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Abstract

With the widespread use of virtual reality applications, 3D scene generation has become a
challenging new research frontier. 3D scenes have highly complex structures, so it is crucial
to ensure that the output is dense, coherent, and includes all necessary structures. Many
current 3D scene generation methods rely on pre-trained text-to-image diffusion models
and monocular depth estimators, but they often lack rich geometric constraint information
within the scene, leading to geometric distortion in the generated results. Therefore, we
propose a two-stage geometry-aware progressive scene generation framework, SceneWeaver,
which creates diverse, high-quality 3D scenes from text or image inputs. In the first stage,
we introduce a multi-level depth refinement mechanism combined with image inpainting
and point cloud updating strategies to construct a high-quality initial point cloud. In
the second stage, 3D Gaussians are initialized based on the point cloud and continuously
optimized. To address the challenge of insufficient geometric constraints in the Gaussian
Splatting optimization process, we utilize the rich appearance and geometry information
within the scene to perform a geometry-aware optimization, resulting in high-quality scene
generation results. Comprehensive experiments across multiple scenes demonstrate the
significant potential and advantages of our framework compared with several baselines.

Keywords: Scene Generation · Gaussian Splatting · Generative Models

1. Introduction

The current demand for 3D content in virtual reality is substantial. However, creating such
content is labor-intensive and requires extensive domain knowledge, making 3D content
generation a challenging research frontier. Transitioning from 2D to 3D content generation
is a complex process involving the intricate replication of the physical world, particularly
about spatial relationships and depth perception. In the 2D domain, the availability of
extensively annotated datasets has significantly advanced text-to-image generative models
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(Rombach et al., 2022). In contrast, the scarcity of annotated 3D datasets limits the
application of supervised learning in 3D content generation (Ouyang et al., 2023).

To address the challenge of scarce 3D annotated data, several object-centered generation
methods (Poole et al., 2022; Lin et al., 2023) attempt to optimize 3D content by extracting
2D priors from pre-trained diffusion models as supervisory signals without annotated data.
Moreover, progressive outward-facing generation methods (Höllein et al., 2023; Chung et al.,
2023) combining a pre-trained text-conditioned diffusion model (Rombach et al., 2022) and
a monocular depth estimator (Bhat et al., 2023) have received wider attention due to their
ability to facilitate the generation of complex scenes. However, these methods suffer from
the following limitations: (i) The boundaries of objects in the depth map are not clear
enough and some necessary details are missing. This boundary-blurring problem may affect
the subsequent rendering quality and accuracy. (ii) Insufficient scene constraints during the
scene optimization stage may lead to geometric distortion problems in the generated scenes.

To address the aforementioned issues, we propose SceneWeaver, a geometry-aware pro-
gressive scene generation framework that can generate diverse and high-quality 3D scenes
from text or image inputs. Specifically, we design a multi-level depth refinement mecha-
nism to enhance the edges of objects in the depth map by fusing the relative depth features
with the metric depth features. Moreover, a geometry-aware optimization strategy is pre-
sented to sufficiently mine and exploit the rich geometric and appearance information, thus
improving the quality of scene generation. Our contributions are summarized as follows:

• We present SceneWeaver, a text-driven geometry-aware progressive scene generation
framework to generate high-quality 3D scenes.

• We introduce a multi-level depth refinement mechanism to optimize the edges of ob-
jects in the depth map by fusing multi-level depth semantics. Furthermore, we propose a
geometry-aware optimization strategy to capture the rich appearance and geometric infor-
mation within the scene to optimize the scene generation quality effectively.

• Comprehensive experiments demonstrate that the scenes generated by our framework
significantly outperform baselines in terms of fidelity and geometric consistency, proving its
significant potential and advantages in complex 3D scene generation.

2. Related Work

2.1. 3D Scene Representation.

