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Abstract

Recently, there has been increasing interest001
in applying large language models (LLMs) as002
zero-shot passage rankers. However, few stud-003
ies have explored how to select appropriate in-004
context demonstrations for the passage ranking005
task, which is the focus of this paper. Previ-006
ous studies mainly apply a demonstration re-007
triever to retrieve demonstrations and use top-k008
demonstrations for in-context learning (ICL).009
Although effective, this approach overlooks the010
dependencies between demonstrations, leading011
to inferior performance of few-shot ICL in the012
passage ranking task. In this paper, we formu-013
late the demonstration selection as a retrieve-014
then-rerank process and introduce the DemoR-015
ank framework. In this framework, we first016
use LLM feedback to train a demonstration017
retriever and construct a novel dependency-018
aware training samples to train a demonstra-019
tion reranker to improve few-shot ICL. The020
construction of such training samples not only021
considers demonstration dependencies but also022
performs in an efficient way. Extensive experi-023
ments demonstrate DemoRank’s effectiveness024
in in-domain scenarios and strong generaliza-025
tion to out-of-domain scenarios.026

1 Introduction027

Large language models (LLM) have demonstrated028

remarkable performance across a spectrum of nat-029

ural language processing (NLP) tasks. Recently,030

there has been significant interest in using LLMs031

for passage ranking tasks (Zhuang et al., 2023a;032

Sun et al., 2023; Qin et al., 2023). A typical ap-033

proach is relevance generation, which judges the034

relevance of a query-passage pair in a pointwise035

manner. This method prompts LLMs to assess the036

relevance of a passage to a query by generating037

responses such as “Yes” or “No”. The relevance038

score is then computed based on the log-likelihood039

of these responses. This approach has been demon-040

strated to be effective in previous studies (Zhuang041

 Query: Benefits of tea?               Passage: Tea helps with weight loss ...                    Output: 

Query: Types of tea?                    Passage: Tea is popular worldwide ...                      Output : No
Query: Tea Categories?              Passage: Tea originated in China ...                           Output : No

Query: Benefits of yogurt?         Passage: Weight loss and digestion ...                     Output : Yes  
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Figure 1: Compared with choosing top-2 demonstra-
tions (z1 and z2), the combination of z1 and z5 provides
richer and more diverse query-passage relationships,
thus yielding better relevance assessment.

et al., 2023a; Liang et al., 2022). 042

In-context learning (ICL) has been proved as 043

an emergent ability of LLMs (Wei et al., 2022), 044

enabling them to adapt to specific tasks through 045

several task demonstrations (i.e., input-output ex- 046

amples). Many studies have investigated the opti- 047

mal selection of demonstrations for NLP tasks (Lu 048

et al., 2022; Zhang et al., 2022; Li et al., 2023; 049

Wang et al., 2023; Xu et al., 2024), highlighting the 050

importance of tailored demonstrations in achiev- 051

ing high performance. However, the application 052

of ICL to passage ranking tasks has not been ex- 053

tensively studied. Given the complex nature of 054

passage ranking, ICL presents a challenging yet 055

promising opportunity to enhance LLMs’ perfor- 056

mance. Consequently, this study aims to develop 057

effective demonstration selection strategies to opti- 058

mize the application of ICL in passage ranking. 059

A widely-used and effective approach for demon- 060

stration selection is training a demonstration re- 061

triever using LLM’ feedback (Wang et al., 2023; 062

Rubin et al., 2022; Li et al., 2023; Cheng et al., 063

2023; Scarlatos and Lan, 2023; Luo et al., 2023). 064

This approach first utilizes an LLM to score some 065

demonstration candidates based on LLM’s likeli- 066

hood of producing the correct output given each 067
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candidate and the input, and choose positive and068

