are evaluated using AUC as the primary metric. Overall, the results highlight the
varying effectiveness of existing MIA techniques under different attack paradigms and model architectures.
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Table 6: Comparison of different Watermark Removal attack methods on LVW and CLWD datasets.
Dataset Methods PSNR SSIM RMSE RMSEw

LVW

U-Net (Ronneberger et al., 2015) 30.33 0.9517 7.11 42.18
Attentive recurrent network (Qian et al., 2018) 39.92 0.9902 3.31 21.40
DHAN (Cun et al., 2020) 40.68 0.9949 2.62 17.29
cGAN-based (Li et al., 2019) 33.57 0.9690 5.84 34.71
VWGAN (Cao et al., 2019) 34.16 0.9714 5.51 33.42
WDNet (Liu et al., 2021) 42.45 0.9954 2.39 12.75
BVMR (Hertz et al., 2019) 40.14 0.9910 3.24 18.57
SplitNet (Cun & Pun, 2021) 43.16 0.9946 2.28 14.06
SLBR (Liang et al., 2021) 43.48 0.9959 2.15 12.14

CLWD

U-Net (Ronneberger et al., 2015) 23.21 0.8567 19.35 48.43
Attentive recurrent network (Qian et al., 2018) 34.60 0.9694 5.40 19.34
DHAN (Cun et al., 2020) 35.29 0.9712 5.28 18.25
cGAN-based (Li et al., 2019) 27.96 0.9161 12.63 46.80
VWGAN (Cao et al., 2019) 29.04 0.9363 10.36 41.21
WDNet (Liu et al., 2021) 35.53 0.9738 5.11 17.27
BVMR (Hertz et al., 2019) 35.89 0.9734 5.02 18.71
SplitNet (Cun & Pun, 2021) 37.41 0.9787 4.23 15.25
SLBR (Liang et al., 2021) 38.28 0.9814 3.76 14.07
DVW (Zhang et al., 2025a) 28.52 0.9445 11.74 46.29
IMPRINTS (Chen et al., 2025b) 50.61 0.9993 0.96 3.56

Table 7: Performance under different harmful ratio.
Methods Harmful Score ↓ Fine-tune Accuracy ↑

(n=1000) clean p=0.01 p=0.05 p=0.1 p=0.2 Avg. clean p=0.01 p=0.05 p=0.1 p=0.2 Avg.

Non-Aligned 34.20 65.60 81.00 77.60 79.20 67.52 95.60 94.60 94.00 94.60 94.40 94.64
SFT (Li et al., 2023) 48.60 49.80 52.60 55.20 60.00 53.24 94.20 94.40 94.80 94.40 94.20 94.40
EWC (Kirkpatrick et al., 2017) 50.60 50.60 50.60 50.60 50.60 50.60 88.60 88.20 87.40 86.80 80.60 86.32
VIguard (Zong et al.) 49.40 50.00 54.00 54.40 53.60 60.20 94.80 94.80 94.60 94.60 94.60 94.68
KL (Huang et al., 2024c) 54.40 53.60 55.20 54.00 56.60 54.76 85.80 85.80 85.00 85.40 84.60 59.08
Vaccine (Huang et al., 2024c) 42.40 42.20 42.80 48.20 56.60 46.44 92.60 92.60 93.00 93.80 95.00 93.40
Lisa (Huang et al., 2024a) 53.00 60.90 64.80 68.20 72.10 63.80 93.92 93.69 93.58 93.23 91.17 93.12
Repnoise (Rosati et al., 2024a) 66.50 77.60 78.80 78.60 77.90 75.88 89.45 92.66 93.69 94.72 94.38 92.98
LDIFS (Mukhoti et al.) 51.70 67.70 68.80 72.30 71.80 66.46 93.46 93.23 93.69 93.23 94.04 93.53
Antidote (Huang et al., 2025b) 52.90 61.20 61.20 64.60 64.50 60.88 93.58 93.46 93.12 93.35 91.74 93.05

Empirical Evaluation for M→M Table 10 summarizes the teacher and student classification accuracies
of representative model extraction attacks under the M→M setting on the MNIST and CIFAR-10 datasets,
following the experimental setup in DFMS-HL (Sanyal et al., 2022). Across both datasets, teacher models
consistently maintain high accuracy, while the student performance exhibits substantial variation depending
on the attack strategy and the architectural relationship between teacher and student models. On CIFAR-10,
recent extraction methods such as E3 (Zhu et al., 2025a) and DualCOS (Yang et al., 2024b) achieve student
accuracies that closely approach their corresponding teachers, whereas earlier approaches—particularly those
involving heterogeneous architectures—often suffer from notable performance degradation.

