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Abstract

Hallucination detection is a critical step toward
understanding the trustworthiness of modern
language models (LMs). To achieve this goal,
we re-examine existing detection approaches
based on the self-consistency of LMs and un-
cover two types of hallucinations resulting from
1) question-level and 2) model-level, which
cannot be effectively identified through self-
consistency check alone. Building upon this
discovery, we propose a novel sampling-based
method, i.e., semantic-aware cross-check con-
sistency (SAC3) that expands on the principle
of self-consistency checking. Our SAC3 ap-
proach incorporates additional mechanisms to
detect both question-level and model-level hal-
lucinations by leveraging advances including
semantically equivalent question perturbation
and cross-model response consistency check-
ing. Through extensive and systematic empiri-
cal analysis, we demonstrate that SAC3 outper-
forms the state of the art in detecting both non-
factual and factual statements across multiple
question-answering and open-domain genera-
tion benchmarks.1

1 Introduction

Large-scale pre-trained language models (LMs)
have demonstrated exceptional adaptability across
a diverse array of natural language tasks that re-
quire generating open-ended responses based on
user prompt comprehension (Zhao et al., 2023).
However, prominent LMs like GPT (Brown et al.,
2020) and PaLM (Chowdhery et al., 2022), often
exhibit a tendency to produce exceedingly confi-
dent, yet erroneous, assertions commonly referred
to as hallucinations. This phenomenon signifi-
cantly impedes their applicability in domains where
factual accuracy is of utmost importance.

Hallucinations can be detected through the assis-
tance of metrics that capture the uncertainty about

1All resources are available at https://github.com/
intuit/sac3.

the output sequences. However, these metrics re-
quire access to token-level log probabilities, which
are not available in commercial black-box LMs
like ChatGPT or Bard that only offer limited API
access. To overcome this limitation, recent studies
explore sampling-based approaches for approxi-
mating uncertainty estimation (Lin et al., 2023)
through establishing a connection between confi-
dence and self-consistency (Manakul et al., 2023;
Mündler et al., 2023). The underlying premise
of this principle is that LMs are more inclined to
generate consistent responses when high probabil-
ities are assigned to tokens in the answer, which,
in turn, implies a level of factuality. In contrast,
inconsistent responses are more likely to contain
hallucinations. To operationalize this concept, cur-
rent approaches are designed to sample multiple
responses from the LMs for a given question and
then compose a hallucination score for each sen-
tence based on the level of response consistency.

Key Observations. In this work, we investigate
the relationship between the self-consistency of
LMs and the occurrence of hallucinations in a di-
verse range of tasks. Our investigation indicates
that while self-inconsistency in LMs often coin-
cides with hallucination, self-consistency does not
necessarily guarantee factual answers, as shown in
Figure 1. Our findings challenge the notion that
self-consistency alone can serve as a reliable indi-
cator of veracity, as it is demonstrated that LMs can
exhibit various tiers of hallucination that elude de-
tection through self-consistency checks. One such
tier is question-level hallucination, where LMs con-
sistently generate incorrect answers in response to
specific questions (e.g., Table 1). We reveal that
by reformulating the questions, it is possible to
mitigate such instances of hallucinations. Addi-
tionally, our work further reveals the existence of
model-level hallucinations, whereby different LMs
show discrepancies in their propensity for halluci-

https://github.com/intuit/sac3
https://github.com/intuit/sac3


Is pi smaller than 3.2?

No, pi (π) is not smaller than 3.2.Answer 3

Is pi smaller than 3.2?

No, pi (π) is approximately 
3.14159, which is greater than 3.2.

Answer 1

Is pi smaller than 3.2?

No. Pi (approximately equal to 
3.14159) is greater than 3.2.

Answer 2

Self-
Consistency

Check?

Non-Factual

Factual

No

Is pi smaller than 3.2?

No, Pi (π) is greater than 3.2. Pi is 
approximately 3.14159.

Answer m

… …

Factual Non-Factual

Consistency Inconsistency
LLM Self-checking

Was there ever a US senator that 
represented the state of Mississippi 
and whose alma mater was 
University of Chicago ?

As of October 2021, there has never 
been a US senator that represented 
the state of Mississippi and whose 
alma mater was University of Chicago.

Answer 1

Consistency = Factuality? 

? ?

Inconsistency = Non-factuality? 