negative candidates based on scores for retriever069

training. Following this technique line, we propose070

to train a demonstration retriever based on LLM’s071

feedback tailored for passage ranking task.072

In the inference stage, a common practice (Wang073

et al., 2023) is to use the trained retriever to ob-074

tain a list of demonstrations and concatenate the075

top-retrieved ones together in the prompt for ICL.076

Despite its effectiveness in NLP tasks, directly ex-077

tending it into the passage ranking task may result078

in sub-optimal performance. The main challenge079

lies in the complex nature of the query-passage080

relationship in passage ranking, which may re-081

quire a combination of multiple demonstrations082

to provide effective information for understanding083

such a relationship. Figure 1 shows an example084

of such a problem. When selecting 2-shot demon-085

strations for the current input (a relevant query-086

passage pair), existing methods (Wang et al., 2023;087

Rubin et al., 2022) will choose the top-2 demon-088

strations (z1 and z2) returned by the retriever. How-089

ever, we deem that combining z1 and z5 is more090

suitable for this case. This is because z1 and z5091

have more distinct queries and opposite outputs092

(relevance label), which provide LLM with richer093

and more diverse query-passage relationship sig-094

nals, thus contributing more to the relevance as-095

sessment. This example shows the insufficiency096

of pure relevance-based demonstration selection in097

the few-shot LLM-based passage ranking task. In098

this paper, we transform the problem of selecting099

the optimal k-shot demonstrations from initially re-100

trieved n demonstrations into a demonstration rank-101

ing problem and propose to use LLM’s feedback102

to train a novel dependency-aware demonstration103

reranker, making the top-ranked ones more suitable104

in the few-shot ICL for passage ranking.105

Nevertheless, training such a reranker is a very106

challenging task. As previously mentioned, it is107

unreasonable to use LLM’s feedback on each in-108

dividual demonstration for training a reranker de-109

signed for k-shot selection, because demonstrations110

can influence each other. Additionally, construct-111

ing the ground truth ranking of a reranker tailored112

for k-shot selection requires finding the optimal113

k-shot permutation from the retrieved n demon-114

strations. Theoretically, this requires using LLM115

to score total n!
(n−k)! demonstration permutations,116

which is highly time-consuming and impractical.117

To overcome these challenges, we propose to con-118

struct a kind of dependency-aware training samples119

(a list of demonstrations with ranking labels) for 120

reranker training. Specifically, given a retrieved 121

demonstration set, we greedily select demonstra- 122

tions from the set and annotate them with different 123

ranking labels (from highest to lowest). Each time, 124

the demonstration that maximizes the LLM’s feed- 125

back when concatenated with the already selected 126

ones is chosen. This process not only considers the 127

dependencies between current demonstration and 128

previously selected ones, but also greatly reduces 129

the number of LLM inferences. 130

To this end, we propose DemoRank, a 131

Demonstration selection framework for passage 132

Ranking, using a two-stage “retrieve-then-rerank” 133

strategy. In this framework, we first train a demon- 134

stration retriever DRetriever based on LLM’s feed- 135

back for the ranking task. Then, we introduce 136

a dependency-aware demonstration reranker DR- 137

eranker to rerank the retrieved demonstrations. To 138

address the challenges of its training, we propose 139

a method to construct dependency-aware training 140

samples that not only incorporates demonstration 141

dependency but is also time-efficient. 142

Experiments on a series of ranking datasets 143

prove the effectiveness of DemoRank, especially in 144

few-shot ICL. Further analysis also demonstrates 145

the contribution of each proposed component and 146

DemoRank’s strong ability under different sce- 147

narios, including limited training data, different 148

demonstration numbers, unseen datasets, etc. 149

The main contributions of our paper are summa- 150

rized as follows: (1) To the best of our knowledge, 151

we are the first to comprehensively discuss effec- 152

tive demonstration selection in passage ranking and 153

propose DemoRank framework. (2) We propose 154

a novel dependency-aware demonstration reranker 155

and design a rational and efficient method for con- 156

structing its training data. (3) Besides in-domain 157

performance, further experiments also demonstrate 158

DemoRank’s generalization on unseen datasets. 159

2 Related Work 160

2.1 LLM for Passage Ranking 161

With the development of large language models 162

(LLMs) in information retrieval (Zhu et al., 2023), 163

there have been many studies exploring how to 164

utilize LLMs for the passage ranking task. In gen- 165

eral, these studies can be divided into three cate- 166

gories: pointwise (Liang et al., 2022; Sachan et al., 167

2022), pairwise (Qin et al., 2023), and listwise 168

methods (Sun et al., 2023; Ma et al., 2023). Point- 169
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wise methods assess the relevance between a query170

