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Abstract

Recently, there has been increasing interest
in applying large language models (LLMs) as
zero-shot passage rankers. However, few stud-
ies have explored how to select appropriate in-
context demonstrations for the passage ranking
task, which is the focus of this paper. Previ-
ous studies mainly apply a demonstration re-
triever to retrieve demonstrations and use top-k
demonstrations for in-context learning (ICL).
Although effective, this approach overlooks the
dependencies between demonstrations, leading
to inferior performance of few-shot ICL in the
passage ranking task. In this paper, we formu-
late the demonstration selection as a retrieve-
then-rerank process and introduce the DemoR-
ank framework. In this framework, we first
use LLM feedback to train a demonstration
retriever and construct a novel dependency-
aware training samples to train a demonstra-
tion reranker to improve few-shot ICL. The
construction of such training samples not only
considers demonstration dependencies but also
performs in an efficient way. Extensive experi-
ments demonstrate DemoRank’s effectiveness
in in-domain scenarios and strong generaliza-
tion to out-of-domain scenarios.

1 Introduction

Large language models (LLM) have demonstrated
remarkable performance across a spectrum of nat-
ural language processing (NLP) tasks. Recently,
there has been significant interest in using LLMs
for passage ranking tasks (Zhuang et al., 2023a;
Sun et al., 2023; Qin et al., 2023). A typical ap-
proach is relevance generation, which judges the
relevance of a query-passage pair in a pointwise
manner. This method prompts LLMs to assess the
relevance of a passage to a query by generating
responses such as “Yes” or “No”. The relevance
score is then computed based on the log-likelihood
of these responses. This approach has been demon-
strated to be effective in previous studies (Zhuang
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Figure 1: Compared with choosing top-2 demonstra-
tions (z; and z9), the combination of z; and z5 provides
richer and more diverse query-passage relationships,
thus yielding better relevance assessment.

et al., 2023a; Liang et al., 2022).

In-context learning (ICL) has been proved as
an emergent ability of LLMs (Wei et al., 2022),
enabling them to adapt to specific tasks through
several task demonstrations (i.e., input-output ex-
amples). Many studies have investigated the opti-
mal selection of demonstrations for NLP tasks (Lu
et al., 2022; Zhang et al., 2022; Li et al., 2023;
Wang et al., 2023; Xu et al., 2024), highlighting the
importance of tailored demonstrations in achiev-
ing high performance. However, the application
of ICL to passage ranking tasks has not been ex-
tensively studied. Given the complex nature of
passage ranking, ICL presents a challenging yet
promising opportunity to enhance LLMs’ perfor-
mance. Consequently, this study aims to develop
effective demonstration selection strategies to opti-
mize the application of ICL in passage ranking.

A widely-used and effective approach for demon-
stration selection is training a demonstration re-
triever using LLM’ feedback (Wang et al., 2023;
Rubin et al., 2022; Li et al., 2023; Cheng et al.,
2023; Scarlatos and Lan, 2023; Luo et al., 2023).
This approach first utilizes an LLM to score some
demonstration candidates based on LLM’s likeli-
hood of producing the correct output given each



candidate and the input, and choose positive and
negative candidates based on scores for retriever
training. Following this technique line, we propose
to train a demonstration retriever based on LLM’s
feedback tailored for passage ranking task.

In the inference stage, a common practice (Wang
et al., 2023) is to use the trained retriever to ob-
tain a list of demonstrations and concatenate the
top-retrieved ones together in the prompt for ICL.
Despite its effectiveness in NLP tasks, directly ex-
tending it into the passage ranking task may result
in sub-optimal performance. The main challenge
lies in the complex nature of the query-passage
relationship in passage ranking, which may re-
quire a combination of multiple demonstrations
to provide effective information for understanding
such a relationship. Figure 1 shows an example
of such a problem. When selecting 2-shot demon-
strations for the current input (a relevant query-
passage pair), existing methods (Wang et al., 2023;
Rubin et al., 2022) will choose the top-2 demon-
strations (z; and z3) returned by the retriever. How-
ever, we deem that combining z; and z5 is more
suitable for this case. This is because z1 and zs5
have more distinct queries and opposite outputs
(relevance label), which provide LLM with richer
and more diverse query-passage relationship sig-
nals, thus contributing more to the relevance as-
sessment. This example shows the insufficiency
of pure relevance-based demonstration selection in
the few-shot LLM-based passage ranking task. In
this paper, we transform the problem of selecting
the optimal k-shot demonstrations from initially re-
trieved n demonstrations into a demonstration rank-
ing problem and propose to use LLM’s feedback
to train a novel dependency-aware demonstration
reranker, making the top-ranked ones more suitable
in the few-shot ICL for passage ranking.