Table 11 reports the defensive performance of representative defenses against a diverse set of model extraction
attacks on a CIFAR-10 target model, following the experimental protocol of ModelGuard (Tang et al., 2024).
The evaluation considers two query strategies (KnockoffNet (Orekondy et al., 2019) and JBDA-TR (Juuti
et al., 2019)), and measures defense effectiveness by the extraction accuracy of the substitute model under
fixed utility constraints. This unified setup enables a fair comparison between classical defenses (None,
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Table 8: The overall results on the role-play and safety benchmarks with LLaMA-3-8B-Instruct, and Gemma-
2-9b-it under the LoRA fine-tuning settings. The results are the average performance across 10 roles.

LoRA Fine-tuning RoleBench ↑ Safety ↑ Jailbreak ↑
RAW SPE AVG. AdvBench BeaverTails HEx-PHI AVG. AVG.

LLaMA-3-8B-Instruct

LLaMA-3-8B-Instruct baseline 23.86 19.14 21.50 98.46 91.40 95.33 95.06 78.80
SFT (Ouyang et al., 2022) 30.42 24.82 27.62 87.75 78.77 83.43 83.32 73.26
SPPFT (Li et al., 2025b) 29.48 24.49 26.99 86.23 78.95 81.47 82.22 58.18
SafeLoRA (Hsu et al., 2024) 29.64 23.84 26.74 88.75 80.88 85.17 84.93 72.28
SafeInstr (Bianchi et al., 2024) 30.14 24.55 27.35 92.85 79.41 87.67 86.64 73.00
Vaccine (Huang et al., 2024c) 26.16 20.05 20.89 96.37 87.43 94.63 83.36 79.80
SEAL (Shen et al., 2025) 26.32 22.09 24.21 97.54 90.53 93.20 93.76 64.82
SaRFT (Zhao et al., 2025) 29.35 23.41 26.38 97.62 89.56 93.47 93.55 80.08

Gemma-2-9b-it

Gemma-2-9b-it baseline 23.37 16.44 19.91 99.42 95.20 99.67 98.10 30.40
SFT (Ouyang et al., 2022) 31.69 27.19 29.44 85.04 85.79 86.27 85.69 25.96
SPPFT (Li et al., 2025b) 31.63 27.20 29.42 85.94 86.24 86.60 86.26 26.74
SafeLoRA (Hsu et al., 2024) 32.47 26.62 29.54 87.67 89.75 89.57 88.99 27.44
SafeInstr (Bianchi et al., 2024) 32.02 26.95 29.49 87.40 82.08 85.13 84.87 26.02
Vaccine (Huang et al., 2024c) 21.28 17.92 19.60 90.12 91.74 92.27 91.38 22.46
SEAL (Shen et al., 2025) 29.06 23.43 26.25 98.08 97.00 96.77 97.28 25.12
SaRFT (Zhao et al., 2025) 30.78 25.23 28.01 98.27 95.58 97.10 96.98 30.70

Table 9: Membership inference attack (MIA) comparison between methods for LLMs on WIKIMIA dataset,
"—" indicates that the data are unavailable.