and a single passage. A typical approach is rele-171

vance generation (Liang et al., 2022; Zhuang et al.,172

2023a), which provides LLM with a query-passage173

pair and instructs it to output “Yes” if the passage is174

relevant to the query or “No” if not. The relevance175

score can be calculated based on the generation176

probability of the token “Yes”. Another approach177

of pointwise methods is query generation (Sachan178

et al., 2022; Zhuang et al., 2023b), which calcu-179

lates relevance score based on the log-likelihood180

of generating the query based on the passage. Pair-181

wise methods compare two passages at a time and182

determine their relative relevance to a query, and183

listwise methods directly rank a passage list.184

Despite promising results, these studies only fo-185

cus on the zero-shot scenarios, with less empha-186

sis on how to select effective demonstrations in187

few-shot scenarios. Manually written or rule-based188

selection (Drozdov et al., 2023) is inflexible for189

ranking tasks. In this paper, we explore more effec-190

tive demonstration selection approaches for rank-191

ing tasks. Previous studies (Zhu et al., 2024) have192

revealed that relevance generation of the pointwise193

method is the most suitable method for passage194

ranking on open-source LLMs compared with other195

methods. Thus, we intend to use the relevance gen-196

eration approach for passage ranking in this paper.197

2.2 Demonstration Retrieval198

A widely used demonstration selection approach199

is demonstration retrieval. Prior studies have ex-200

plored using different retrievers for demonstration201

retrieval, which can be divided into two categories.202

One is utilizing off-the-shelf retrievers such as203

BM25 (Agrawal et al., 2023) or dense retriever (Liu204

et al., 2022). The other is to train a demonstration205

retriever using task-specific signals. For example,206

Rubin et al. (2022) propose to distill the LLM’s207

feedback to a dense retriever EPR for the seman-208

tic parsing task. Li et al. (2023) and Wang et al.209

(2023) propose to train the retriever iteratively on210

various NLP tasks. However, a common issue with211

these methods is that they directly choose the top-212

retrieved demonstrations, which may include redun-213

dant information and contribute little to the LLM’s214

understanding of relevance. In this paper, we take215

the demonstration dependencies into account and216

introduce a framework that first retrieves a list of217

demonstrations and then reranks in a dependency-218

aware manner, better aligning with the few-shot219

ICL in the ranking task.220

3 Preliminaries 221

3.1 Relevance Generation for Ranking Task 222

Passage ranking aims to rank a list of retrieved pas- 223

sages based on their relevance to a query. Formally, 224

given a query q and a passage list [p1, . . . , pn], our 225

task is to compute a relevance score S(q, pi) for 226

each passage. In the LLM-based relevance gener- 227

ation methods (Liang et al., 2022; Zhuang et al., 228

2023a), an LLM is provided with a prompt con- 229

sisting of a query and a passage, and instructed 230

to output a binary label “Yes” or “No” to indicate 231

whether the passage is relevant to the query or not. 232

Then a softmax function is applied to the logits of 233

tokens “Yes” and “No”, and the probability of the 234

token “Yes” is used as the relevance score: 235

Rs(q, pi) = Pr(“Yes”|T, q, pi), (1) 236

where T is the task description. Finally, the pas- 237

sages are ranked based on the relevance score 238

S(q, pi) in descending order. 239

3.2 In-context Learning in Ranking Task 240

In-context learning is a technique that inserts a 241

few demonstrations into the prompt to help LLMs 242

perform a task without updating parameters. In rel- 243

evance generation task, given k in-context demon- 244

strations {zi}ki=1, where zi = (q̂, p̂, ŷ) is a triple 245

consisting of a query, a passage and a binary output 246

(“Yes” or “No”) indicating the relevance label, the 247

relevance score Rs(q, pi) could be calculated by: 248

Rs(q, pi) = Pr(“Yes”|T, {zi}ki=1, q, pi), (2) 249

where T is the task description, which is used in 250

ICL to help LLMs understand the task (Zhu et al., 251

2024; Li et al., 2023). 252

4 The DemoRank Framework 253

As shown in Figure 2, our DemoRank frame- 254

work follows a process of demonstration retrieval 255

followed by dependency-aware reranking. The 256

demonstration retriever DRetriever is trained using 257

the demonstration candidates scored by LLM and 258

the demonstration reranker DReranker is trained 259

based on our constructed dependency-aware train- 260

ing samples. In this section, we elaborate on our 261

demonstration pool construction, the pipeline of 262

training, and inference. 263
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Figure 2: An overview of our proposed framework DemoRank. DemoRank comprises two main components:
DRetriever and DReranker. We train the DRetriever using demonstration candidates scored by LLM and construct a
kind of dependency-aware training samples to train the DReranker. During inference, a retrieve-then-rerank pipeline
is performed and the top-k reranked ones are used for ICL.

4.1 Demonstration Pool Construction.264

Given a passage ranking dataset (e.g., MS265

MARCO (Nguyen et al., 2016)), we use its train-266

ing set to construct our demonstration pool P . For267

each query in the training set, we construct pos-268

itive and negative demonstrations by pairing the269

query with its relevant and irrelevant passages re-270

spectively. To maintain the output label balance271

in the demonstration pool P , the number of nega-272

tive demonstrations of each query is set equal to its273

positive demonstrations.274

4.2 Demonstration Retriever DRetriever275

In this part, we train DRetriever to retrieve poten-276

tially useful demonstrations for subsequent demon-277

stration reranking. We apply an LLM to score a set278

of demonstration candidates to obtain supervised279

signals and use them to train the retriever through280

a multi-task learning strategy.281

Scoring with LLM For a training input I =282

(q, p) which contains a query-passage pair, we se-283

lect a set of demonstrations from demonstration284

pool P as training candidates. Following previ-285

ous studies (Wang et al., 2023), we employ the286

BM25 algorithm to retrieve top-b demonstrations.287

Due to the complex nature of passage ranking, the288

utility of a demonstration is not directly related to289

its similarity to the input (Drozdov et al., 2023).290

To include more potential useful demonstrations291

for training, we also randomly sample another B292

demonstrations from P . The total number of train- 293

ing candidates is annotated as N (N = 2 ∗ b). 294

After that, we apply a frozen LLM scorer to 295

score each demonstration zi for the training input 296

I using the following equation: 297

f(zi, I) =
Pr(y|T, zi, I)∑

y′∈Y Pr(y′|T, zi, I)
, (3) 298

where y is the relevance label for the query-passage 299

pair in I , Y = {“Yes”, “No”} is the label space 300

and T is the task description. In this paper, the 301

LLM scorer uses the same model as the LLM pas- 302

sage ranker. Nevertheless, we also explored the 303

transferability of LLM scorer on different LLM 304

passage rankers (see Appendix C). 305

Training Our DRetriever is based on bi-encoder 306

architecture. Given the current training input 307

I = (q, p) and a candidate zi, we use encoder 308

EI and demonstration encoder Ez to encode them 309

respectively and calculate the similarity score as: 310

S(I, zi) = EI(I)
⊤Ez(zi), (4) 311

where the two encoders EI and Ez share parame- 312

ters and encode with average pooling. 313

Then we apply a contrastive loss Lc to maximize 314

the score between the training input I and posi- 315

tive demonstration z+ and minimize it for negative 316

demonstration z−i . Here z+ is the demonstration 317

with the highest LLM score and z−i are the remain- 318
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ing ones. The contrastive loss Lc is calculated as:319

Lc = − log
eS(I,z

+)∑
z′∈Z eS(I,z′)