Nevertheless, training such a reranker is a very
challenging task. As previously mentioned, it is
unreasonable to use LLM’s feedback on each in-
dividual demonstration for training a reranker de-
signed for k-shot selection, because demonstrations
can influence each other. Additionally, construct-
ing the ground truth ranking of a reranker tailored
for k-shot selection requires finding the optimal
k-shot permutation from the retrieved n demon-
strations. Theoretically, this requires using LLM
to score total %'k, demonstration permutations,
which is highly time-consuming and impractical.
To overcome these challenges, we propose to con-
struct a kind of dependency-aware training samples

(a list of demonstrations with ranking labels) for
reranker training. Specifically, given a retrieved
demonstration set, we greedily select demonstra-
tions from the set and annotate them with different
ranking labels (from highest to lowest). Each time,
the demonstration that maximizes the LLM’s feed-
back when concatenated with the already selected
ones is chosen. This process not only considers the
dependencies between current demonstration and
previously selected ones, but also greatly reduces
the number of LLM inferences.

To this end, we propose DemoRank, a
Demonstration selection framework for passage
Ranking, using a two-stage “retrieve-then-rerank”
strategy. In this framework, we first train a demon-
stration retriever DRetriever based on LLM’s feed-
back for the ranking task. Then, we introduce
a dependency-aware demonstration reranker DR-
eranker to rerank the retrieved demonstrations. To
address the challenges of its training, we propose
a method to construct dependency-aware training
samples that not only incorporates demonstration
dependency but is also time-efficient.

Experiments on a series of ranking datasets
prove the effectiveness of DemoRank, especially in
few-shot ICL. Further analysis also demonstrates
the contribution of each proposed component and
DemoRank’s strong ability under different sce-
narios, including limited training data, different
demonstration numbers, unseen datasets, etc.

The main contributions of our paper are summa-
rized as follows: (1) To the best of our knowledge,
we are the first to comprehensively discuss effec-
tive demonstration selection in passage ranking and
propose DemoRank framework. (2) We propose
a novel dependency-aware demonstration reranker
and design a rational and efficient method for con-
structing its training data. (3) Besides in-domain
performance, further experiments also demonstrate
DemoRank’s generalization on unseen datasets.

2 Related Work

2.1 LLM for Passage Ranking

With the development of large language models
(LLMs) in information retrieval (Zhu et al., 2023),
there have been many studies exploring how to
utilize LLMs for the passage ranking task. In gen-
eral, these studies can be divided into three cate-
gories: pointwise (Liang et al., 2022; Sachan et al.,
2022), pairwise (Qin et al., 2023), and listwise
methods (Sun et al., 2023; Ma et al., 2023). Point-



wise methods assess the relevance between a query
and a single passage. A typical approach is rele-
vance generation (Liang et al., 2022; Zhuang et al.,
2023a), which provides LLM with a query-passage
pair and instructs it to output “Yes” if the passage is
relevant to the query or “No” if not. The relevance
score can be calculated based on the generation
probability of the token “Yes”. Another approach
of pointwise methods is query generation (Sachan
et al., 2022; Zhuang et al., 2023b), which calcu-
lates relevance score based on the log-likelihood
of generating the query based on the passage. Pair-
wise methods compare two passages at a time and
determine their relative relevance to a query, and
listwise methods directly rank a passage list.
Despite promising results, these studies only fo-
cus on the zero-shot scenarios, with less empha-
sis on how to select effective demonstrations in
few-shot scenarios. Manually written or rule-based
selection (Drozdov et al., 2023) is inflexible for
ranking tasks. In this paper, we explore more effec-
tive demonstration selection approaches for rank-
ing tasks. Previous studies (Zhu et al., 2024) have
revealed that relevance generation of the pointwise
method is the most suitable method for passage
ranking on open-source LLMs compared with other
methods. Thus, we intend to use the relevance gen-
eration approach for passage ranking in this paper.

2.2 Demonstration Retrieval

A widely used demonstration selection approach
is demonstration retrieval. Prior studies have ex-
plored using different retrievers for demonstration
retrieval, which can be divided into two categories.
One is utilizing off-the-shelf retrievers such as
BM?25 (Agrawal et al., 2023) or dense retriever (Liu
et al., 2022). The other is to train a demonstration
retriever using task-specific signals. For example,
Rubin et al. (2022) propose to distill the LLM’s
feedback to a dense retriever EPR for the seman-
tic parsing task. Li et al. (2023) and Wang et al.
(2023) propose to train the retriever iteratively on
various NLP tasks. However, a common issue with
these methods is that they directly choose the top-
retrieved demonstrations, which may include redun-
dant information and contribute little to the LLM’s
understanding of relevance. In this paper, we take
the demonstration dependencies into account and
introduce a framework that first retrieves a list of
demonstrations and then reranks in a dependency-
aware manner, better aligning with the few-shot
ICL in the ranking task.