In the field of 3D content generation, choosing the right 3D representation is crucial. Clas-
sical explicit representations (Munkberg et al., 2022; Daniels et al., 2008) play an important
role in computer graphics and vision, as they allow intuitive control over each element and
enable efficient processing of common scenes through the rasterization rendering pipeline.
However, in highly complex or larger-scale scenes, explicit representations may encounter
challenges such as increased memory consumption and reduced rendering efficiency. Thus,
some studies (Park et al., 2019; Mildenhall et al., 2021) have started to employ neural net-
works for implicit representation. Neural Radiance Field (NeRF) (Mildenhall et al., 2021)
as a typical method to represent the scene as an implicit neural field. End-to-end differen-
tiable rendering is achieved by querying information about the scene at different positions
through a Multi-Layer Perceptron. Although methods dedicated to improving rendering
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quality (Barron et al., 2022) and speed (Müller et al., 2022; Fridovich-Keil et al., 2022) are
emerging, these methods still face the challenge of balancing rendering speed and quality.

In contrast, the proposal of unstructured, explicit GPU-friendly 3D Gaussians (Kerbl
et al., 2023) makes it possible to achieve faster rendering speed and better rendering quality
without the need for neural components. 3D Gaussian Splatting (3DGS) models a scene
from a point cloud using a set of Gaussian ellipsoids. It builds learnable 3D Gaussian
representations centered on each point and achieves efficient rendering by rasterizing these
Gaussian ellipsoids into images. Therefore, we use 3DGS as a scene representation to achieve
faster scene generation speed while maintaining high-quality rendering results.

2.2. Text-to-3D Generation.

Generating 3D content using natural language allows users to express their requirements
clearly, without needing specialized 3D modeling skills or knowledge. Some methods (Mo-
hammad Khalid et al., 2022; Lee and Chang, 2022) utilize a priori knowledge from CLIP
(Radford et al., 2021) to constrain the optimization process. Text-to-image diffusion mod-
els (Rombach et al., 2022) offer more powerful generation capabilities than CLIP, owing to
their extensive training data and superior architecture. DreamFusion (Poole et al., 2022)
and SJC (Wang et al., 2023a) introduce Score Distillation Sampling (SDS) to extract a
priori knowledge from pre-trained diffusion models. Subsequent works (Lin et al., 2023;
Wang et al., 2024) further refine the SDS-based optimization process to enhance genera-
tion quality. While these object-centered approaches can generate high-quality 3D objects,
they are challenging to extend to 3D scene generation with outward-facing viewpoints. Be-
cause scene generation must consider dense and coherent outward-facing viewpoints while
ensuring the inclusion of high-quality textures and essential structures (Höllein et al., 2023).

With the widespread use of diffusion models in image inpainting, many methods (Frid-
man et al., 2024; Höllein et al., 2023; Yu et al., 2024; Chung et al., 2023; Ouyang et al., 2023)
utilize the inpainting capabilities of diffusion models combined with monocular depth esti-
mators (Ranftl et al., 2020; Bhat et al., 2023) to inpaint and update the scene progressively.
Among them, SceneScape (Fridman et al., 2024) and Text2Room (Höllein et al., 2023) use
meshes as the 3D representation, which limits the generated results to indoor scenes. When
applied to outdoor scenes, they face problems with distortions or over-smoothed surfaces.
In contrast, LucidDreamer (Chung et al., 2023) and Text2Immersion (Ouyang et al., 2023)
use 3DGS as the 3D representation, employing a progressive scene generation framework
that follows the optimization objective in Kerbl et al. (2023), which enables domain-free
scene generation. However, the generated scenes may have geometric distortions due to
insufficient constraints in the optimization process. Therefore, we introduce a multi-level
depth refinement mechanism and utilize the rich appearance and geometric information
within the scene to achieve geometry-aware 3D scene optimization.

3. Preliminaries

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) utilizes a set
of 3D Gaussians to model a scene and quickly render images by “splatting” (Yifan et al.,
2019) 3D Gaussians to the 2D plane. Each Gaussian is defined by a full 3D covariance
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Figure 1: The overall framework of the proposed SceneWeaver. SceneWeaver con-
structs a point cloud of the scene from a text prompt by progressive inpainting,
refining, and updating. In the refining step, the Multi-level Depth Refinement
(MDR) mechanism is used to clarify the boundaries of each object in the depth
map. Then, the Geometry-aware Optimization (GAO) strategy of 3D Gaussians
is performed using regularization terms that capture the scene’s rich geometric
information to generate a high-quality scene.

matrix Σ and its position (mean) µ in world space:

G(x) = exp(−1

2
(x− µ)TΣ−1(x− µ)), (1)

where Σ can be computed from the scaling matrix S and rotation matrix R as Σ =
RSSTRT . The S and R are further denoted by the scaling vector s ∈ R3 and the rotation
quaternion q ∈ R4. 3DGS employs alpha-blending to compute the color Ĉgs of each pixel:

Ĉgs =
∑
i∈N

ciα
′
i

i−1∏
j=1

(1− α′
j), (2)

where N represents the projected 2D Gaussians that cover the pixel, ordered by depth in
the camera space. ci is the view-dependent colors computed from the spherical harmonic
(SH) coefficients of the ith Gaussian and α′

i is the blending coefficient. Per-pixel depth D̂gs

(Turkulainen et al., 2024) can be rendered using a discrete volume rendering similar to Ĉgs:

D̂gs =
∑
i∈N

diα
′
i

i−1∏
j=1

(1− α′
j), (3)

where di is the depth of the ith Gaussian in camera space.
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Figure 2: The workflow of the Multi-level Depth Refinement (MDR) mechanism.
MDR starts from the image Ii and processes the metric depthDm

i using the object
mask {segj}Ns

j=1 obtained by SAM. The edge map Mm
i and M r

i computed by the

Sobel operator are combined to optimize Dm
i and obtain the refined depth D̃m

i .

The parameters of 3D Gaussians are optimized by stochastic gradient descent strategy.
Optimization of the parameters alternates with adaptive density control to better represent
the scene. The loss term is computed by combining the L1 and LD−SSIM terms between
the rendered image and the ground truth image:

Lrgb = (1− λ)L1 + λLD−SSIM , (4)

where the trade-off hyperparameter λ is set to 0.2.
Progressive Scene Generation Framework. Given a text prompt y, we aim to generate
3D scenes matching the prompt. To achieve this, recent works (Chung et al., 2023; Ouyang
et al., 2023) use a text-conditioned diffusion model (Rombach et al., 2022) and a monocular
depth estimator (Bhat et al., 2023) to inpaint and update the scene progressively. The
pre-trained text-to-image diffusion model Ft2i is used to generate the initial image I0 ∈
R3×H×W from the text prompt y, where H and W denote the height and width of the
image. The monocular depth estimator Fd is then used to obtain the corresponding depth
map Dm

0 ∈ RH×W from I0. The predefined cameras {Ci}Ni=0 are denoted by the extrinsic
parameters Ei ∈ R3×4 and the shared intrinsic parameter K ∈ R3×3, where N + 1 denotes
number of cameras. Based on the initial camera C0, 2D pixels are lifted to 3D space to
construct the initial point cloud P0:

P0 = f2−→3(I0,D
m
0 ,E0,K), (5)

where f2−→3 is a series of geometric transformations that convert the coordinates of each
pixel in the RGBD image from the pixel coordinate system to the world coordinate system.

The generated point cloud for each camera pose should be fused to the existing one.
Specifically, at the ith (i ̸= 0) camera, the existing point cloud Pi−1 is projected into 2D-
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pixel space. Due to the change in camera position, this projection results in a partial image
Îi and a mask M̂i indicating the area to be inpainted:

Îi,M̂i = f3−→2(Pi−1,Ei,K), (6)

where f3−→2 is a series of geometric transformations made to project the point cloud from
the world coordinate system to the pixel coordinate system.

The image inpainting model Finpaint is used to obtain the full image Ii based on the

partial image Îi, the mask M̂i and the text prompt y. The monocular depth estimator Fd

is utilized to get the corresponding depth Dm
i . Since there is some difference between the

neighboring depth maps, Dm
i needs to be processed by minimizing the distance between

the overlapping regions of the two point clouds to get the aligned depth D̄i:

D̄i = falign(f2−→3(Ii,D
m
i ,Ei,K),Pi−1,M̂i = 1), (7)

where falign(·) is the function that minimizes the distance between the overlapping regions

(M̂i = 1) of the two point clouds. Then the inpainted 2D pixels need to be transformed
from pixel coordinates to world coordinates to get the updated point cloud Pi:

Pi = fupdate(f2−→3(Ii, D̄i,Ei,K),P i−1,M̂i = 0), (8)

where fupdate(·) is the function that fuses the new point cloud into the existing point cloud

Pi−1. M̂i = 0 means only the inpainted pixels needs to be transformed. Repeat the above
steps N times to get the final point cloud PN . 3D Gaussians are initialized by PN and
optimized by following the optimization objective Lrgb proposed in Kerbl et al. (2023).