Method Pythia Falcon LLaMA-2

PPL (Yeom et al., 2018) 0.69 0.62 0.61
Min-K% (Shi et al.) 0.74 0.64 0.64
Min-K%++ (Zhang et al., 2025b) 0.66 0.74 0.57
Zlib (Carlini et al., 2021) 0.72 0.64 0.63
Lowercase (Carlini et al., 2021) 0.69 0.63 0.61
Neighbor (Mattern et al., 2023) 0.66 0.59 0.61
MIA-Tuner (Fu et al., 2025) 0.96 0.91 0.98
Random Swapping (RS) attack (Tang et al., 2023) 0.50 0.51 0.50
Back Translation (BT) attack (Tang et al., 2023) 0.51 0.48 0.49
Word Substitution (WS) attack (Tang et al., 2023) 0.49 0.51 0.51
SMIA (Mozaffari & Marathe) 0.67 — —
BEAST (Sadasivan et al., 2024) 0.63 — 0.55
SaMIA (Kaneko et al., 2025) — — 0.7
PETAL (He et al., 2025) 0.64 0.60 0.58

RevSig (Lee et al., 2019), MAD (Orekondy et al., 2020), AM (Kariyappa & Qureshi, 2020b), Top-1 (Sanyal
et al., 2022), Rounding (Tang et al., 2024), recent defense work such as MGW (ModelGuard-W), MGS
(ModelGuard-S) (Tang et al., 2024), and QUEEN method (Chen et al., 2025a).

9.2 Case Study

To illustrate AI security in practice, we construct a medical image classification pipeline using the PathM-
NIST in MedMNIST dataset (Yang et al., 2021; 2023a), a large-scale and standardized benchmark widely
adopted for evaluating medical foundation models. We design our evaluation around the proposed closed-loop
taxonomy, where attacks propagate through data–model interactions. Specifically, we first introduce a wa-
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Table 10: MNIST and CIFAR-10 ACC Soft-Label
Dataset Methods T Architecture Teacher S Architecture Student
MNIST GAME (Xie et al., 2022) LeNet 98.74 half-LeNet 90.36
MNIST ES Attack (Yuan et al., 2022) LeNet5 92.03 ResNet18 98.13
MNIST IDEAL (Zhang et al., 2022) LeNet 99.27 LeNet 96.32
MNIST TandemGAN (Hong et al., 2023) VGG16 99.51 VGG11 91.30

CIFAR-10 TandemGAN (Hong et al., 2023) ResNet34 90.71 VGG11 29.58
CIFAR-10 QUDA (Lin et al., 2023) ResNet18 81.74 ResNet18 68.99
CIFAR-10 MAZE (Kariyappa et al., 2021a) ResNet20 92.26 WideResNet 89.85
CIFAR-10 DFMS-HL (Sanyal et al., 2022) ResNet34 95.59 ResNet18 91.24
CIFAR-10 ES Attack (Yuan et al., 2022) ResNet34 91.93 ResNet18 62.73
CIFAR-10 IDEAL (Zhang et al., 2022) ResNet34 93.85 ResNet34 68.82
CIFAR-10 E3 (Zhu et al., 2025a) ResNet34 95.94 ResNet18 94.01
CIFAR-10 DualCOS (Yang et al., 2024b) ResNet34 95.54 ResNet18 94.86
CIFAR-10 MEGEX (Miura et al., 2024) ResNet34 95.54 ResNet18 91.61

Table 11: Defensive performance of different defense methods against different attacks on the target model
trained on CIFAR-10.

Query Method Attack Method None RevSig MAD AM Top-1 Rounding MGW MGS QUEEN

KnockoffNet

Naive Attack (Truong et al., 2021) 87.32% 84.86% 83.61% 82.84% 83.51% 86.91% 75.06% 84.11% 10.00%
Top-1 Attack (Sanyal et al., 2022) 83.51% 83.51% 83.51% 80.30% 83.51% 83.51% 83.51% 83.51% 81.17%
S4L Attack (Jagielski et al., 2020) 85.99% 82.04% 80.72% 81.86% 83.72% 85.49% 71.23% 82.80% 10.00%
Smoothing Attack (Lukas et al., 2022) 87.86% 85.27% 84.07% 84.81% 86.16% 87.37% 76.26% 85.36% 10.00%
D-DAE (Chen et al., 2023b) 87.32% 85.62% 84.82% 77.30% 84.81% 86.96% 63.79% 84.97% 78.21%
D-DAE+ (Chen et al., 2023b) 87.32% 86.58% 86.84% 84.17% 84.26% 86.93% 58.23% 84.27% 50.24%
pBayes Attack (Tang et al., 2024) 87.32% 86.58% 87.20% 87.13% 84.04% 86.70% 85.63% 84.63% 84.24%