3 Preliminaries

3.1 Relevance Generation for Ranking Task

Passage ranking aims to rank a list of retrieved pas-
sages based on their relevance to a query. Formally,
given a query ¢ and a passage list [p1, ..., py], our
task is to compute a relevance score S(q, p;) for
each passage. In the LLM-based relevance gener-
ation methods (Liang et al., 2022; Zhuang et al.,
2023a), an LLM is provided with a prompt con-
sisting of a query and a passage, and instructed
to output a binary label “Yes” or “No” to indicate
whether the passage is relevant to the query or not.
Then a softmax function is applied to the logits of
tokens “Yes” and “No”, and the probability of the
token “Yes” is used as the relevance score:

RS(q,pZ) = PI‘(“YGS”|T, qvpi)v (1)

where T is the task description. Finally, the pas-
sages are ranked based on the relevance score
S(q, pi) in descending order.

3.2 In-context Learning in Ranking Task

In-context learning is a technique that inserts a
few demonstrations into the prompt to help LLMs
perform a task without updating parameters. In rel-
evance generation task, given k in-context demon-
strations {z;}¥_,, where z; = (¢,p,9) is a triple
consisting of a query, a passage and a binary output
(“Yes” or “No”) indicating the relevance label, the
relevance score Rs(q, p;) could be calculated by:

RS(Qap’L) = PI'(“YGS”|T, {Zi}ég:l’ qapi)a (2)

where T is the task description, which is used in
ICL to help LLMs understand the task (Zhu et al.,
2024; Li et al., 2023).

4 The DemoRank Framework

As shown in Figure 2, our DemoRank frame-
work follows a process of demonstration retrieval
followed by dependency-aware reranking. The
demonstration retriever DRetriever is trained using
the demonstration candidates scored by LLM and
the demonstration reranker DReranker is trained
based on our constructed dependency-aware train-
ing samples. In this section, we elaborate on our
demonstration pool construction, the pipeline of
training, and inference.
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Figure 2: An overview of our proposed framework DemoRank. DemoRank comprises two main components:
DRetriever and DReranker. We train the DRetriever using demonstration candidates scored by LLM and construct a
kind of dependency-aware training samples to train the DReranker. During inference, a retrieve-then-rerank pipeline

is performed and the top-k reranked ones are used for ICL.

4.1 Demonstration Pool Construction.

Given a passage ranking dataset (e.g., MS
MARCO (Nguyen et al., 2016)), we use its train-
ing set to construct our demonstration pool P. For
each query in the training set, we construct pos-
itive and negative demonstrations by pairing the
query with its relevant and irrelevant passages re-
spectively. To maintain the output label balance
in the demonstration pool P, the number of nega-
tive demonstrations of each query is set equal to its
positive demonstrations.

4.2 Demonstration Retriever DRetriever

In this part, we train DRetriever to retrieve poten-
tially useful demonstrations for subsequent demon-
stration reranking. We apply an LLM to score a set
of demonstration candidates to obtain supervised
signals and use them to train the retriever through
a multi-task learning strategy.

Scoring with LLM For a training input I =
(g, p) which contains a query-passage pair, we se-
lect a set of demonstrations from demonstration
pool P as training candidates. Following previ-
ous studies (Wang et al., 2023), we employ the
BM2S5 algorithm to retrieve top-b demonstrations.
Due to the complex nature of passage ranking, the
utility of a demonstration is not directly related to
its similarity to the input (Drozdov et al., 2023).
To include more potential useful demonstrations
for training, we also randomly sample another B

demonstrations from P. The total number of train-
ing candidates is annotated as N (N = 2 x b).

After that, we apply a frozen LLM scorer to
score each demonstration z; for the training input
I using the following equation:

Pr(y|T, z;,I)
Ey’ey Pr(y,|T> 2y I) ’

where y is the relevance label for the query-passage
pairin I, Y = {“Yes”, “No” } is the label space
and T is the task description. In this paper, the
LLM scorer uses the same model as the LLM pas-
sage ranker. Nevertheless, we also explored the
transferability of LLM scorer on different LLM
passage rankers (see Appendix C).

Training Our DRetriever is based on bi-encoder
architecture. Given the current training input
I = (q,p) and a candidate z;, we use encoder
FE'; and demonstration encoder F, to encode them
respectively and calculate the similarity score as:

S(I,z) = E/(I)" Ex(2), 4)
where the two encoders E7 and E, share parame-
ters and encode with average pooling.

Then we apply a contrastive loss L. to maximize
the score between the training input / and posi-
tive demonstration 2™ and minimize it for negative
demonstration z; . Here 27T is the demonstration
with the highest LLM score and z;  are the remain-



ing ones. The contrastive loss L. is calculated as:
eS(I,z+)

~ S0

ZZ/EZ eS(I»Z )

where Z = {z1,27,..., 2y_,}. Here we choose
not to use in-batch negatives. The reasons are dis-
cussed in appendix D.

To make use of the fine-grained supervision of
LLM’s feedback, we also consider a ranking loss
RankNet (Burges et al., 2005) to inject the ranking
signal of candidates into training:

L.=- log (5)

12|
L =Y 1y, #log(1 4 S =ST20) - (6)
0,

where r; is the rank of z; in Z when sorted in
descending order by the LLM score.

