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Abstract

We present a Witness Autoencoder (W-AE) – an autoencoder that captures geodesic
distances of the data in the latent space. Our algorithm uses witness complexes to
compute geodesic distance approximations on a mini-batch level, and leverages
topological information from the entire dataset while performing batch-wise ap-
proximations. This way, our method allows to capture the global structure of the
data even with a small batch size, which is beneficial for large-scale real-world data.
We show that our method captures the structure of the manifold more accurately
than the recently introduced topological autoencoder (TopoAE).

1 Introduction

Representation learning aims to identify the underlying structure of data to facilitate the extraction
of useful information [1]. Many representation learning methods are built around the manifold
hypothesis, which states that high-dimensional real world data (e.g. images, text) lie on a low-
dimensional manifold [1].

Currently, autoencoders (AEs) are widely used for non-linear dimensionality reduction in various
applications, mainly due to the expressiveness of neural networks and the encoder-decoder archi-
tecture. However, one of the key issues of AEs is that their latent spaces do not necessarily reflect
the geometric and topological structure of the true data manifold – i.e., they are not guaranteed to
preserve relative distances between points and the topological structure of the data. Preserving this
structure is beneficial not only for interpretability of the latent space, but also for generalization
capabilities [2, 3] and robustness to adversarial attacks [4].

Most geometric manifold learning methods (e.g. ISOMAP [5], UMAP [6], t-SNE [7]) rely on
constructing a neighborhood graph such as k-NN or ε-NN1 to approximate geodesic distances, i.e.
distances measured along the manifold. The choice of parameters k and ε is challenging for two
reasons [8]: (a) Choosing k, or ε, too small results in a disconnected graph, which can lead to disjoint
regions in the embedding of regions that are connected on the actual manifold. (b) Choosing k,
or ε, too large leads to capturing erroneous distances, i.e. distances that deviate from the geodesic
distances of the manifold, which are commonly referred to as short-circuit errors [9] (see fig. 1(c)).
For ISOMAP, Balasubramanian and Schwartz [9] showed that already a single short-circuit error
could lead to an undesired embedding. These challenges become even more severe if the data is not

1k-NN (k nearest neighbors), i.e. we consider the k nearest neighbor for each datum. ε-NN considers all
neighbors within a ball with radius ε around each datum.
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(a) Swiss roll dataset (b) VR persistence pairs (c) 1-NN (d) 1-NN-WC (ours)

Figure 1: Different graphs constructed on the Swiss roll dataset (left). The graphs constructed
from edges of VR 0-order persistence pairings and 1-NN fail to approximate the geodesic distances,
i.e. there are short-circuit errors. 1-NN-WC approximates the geodesic distances well. (nbs =
128, |W | = 2048)

uniformly distributed over the manifold, i.e. if there exist low density regions, which in practice is
often the case. UMAP addresses this issue by defining a metric such that the data is approximately
uniformly distributed over the manifold [6]. One practical limitation of UMAP is the fact that it
cannot be directly used to encode new data without reconstructing the embedding.

Recently introduced Topological Autoencoders (TopoAE) [10] and Markov-Lipschitz deep learn-
ing (MLDL) [11] build upon the idea of aligning (geodesic) distances between input and latent
spaces. TopoAE aligns the distances between edges of 0-order persistence pairings, computed from a
Vietoris-Rips (VR) complex. MLDL aligns distances between k-NN, though additional geometric
constraints are discussed in [11] as well. Like most deep learning algorithms, TopoAE and MLDL
use mini-batch training, and thus the neighborhood graph is constructed on a mini-batch level. We
show that this can lead to short-circuit errors, since low density regions are more likely to occur in
small mini-batches.

We present a new way to construct neighborhood graphs from mini-batches, leading to improved
approximations of geodesic distances. Furthermore, we present a novel loss term for autoencoders to
enforce structure preservation in the latent space, which is closely related to the ones presented in
[10, 11]. We make the following theoretical contributions: (i) we design a method for the construction
of neighborhood graphs based on witness complexes that improve geodesic distance approximations
on a mini-batch level; (ii) we propose a new autoencoder loss term that encourages alignment of the
geodesic distances in both spaces. We demonstrate that, similarly to UMAP [6], our method is able to
preserve geodesic distances of the dataset (i.e. unroll the Swiss roll), by using witness complexes. At
the same time, our method has the advantage of using a decoder-encoder architecture, which allows it
to easily embed new data. Compared to TopoAE, our method approximates the geodesic distances in
the data space more accurately (see fig. 1 and fig. 7) and leads to a better distance preservation in
latent space (see fig. 2 and appendix A).