, (5)320

where Z = {z+, z−1 , . . . , z
−
N−1}. Here we choose321

not to use in-batch negatives. The reasons are dis-322

cussed in appendix D.323

To make use of the fine-grained supervision of324

LLM’s feedback, we also consider a ranking loss325

RankNet (Burges et al., 2005) to inject the ranking326

signal of candidates into training:327

Lr =

|Z|∑
i,j

1ri<rj ∗ log(1 + eS(I,zj)−S(I,zi)), (6)328

where ri is the rank of zi in Z when sorted in329

descending order by the LLM score.330

The final loss function L is defined as the331

weighted sum of Lc and Lr:332

L = λLc + Lr, (7)333

where λ is a pre-defined hyper-parameter.334

4.3 Demonstration Reranker DReranker335

Previous studies (Wang et al., 2023; Rubin et al.,336

2022; Li et al., 2023) mainly use the top-k retrieved337

demonstrations for ICL which ignores the demon-338

stration dependencies and could be sub-optimal for339

ranking tasks. To mitigate this issue, we formu-340

late the selection of the optimal k-shot permuta-341

tion from retrieved demonstrations into a demon-342

stration reranking problem and construct a novel343

dependency-aware training samples in an efficient344

way for the reranker’s training.345

Constructing Dependency-aware Training Sam-346

ples. To align with the aim of our DReranker, we347

propose constructing a dependency-aware training348

samples for training. Specifically, given a training349

input I , we use our trained DRetriever to retrieve350

top-M demonstrations Zr from the demonstration351

pool. Then, we iteratively select demonstrations352

from Zr and annotate each of them with a rank-353

ing label, as Figure 2 shows. In each iteration, we354

select, from the unselected demonstrations in Zr,355

the one that maximizes the LLM’s feedback when356

concatenated with already selected ones. Once357

a demonstration is selected, we append it to the358

training samples. This process considers previous359

demonstration sequence when selecting the current360

demonstration and approximates the optimal k-shot361

Algorithm 1 Constructing dependency-aware train-
ing samples

Input: Training input I , maximum iteration K.
Output: Dependency-aware training samples Y .

1: Y ← {}, selected demonstrations S ← [].
2: Retrieve top-M demonstrations Zr

3: for y = K to 1 do
4: // y is the current ranking label.
5: z∗ = argmaxzj∈Zr\S f([S, zj ] , I), using

Equation (3)
6: S ← [S, z∗], Y ← Y ∪ {(z∗, y)}
7: end for
8: for zj in Zr\S do
9: Y ← Y ∪ {(zj , 0)}

10: end for
11: return Y

demonstration permutation incrementally, which 362

is time-efficient and aligns with the few-shot set- 363

ting. Note that as the number of iterations increases, 364

the computational cost of LLM inference also in- 365

creases. Due to limited computational resources, 366

we set a maximum iteration number K. After the 367

K-th iteration is completed, we annotate a ranking 368

label from K to 1 to each demonstration in the 369

training sample according to their selection order 370

and annotate 0 to the unselected demonstrations in 371

Zr. Algorithm 1 shows this procedure. 372

Training After constructing the dependency- 373

aware training sample, we obtain a ranking label 374

for each demonstration candidate in Zr. We em- 375

ploy a cross-encoder model to train our DReranker. 376

The model takes as input the concatenation of train- 377

ing input I and one candidate zi with a “[SEP]” 378

token and outputs a prediction score si using the 379

representation of “[CLS]” token. Then we apply 380

the RankNet loss function to optimize the reranker 381

model, similar to Equation (6): 382

Lr =

|Zr|∑
i,j

1yi>yj ∗ log(1 + esj−si), (8) 383

where yi represents the ranking label of zi. Note 384

that our DReranker only receives an input and a 385

single demonstration, without including dependent 386

demonstrations, which may not fully capture the 387

dependency-aware ranking labels. Nonetheless, 388

this design saves inference time, making our DR- 389

eranker more efficient. We plan to explore archi- 390

tectures that can model multiple dependent demon- 391

strations efficiently in the future. 392
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4.4 Inference393