Yes, there was a US senator who 
represented the state of Mississippi 
and whose alma mater was University 
of Chicago. His name was Thad 
Cochran

Answer 2

Yes, Thad Cochran was a US senator 
that represented the state of 
Mississippi and whose alma mater 
was University of Chicago

Answer m

…

Yes

…

Figure 1: Key observation: solely checking the self-consistency of LLMs is not sufficient for deciding factuality.
Left: generated responses to the same question may be consistent but non-factual. Right: generated responses may
be inconsistent with the original answer that is factually correct.

nation. Surprisingly, we even observe cases where
smaller LMs are capable of correctly answering
questions for which larger LMs hallucinate. To-
gether, these findings accentuate the need to con-
sider model-specific characteristics when assessing
the occurrence of hallucinations.

Proposed Approach. Motivated by these ob-
servations, we introduce SAC3, a new sampling-
based approach utilizing semantic-aware cross-
check consistency to improve the detection of hal-
lucinations in black-box LMs. An overview of our
approach is provided in Fig. 2. To address question-
level hallucination, we introduce a mechanism that
perturbs semantically equivalent questions to eval-
uate the consistency of LMs’ responses across vari-
ants of the same question. By examining the gener-
ated answers to these perturbed questions, we are
able to identify cases where the LM consistently
provides incorrect responses to a specific question,
which is indicative of a question-level hallucination.
Furthermore, we address model-level hallucination
by introducing cross-model response consistency
checking, which involves comparing the responses
of different LMs to the same set of questions. By
identifying discrepancies between the responses
of different models, we are able to pinpoint cases
where certain models exhibit hallucinations while

others provide correct answers. Integrating these
cross-checking extensions into our approach signif-
icantly improves its ability to detect hallucinations
that go beyond self-consistency, thereby providing
a more comprehensive assessment of the presence
of question-level and model-level hallucinations.

Effectiveness of SAC3. We demonstrate the effec-
tiveness of SAC3 in multiple classification and open-
domain generation QA datasets. In the classifica-
tion QA tasks, our approach achieves a high AU-
ROC score of 99.4% and 97.0% respectively, which
significantly outperforms the self-consistency base-
line. In the case of open-domain generation QA
tasks, our approach achieves an AUROC score of
88.0% and 77.2%, which substantially improves
upon the self-consistency baseline by a large mar-
gin (+13.8%, and +6.7% respectively).

2 Related Work

Hallucination in LMs. The issue of hallucina-
tion in language models (LMs) has gained signifi-
cant attention due to its negative impact on perfor-
mance and the risks it introduces in various natural
language processing (NLP) tasks, such as machine
translation (Zhou et al., 2020), summarization (Cao
et al., 2022), dialogue generation (Das et al., 2023),
and question answering (Zhang et al., 2023a; Zheng



Method Input Model Output Consistency Factuality

Self-
consistency

Q: “Is 3691 a prime number?” Target “No, 3691 is not a prime number as it is
divisible by 7 and 13.”

✓ ✗
Q: “Is 3691 a prime number?” Target “No, 3691 is not a prime number as it is

divisible by 7 and 13.”

Q: “Is 3691 a prime number?” Target “No, 3691 is not a prime number. It can be
divided evenly by 7 and 19.”

Cross-Q
consistency

Q1: “Is the number 3691 prime?” Target “Yes, the number 3691 is prime.”
✗ ✓Q2: “Are the only factors of

3691 itself and one?”
Target “Yes, the only factors of 3691 are itself and one.”

Q3: “Can 3691 only be divided
by 1 and 3691?”

Target “Yes, 3691 is a prime number and can only
be divided by 1 and 3691.”

Cross-M
consistency Q: “Is 3691 a prime number?” Verifier “Yes, 3691 is a prime number.” ✗ ✓

Cross-M & Q
consistency

Q1: “Is the number 3691 prime?” Verifier “Yes.”
✗ ✓Q2: “Are the only factors of

3691 itself and one?”
Verifier “Yes, the only factors of 3691 are 1 and itself.”

Q3: “Can 3691 only be divided
by 1 and 3691?”

Verifier “Yes, 3691 can only be divided by 1 and 3691.”