2 Proposed method

Preliminaries. We start by introducing the notation. Let X ⊂ RD be the input space, Z ⊂ Rd be
the latent space, D = {xi}ni=1, xi ∈ X a dataset and X ⊆ D a mini-batch of size nbs. Further, let
fθ : X → Z (encoder) and gφ : Z → X (decoder) be two non-linear functions parametrized by
neural networks, that together represent an autoencoder. Let δ(·) be a distance measure and AX

a pair-wise distance matrix with entries aj,i = ai,j = δ(xi, xj). Further let π = {(i, j)l}ml=1 be a
set of index pairings describing the edges that occur in the graph. Given AX and π we will define
AX [π] ∈ R|π| to be a vector consisting of the edge lengths of graph π. We define l : Rn → Rn as
l(x) = 1{x≥0}x.

Topological autoencoder. The main contribution of TopoAE [10] is a topological regularization
term Lt, sucht that the total loss term of the autoencoder becomes,

L(x) := Lr(x, gφ(fθ(x))) + λLt. (1)

The topological regularization term Lt aligns “topologically relevant distances” from both spaces [10].
This is achieved by aligning the distances between edges of 0-order persistence pairings of a VR-
filtration from both spaces, i.e. πX (πZ) is defined by a simplicial complex containing all edges of
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0-order persistence pairings2 of X (Z = fθ(X)). Lt is bidirectional and defined as,

Lt :=
1

2
||AX [πX ]−AZ [πX ]||2︸ ︷︷ ︸

LX→Z

+
1

2
||AZ [πZ ]−AX [πZ ]||2︸ ︷︷ ︸

LZ→X

. (2)

LX→Z encourages preservation of distances from the input space (X ) in the latent space (Z). The
role of LZ→X is less obvious, but crucial for the TopoAE. Recall that we align the distances to
preserve topological features, i.e. at convergence it would ideally hold that πX = πZ . Intuitively, if
we find a pair in Z that does not appear in X , it means that these two points are too close. LZ→X
corrects that by pushing them apart. We will use that insight when we motivate our new loss term.

VR and Witness complexes. Commonly used Vietoris-Rips (VR) complexes approximate a topo-
logical space from the entire set of available data. Witness complexes [12] are constructed only from
a subset of all available points, but capture the global structure of the data. A small set of landmark
points (L) is chosen from a dataset, while all the points act as “witnesses” (W ) and determine which
simplices occur in the witness complex. Formally, a 1-simplex σ = {u1, u2} is added to the witness
complex at (filtration) value R iff,

∃w ∈W, s.t. max(δ(u1, w), δ(u2, w)) ≤ R, u1, u2 ∈ L. (3)
In appendix C we provide a more precise definition of both VR and witness complexes.

2.1 Witness autoencoder (W-AE)

Witnessing a neighborhood graph. We leverage witness complexes to improve the batch-wise
approximation of geodesic distances in the following way: we set the points in each mini-batch as
the landmark points (i.e. L = X) and use the entire dataset as witnesses (i.e. W = D). This way,
despite performing gradient descent on mini-batches, we can leverage topological information from
the entire dataset.

To construct a neighborhood graph for each mini-batch X based on a witness complexes, we use the
smallest value R at which an edge (1-simplex) occurs as the pairwise distance,

ãi,j = ãj,i = argmin
x∈D

max
(
δ(ui, x), δ(uj , x)

)
, ∀ui, uj ∈ X. (4)

In the following we will refer to this method as k-NN-WC. In fig. 1(d) such a graph for k = 1, nbs =
128, |W | = 2048 can be seen. Table 1 presents quantitative results on the observed number of
short-circuit errors for 0-order persistence pairings of a VR filtration, k-NN-WC and k-NN, and
shows that k-NN-WC can significantly reduce the occurrence of short-circuit errors.