The final loss function L is defined as the
weighted sum of L. and L,:

L - )\LC + Lr, (7)
where ) is a pre-defined hyper-parameter.

4.3 Demonstration Reranker DReranker

Previous studies (Wang et al., 2023; Rubin et al.,
2022; Li et al., 2023) mainly use the top-k retrieved
demonstrations for ICL which ignores the demon-
stration dependencies and could be sub-optimal for
ranking tasks. To mitigate this issue, we formu-
late the selection of the optimal k-shot permuta-
tion from retrieved demonstrations into a demon-
stration reranking problem and construct a novel
dependency-aware training samples in an efficient
way for the reranker’s training.

Constructing Dependency-aware Training Sam-
ples. To align with the aim of our DReranker, we
propose constructing a dependency-aware training
samples for training. Specifically, given a training
input I, we use our trained DRetriever to retrieve
top-M demonstrations Z" from the demonstration
pool. Then, we iteratively select demonstrations
from Z' and annotate each of them with a rank-
ing label, as Figure 2 shows. In each iteration, we
select, from the unselected demonstrations in Z",
the one that maximizes the LLM’s feedback when
concatenated with already selected ones. Once
a demonstration is selected, we append it to the
training samples. This process considers previous
demonstration sequence when selecting the current
demonstration and approximates the optimal k-shot

Algorithm 1 Constructing dependency-aware train-
ing samples

Input: Training input /, maximum iteration K.
Output: Dependency-aware training samples Y.
1: Y < {}, selected demonstrations S < [].

2: Retrieve top-M demonstrations Z"

3: fory=Ktoldo

4:  // y is the current ranking label.

5

*

z* = argmax, czns f([5, 2], ), using
Equation (3)

6: S« [92],Y «YU{(z*,y)}

7: end for

8: for z; in Z'\S do

9 Y« YU{(2,0)}

10: end for

11: return Y

demonstration permutation incrementally, which
is time-efficient and aligns with the few-shot set-
ting. Note that as the number of iterations increases,
the computational cost of LLLM inference also in-
creases. Due to limited computational resources,
we set a maximum iteration number K. After the
K -th iteration is completed, we annotate a ranking
label from K to 1 to each demonstration in the
training sample according to their selection order
and annotate 0 to the unselected demonstrations in
Z". Algorithm 1 shows this procedure.

Training After constructing the dependency-
aware training sample, we obtain a ranking label
for each demonstration candidate in Z*. We em-
ploy a cross-encoder model to train our DReranker.
The model takes as input the concatenation of train-
ing input I and one candidate z; with a “[SEP]”
token and outputs a prediction score s; using the
representation of “[CLS]” token. Then we apply
the RankNet loss function to optimize the reranker
model, similar to Equation (6):
12|
L= 1y, *log(l+e57%),  (8)
i.j

where y; represents the ranking label of z;. Note
that our DReranker only receives an input and a
single demonstration, without including dependent
demonstrations, which may not fully capture the
dependency-aware ranking labels. Nonetheless,
this design saves inference time, making our DR-
eranker more efficient. We plan to explore archi-
tectures that can model multiple dependent demon-
strations efficiently in the future.



4.4 Inference

During inference, we first encode the entire demon-
stration pool P using our trained DRetriever and
build the index. Then, given a test input I'**' =
(¢, pi*sY), we retrieve top-M demonstrations us-
ing DRetriever and rerank them using our trained
DReranker. Finally, we choose top-k reranked
demonstrations as the in-context demonstrations
and concatenate them with the test input to calcu-
late the relevance score. We perform this process
for all retrieved passages of ¢'**' and rank these

passages based on their relevance scores.

S Experiments

5.1 Setting

Datasets In our experiments, we train and
evaluate our DemoRank on diverse ranking
datasets, including HotpotQA (Yang et al., 2018),
NQ (Kwiatkowski et al., 2019), FEVER (Thorne
et al., 2018) and MS MARCO (Nguyen et al.,
2016). We use their training set to train our models
respectively and evaluate the models on the corre-
sponding test set (for MS MARCO, the evaluation
is conducted on its development set as well as two
in-domain datasets, TREC DL19 (Craswell et al.,
2020b) and TREC DL20 (Craswell et al., 2020a)).

Implementation Details We use FLAN-T5-
XL (Chung et al., 2022) as the frozen LLM for
demonstration scoring and passage ranking unless
otherwise specified. During the training stage, the
number of demonstration candidates for retriever
and reranker (/N and M respectively) are both set
as 50. And the maximum iteration number K in
Section 4.3 is set as 4. During training, we apply
e5-base-v2 (Wang et al., 2022) and DeBERTa-v3-
base (He et al., 2023) to initialize our demonstra-
tion retriever and reranker respectively. Following
previous studies (Sun et al., 2023; Zhuang et al.,
2023a), we use the top-100 passages retrieved by
BM25 as the passages to rerank. Due to the lim-
ited space, more implementation details on model
training and inference are listed in Appendix A.