Table 1: An illustrative example of self-consistency, cross-question consistency, and cross-model consistency check.
The original question and answer are “Is 3691 a prime number?” and “No, 3691 is not a prime number.
It is divisible by 7 and 13”, respectively. Each row presents a set of sampled QA pairs along with its
consistency regarding the original answer, and the predicted factuality of the original answer.

et al., 2023b; Dhuliawala et al., 2023). Recent sur-
vey (Ji et al., 2023; Zhang et al., 2023c; Ye et al.,
2023) and evaluation benchmarks (Liu et al., 2021;
Li et al., 2023a; Yang et al., 2023) have highlighted
the importance of addressing this issue. Previous
research has explored hallucination evaluation us-
ing confidence-based approaches (Xiao and Wang,
2021; Varshney et al., 2023; Chen and Mueller,
2023) that require access to token-level log prob-
ability (Kuhn et al., 2023; Cole et al., 2023) or
supervised tuning (Agrawal et al., 2023; Li et al.,
2023b) that relies on internal states of the LM. How-
ever, these methods may not be applicable when
only API access to the LM is available (Agrawal
et al., 2023). Another approach involves retrieving
knowledge from external databases to tackle hallu-
cinations (Ji et al., 2022; Zheng et al., 2023a; Peng
et al., 2023; Zhang et al., 2023b). In contrast to
these studies, our work focuses on detecting halluci-
nations in open-domain QA tasks using black-box
LMs, without relying on external resources.

Consistency Evaluation of LMs. An essential
characteristic of logically valid intelligent systems
is self-consistency, which entails that no two state-
ments provided by the system contradict each other.
Self-consistency is defined by Elazar et al. (2021)
as the invariance of an LM’s responses across var-
ious types of semantics-preserving prompt trans-
formations. This definition is further enriched by
multiple other consistency categories proposed by
Jang et al. (2022). Wang et al. (2022) demonstrates
that self-consistency can significantly enhance the
chain of thought reasoning in LMs. Without self-

consistency, it becomes challenging to regard LMs
as reliable or trustworthy systems. Recent studies
employ self-consistency to detect hallucinations
based on pretrained LMs (Manakul et al., 2023)
and instruction-tuned LMs (Mündler et al., 2023).
Although these methods exhibit promising accu-
racy on several specific tasks, potential failures
(Chen et al., 2023) of self-consistency are over-
looked in the current settings, as existing LMs
frequently provide inconsistent responses to ques-
tions (Mitchell et al., 2022) and factual knowledge
inquiries (Elazar et al., 2021; Tam et al., 2023;
Gekhman et al., 2023). Our work addresses these
concerns by introducing a cross-check consistency
approach, aiming to bridge the gap between self-
consistency and factual assessment.

3 Self-consistency Limitations in
Factuality Assessment

The essential assumption of self-consistency in fac-
tuality assessment is that if the LM has the knowl-
edge of the concept, responses sampled from its
output distribution, should be similar and consis-
tent; conversely, if the LM lacks corresponding
knowledge, the sampled responses would contain
hallucinated facts that are diverged and contradic-
tory. Although this assumption may seem reason-
able, it does not always hold in practice (more
details are provided in the Appendix A). Specifi-
cally, we argue that solely checking the LM’s self-
consistency is insufficient for detecting hallucina-
tion or verifying factuality under the following two
circumstances:



1. LMs may produce consistently hallucinated facts.
We observe that for certain questions, LMs may out-
put consistently wrong answers. For instance, as
shown in Fig. 1, when prompted with the ques-
tion “Is pi smaller than 3.2?”, ChatGPT
consistently generates incorrect answers. In this
case, where the generated responses are consistent
but non-factual, solely relying on self-consistency
checking of a single model would yield false nega-
tive hallucination detection results.

2. Even in cases when LMs generate factual state-
ments in their original response, the stochastic sam-
pled responses may lack veracity. For example,
the original answer (Answer 1) of ChatGPT under
zero temperature is correct regarding the senator
search question as shown in Fig. 1. However, when
sampled with a higher temperature, ChatGPT gen-
erates multiple incorrect responses (Answer 2 and
Answer m). In this scenario, where the sampled
responses are inconsistent and disagree with the
original response which itself is factually correct,
methods that rely solely on model self-checking
would produce false positives.

In summary, although the inconsistency of sam-
pled responses has been empirically demonstrated
to be correlated with hallucinated facts on certain
tasks, in general, self-consistency is neither neces-
sary nor sufficient to verify the veracity of large
LMs’ statements. Therefore, methods based solely
on self-consistency checking may not be able to ac-
curately detect hallucinations in complex QA and
open-domain generation tasks, which motivates us
to design a more reliable and robust factuality as-
sessment method that extends this idea.