Witness autoencoder. We propose witness autoencoder (W-AE). W-AE constructs k-NN-WC to get
the pairings πXk . In the latent space it uses k-NN3 to get the pairings πZk . We define Lt as,

Lt(k, ν) :=
1

2
||AX [πXk ]−AZ [πXk ]||2︸ ︷︷ ︸

LX→Z

+
1

2
||l(νAX [πZk − πXk ]−AZ [πZk − πXk ])||2︸ ︷︷ ︸

LZ→X

. (5)

Our LX→Z is similar to the one used in TopoAE, with the important difference of using k-NN-WC.
For LZ→X apart from using k-NN instead of the minimal spanning tree, we would like to point out
three major differences: (i) we only consider pairs that appear in Z but not in X , which we refer
to as wrong pairs; (ii) we introduce a hyper-parameter ν ≥ 1. For ν > 1, LZ→X actively pushes
apart wrong pairs, by setting them further apart in Z than they actually are in X ; (iii) if for any pair
it holds that νδ(xi, xj) ≤ δ(fθ(xi), fθ(xj)) we do not pull the points together (this is because of
l(x) = 1{x≥0}x). In our experiments, we observed that this facilitates the convergence of πZ to πX .
Our LZ→X is similar to Lpush introduced in [11]. However, Lpush pushes apart all non-neighbors
(w.r.t X ) that are at distance below a fixed threshold in Z (hyperparameter B in [11]). In contrast, we
place wrong pairs at a multiple of the actual distance in X , based on the idea that non-nearby points
on the manifold have distances greater than linear approximations [13]. Intuitively ν controls how
“aggressively” the algorithm pushes wrong pairs apart.

2Intuitively, a graph constructed from the edges provided by 0-order persistence pairings is a minimum
spanning tree connecting the points of a mini-batch (see appendix C or [10] for a formal explanation).

3Approximating geodesic distances in the latent space is less important, since we do manifold learning.
Further, the latent space is constantly changing during training, which makes it difficult to apply k-NN-WC.
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Table 1: Observed number of mini-batches
out of 100 containing short-circuit errors for
0-order persistence pairings of a VR filtration
(VR), k-NN and k-NN-WC (|W | = 2048).

nbs Method Neighbors (k)
N/A 1 2 4

64
VR 100 — — —
k-NN — 77 100 100
k-NN-WC — 5 11 72

128
VR 61 — — —
k-NN — 35 76 100
k-NN-WC — 0 2 10

256
VR 6 — — —
k-NN — 3 11 77
k-NN-WC — 0 0 0

Table 2: Quantitative evaluation of latent represen-
tation. For each criterion the winner is marked in
bold and underlined and the runner-up in bold.

Method nbs MSEM,Z Cont Trust

W-AE
64 0.029 0.99966 0.99967
128 0.011 0.99981 0.99998
256 0.001 0.99995 0.99995

TopoAE
64 0.060 0.99973 0.99969
128 0.061 0.99977 0.99970
256 0.010 0.99992 0.99992

UMAP - 0.024 0.99928 0.99698

t-SNE - 0.027 0.99855 0.99837

3 Experimental study on Swiss roll dataset

In the following we provide an overview of our experimental study on W-AE. In appendix A an
exhaustive overview of the results of this experimental study, definitions for all metrics used and a
description of our model selection can be found. All experiments were performed on the Swiss roll
dataset. Furthermore, we present in appendix B another example for k-NN-WC.

Figure 2: Latent representation obtained with
TopoAE and W-AE of Swiss roll dataset for differ-
ent mini-batch sizes.

Architecture & training. We used an AE with
two hidden layers for fθ and gφ consisting of 32
ReLu units each. Further, we normalized AX

and AZ . For optimization we used Adam [14],
learning rates ∈ [0.001, 0.1], nbs ∈ [64, 512],
ν ∈ [1, 1.25], k ∈ [1, 8] and trained for 1000
epochs with early stopping. We fixed the mini-
batches over all epochs4.

Qualitative evaluation. The latent representa-
tion of the Swiss roll dataset constructed by
TopoAE and W-AE for different mini-batch
sizes can be seen in fig. 2. Compared to TopoAE
our method succeeds at unrolling the Swiss roll
for smaller mini-batches and achieves an embed-
ding quality comparable to UMAP and t-SNE.

Quantitative evaluation. Results for TopoAE,
W-AE, UMAP and t-SNE can be seen in table 25.
W-AE outperforms its competitors w.r.t. Trust and Cont [15], except for nbs = 64. MSEM,Z
measures the MSE between the true distance matrix of the manifold and the one computed from the
resulting embedding6. W-AE achieves comparable results for nbs = 128 to TopoAE for nbs = 256.
W-AE outperforms TopoAE for nbs = 256, which is likely due to the new loss formulation.

4 Discussion

To summarize, we make two contributions: (i) with k-NN-WC we present a general method that
is applicable to deep learning methods that rely on distance preservation (e.g. MLDL), and (ii) we
provide a new loss term that facilitates convergence of πZ to πX .