During inference, we first encode the entire demon-394

stration pool P using our trained DRetriever and395

build the index. Then, given a test input I test =396

(qtest, ptest
i ), we retrieve top-M demonstrations us-397

ing DRetriever and rerank them using our trained398

DReranker. Finally, we choose top-k reranked399

demonstrations as the in-context demonstrations400

and concatenate them with the test input to calcu-401

late the relevance score. We perform this process402

for all retrieved passages of qtest and rank these403

passages based on their relevance scores.404

5 Experiments405

5.1 Setting406

Datasets In our experiments, we train and407

evaluate our DemoRank on diverse ranking408

datasets, including HotpotQA (Yang et al., 2018),409

NQ (Kwiatkowski et al., 2019), FEVER (Thorne410

et al., 2018) and MS MARCO (Nguyen et al.,411

2016). We use their training set to train our models412

respectively and evaluate the models on the corre-413

sponding test set (for MS MARCO, the evaluation414

is conducted on its development set as well as two415

in-domain datasets, TREC DL19 (Craswell et al.,416

2020b) and TREC DL20 (Craswell et al., 2020a)).417

Implementation Details We use FLAN-T5-418

XL (Chung et al., 2022) as the frozen LLM for419

demonstration scoring and passage ranking unless420

otherwise specified. During the training stage, the421

number of demonstration candidates for retriever422

and reranker (N and M respectively) are both set423

as 50. And the maximum iteration number K in424

Section 4.3 is set as 4. During training, we apply425

e5-base-v2 (Wang et al., 2022) and DeBERTa-v3-426

base (He et al., 2023) to initialize our demonstra-427

tion retriever and reranker respectively. Following428

previous studies (Sun et al., 2023; Zhuang et al.,429

2023a), we use the top-100 passages retrieved by430

BM25 as the passages to rerank. Due to the lim-431

ited space, more implementation details on model432

training and inference are listed in Appendix A.433

Baselines We compare our demonstration selec-434

tion method with a series of baselines:435

• Random: We randomly sample demonstrations436

from the demonstration pool P for each test input.437

• DBS (Drozdov et al., 2023): DBS is a rule-based438

selection approach based on query generation in439

passage ranking. It selects the demonstrations440

which are the most difficult for the LLM to pre- 441

dict. In this paper, we implemented the algorithm 442

based on the relevance generation approach. We 443

define a score for each demonstration as the prob- 444

ability of the LLM generating the corresponding 445

relevance label given a query and passage. The 446

demonstrations with the lowest scores are applied. 447

• K-means: K-means is another static demonstra- 448

tion selection approach. This method clusters all 449

the demonstrations in the pool into k clusters and 450

then selects k demonstrations closest to each cluster 451

center for ICL. We use the E5 (Wang et al., 2022) 452

model to obtain the demonstration embeddings for 453

clustering. 454

• BM25 (Robertson and Zaragoza, 2009): BM25 455

is a widely-used sparse retriever. We apply BM25 456

to retrieve demonstrations that are most similar to 457

the test query. 458

• SBERT (Reimers and Gurevych, 2019): We use 459

Sentence-BERT as the off-the-shelf demonstration 460

retriever following (Rubin et al., 2022)1. We use 461

SBERT to encode all the demonstrations in the pool 462

and retrieve the most similar demonstrations. 463

• E5 (Wang et al., 2022): E5 is another off-the- 464

shelf dense retriever. Following Wang et al. (2023), 465

we use the same retrieval method as SBERT based 466

on e5-base-v2 checkpoint2. 467

5.2 Main Results 468

We compare DemoRank with baselines in 1-shot 469

and 3-shot ICL respectively. Note that although De- 470

moRank mainly focuses on few-shot scenarios, it 471

can also work in 1-shot ICL, so we provide the per- 472

formance of the 1-shot ICL as a reference. Table 1 473

shows the main results of our experiments. From 474

the results, we draw the following observations: 475

(1) Our framework DemoRank outperforms all the 476

baselines significantly across all datasets. For ex- 477

ample, in 3-shot ICL, DemoRank outperforms the 478

second-best model E5 on HotpotQA by 3 points, 479

and the second-best model BM25 on FEVER by 480

about 7 points. It shows the DemoRank’s power- 481

ful ability to select demonstrations. (2) When ex- 482

panding from 1-shot to 3-shot, DemoRank shows 483

greater improvement on Avg metric compared to 484

other baselines, indicating that our DemoRank can 485

better enhance the ICL performance in few-shot 486

scenario. (3) The similarity-based demonstration 487

selection baselines (e.g., E5) outperform Random, 488

1The checkpoint is from https://huggingface.co/sentence-
transformers/paraphrase-mpnet-base-v2.

2https://huggingface.co/intfloat/e5-base-v2
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Method HotpotQA NQ FEVER DL19 DL20 MS MARCO Avg

Initial Order 63.30 30.55 65.13 50.58 47.96 22.84 46.73
0-shot 60.65 48.62 38.92 66.13 65.57 33.24 52.19

1-shot

Random 59.71 48.69 38.41 66.76 65.35 33.53 52.08
K-means 59.62 48.68 37.96 66.45 65.30 33.59 51.93
DBS 60.34 49.05 38.96 66.83 65.79 33.54 52.42
BM25 61.46 49.53 40.43 65.08 65.86 33.73 52.68
SBERT 58.41 49.49 36.25 66.63 64.18 33.98 51.49
E5 61.70 49.49 39.96 66.48 65.20 33.79 52.77
DemoRank 65.64 52.11 44.16 68.64 67.38 35.03 55.49

3-shot

Random 59.42 48.61 38.61 66.57 64.84 33.70 51.96
K-means 59.27 48.71 38.33 66.30 66.22 33.73 52.09
DBS 60.15 48.62 39.00 66.40 65.21 33.61 52.17
BM25 63.18 49.78 40.19 66.08 65.85 34.03 53.19
SBERT 58.38 49.23 36.80 66.67 65.07 33.71 51.64
E5 63.42 49.60 39.71 66.40 65.33 34.07 53.09
DemoRank 66.39 52.52 46.90 68.28 67.66 35.12 56.15

Table 1: Main results (NDCG@10) on different datasets. The best results are marked in bold and the column Avg
represents the average performance of all datasets. The Initial Order represents the order of the top-100 passages
retrieved by BM25.

Method NQ DL19 FEVER Avg

Ablation study
- w/o DReranker 51.69 68.44 44.40 54.84
- w/o DTS 52.09 67.12 46.64 55.28
DemoRank 52.52 68.28 46.90 55.90

Using E5 as demonstration retriever
E5 49.60 66.40 39.71 51.90
DemoRankE5 50.74 67.37 41.76 53.29

Table 2: Results (NDCG@10) of different variants.