4 SAC3 : Semantic-Aware Cross-check
Consistency

This section describes the proposed semantic-aware
cross-check consistency approach, a high-level
overview of which is provided in Fig. 1. Addi-
tionally, an illustrative example of each component
is presented in Table 1. Here, we walk through
each component in detail.

4.1 Stage 1: Question-level Cross-checking via
Semantically Equivalent Perturbations

Contrary to existing techniques that assess seman-
tic equivalence through entailment or paraphrasing,
our approach involves rephrasing the input query by
generating alternative inputs that preserve semantic
equivalence, i.e., semantically equivalent input per-

turbation. To achieve this, we leverage advances
in LLM prompting. Starting with a queried input
x0, we acquire a set of k semantically equivalent
inputs {x1,x2, ...,xk} through the prompt: “For
the question [QUERIED QUESTION], provide
k semantically equivalent questions”.

To ensure the quality of the generated in-
puts in this step, we further double-check the
semantic equivalence between the generated in-
puts {x1,x2, ...,xk} and the queried input x0

in a pair-wise manner using the prompt “Are
the following two inputs semantically
equivalent? [QUERIED INPUT] [GENERATED
INPUT]” and filtering out the inputs that do not
share the same semantic meaning as the original
input. The complete prompt templates used in this
work are provided in the Appendix B.

4.2 Stage 2: Model-level Cross-check with
Additional Verifier LM

Let s0 denote the original response from a target
LM T based on a given query x0. Our objective
is to detect whether s0 is hallucinated by sampling
responses from the predictive distribution of T . To
avoid model-level hallucination, we introduce an
additional verifier LM denoted as V for model-level
cross-checking. We define the responses from both
models as:

sTj = T (xj), sVj = V(xj), j = 1, ..., k, (1)

where k is the length of the generated semanti-
cally equivalent inputs {x1,x2, ...,xk} in stage
1. To assess the factuality of x0, the self-checking
mechanism operates by drawing a set of ns stochas-
tic response samples from the target LM: ST0 =
{s1T0 , s

2
T0 , ..., s

ns
T0}. Similarly, we can apply the

same self-checking mechanism to the verifier LM
to generate another set of nm responses: SV0 =
{s1V0

, s2V0
, ..., snm

V0
}. To perform question-level

cross-check, for each perturbed input xk, we
generate nq sampled response sequences STk =
{s1Tk , s

2
Tk , ..., s

nq

Tk} from the target LM T and nqm

sampled responses SVk
= {s1Vk

, s2Vk
, ..., s

nqm

Vk
}

from the verifier LM V .

Finally, we collect the total sampled sets S =
{ST0 ,SV0 ,STk ,SVk

} by combining all samples
drawn from self-checking and cross-checking,
which will be used next for calculating a consis-
tency score.



Figure 2: Overview of the proposed semantic-aware cross-check consistency (SAC3) method.

4.3 Stage 3: Consistency Score Calculation

This stage uses the generated sample sets in all pre-
vious stages to calculate a numerical consistency
score that captures the question-level and model-
level cross-checking paradigm.

4.3.1 Semantic-aware Consistency Check of
QA Pairs

Most of the existing works mainly focus on exam-
ining the consistency of LM outputs while ignoring
the effect of the inputs. However, in QA tasks, it is
important to consider both inputs and outputs when
measuring semantic equivalence, as the same ques-
tion can be rephrased in many ways. Although the
answers to these questions (e.g., “no” and “yes”)
may not be lexically equivalent, the QA pairs as a
whole can be semantically equivalent. In light of
this, we propose to check the semantic consistency
of the QA pairs instead of the answer only.

4.3.2 Self-checking Consistency (SC2) Score

Let C(·, ·) denote a semantic equivalence check-
ing operator that takes two QA pairs as inputs.
The operator C returns “Yes” if the two QA pairs
are semantically equivalent, and “No” otherwise.
This operator should be reflexive, symmetric, and
transitive. We implement the checking operator
using an LM by leveraging the prompt: “Are
the following two Question-Answering (QA)
pairs semantically equivalent? [QA PAIR
1] [QA PAIR 2]”. We then map the best guess to
a numerical semantic equivalent score: {“Yes”→
0.0, “No”→ 1.0}. We use P0 = (x0, s0) to denote
the original QA pair. The self-checking score ZSC2

of the target LM T can be calculated by

ZSC2 =
1

ns

ns∑
i=1

C(P0,P i
ST0

), (2)

where PST0
= {(x0, s

1
T0), ..., (x0, s

ns
T0 )} repre-

sents the QA pairs generated in the self-checking
scenario.