In particular, providing (i) is essential to make deep learning methods that rely on distance preservation
scalable to high-dimensional real-world data, since the underlying manifold is likely too complex to
be approximated by k-NN on a mini-batch level for reasonable mini-batch sizes.

4This is an important detail, since reshuffling increases the likelihood that short-circuit errors appear.
5TopoAE and W-AE were evaluated on a test split, t-SNE and UMAP directly on the training data.
6We are able to compute this because we know the actual manifold, i.e. we can sample from it.
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A Supplementaries on experimental study

A.1 Pairwise distances between latent space and true manifold

In the following we present latent spaces of the Swiss roll dataset of all models compared in the
study, and compare the pairwise distances between the latent space (Z) and the true manifold (M),
which in the ideal case lie on the 45 deg line (i.e. δZ(i, j) = δM(i, j)). Note that local distance are
reflected by the lower left corner, while global distances are in the top right corner. In general it is
more difficult to approximate the global distances correctly. W-AE performs better on the whole
range of distances. Quantitatively these results are reflected by MSEM,Z and σ̂isok (see table 3). The
axis are normalized in the following plots.

(a) W-AE, nbs = 64 (b) W-AE, nbs = 128 (c) W-AE, nbs = 256

Figure 3: Latent space (top row) and pairwise distance comparison between true manifold (M) and
latent space (Z) constructed from W-AE. The global distances on the manifold get approximated
more accurately for larger batch sizes. Yet compared to TopoAE the approximation is already better
for smaller batch sizes. (see fig. 4)

(a) TopoAE, nbs = 64 (b) TopoAE, nbs = 128 (c) TopoAE, nbs = 256

Figure 4: Latent space (top row) and pairwise distance comparison between true manifold (M) and
latent space (Z) constructed from TopoAE. The global distances on the manifold get approximated
more accurately for larger batch sizes.
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(a) UMAP (b) tSNE

Figure 5: Latent space (top row) and pairwise distance comparison between true manifold (M) and
latent space (Z) constructed tSNE and UMAP.

Table 3: Complete overview of the quantitative evaluation of the experimental study. For each
criterion the winner is marked in bold and underlined and the runner-up in bold

Method nbs Lrec MSEM,Z Trust Cont σ̂iso45 KL0.1 KL0.01

W-AE
64 0.274 0.029 0.99966 0.99967 0.20 0.044 0.023

128 0.721 0.011 0.99982 0.99981 0.15 0.044 0.018
256 0.144 0.001 0.99995 0.99995 0.07 0.046 0.011

TopoAE
64 10.459 0.06 0.99973 0.99969 0.21 0.004 0.017

128 10.945 0.061 0.99977 0.99970 0.19 0.002 0.014
256 0.168 0.01 0.99992 0.99992 0.09 0.042 0.022

UMAP — — 0.024 0.99928 0.99698 0.74 0.066 0.056
t-SNE — — 0.027 0.99855 0.99837 0.33 0.050 0.044

A.2 Quantitative evaluation

In table 3 an exhaustive overview over the quantitative results can be seen. The definitions for all
metrics can be found in appendix A.4. We want to point out the following remarks:

• For the Swiss roll dataset, optimizing Lt is not at odds with optimizing Lr. More experi-
mental results are needed to verify if and to what extent that applies to other datasets.

• MSEM,Z and σ̂iso45 reflect the improved latent embedding that can be seen qualitatively
most accurately. Our method preserves global distances on the manifold more accurately, as
well as local, pairwise distances (σ̂isok ).

• Overall our method outperforms its competitors (except for nbs = 64) w.r.t. continuity
and trustworthiness. We would like to point here that the choice of k (for continuity and
trustworthiness) has a very strong effect on the outcome of the evaluation. Chosen too small,
the error can be underestimated, chosen too large, non-neighbor points are included in the
evaluation (i.e. short-circuit errors).

• We included KLκ as presented in [10]. KLκ heavily depends on κ. In our work we
observed that choosing κ to be difficult, hence we doubt if it is a good measure to assess the
embedding quality.
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A.3 Training details

The presented results are obtained from a grid search. W-AE was trained for learning rates ∈
[0.001, 0.1], λ ∈ [512, 8192], nbs ∈ [64, 512], ν ∈ [1, 1.25], k ∈ [1, 8]. For selection we chose the
10 best models according to matched edges in data and latent space, from which we selected the
one with the highest trustworthiness score. TopoAE was trained for learning rates ∈ [0.001, 0.1],
λ ∈ [512, 8192], nbs ∈ [64, 512] and the best model selected according to the trustworthiness
score. For a fair comparison we also compared TopoAE results for other metrics, however TopoAE
never succeeded to unroll the Swiss roll for nbs ∈ {64, 128}. UMAP was trained for k ∈ [2, 40],
mindist ∈ [0.05, 0.5], t-SNE for perplexity ∈ [10, 100], and the best models selected according to
the trustworthiness score. We ran all models with 10 different random initializations (affects the
model initialization and sampling of the data).