4. Method

We propose SceneWeaver, a geometry-aware progressive framework for text-driven 3D scene
generation as shown in Figure.1. SceneWeaver utilizes image inpainting, depth estimation,
and point cloud updating strategies in the progressive framework to construct a high-quality
point cloud. The point cloud is then used to initialize the 3D Gaussians and the 3D Gaus-
sians are continuously optimized to generate the final 3D scene. In particular, a multi-level
depth refinement mechanism (Sec.4.1) is used for depth refinement, which optimizes object
edges in the depth map by fusing multi-level depth semantics. The geometry-aware 3D
Gaussians optimization strategy (Sec.4.2) is used to capture the rich appearance and geo-
metric information in the scene, which effectively improves the quality of scene generation.

4.1. Multi-level Depth Refinement Mechanism

The depth map Dm
i is the metric depth which is the real distance from the objects to the

camera. In practical implementation, we found that the boundaries of objects in the depth
map are unclear, and some necessary details are missing (Chung et al., 2023). Thus, we
propose the Multi-level Depth Refinement (MDR) mechanism, as shown in Figure.2. It
aims to clarify the boundaries of each object in the depth map by integrating the multi-
level semantics of the relative depth map Dr

i obtained by Marigold (Ke et al., 2024) and
the metric depth map Dm

i obtained by Zoedepth (Bhat et al., 2023).
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Specifically, MDR starts from an RGB image and uses the edge maps obtained from
the relative depth Dr

i and the metric depth Dm
i to optimize Dm

i and obtain the refined
depth D̃m

i . The Segment Anything Model (SAM) (Kirillov et al., 2023) is a robust basic
vision model recognized for its excellent zero-shot capability in image segmentation. SAM
efficiently generates segmentation masks {segj}Ns

j=1 for all objects from an entire image, and
Ns is the number of masks. Inspired by Yu et al. (2024), we combine the depth map Dm

i

with the segmentation mask to compute the processed depth Dm
i [segj ] as follows:

Dm
i

[
segj

]
←

{
fmedian

(
Dm

i

[
segj

])
, if ∆Dj

i < T,

Dm
i

[
segj

]
, otherwise ,

(9)

for j ∈ {1, ..., Ns}, where fmedian(·) is a function that returns the median value of the input.
∆Dj

i denotes the range of disparity (the reciprocal of Dm
i ), computed as the difference

between the maximum and minimum disparity values within the segmentation mask, and
T is the threshold used for the computation.

Subsequently, the Sobel operator is applied to Dm
i [{segj}Ns

j=1] and Dr
i to obtain the edge

map Mm
i and M r

i . For the depth map Dm
i at each viewpoint, we optimize by computing

the loss function Lr to get the refined depth D̃m
i . Lr is computed as follows:

Lr = FMSE(M
r
i ,M

m
i ) + λrFMSE(D

m
i M r

i ,D
m
i Mm

i ), (10)

for i ∈ {0, ..., N}, where FMSE(·) is the Mean Squared Error (MSE) function and λr is set
to 0.01. Dm

i in Eq.7 is replaced by the refined depth D̃m
i to compute the aligned depth D̄i.

4.2. Geometry-Aware Optimization Strategy

Previous methods (Chung et al., 2023; Ouyang et al., 2023) follow the optimization ob-
jective Lrgb in Eq.4 to optimize the 3D Gaussians in the scene. However, the generated
scenes are geometrically distorted due to insufficient scene constraints. Therefore, we de-
sign a Geometry-Aware Optimization (GAO) strategy. The core idea is to utilize the rich
appearance and geometric information to generate realistic and high-quality 3D scenes.