Baselines We compare our demonstration selec-
tion method with a series of baselines:

¢ Random: We randomly sample demonstrations
from the demonstration pool P for each test input.
e DBS (Drozdov et al., 2023): DBS is a rule-based
selection approach based on query generation in
passage ranking. It selects the demonstrations

which are the most difficult for the LLM to pre-
dict. In this paper, we implemented the algorithm
based on the relevance generation approach. We
define a score for each demonstration as the prob-
ability of the LLM generating the corresponding
relevance label given a query and passage. The
demonstrations with the lowest scores are applied.
e K-means: K-means is another static demonstra-
tion selection approach. This method clusters all
the demonstrations in the pool into & clusters and
then selects £ demonstrations closest to each cluster
center for ICL. We use the E5 (Wang et al., 2022)
model to obtain the demonstration embeddings for
clustering.

e BM25 (Robertson and Zaragoza, 2009): BM25
is a widely-used sparse retriever. We apply BM25
to retrieve demonstrations that are most similar to
the test query.

o SBERT (Reimers and Gurevych, 2019): We use
Sentence-BERT as the off-the-shelf demonstration
retriever following (Rubin et al., 2022)!. We use
SBERT to encode all the demonstrations in the pool
and retrieve the most similar demonstrations.

o ES (Wang et al., 2022): ES5 is another off-the-
shelf dense retriever. Following Wang et al. (2023),
we use the same retrieval method as SBERT based
on e5-base-v2 checkpoint?.

5.2 Main Results

We compare DemoRank with baselines in 1-shot
and 3-shot ICL respectively. Note that although De-
moRank mainly focuses on few-shot scenarios, it
can also work in 1-shot ICL, so we provide the per-
formance of the 1-shot ICL as a reference. Table 1
shows the main results of our experiments. From
the results, we draw the following observations:
(1) Our framework DemoRank outperforms all the
baselines significantly across all datasets. For ex-
ample, in 3-shot ICL, DemoRank outperforms the
second-best model ES on HotpotQA by 3 points,
and the second-best model BM25 on FEVER by
about 7 points. It shows the DemoRank’s power-
ful ability to select demonstrations. (2) When ex-
panding from 1-shot to 3-shot, DemoRank shows
greater improvement on Avg metric compared to
other baselines, indicating that our DemoRank can
better enhance the ICL performance in few-shot
scenario. (3) The similarity-based demonstration
selection baselines (e.g., ES) outperform Random,

'The checkpoint is from https://huggingface.co/sentence-

transformers/paraphrase-mpnet-base-v2.
Zhttps://huggingface.cofintfloat/e5-base-v2



Method HotpotQA'  NQ FEVER DL19 DL20 MSMARCO | Avg
Initial Order 63.30 30.55  65.13 50.58 47.96 22.84 46.73
0-shot 60.65 48.62 3892  66.13 65.57 33.24 52.19
Random 59.71 48.69 3841 66.76  65.35 33.53 52.08
K-means 59.62 48.68 3796 6645 65.30 33.59 51.93
DBS 60.34 49.05 3896  66.83 65.79 33.54 52.42
1-shot BM25 61.46 49.53 4043 65.08 65.86 33.73 52.68
SBERT 58.41 4949  36.25 66.63 64.18 33.98 51.49
E5 61.70 4949 3996 6648 65.20 33.79 52.77
DemoRank 65.64 5211 4416 68.64 67.38 35.03 55.49
Random 59.42 48.61 38.61 66.57 64.84 33.70 51.96
K-means 59.27 48.71 38.33 66.30 66.22 33.73 52.09
DBS 60.15 48.62  39.00 66.40 65.21 33.61 52.17
3-shot BM25 63.18 49.78  40.19  66.08 65.85 34.03 53.19
SBERT 58.38 49.23  36.80 66.67 65.07 33.71 51.64
E5 63.42 49.60  39.71 66.40 65.33 34.07 53.09
DemoRank 66.39 5252 4690 68.28 67.66 35.12 56.15

Table 1: Main results (NDCG@ 10) on different datasets. The best results are marked in bold and the column Avg
represents the average performance of all datasets. The Initial Order represents the order of the top-100 passages

retrieved by BM25.

Method NQ DL19 FEVER | Avg
Ablation study

- w/o DReranker 51.69  68.44 44.40 54.84
- w/o DTS 52.09 67.12 46.64 55.28
DemoRank 52.52 68.28 46.90 55.90
Using ES as demonstration retriever

E5 49.60  66.40 39.71 51.90
DemoRankgs 50.74  67.37 41.76 53.29

Table 2: Results (NDCG@10) of different variants.

K-means, and DBS baselines, but still lags far be-
hind DemoRank, which proves the effectiveness of
task-specific finetuning based on LLM’s feedback.