K-means, and DBS baselines, but still lags far be-489

hind DemoRank, which proves the effectiveness of490

task-specific finetuning based on LLM’s feedback.491

5.3 Analysis492

In this section, we discuss different variants of493

DemoRank, compare DemoRank with supervised494

models, evaluate its performance on different495

demonstration numbers, and generalization on un-496

seen datasets.497

5.3.1 Different Variants of DemoRank498

To understand the effectiveness of each component499

in DemoRank, we further evaluate different vari-500

ants of DemoRank. We conduct the experiments501

on DL19, NQ sssand FEVER with 3-shot ICL,502

shown in Table 2. First, we remove our demon-503

stration reranker DRanker and only use demon-504

strations retrieved by our demonstration retriever505

DRetriever, denoted as “- w/o DRanker”. We can506

see that removing DRanker causes about 1 point507

drop, which indicates that the reranked demonstra-508

tions are more useful for ICL. Secondly, to fur-509

ther validate the effectiveness of our dependency-510

aware training samples DTS in few-shot ICL, we 511

introduce another variant that score each retrieved 512

demonstration in Zr independently based on LLM, 513

denoted as “- w/o DTS”. Without considering the 514

demonstration dependency, this variant lags be- 515

hind DemoRank by 0.62 points, which proves that 516

the dependency-aware training samples align more 517

with the few-shot ICL. Thirdly, we also replace 518

our trained DRetriever with E5 in our framework 519

to validate the training effectiveness of our DR- 520

eranker on different demonstration retrievers, de- 521

noted as DemoRankE5. From the results, we can 522

see that DemoRankE5 significantly improves E5, 523

which proves that our DReranker’s training is flex- 524

ible and not restricted by specific demonstration 525

retriever. In addition, we also discuss the effective- 526

ness of the ranking loss Lr and in-batch negatives 527

during DRetriever’s training in Appendix D. 528

5.3.2 Comparison with Supervised Reranker 529

The training of DemoRank is primarily based on 530

queries in the training set, which can also be used 531

to finetune a supervised model. In this part, we 532

compare DemoRank with two supervised passage 533

ranking models (monoBERT (Nogueira and Cho, 534

2019) and monoT5 (Nogueira et al., 2020)) under 535

different quantities of training queries. Training 536

details of monoBERT and monoT5 are provided 537

in Appendix B. We choose MS MARCO as the 538

training set and NDCG@10 as the metric. We also 539

report the 0-shot performance as a reference. The 540

results are shown in Table 4. We can see that when 541

provided with 500K queries, although DemoRank 542
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Method Robust04 SCIDOCS DBPedia NEWS FiQA Quora NFCorpus Avg

Initial Order 40.70 14.90 31.80 39.52 23.61 78.86 33.75 37.59

monoBERT 44.18 15.99 41.70 44.62 32.06 74.65 34.97 41.17
0-shot 47.90 16.33 36.22 45.01 35.30 83.42 35.89 42.87
E5 46.49 16.78 37.72 45.40 35.38 84.13 35.44 43.05
DemoRank 48.14 16.90 39.76 46.47 35.93 83.96 36.14 43.90

Table 3: Results (NDCG@10) on BEIR. Best results are marked in bold. We use MS MARCO’s demonstration
pool for retrieval and 3-shot ICL for E5 and DemoRank.

QNum Method MS MARCO DL19 DL20

0 0-shot 33.24 66.13 65.57

500K
monoBERT 39.97 70.72 67.28
monoT5 40.05 70.58 67.33
DemoRank 35.12 68.28 67.66

20K
monoBERT 30.69 63.61 59.32
monoT5 29.79 61.16 52.72
DemoRank 34.63 67.25 66.67

Table 4: Results (NDCG@10) on MS MARCO, DL19
and DL20. QNum represents the number of queries
used in the MS MARCO training set.

slightly outperforms monoBERT and monoT5 on543

DL20, it still lags behind them on DL19 and MS544

MARCO, indicating the advantages of supervised545

models when abundant training data is available.546

However, when the number of queries is limited547

to 20K, DemoRank significantly outperforms the548

two supervised models on three datasets and also549

shows a significant improvement over 0-shot base-550

line. This suggests that when training data is lim-551

ited, DemoRank is more effective than supervised552

models, highlighting the potential of DemoRank in553

low-resource scenarios.554

5.3.3 Different Demonstration Numbers555

Demonstration number is often considered a key556

factor affecting ICL. In this part, we discuss the557

performance of our models under different demon-558

stration numbers. We compare DemoRank with559

E5 baseline on FEVER and NQ datasets, using560

NDCG@10 as the metric. we also compare with561

our DRetriever to better understand the perfor-562

mance of our DReranker. The results are shown563

in Figure 3. We can see that both DRetriever and564

DemoRank outperform E5 consistently across dif-565

ferent demonstration numbers, proving the effec-566

tiveness and robustness of our models. Besides,567

we can observe that as the demonstration num-568

ber increases, the gap between DemoRank and569

DRetriever becomes more obvious (especially on570

FEVER), proving the effectiveness of dependency-571

aware demonstration reranking in few-shot ICL.572

1 2 3 4
Shot Number

39
40
41
42
43
44
45
46
47
48

ND
CG

@
10

FEVER

1 2 3 4
Demonstration Number

49

50

51

52

53

ND
CG

@
10

NQ

E5 DRetriever DemoRank

Figure 3: The impact of demonstration number.