We use the gradient-aware depth loss Lvaluedepth based on the gradients of the RGB image for
adaptive depth regularization (Turkulainen et al., 2024). In edge regions with large absolute
values of the image gradients, the depth loss is reduced, thus ensuring stronger execution
of regularization in smoother textureless regions. Lvaluedepth can be calculated as follows:

Lvaluedepth = exp(−|∇Igt|)
1

|Dgs|
∑

log(1 + ∥D̂gs − D̂gt∥1), (11)

where ∇Igt are the gradients of the ground truth RGB image and ∥ · ∥1 represents ℓ1 norm

function. D̂gt and D̂gs are the per-pixel value of the ground truth and rendered depth map
at each viewpoint respectively. |Dgs| denotes the number of pixels in the rendered depth
map Dgs. The ground truth image and depth map can be obtained by reprojecting the
point cloud PN , and normalization is required to compute Lvaluedepth. Moreover, we incorporate

a Total Variation (TV) loss Lsmooth
depth on the rendered depth maps as a penalty, together with

Lvaluedepth to form the depth supervision term Ldepth. Lsmooth
depth can be calculated as follows:

Lsmooth
depth =

1

|Dgs|
∑
i,j

(∣∣Di,j
gs −Di+1,j

gs

∣∣+ ∣∣Di,j
gs −Di,j+1

gs

∣∣) . (12)
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Method CLIP-Score ↑ BRISQUE ↓ NIQE ↓ CLIP-IQA

Quality ↑ Colorful ↑ Sharp ↑

SceneScape (Fridman et al., 2024) 31.42 30.27 3.80 0.58 0.76 0.38
Text2Room (Höllein et al., 2023) 29.61 27.91 3.51 0.59 0.79 0.32
LucidDreamer (Chung et al., 2023) 31.23 23.18 2.85 0.64 0.80 0.43
Invisible-Stitch (Engstler et al., 2024) 31.18 23.07 3.20 0.62 0.71 0.42
WonderJourney (Yu et al., 2024) 31.09 30.55 3.46 0.58 0.75 0.44

Ours (w/o MDR) 31.50 21.78 2.83 0.66 0.81 0.47
Ours (w/o Depth Supervision) 31.50 22.02 2.73 0.65 0.81 0.43
Ours (w/o Normal Supervision) 31.52 20.87 2.61 0.66 0.78 0.44
Ours (SceneWeaver) 32.09 20.33 2.60 0.70 0.82 0.47

Table 1: Performance comparison among the proposed framework and baselines.
The 2D metrics results include CLIP-Score, BRISQUE, NIQE, and CLIP-IQA
(Quality, Colorful, Sharp). Our approach achieves the best results.

We further use normal information to optimize 3D Gaussians in the scene. Recently,
surface normal estimation models (Bae and Davison, 2024) have demonstrated strong gen-
eralization capabilities. Therefore, we use the pre-trained surface normal estimation model
to estimate normal map Ngt and Ngs from the ground truth and rendered RGB image.
The difference between normal maps is minimized by computing the normal loss Lnormal:

Lnormal = FMSE(Ngs,Ngt). (13)

Based on the above analysis, the 3D Gaussians of the scene can be optimized by the
composite of all the loss functions:

L = Lrgb + λ1(Lvaluedepth + Lsmooth
depth ) + λ2Lnormal, (14)

where trade-off hyperparameters λ1 and λ2 are set to 0.8 and 2.0 respectively. Lrgb is the
original optimization objective proposed in Kerbl et al. (2023).

5. Experiments

5.1. Experiment Setting

Implementation Details. Since our method is optimized for each input, no dataset is
required to train the model. We use ZoeDepth (Bhat et al., 2023) and Marigold (Ke et al.,
2024) as our depth estimator. The Stable Diffusion Inpainting model (Rombach et al., 2022)
is used for text-conditioned image inpainting. We use the ViT-H model of SAM (Kirillov
et al., 2023) for image segmentation. The pre-trained DSINE (Bae and Davison, 2024)
model is used to estimate the surface normal from the RGB image. For text input, we
use Stable Diffusion v1.5 (Rombach et al., 2022) to generate an initial image. For image
input, LLaVa (Contributors, 2023) is used to create a description as a text prompt for
text-conditioned inpainting. All experiments are done on a single Tesla V100 GPU.
Model Zoo. To evaluate the performance of SceneWeaver on the task of text-driven 3D
scene generation, we compare SceneWeaver with five representative and reproducible meth-
ods, including progressive 3D scene generation methods: Text2Room (Höllein et al., 2023),



SceneWeaver: Text-Driven Scene Generation with Geometry-aware Gaussian Splatting

Figure 3: Qualitative comparison of our method and baselines.