4.3.3 Question-level Consistency (SAC3-Q)
Score

Besides self-checking the original question x0,
SAC3 further assesses cross-check consistency of
perturbed questions {x1,x2, ...,xk}. The corre-
sponding QA pairs compose a two-dimensional
matrix, where each row corresponds to a perturbed
question (k in total), and each column corresponds
to a sampled response (nq in total):

P i
STj

=

(x1,S1
T1) ... (x1,S

nq

T1 )

... ... ...
(xk,S1

Tk) ... (xk,S
nq

Tk )

 . (3)

Therefore, the question-level cross-checking con-
sistency score ZSAC3-Q can be obtained by

ZSAC3-Q =
1

nq · k

nq∑
i=1

k∑
j=1

C(P0,P i
STj

). (4)

4.3.4 Model-level Consistency (SAC3-M &
SAC3-QM) Score

In addition to the question-level score, a model-
level cross-check score is calculated by performing
cross-model checking and cross-question checking
using the verifier LM V . Specifically, for the orig-
inal question x0, the model-level cross-checking
consistency score ZSAC3-M is computed by

ZSAC3-M =
1

nm

nm∑
i=1

C(P0,P i
SV0

), (5)

where PSV0
= {(x0, s

1
V0
), ..., (x0, s

nm
V0

)} is the
QA pairs generated by the verified LM V .

The cross-question consistency score on the ver-
ifier LM is computed on the QA pairs produced by
V:

P i
SVj

=

(x1,S1
V1
) ... (x1,S

nqm

V1
)

... ... ...
(xk,S1

Vk
) ... (xk,S

nqm

Vk
)

 . (6)

The cross-model cross-question consistency score



can thus be obtained through

ZSAC3-QM =
1

nqm · k

nqm∑
i=1

k∑
j=1

C(P0,P i
SVj

). (7)

4.3.5 Final Score and Model Confidence

The different variants of SAC3 capture different
aspects of the uncertainty about the original re-
sponse and should complement each other. We
thus consider a combination of all variants includ-
ing SAC3-Q , SAC3-M , SAC3-QM as the final score:

ZSAC3-all = ZSAC3-Q+λ(ZSAC3-M+ZSAC3-QM), (8)

where λ is a weight factor for the verifier LM. Un-
less mentioned otherwise, we use λ = 1 by default
in our experiments. In practice, as the computa-
tion of each component is independent, they can
be computed in parallel to reduce latency. The
detection prediction is made by comparing the fi-
nal score with a preset threshold. In addition to the
computed score, we also ask the target LM to gener-
ate a verbalized confidence score (Tian et al., 2023)
along with its prediction when checking the seman-
tic equivalence of QA pairs. More discussions are
offered in the Appendix C.2.

5 Data and Annotation

We evaluate our hallucination detection approach
on two categories of QA tasks, namely, classi-
fication QA and generation QA, with each cat-
egory containing two datasets. Following prior
work (Zhang et al., 2023a), we use the following
two binary classification datasets for evaluation on
the classification QA task:

• Prime number: this dataset contains 500 ques-
tions that query the primality of a randomly cho-
sen prime number between 1,000 and 20,000,
where the factual answer is always “Yes”. The
synthesized hallucinated answers are “No, it
is not a prime number”.

• Senator search: the dataset consists of 500 ques-
tions that follow the following template: “Was
there ever a US senator that represented
the state of [US STATE NAME] and whose
alma mater was [US COLLEGE NAME]?”. The
factual answer is always “No”. We also generate
hallucinated answers: “Yes, there was a US
senator that represented the state of
[US STATE NAME] and whose alma mater
was [US COLLEGE NAME].”.

As for the generation QA tasks, we take questions
from the following two open-domain QA datasets
and generate answers using LLMs. Then we manu-
ally annotate the factuality of the answers following
previous work (Li et al., 2023a).