5.3.4 Generalization on Unseen Datasets 573

One of the application scenarios of DemoRank is 574

its generalization on unseen datasets. To prove this, 575

we evaluate DemoRank trained on MS MARCO 576

dataset on a series of BEIR datasets. We choose 0- 577

shot, E5 demonstration retriever, and a supervised 578

passage ranker MonoBERT (Nogueira and Cho, 579

2019), which is also trained on the MS MARCO 580

dataset, for comparison. We use the demonstration 581

pool from MS MARCO due to the lack of training 582

sets in most BEIR datasets. As shown in Table 3, 583

DemoRank outperforms the second-best model E5, 584

by an average of about 1 point, proving its gen- 585

eralization ability. Furthermore, we also draw an 586

interesting observation: despite using demonstra- 587

tions from MS MARCO, DemoRank improves the 588

0-shot baseline across all datasets, indicating the 589

potential of cross-dataset demonstrations in ICL. 590

6 Conclusion 591

In this paper, we explore how to select demon- 592

strations for passage ranking task and propose De- 593

moRank. We first trains a demonstration retriever 594

with multi-task learning based on LLM’s feedback. 595

Then, an reasonable and efficient method is propose 596

to construct dependency-aware training samples, 597

serving as the training data of the demonstration 598

reranker. Experiments on various ranking datasets 599

prove the effectiveness of DemoRank. Further 600

analysis shows the effectiveness of each proposed 601

component, the advantages compared to supervised 602

models, and generalization on BEIR, etc. 603
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Limitations604

In this paper, we introduce a novel demonstration605

selection framework DemoRank for passage rank-606

ing task. We acknowledge several limitations in607

this paper that present opportunities for future work.608

First, due to limited computational resources, we609

can not conduct experiments with larger LLMs,610

such as those with 30B or even 70B parameters.611

Second, our framework is limited to pointwise pas-612

sage ranking and lacks discussion on how demon-613

strations can be selected in pairwise and listwise614

passage ranking, which can be a promising direc-615

tion to explore.616
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Retriever Model Reranker Model

Initialization e5-base-v2 DeBERTa-v3-base
Optimizer AdamW AdamW
Learning Rate 3e-5 1e-5
Batch Size 8 8
Warmup Steps 400 400
Train Epochs 2 2
λ 0.2 -

Table 5: Hyperparameters for training the demonstration
retriever and reranker model.

A Implementation Details of DemoRank835

The hyper-parameters for training the demonstra-836

tion retriever and reranker are shown in Table 5.837

For the construction of training input, we pair each838

query with one relevant passage and one irrelevant839

passage respectively, thus generating two training840

inputs. The passages labeled with 1 in the training841

set are used as relevant passages and the irrelevant842

ones are sampled from the top-100 passages re-843

trieved by BM25. The number of queries used in844

each dataset is listed in Table 6. The maximum845

length of the queries and passages is set to 100 and846

64, respectively.847

During inference, for each test query-passage848

pair, we first use our DRetriever to retrieve top-50849

demonstrations and then rerank them using our DR-850

eranker. The top-ranked demonstrations are used851

for ICL. The prompt we used consists of the instruc-852

tion, demonstrations (one or more), and test input.853

For zero-shot, no demonstrations are included. The854

instructions and demonstrations we used are listed855

in Table 7 and Table 8 respectively. The instruc-856

tions are used only for each test query-passage pair857

and the LLM scoring process. The test inputs have858

the same format as the demonstration.859

B Training Details of Supervised Models860

For fair comparison with DemoRank, we construct861

the training data by pairing each query with one862

relevant passage and one irrelevant passage respec-863

tively. As for monoBERT (Nogueira and Cho,864

2019), we start training from a bert-large-uncased865

model and use a binary classification loss to opti-866

mize the model. As for monoT5 (Nogueira et al.,867

2020), we initialize the model with T5-base model868

and finetune the model using generative loss. The869

training parameters are the same as the original870

paper.871

Query Number

FEVER 150K
NQ 150K
HotpotQA 150K
MS MARCO 200K

Table 6: The number of training queries for our frame-
work DemoRank.