A.4 Evaluation metrics

For quantitative evaluation of our work we used rank-based and distance-based criteria. We will first
define the ones used in section 3 (MSEM,Z , Trust, Cont), and introduce additional ones (σ̂isok ,KLκ)
thereafter.

MSEM,Z is defined as the mean squared error between the pairwise distance matrices from the
actual manifold and latent space. We can measure this, because we work with toy datasets, i.e. we
can sample directly from the manifold, transform the data into the dataspace and apply a manifold
learning method. It is defined as,

MSEM,Z = Tr((AM −AZ)T (AM −AZ)). (6)

Trustworthiness and continuity [15] measure how well the k-NN of a point are preserved when
changing between spaces. Trustworthiness (Trust) captures that when going from data space to latent
space and continuity (Cont) when going from latent space to data space:

Trust(k) := 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Nk(xi)
j /∈Nk(zi)

(rank(Z, i, j)− k) (7)

Cont(k) := 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Nk(zi)
j /∈Nk(xi)

(rank(X, i, j)− k) (8)

(9)

As is common for rank based measures, we need to choose a k. Therefore we computed Cont and
Trust for k ∈ {15, 30, 45} and averaged.

Local isometry is measured by σ̂isok , which we define as the standard deviation of the set of length
ratios,

lXi,j =
δ(fθ(xi), fθ(xj))

δ(xi, xj)
, ∀xj ∈ Nk(xi), xi ∈ X (10)

For comparability we normalized the ratios, i.e. scale the mean to 1, thus if all lXi,j ≈ 1, fθ is locally
isometric.

Local KL divergence measures the Kullback-Leiber divergence between density distributions in the
data and latent space as introduced in [10]. The density estimate is defined as,

fXκ (x) :=
∑
y∈X

exp
(
− κ−1δ(x, y)2

)
, κ ∈ R+. (11)

δ is the Euclidian distance normalized for each point. κ is a length scale parameter [10], i.e. large κ
captures more of the global structure, while a small κ captures more of the local structure. The local
KL divergence is then defined as,

KLκ := DKL(f
X
κ ||fZκ ), (12)

where DKL(·||·) denotes the KL divergence itself.
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B Toy dataset: two concentric annuli

To illustrate the strength of k-NN-WC we show neighborhood graphs on the toy dataset concentric
circles in the following. Figure 6(a) show the dataset and fig. 6(b) shows a subsample of it which
represents a mini-batch with ni = 48 (inner circle) and no = 82 (outer circle) 7.

(a) 1-NN (b) 1-NN-WC

Figure 6: Concentric circle toy dataset (fig. 6(a)) and a subsample of it (fig. 6(b)).

Figure 7 shows neighborhood graphs for k ∈ {1, 2, 3} constructed with k-NN and k-NN-WC. As
for the Swiss roll, short-circuit errors can be observed, i.e. for k > 1, k-NN starts to approximate
non-geodesic distances (see fig. 7(b)), while k-NN-WC approximates the geodesic distances well
also for higher k.

(a) 1-NN

(b) 2-NN

(c) 3-NN

(d) 1-NN-WC

(e) 2-NN-WC

(f) 3-NN-WC

Figure 7: Neighborhood graphs constructed with k-NN and k-NN-WC for k ∈ {1, 2, 3} from the
mini-batch which can be seen in fig. 6(b) (no = 82, ni = 48). For the witnesses we sampled a new
set of points (nwo = 244, nwi = 140), that is represented by the lucent points.

7The ratio no/ni corresponds to the ratio of the area of the two annuli, s.t. that they have the same sampling
density.
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C Background: Topological data analysis

In this section we will cover some basic concepts from topological data analysis (TDA). It is by no
means a complete introduction. For that the reader is referred to the excellent book by Blackmore
and Peters [16] on computational topology, from where we took most of the definitions that follow.