• HotpotQA-halu: We randomly sample 250 ex-
amples from the training set of HotpotQA (Yang
et al., 2018) and generate hallucinated answers
drawn from gpt-3.5-turbo. Then we manually
annotate the answers by comparing the ground
truth and knowledge.

• NQ-open-halu: Natural Questions (NQ)-open
(Lee et al., 2019) is a more challenging open do-
main QA benchmark (Kwiatkowski et al., 2019).
We use the same setting as HotpotQA-halu to
create a small-scale dataset that consists of 250
non-factual and factual examples with manual
annotations.

Please find more relevant details about data annota-
tions in the Appendix C.3.

6 Experiments

6.1 Experimental Setup

Evaluation Models. We use gpt-3.5-turbo
from OpenAI as the target LM for our experi-
ment. The verifier LM is chosen from the follow-
ing two models: (1) Falcon-7b-instruct (Al-
mazrouei et al., 2023): an open-source causal
decoder-only model built by TII that is trained on
1,500B tokens of RefinedWeb (Penedo et al., 2023)
and further enhanced using the curated corpora;
and (2) Guanaco-33b: an open-source instruction-
following models through QLoRA (Dettmers et al.,
2023) tuning of LLaMA (Touvron et al., 2023) base
model on the OASST1 dataset.

Implementation Details. The evaluation is con-
ducted using Azure OpenAI API. When performing
semantic perturbations and consistency checking,
we set the temperature to 0.0 to get deterministic
high-quality outputs. Given a specific input query,
we generate k = 10 semantically equivalent inputs
using the prompt described in Section 4.1. For the
self-checking-based method SC2 , we follow prior
work (Manakul et al., 2023) to set the temperature
to 1.0 and generate ns = 10 stochastic samples.
For SAC3-Q and SAC3-QM , we set nq = nqm = 1
to reduce computational cost. To further reduce
the inference cost, we set nm = 1 by default and



combine SAC3-M with SAC3-QM to report the model-
level results. We use hallucination detection accu-
racy and area under the ROC curve (AUROC) to
evaluate the performance. In addition to the esti-
mated hallucination score, we also show the verbal-
ized probabilities (Tian et al., 2023) from the target
LM for comparison. We execute all experiments
on 8 NVIDIA V100 32G GPUs.

Method
Prime number Senator search

Score Confidence Score Confidence

SC2 (gpt-3.5-turbo) 65.9 67.5 56.1 53.1
SAC3-Q (gpt-3.5-turbo) 99.4 99.7 99.7 99.7

Table 2: AUROC on classification QA tasks with 50%
hallucinated samples and 50% factual samples.

6.2 Evaluation Results

6.2.1 Classification QA

Balanced Dataset. We first experiment on bal-
anced datasets with 50% hallucinated samples and
50% factual samples. Table 2 compares the de-
tection performance of SC2 and SAC3-Q in terms
of AUROC and verbalized confidence score. We
observe that self-checking (SC2) performs poorly
on both datasets, with a low AUROC of 65.9%
and 56.1%, respectively. Our question-level cross-
checking (SAC3-Q) significantly outperforms the
SC2 baseline achieving > 99% AUROC on both
datasets and is in line with the verbalized confi-
dence score, confirming the effectiveness of cross-
checking.

Unbalanced Dataset. We further evaluate our
method in a more challenging scenario where the
dataset only contains hallucinated samples. Table
3 presents the accuracy of detecting hallucinated
samples using a preset threshold of 0.5. In this case,
the performance of self-check drops significantly
to 48.2% and 29.6% respectively. SAC3-Q still out-
performs SC2 by a large margin. The model-level
cross-check with verifier LMs performs well in the
prime number dataset but fails to accurately detect
hallucination in the senator search dataset. This
is because both verifier LMs refuse to answer a
large portion of the questions on this dataset due
to a lack of sufficient information. By combin-
ing the target LM, SAC3-all with Guanaco-33b
achieves the highest detection accuracy compared
to other baselines SC2 (+51.2%), SAC3-Q (+6.2%),
and SAC3-QM (+ 5.0%).

Method
Prime number Senator search

Score Confidence Score Confidence

SC2 (gpt-3.5-turbo) 48.2 51.0 29.6 30.6
SAC3-Q (gpt-3.5-turbo) 93.2 96.4 97.0 97.4

SAC3-QM (Falcon-7b) 89.8 91.2 21.0 21.8
SAC3-QM (Guanaco-33b) 94.4 96.3 45.6 46.2

SAC3-all (Falcon-7b) 97.8 98.0 84.6 85.6
SAC3-all (Guanaco-33b) 99.4 99.4 85.6 86.7

Table 3: Accuracy on classification QA tasks with 100%
hallucinated samples (with the threshold set to 0.5).