5.3 Analysis

In this section, we discuss different variants of
DemoRank, compare DemoRank with supervised
models, evaluate its performance on different
demonstration numbers, and generalization on un-
seen datasets.

5.3.1 Different Variants of DemoRank

To understand the effectiveness of each component
in DemoRank, we further evaluate different vari-
ants of DemoRank. We conduct the experiments
on DL19, NQ sssand FEVER with 3-shot ICL,
shown in Table 2. First, we remove our demon-
stration reranker DRanker and only use demon-
strations retrieved by our demonstration retriever
DRetriever, denoted as “- w/o DRanker”. We can
see that removing DRanker causes about 1 point
drop, which indicates that the reranked demonstra-
tions are more useful for ICL. Secondly, to fur-
ther validate the effectiveness of our dependency-

aware training samples DTS in few-shot ICL, we
introduce another variant that score each retrieved
demonstration in Z" independently based on LLM,
denoted as “- w/o DTS”. Without considering the
demonstration dependency, this variant lags be-
hind DemoRank by 0.62 points, which proves that
the dependency-aware training samples align more
with the few-shot ICL. Thirdly, we also replace
our trained DRetriever with E5 in our framework
to validate the training effectiveness of our DR-
eranker on different demonstration retrievers, de-
noted as DemoRankgs. From the results, we can
see that DemoRankgs significantly improves ES,
which proves that our DReranker’s training is flex-
ible and not restricted by specific demonstration
retriever. In addition, we also discuss the effective-
ness of the ranking loss L, and in-batch negatives
during DRetriever’s training in Appendix D.

5.3.2 Comparison with Supervised Reranker

The training of DemoRank is primarily based on
queries in the training set, which can also be used
to finetune a supervised model. In this part, we
compare DemoRank with two supervised passage
ranking models (monoBERT (Nogueira and Cho,
2019) and monoT5 (Nogueira et al., 2020)) under
different quantities of training queries. Training
details of monoBERT and monoT5 are provided
in Appendix B. We choose MS MARCO as the
training set and NDCG @10 as the metric. We also
report the 0-shot performance as a reference. The
results are shown in Table 4. We can see that when
provided with 500K queries, although DemoRank



Method Robust04 SCIDOCS DBPedia NEWS FiQA Quora NFCorpus \ Avg
Initial Order 40.70 14.90 31.80 3952 23.61 78.86 3375 | 37.59
monoBERT 44.18 15.99 41.70 4462 3206 74.65 34.97 41.17
0-shot 47.90 16.33 36.22 45.01 3530 83.42 35.89 42.87
ES 46.49 16.78 37.72 4540 3538 84.13 35.44 43.05
DemoRank 48.14 16.90 39.76 46.47 3593 83.96 36.14 43.90

Table 3: Results (NDCG@10) on BEIR. Best results are marked in bold. We use MS MARCOQO’s demonstration

pool for retrieval and 3-shot ICL for ES and DemoRank.

QNum Method MS MARCO DL19 DL20

0 0-shot 33.24 66.13 65.57
monoBERT 39.97 70.72 67.28
500K monoT5 40.05 70.58 67.33
DemoRank 35.12 68.28 67.66
monoBERT 30.69 63.61 59.32
20K  monoT5 29.79 61.16 52.72
DemoRank 34.63 67.25 66.67

Table 4: Results (NDCG @ 10) on MS MARCO, DL19
and DL20. QNum represents the number of queries
used in the MS MARCO training set.

slightly outperforms monoBERT and monoT5 on
DL20, it still lags behind them on DL19 and MS
MARCO, indicating the advantages of supervised
models when abundant training data is available.
However, when the number of queries is limited
to 20K, DemoRank significantly outperforms the
two supervised models on three datasets and also
shows a significant improvement over 0-shot base-
line. This suggests that when training data is lim-
ited, DemoRank is more effective than supervised
models, highlighting the potential of DemoRank in
low-resource scenarios.

5.3.3 Different Demonstration Numbers

Demonstration number is often considered a key
factor affecting ICL. In this part, we discuss the
performance of our models under different demon-
stration numbers. We compare DemoRank with
ES5 baseline on FEVER and NQ datasets, using
NDCG@10 as the metric. we also compare with
our DRetriever to better understand the perfor-
mance of our DReranker. The results are shown
in Figure 3. We can see that both DRetriever and
DemoRank outperform ES consistently across dif-
ferent demonstration numbers, proving the effec-
tiveness and robustness of our models. Besides,
we can observe that as the demonstration num-
ber increases, the gap between DemoRank and
DRetriever becomes more obvious (especially on
FEVER), proving the effectiveness of dependency-
aware demonstration reranking in few-shot ICL.

FEVER NQ
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Figure 3: The impact of demonstration number.