Figure 4: Qualitative comparison of our method and baselines.

LucidDreamer (Chung et al., 2023), and Invisible-stitch (Engstler et al., 2024)), and perpet-
ual view generation methods: SceneScape (Fridman et al., 2024) and WonderJourney (Yu
et al., 2024)). Text2Room generates room-scale scenes represented by polygonal textured
3D meshes. LucidDreamer and Invisible-stitch generate diverse scenes represented by 3D
Gaussians. SceneScape and WonderJourney both generate long videos with navigation ef-
fects. SceneScape generates scenes represented by meshes, and WonderJourney represents
scenes at each frame using point clouds. We use the open-source code library of the above
models and modify the inputs to start from the same image and text prompt.

Evaluation Metrics. Previous reference-based metrics do not apply to the generation
task, such as PSNR and LPIPS (Zhang et al., 2018), because there are no 3D scenes
associated with text prompts as ground truth. Thus, we used the six 2D metrics em-
ployed in the previous task to fully assess the quality of the generated scenes. We use the
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Figure 5: 3D Scenes Generated from Diverse Prompts or Images by SceneWeaver. Our
approach contains the necessary scene structure and yields high-quality rendered
results with realistic details.

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) (Mittal et al., 2012a) and
Natural Image Quality Evaluator (NIQE) (Mittal et al., 2012b) for reference-free quality
evaluation of the rendered images of 3D scenes. CLIP score (Hessel et al., 2021) is used to
measure the alignment of the rendered images and text prompts. We also assess the appear-
ance and feel of the rendered images in a way that is more relevant to human perception
by using the Colorful, Quality, and Sharp metrics in CLIP-IQA (Wang et al., 2023b).

5.2. Quantitative Results

We show the average quantitative results across multiple scenes in Table.1. All methods
compute all 2D metrics by applying Gaussian noises to the rotation matrices and translation
vectors of the training cameras and render 50 images of each scene from new viewpoints.
We conclude from the experimental results in Table.1 as follows: (i) Overall, Our method
outperforms baselines by generating higher quality 3D scenes, obtaining lower BRISQUE
and NIQE values, and higher CLIP-Score and CLIP-IQA values. (ii) Our method obtains
a BRISQUE score of 20.33 and a NIQE score of 2.60, which are 11.9% and 8.8% lower
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Figure 6: 3D Scenes Generated from Same Prompt by SceneWeaver.

Figure 7: 3D Scenes in Artistic Styles by SceneWeaver.

compared to the former optimal scores. The optimal scores are achieved for the CLIP-IQA
metrics that assess the appearance and perception of images. This demonstrates that our
proposed key components effectively utilize the geometric information of the scene. This re-
sults in a significant reduction of distortion in the new perspective images rendered from the
scene, highlighting the advantages of our method in terms of image quality, colorfulness, and
sharpness. (iii) Our method achieves optimal results in CLIP-Score. This demonstrates that
our method effectively reduces geometric distortions in the scene, which in turn enhances
the alignment of the rendered image with the input text prompts for the new perspective.

5.3. Qualitative Results

In addition to the quantitative evaluation, we perform an intuitive qualitative evaluation.
We show the rendered RGB images of our method and the 5 baselines in Figure.3 and
Figure.4. We can conclude the following points: (i) SceneScape (Fridman et al., 2024),
WonderJourney (Yu et al., 2024), and Invisible-stitch (Engstler et al., 2024) all create
relatively complete scene structures and appear to be coherently connected at particular
viewpoints. However, when the images are rendered from new viewpoints, clear breaks can
be observed in the boxed regions of the rendered images, and geometric distortions are
evident. (ii) Text2Room (Höllein et al., 2023) uses polygonal meshes to represent scenes.
It proposes a threshold filtering scheme for mesh fusion, which leads to the possibility
that not all mesh stretching regions can be detected. This results in a large number of
distorted and oversmoothed regions observable in the rendered images, which is particularly
noticeable in outdoor scenes. (iii) LucidDreamer (Chung et al., 2023) is currently the most
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visually appealing progressive scene generation framework, but we can observe artifacts and
geometric distortions in the boxed parts of the rendered images. (iv) Compared to baselines,
our approach contains the necessary scene structure and yields high-quality rendered results
with realistic details, significantly reducing artifacts and geometric distortions.