C.1 Simplicial complex

Let us start by introducing the concept of k-simplicies and faces,

Definition C.1 (k-simplex σ [16]) Let u0, u1, ..., uk be points in Rd. A k-simplex σ is the convex
hull of k + 1 affinely independent points, i.e. σ = conv{u0, u1, ..., uk}. Its dimension is defined as
dim(σ) = k.

Definition C.2 (Face of σ [16]) Let σ be a k-simplex, then we define τ as a face of σ if it is a
non-empty subset of σ. Furthermore we say it is proper if the subset is not the entire set.

If we take a collection of such k-simplicies, i.e. a set of k-simplicies, it is – under certain prerequisites
– a simplicial complex,

Definition C.3 (Simplicial complex K [16]) We define a simplicial complex K as a collection of
simplicies, that satisfies the following conditions:

1. Every face of every simplex in K belongs to K, i.e. τ ∈ K, ∀τ ⊆ σ, ∀σ ∈ K

2. The intersetion of any two simplices in K is either empty or a face of both.

One of the simplest and most common ways to construct simplicial complexes is the Vietoris-Rips
(VR) complex,

Definition C.4 (Vietoris-Rips complex [16]) Let S be a finite set of points in Rd and Bx(r) =
x+ rBd be the closed ball with center x ∈ Rd and radius r ∈ R. Then the Vietoris-Rips complex is
defined as:

V R(r) =
{
σ ⊆ S | ∃u, u′ ∈ σ s.t. Bu(r) ∩Bu′(r) 6= ∅

}
(13)

Vietoris-Rips complexes construct a simplicial complex from the entire dataset. For large datasets
this gets computationally infeasible, yet the topology of a space can normally be captured by a
smaller subset already. Witness complexes that we use in our work, build around that idea. They
construct a simplicial complex only from a subset of vertices available, and use the remaining points
to determine when a simplex occurs in the filtration. Formally we can describe the nested family of
witness complexes as,

Definition C.5 (Nested family of witness complexes [12]) Let 〈X , δ〉 be a metric space, X ⊂ X
be a dataset, L = {l0, ..., ln} ⊆ X be a set of landmark points and R ∈ R+. Then the k-simplex
σ = {u1, ..., uk} with ui ∈ L belongs to W (X,L;R) iff all its faces belong to W (X,L;R) and
there is a witness x ∈ X , such that:

max(δ(ui, x) : ui ∈ {u1, ..., uk}) ≤ R (14)

C.2 Persistent homology

To give a precise definition for persistent homology groups goes beyond the scope of this appendix.
Therefore we will first define filtrations, then give an intuitive explanation of homology groups and
finally define persistence pairings, which are needed in the context of TopoAE and W-AE.

The construction of most simplicial complexes depends on a hyperparameter, i.e. a scale at which
we wish to construct them. For the Vietoris-Rips complex from definition C.4 this parameter is
represented by r and for the witness complex from definition C.5 by R. A priori it is impossible to
choose that parameter in a suitable way. Therefore it is common to analyze the growing family of
simplicial complexes, which are defined by a filtration,
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landmark witness 1-simplex 2-simplex

Figure 8: Witness complex filtration: Whenever a simplex gets witnessed by a witness, it is added to
the simplicial complex. the circle indicates how far a witness can “see”, i.e. the filtration radius R.
We only marked the circle around the witness that actually witnesses the simplex that got added at
the corresponding step.

Definition C.6 (Filtration [16]) Let K be a simplicial complex, then we call the sequence of (grow-
ing) subcomplexes of K a filtration,

∅ = K0 ⊆ K1 ⊆ ... ⊆ Kn−1 ⊆ Kn ⊆ K (15)

Given such a filtration, persistence homology studies the creation and destruction of homology classes.
Homology classes can be said to describe topological features, i.e. the 0-homology class describes
connected components, the 1-homology class describes tunnels, and the 2-homology classes describe
voids. Each such class gets created at a certain point in the filtration and destroyed at a later point,
this is normally referred to as birth and death in TDA. Since a simplex is involved in the birth and
death of every homology class, we can create persistence pairings,

Definition C.7 (Persistence pairings [16]) Let the filtration be K0 ⊂ K1 ⊂ · ⊂ Kn such that
K0 = ∅ and Ki+1 \Ki = σi, i.e. we add at every step i ∈ [1, n] in the filtration exactly one simplex
σi. Further let the homology class γ be created at step i, i.e. when adding σi, and be destroyed
at step j, i.e. when adding σj . Then we call the pairing (i, j) the persistence pairing, because σi
created γ and σj destroyed γ.
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