5.3.4 Generalization on Unseen Datasets

One of the application scenarios of DemoRank is
its generalization on unseen datasets. To prove this,
we evaluate DemoRank trained on MS MARCO
dataset on a series of BEIR datasets. We choose 0-
shot, ES demonstration retriever, and a supervised
passage ranker MonoBERT (Nogueira and Cho,
2019), which is also trained on the MS MARCO
dataset, for comparison. We use the demonstration
pool from MS MARCO due to the lack of training
sets in most BEIR datasets. As shown in Table 3,
DemoRank outperforms the second-best model ES5,
by an average of about 1 point, proving its gen-
eralization ability. Furthermore, we also draw an
interesting observation: despite using demonstra-
tions from MS MARCO, DemoRank improves the
0-shot baseline across all datasets, indicating the
potential of cross-dataset demonstrations in ICL.

6 Conclusion

In this paper, we explore how to select demon-
strations for passage ranking task and propose De-
moRank. We first trains a demonstration retriever
with multi-task learning based on LLM’s feedback.
Then, an reasonable and efficient method is propose
to construct dependency-aware training samples,
serving as the training data of the demonstration
reranker. Experiments on various ranking datasets
prove the effectiveness of DemoRank. Further
analysis shows the effectiveness of each proposed
component, the advantages compared to supervised
models, and generalization on BEIR, etc.



Limitations

In this paper, we introduce a novel demonstration
selection framework DemoRank for passage rank-
ing task. We acknowledge several limitations in
this paper that present opportunities for future work.
First, due to limited computational resources, we
can not conduct experiments with larger LLMs,
such as those with 30B or even 70B parameters.
Second, our framework is limited to pointwise pas-
sage ranking and lacks discussion on how demon-
strations can be selected in pairwise and listwise
passage ranking, which can be a promising direc-
tion to explore.
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Retriever Model Reranker Model

Initialization e5-base-v2 DeBERTa-v3-base
Optimizer AdamW AdamW
Learning Rate 3e-5 le-5

Batch Size 8 8
Warmup Steps 400 400

Train Epochs 2 2

A 0.2 -

Table 5: Hyperparameters for training the demonstration
retriever and reranker model.

A Implementation Details of DemoRank

The hyper-parameters for training the demonstra-
tion retriever and reranker are shown in Table 5.
For the construction of training input, we pair each
query with one relevant passage and one irrelevant
passage respectively, thus generating two training
inputs. The passages labeled with 1 in the training
set are used as relevant passages and the irrelevant
ones are sampled from the top-100 passages re-
trieved by BM25. The number of queries used in
each dataset is listed in Table 6. The maximum
length of the queries and passages is set to 100 and
64, respectively.

During inference, for each test query-passage
pair, we first use our DRetriever to retrieve top-50
demonstrations and then rerank them using our DR-
eranker. The top-ranked demonstrations are used
for ICL. The prompt we used consists of the instruc-
tion, demonstrations (one or more), and test input.
For zero-shot, no demonstrations are included. The
instructions and demonstrations we used are listed
in Table 7 and Table 8 respectively. The instruc-
tions are used only for each test query-passage pair
and the LLM scoring process. The test inputs have
the same format as the demonstration.

B Training Details of Supervised Models

For fair comparison with DemoRank, we construct
the training data by pairing each query with one
relevant passage and one irrelevant passage respec-
tively. As for monoBERT (Nogueira and Cho,
2019), we start training from a bert-large-uncased
model and use a binary classification loss to opti-
mize the model. As for monoT5 (Nogueira et al.,
2020), we initialize the model with T5-base model
and finetune the model using generative loss. The
training parameters are the same as the original

paper.
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Query Number
FEVER 150K
NQ 150K
HotpotQA 150K
MS MARCO 200K

Table 6: The number of training queries for our frame-
work DemoRank.

C Transferability across different LLM
Ranker

In previous experiments, we used the same LLM
(Flan-T5-XL) as the demonstration scorer and pas-
sage ranker. It is unknown whether the passage
ranker could be replaced with other LLMs in the in-
ference stage. In this section, we evaluate DemoR-
ank’s transferability across different LLM rankers
on several datasets and compare with several base-
lines, including 0-shot, Random, K-means, BM25,
and ES. We experiment with Flan-T5-XXL? (larger
model size) and Llama-3-8B-Instruct* (different
model architecture) and the results are shown in Ta-
ble 9. From the results, we can draw the following
observations: (1) DemoRank outperforms all the
baselines on Avg metric when using both Flan-T5-
XXL and Llama-3-8B-Instruct as the LLM rankers,
proving its strong transferability across different
LLM rankers. (2) We observe that when using Flan-
T5-XXL as LLM Ranker, DemoRank yields higher
performance on FEVER, DL19, and MS MARCO
(49.56, 68.74 and 35.90 respectively), compared
with Flan-T5-XL (46.90, 68.28 and 35.12 respec-
tively in Table 1). This shows DemoRank’s poten-
tial ability to improve passage ranking with larger-
scale LLM rankers. (3) Comparing the overall
0-shot performance between Flan-T5-XL (see Ta-
ble 1), Flan-T5-XXL and Llama-3-8B-Instruct, it
is obvious that FlanT5 models perform better on
average. This indicates that FlanT5 models are
more suitable for passage ranking tasks, similar
to findings from previous research (Zhuang et al.,
2023b).