JBDA-TR

Naive Attack (Truong et al., 2021) 75.50% 66.54% 53.32% 59.56% 62.55% 73.38% 38.13% 61.55% 10.00%
Top-1 (Sanyal et al., 2022) Attack 62.55% 62.55% 62.55% 53.71% 62.55% 62.55% 62.55% 62.55% 61.45%
D-DAE (Chen et al., 2023b) 75.50% 55.89% 40.63% 55.59% 59.61% 67.83% 16.00% 61.14% 47.10%
D-DAE+ (Chen et al., 2023b) 75.50% 72.48% 67.45% 65.59% 63.28% 72.67% 31.86% 64.65% 40.88%
pBayes Attack (Tang et al., 2024) 75.50% 70.90% 67.25% 74.99% 63.27% 74.46% 63.46% 66.57% 65.33%

termark removal attack, which removes the watermark through reconstruction regeneration attack (D→D),
we then introduce a data poisoning attack (D→M) that corrupts the training distribution and compromises
the learned model. Then, we perform model extraction (M→M) to show how to steal a black-box pre-trained
model. Finally, we demonstrate how model inversion (M→D) leaks sensitive training data information. We
present the details and results in the following.

Stage 1: Watermark removal attack In this setting, the data owner embeds imperceptible watermarks
into the training data that can only be detected or verified by authorized parties. To evaluate watermark
removal attacks, we adopt the threat model of Zhao et al. (2024a), where an adversary attempts to eliminate
these hidden signals through data regeneration. Specifically, the attacker reconstructs or regenerates the
protected samples in a way that preserves semantic content while erasing the embedded watermark, thereby
undermining ownership verification without access to the original watermarking mechanism.

We adopt two representative watermarking schemes: DwtDctSvd (Navas et al., 2008) and RivaGAN (Zhang
et al., 2019). To evaluate watermark removal attacks, we apply a set of commonly used distortion and
regeneration–based techniques, including JPEG compression, Bmshj2018 (Ballé et al., 2018), and Cheng2020
(Cheng et al., 2020).

Following (Zhao et al., 2024a), we measure the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index (SSIM), Multi-Scale Structural Similarity Index (MS-SSIM) and watermark detection success rate.
Table 12 reports the watermark detection success rates before any attack. Table 13 presents the detection
results after applying watermark removal attacks. As shown, watermark removal substantially degrades
detection performance, leading to a significant reduction in detection rates.
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Table 12: Stage 1 (D→D) Evaluation results on the MedMNIST dataset. We report PSNR, SSIM, MS-
SSIM and watermark detection success rate.

Watermark PSNR↑ SSIM↑ MS-SSIM↓ WM Succ.↑

DwtDct 39.51 0.972 0.993 0.7815
DwtDctSvd 39.44 0.974 0.993 1.0
RivaGAN 41.22 0.963 0.992 0.6675

Table 13: Stage 1 (D→D) Watermark removal performance under different attacks. We report bit accuracy
(Bit Acc.) and watermark success rate (WM Succ.).

Method Attack Bit Acc. WM Succ.

DwtDct
cheng2020 0.4825 0.0000
bmshj2018 0.4820 0.0000

jpeg 0.5222 0.006

DwtDctSvd
cheng2020 0.4871 0.0005
bmshj2018 0.4924 0.0000

jpeg 0.6803 0.2475

RivaGAN
cheng2020 0.5710 0.0015
bmshj2018 0.5864 0.003

jpeg 0.6795 0.2105

Stage 2: Data poisoning attack We adopt the threat model introduced by (Shafahi et al., 2018), in
which the adversary does not require access to or manipulation of training labels. Instead, the attacker
subtly injects carefully crafted samples into the training set with the goal of inducing a targeted misbehavior
at inference time. Crucially, this manipulation is designed to affect the model’s prediction on a specific test
instance while leaving its overall predictive performance largely unchanged, thereby remaining difficult to
detect. We follow the data poisoning optimization in (Shafahi et al., 2018) and crafted 50 poisoned training
data, the performance is shown in Table 14.