C Transferability across different LLM 872

Ranker 873

In previous experiments, we used the same LLM 874

(Flan-T5-XL) as the demonstration scorer and pas- 875

sage ranker. It is unknown whether the passage 876

ranker could be replaced with other LLMs in the in- 877

ference stage. In this section, we evaluate DemoR- 878

ank’s transferability across different LLM rankers 879

on several datasets and compare with several base- 880

lines, including 0-shot, Random, K-means, BM25, 881

and E5. We experiment with Flan-T5-XXL3 (larger 882

model size) and Llama-3-8B-Instruct4 (different 883

model architecture) and the results are shown in Ta- 884

ble 9. From the results, we can draw the following 885

observations: (1) DemoRank outperforms all the 886

baselines on Avg metric when using both Flan-T5- 887

XXL and Llama-3-8B-Instruct as the LLM rankers, 888

proving its strong transferability across different 889

LLM rankers. (2) We observe that when using Flan- 890

T5-XXL as LLM Ranker, DemoRank yields higher 891

performance on FEVER, DL19, and MS MARCO 892

(49.56, 68.74 and 35.90 respectively), compared 893

with Flan-T5-XL (46.90, 68.28 and 35.12 respec- 894

tively in Table 1). This shows DemoRank’s poten- 895

tial ability to improve passage ranking with larger- 896

scale LLM rankers. (3) Comparing the overall 897

0-shot performance between Flan-T5-XL (see Ta- 898

ble 1), Flan-T5-XXL and Llama-3-8B-Instruct, it 899

is obvious that FlanT5 models perform better on 900

average. This indicates that FlanT5 models are 901

more suitable for passage ranking tasks, similar 902

to findings from previous research (Zhuang et al., 903

2023b). 904

D Discussion on DRetriever’s Training 905

In this part, we conducted experiments to verify 906

the rationale of Dretriever’s training. Firstly, we 907

remove the ranking loss Lr (Equation (6)) from 908

training (denoted as “- w/o Lr”) and find a signifi- 909

3https://huggingface.co/google/flan-t5-xxl
4https://huggingface.co/meta-llama/Meta-Llama-3-8B-

Instruct
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Dataset Instruction

FEVER Given an article and a claim, predict whether the article is relevant to the claim by outputting either Yes or No.
If the article is relevant to the claim, output Yes; otherwise, output No.

NQ Given a passage and a question, predict whether the passage is relevant to the question by outputting either
Yes or No. If the passage is relevant to the question, output Yes; otherwise, output No.

HotpotQA Given a passage and a question, predict whether the passage is relevant to the question by outputting either
Yes or No. If the passage is relevant to the question, output Yes; otherwise, output No.

TREC DL19 Given a passage and a query, predict whether the passage is relevant to the query by outputting either Yes or
No. If the passage is relevant to the query, output Yes; otherwise, output No.

TREC DL20 Given a passage and a query, predict whether the passage is relevant to the query by outputting either Yes or
No. If the passage is relevant to the query, output Yes; otherwise, output No.

MS MARCO Given a passage and a query, predict whether the passage is relevant to the query by outputting either Yes or
No. If the passage is relevant to the query, output Yes; otherwise, output No.

Table 7: The instructions used for different datasets.

Dataset Demonstration Format

FEVER Article: #{ARTICLE}\nClaim: #{CLAIM}\nIs the Article relevant to the Claim?\nOutput:
NQ Passage: #{PASSAGE}\nQuestion: #{QUESTION}\nIs the Passage relevant to the Question?\nOutput:
HotpotQA Passage: #{PASSAGE}\nQuestion: #{QUESTION}\nIs the Passage relevant to the Question?\nOutput:
TREC DL19 Passage: #{PASSAGE}\nQuery: #{QUERY}\nOutput:
TREC DL20 Passage: #{PASSAGE}\nQuery: #{QUERY}\nOutput:
MS MARCO Passage: #{PASSAGE}\nQuery: #{QUERY}\nOutput:

Table 8: The demonstration format used for different datasets.

HotpotQA NQ FEVER DL19 DL20 MS MARCO Avg

Initial Order 63.30 30.55 65.13 50.58 47.96 22.84 46.73

Flan-T5-XXL

0-shot 56.64 47.61 37.38 66.22 64.30 34.29 51.07
Random 58.31 48.51 39.56 67.47 65.31 35.15 52.39
K-means 58.75 48.86 39.37 67.40 65.47 35.24 52.52
BM25 60.66 50.47 43.89 66.82 65.67 35.15 53.78
E5 60.74 50.14 43.86 66.45 65.44 34.84 53.58
DemoRank 62.25 51.68 49.56 68.74 65.90 35.90 55.67

Llama-3-8B-Instruct

0-shot 55.93 36.24 27.53 58.47 55.10 28.09 43.56
Random 49.45 36.34 29.03 59.18 56.26 28.11 43.06
K-means 57.01 35.28 34.73 57.63 53.30 26.51 44.08
BM25 60.18 35.31 29.22 59.24 57.28 26.71 44.66
E5 60.09 36.76 28.64 57.36 53.09 26.98 43.82
DemoRank 60.89 35.47 45.24 60.36 56.45 28.54 47.83

Table 9: Results (NDCG@10) of different LLM ranker.
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Method NQ DL19 FEVER Avg

- w/o Lr 50.60 67.65 43.65 53.97
- w/ IBN 51.68 67.14 44.43 54.42
DRetriever 51.69 68.44 44.40 54.84

Table 10: The results (NDCG@10) of different training
variants of DRetriever. We apply 3-shot ICL for each
model.

cant performance degradation on the three datasets.910

This indicates that the ranking signal in demonstra-911

tion candidates is useful for demonstration retriever912

training. Besides, as we mentioned in Section 4.2,913

we do not apply in-batch negatives when calculat-914

ing the contrastive loss Lc, which is different from915

previous studies (Wang et al., 2023; Li et al., 2023;916

Karpukhin et al., 2020). To verify its rationale, we917

incorporate the in-batch negatives into the calcu-918

lation of contrastive loss, denoted as “- w/ IBN”.919

From the results, we can see that the in-batch neg-920

atives do not bring significant improvement and921

even harm the retriever’s performance on DL19.922

This is because the utility of demonstrations in923

ranking tasks is not directly related to their sim-924

ilarity with the training input and the randomly925

sampled in-batch demonstrations may still contain926

valuable information and act as positive candidates,927

which is different from the assumption in passage928

retrieval (Karpukhin et al., 2020). Thus, directly929

using in-batch negatives may introduce additional930

noise into the training process.931
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