D Discussion on DRetriever’s Training

In this part, we conducted experiments to verify
the rationale of Dretriever’s training. Firstly, we
remove the ranking loss L, (Equation (6)) from
training (denoted as “- w/o L,”’) and find a signifi-

3https://huggingface.co/google/flan-t5-xxI
*https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct



Dataset

Instruction

FEVER Given an article and a claim, predict whether the article is relevant to the claim by outputting either Yes or No.
If the article is relevant to the claim, output Yes; otherwise, output No.

NQ Given a passage and a question, predict whether the passage is relevant to the question by outputting either
Yes or No. If the passage is relevant to the question, output Yes; otherwise, output No.

HotpotQA Given a passage and a question, predict whether the passage is relevant to the question by outputting either
Yes or No. If the passage is relevant to the question, output Yes; otherwise, output No.

TREC DL19 Given a passage and a query, predict whether the passage is relevant to the query by outputting either Yes or
No. If the passage is relevant to the query, output Yes; otherwise, output No.

TREC DL20 Given a passage and a query, predict whether the passage is relevant to the query by outputting either Yes or
No. If the passage is relevant to the query, output Yes; otherwise, output No.

MS MARCO Given a passage and a query, predict whether the passage is relevant to the query by outputting either Yes or
No. If the passage is relevant to the query, output Yes; otherwise, output No.

Table 7: The instructions used for different datasets.

Dataset Demonstration Format

FEVER Article: #{ ARTICLE }\nClaim: #{CLAIM }\nls the Article relevant to the Claim?\nOutput:

NQ Passage: #{PASSAGE }\nQuestion: #{ QUESTION }\nls the Passage relevant to the Question?\nOutput:

HotpotQA Passage: #{PASSAGE }\nQuestion: #{ QUESTION }\nls the Passage relevant to the Question?\nOutput:

TREC DL19 Passage: #{PASSAGE }\nQuery: #{ QUERY }\nOutput:

TREC DL20 Passage: #{PASSAGE }\nQuery: #{ QUERY }\nOutput:

MS MARCO Passage: #{PASSAGE }\nQuery: #{ QUERY }\nOutput:

Table 8: The demonstration format used for different datasets.

HotpotQA  NQ FEVER DL19 DL20 MS MARCO ‘ Avg

Initial Order 63.30 30.55 65.13 50.58 47.96 22.84 \ 46.73
Flan-T5-XXL
0-shot 56.64 47.61 37.38 66.22 64.30 34.29 51.07
Random 58.31 48.51 39.56 67.47 6531 35.15 52.39
K-means 58.75 48.86 39.37 67.40 65.47 35.24 52.52
BM25 60.66 50.47 43.89 66.82 65.67 35.15 53.78
E5 60.74 50.14  43.86 66.45 65.44 34.84 53.58
DemoRank 62.25 51.68 49.56 68.74 65.90 35.90 55.67
Llama-3-8B-Instruct
0-shot 55.93 36.24 27.53 5847 55.10 28.09 43.56
Random 49.45 36.34 29.03 59.18 56.26 28.11 43.06
K-means 57.01 35.28 34.73 57.63 53.30 26.51 44.08
BM25 60.18 35.31 29.22 59.24 57.28 26.71 44.66
E5 60.09 36.76 28.64 57.36  53.09 26.98 43.82
DemoRank 60.89 35.47 45.24 60.36 56.45 28.54 47.83

Table 9: Results (NDCG @ 10) of different LLM ranker.
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Method NQ DL19 FEVER Avg

-w/o L, 50.60 67.65 43.65 5397
- w/ IBN 51.68 67.14 4443  54.42
DRetriever 51.69 68.44 4440  54.84

Table 10: The results (NDCG@ 10) of different training
variants of DRetriever. We apply 3-shot ICL for each
model.

cant performance degradation on the three datasets.
This indicates that the ranking signal in demonstra-
tion candidates is useful for demonstration retriever
training. Besides, as we mentioned in Section 4.2,
we do not apply in-batch negatives when calculat-
ing the contrastive loss L., which is different from
previous studies (Wang et al., 2023; Li et al., 2023;
Karpukhin et al., 2020). To verify its rationale, we
incorporate the in-batch negatives into the calcu-
lation of contrastive loss, denoted as ““- w/ IBN”’.
From the results, we can see that the in-batch neg-
atives do not bring significant improvement and
even harm the retriever’s performance on DL19.
This is because the utility of demonstrations in
ranking tasks is not directly related to their sim-
ilarity with the training input and the randomly
sampled in-batch demonstrations may still contain
valuable information and act as positive candidates,
which is different from the assumption in passage
retrieval (Karpukhin et al., 2020). Thus, directly
using in-batch negatives may introduce additional
noise into the training process.
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