Furthermore, we show more rendered results of indoor and outdoor scenes generated
by SceneWeaver in Figure.5. It is worth noting that our method can generate scenes from
text prompts, synthetic images, or real photos. The initial images in the first four rows
are synthetic images generated by Ft2i based on text prompts. The initial image in the
fifth row is a real photo, using the text prompt generated by Fi2t for text-conditioned
image inpainting. Moreover, SceneWeaver can generate diverse scenes from a single text
prompt (Figure.6), showcasing its flexibility and versatility. Additionally, it supports the
creation of artistic style scenes (Figure.7), allowing for a wide range of creative and stylistic
possibilities. This demonstrates the considerable potential and numerous advantages of our
approach in generating complex and varied 3D scenes. It makes SceneWeaver a powerful
tool for both practical applications and artistic endeavors.

5.4. Ablations Studies

To validate the effectiveness and necessity of the proposed components in SceneWeaver, the
results of the ablation studies are shown in Table.1, Figure.8 and Figure.9. We use the
six 2D metrics mentioned in Sec. 5.1 to evaluate each key component of the model. The
quantitative evaluation results shown in Table.1 demonstrate that each key component of
our method plays a very important role in the final scene generation.

Ablation on MDR. We evaluated the effectiveness of MDR (Figure.8 Left). Without
applying MDR (Figure.8 (a)), it can be observed that the boundaries of the objects are
not distinct enough, especially when dealing with detail-rich objects such as trees, window
prisms, and picture frames. This boundary-blurring problem may affect the quality of the
subsequent rendering. However, after MDR processing (Figure.8 (b)), the object boundaries
are significantly enhanced, which shows that MDR has a significant advantage in improving
the quality of the depth map. By enhancing the boundaries of objects, MDR provides a
more accurate basis for subsequent 3D scene generation and rendering.

We also compare various methods for obtaining edge maps (Figure.8 Right). The tradi-
tional Canny algorithm detects edges using local image gradients and orientations (Figure.8
(c)). This results in edges that often include excessive texture and noise, lacking a holistic
semantic understanding of the image. Directly extracting edge maps from the depth map
Dm

i using the Sobel operator (Figure.8 (d)) loses significant object edge details. When
using the Sobel operator on {segj}

Ns

j=1
(Figure.8 (e)), object edges exhibit considerable dis-

continuities or fragmentation. In contrast, our method (Figure.8 (f)) prioritizes object edge
features, resulting in clearer and more continuous edge maps.

Ablation on GAO. The quantitative results presented in Table.1 demonstrate that depth
and normal supervision effectively leverage the geometric information within the scene. This
mitigates geometric distortions in the generated scenes and notably enhances image quality
assessment metrics. In Figure.9, we showcase the rendered results of depth maps and RGB
images corresponding to various regularization terms. Notably, the introduction of depth
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Figure 8: Left: Ablation on MDR. With MDR, the boundaries of objects in the boxed
regions of the depth map become clearer and the details are more distinct. Right:
Ablation on Edge Detection Methods. Our method (d) focuses more on the
edge features of objects and obtains a clearer and more continuous edge map.

Figure 9: Ablation on GAO. (a) The depth map rendered by 3D Gaussians is not accu-
rate. Applying (b) depth and (c) normal regularization terms effectively reduces
the depth inaccuracy. (d) Combining the two regularizations, the optimal result
can be seen in the boxed regions of the depth map.

and normal regularization terms visibly reduces depth inaccuracies within the boxed regions
of the scene. Combining these with Lrgb term leads to more accurate geometry in the scene.

6. Conclusion

We present SceneWeaver, a geometry-aware progressive text-driven 3D scene generation
framework. SceneWeaver uses a strategy incorporating image inpainting, a multi-level depth
refinement mechanism, and point cloud updating, with regularization terms to capture rich
appearance and geometric information for geometry-aware scene optimization. Comprehen-
sive evaluations of existing open-source 3D scene generation methods on visual results and
multiple metrics demonstrate our approach’s great potential and advantages for complex 3D
scene generation, which opens up more possibilities for future virtual reality applications.
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