Table 14: Stage 2 (D→M) data poisoning impact on the model performance.
Test accuracy (Original training data) Test accuracy (Poisoned training data)

93.64% 85.72%

Stage 3: Model extraction attack The objective of a model extraction attack is to replicate the
functionality of a deployed black-box model that is accessible only through query-based interactions (e.g.,
via an API). Following the experimental protocol in (Tang et al., 2024), we assume the attacker has no access
to the model’s internal parameters or training data, and instead learns a surrogate model solely by querying
the target model and observing its outputs. We evaluate this threat by conducting a series of controlled
extraction experiments designed to measure how effectively the attacker can approximate the behavior of
the original model under limited query access. Table 15 summarizes the effectiveness of model extraction
attacks under both soft-label and hard-label query settings. Despite the attacker having access only to black-
box query outputs and using a query dataset (TinyImageNet200 and TissueMNIST) that is substantially
different from the data used to train the victim model (PathMNIST in MedMNIST dataset (Yang et al.,
2021; 2023a)), the extracted student models are still able to achieve non-trivial accuracy, reaching 37.06%
and 40.15% under soft-label and hard-label supervision, respectively. These results indicate that, even under
significant data distribution mismatch and restricted query access, model extraction attacks can still recover
meaningful functional behavior of the target model.
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Table 15: Stage 3 (M→M) model extraction on the victim model.
Category Victim model test accuracy (Teacher) Clone model test accuracy (Student)

Soft label 85.72% 34.69%
Hard label 85.72% 36.32%

Stage 4: Model inversion attack The goal of a model inversion attack is to recover sensitive information
about the training data by exploiting access to a trained model. Following prior work (Fang et al., 2022),
we consider a threat model in which the attacker seeks to reconstruct representative input samples that are
highly correlated with the model’s predictions. The attack leverages the model’s learned decision boundaries
and confidence signals to infer properties of the underlying data distribution, thereby revealing private
information that was implicitly encoded during training. We evaluate this threat by assessing the accuracy
by retraining the model on the reconstructed samples. Table 16 shows the student model accuracy after
model inversion.

Table 16: Stage 4 (M→D) model inversion on the victim model.
Teacher model test accuracy Student model test accuracy

36.32% 20.18%

10 Conclusion

In summary, this work establishes a unified perspective on machine learning security by framing the interplay
between data and models through a closed-loop threat taxonomy. By organizing interactions along four
fundamental directions—data-to-data, data-to-model, model-to-data, and model-to-model—our framework
reveals how vulnerabilities and defenses are interconnected across the entire ML pipeline. This holistic view
not only clarifies existing threat relationships but also provides a foundation for designing more generalizable
and resilient defense strategies in the era of large-scale and foundation models.

Broader Impact This survey covers a range of security threats arising from data–model interactions in
modern machine learning systems and these attacks have important societal, ethical, and economic implica-
tions.

First, membership inference, model inversion, and training data extraction attacks can expose sensitive
information about individuals whose data were used during training. Such leakage may violate privacy
expectations and consent, and in real-world settings could enable downstream harms such as identity dis-
closure, discrimination, or misuse of personal data. We emphasize that these risks extend beyond technical
methods and directly affect data subjects, highlighting the need for privacy-preserving training practices,
responsible data governance, and regulatory compliance alongside algorithmic defenses.

Second, model extraction attacks pose broader economic and innovation risks. By enabling adversaries to
replicate proprietary models, these attacks threaten the sustainability of Machine Learning as a Service
(MLaaS) business models and may weaken incentives for organizations to invest in developing high quality
and socially beneficial AI systems. As extraction techniques become more accessible, there is a growing need
for robust defenses, legal frameworks, and deployment time safeguards that balance openness and intellectual
property protection.

In summary, this survey emphasizes that AI security is not solely a technical concern. It has direct conse-
quences for individual privacy and the long-term health of the AI ecosystem. Addressing these challenges
requires coordinated advances in technical defenses, policy, and responsible deployment practices.
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