Impact of Threshold. Since the choice of thresh-
old has a significant impact on the detection accu-
racy in the case where the dataset only contains pos-
itive (hallucinated) samples, we further experiment
with different thresholds and present the results
in Fig. 3. We observe that SAC3-Q and SAC3-all
with Guanaco-33b are more robust against large
threshold values and outperform SC2 in most cases.

Figure 3: Impact of threshold on detection accuracy.

Why Does Self-checking Fail? To further un-
derstand why self-checking methods fail to detect
some hallucinated responses, we visualize the dis-
tribution of consistency scores using histogram
plots in Fig. 4. We observe that for SC2, a sig-
nificant portion of hallucinated samples received
highly consistent predictions. In other words, the
target LM made consistently wrong predictions due
to a lack of question and model diversity, which
aligns with our analysis in Section 3. On the other
hand, benefiting from the semantically equivalent
question perturbation, SAC3-Q’s scores are more
spread out in the inconsistent region, which helps
to improve the effectiveness of detecting hallucina-
tions by choosing a proper threshold.

6.2.2 Open-domain Generation QA
Compared to the classification QA tasks, detect-
ing hallucinations in open-domain generation QA



Figure 4: Histogram of hallucination score.

tasks is more challenging. As shown in Table 4,
SAC3-Q exhibits better AUROC than SC2 (+7%)
in both datasets. Compared to SAC3-Q , SAC3-QM
shows 6.7% improvement in the HotpotQA-halu
dataset but is slightly worse in the NQ open dataset.
SAC3-all leverages the advantages of question-
level and model-level cross-checking and achieves
consistently good performance in both datasets.

Method
HotpotQA-halu NQ-open-halu

Score Confidence Score Confidence

SC2 (gpt-3.5-turbo) 74.2 77.0 70.5 72.7
SAC3-Q (gpt-3.5-turbo) 81.3 81.4 77.2 78.5

SAC3-QM (Falcon-7b) 83.0 79.5 67.5 62.0
SAC3-QM (Guanaco-33b) 88.0 85.2 72.7 72.7

SAC3-all (Falcon-7b) 84.5 84.5 77.1 77.2
SAC3-all (Guanaco-33b) 87.0 86.8 77.2 77.8

Table 4: AUROC on open-domain generation QA tasks.

Effect of Verifier LM Weight. In our previous
experiments, we assigned equal importance to the
consistency score computed by the target and ver-
ifier LM. However, typically, the target LM and
the verifier LM have different architectures and
scales such that the user may have different levels
of trust in their output truthfulness. This differ-
ence in trust can be incorporated by introducing
a weight λ to the consistency score produced by
the verifier LM. For instance, if the goal is to de-
tect hallucination in a specialized domain and the
verifier LM is a domain-specific model developed
for this domain, we can assign a large weight to its
scores (e.g., λ > 1.0). In the general case, where
the verifier LM is a small-sized open-source model,
we can apply a small weight value (e.g., λ < 1.0)
to discount the influence of the verifier LM in the
final score. Fig. 5 visualizes the effect of vari-
ous weight factors on the generation QA datasets.
We observe that SAC3-all with a higher weight
would result in a larger advantage over SAC3-Q in

the HotpotQA-halu task, where the verifier LM out-
performs the target LM. On the contrary, in the NQ
open task where the target LM shows competitive
performance, a smaller weight would yield better
results.

Figure 5: Effect of verifier LM weight on AUROC.

Effect of the Number of Perturbed Questions.
The performance of sampling-based methods is
expected to improve as the sample size increases,
at the cost of higher latency and computational
cost. In Fig. 6, we study this trade-off by vary-
ing the number of perturbed questions k from 2
to 10. We observe that the performance of SAC3

increases as more question samples are used but
the performance gain gradually diminishes after
using more than 5 question samples. This suggests
that in practice we could use 2-4 question samples
to achieve reasonably good performance at a low
computational cost.

Figure 6: Performance of SAC3 with varying number of
perturbed questions.

Effect of the Model Type. Our proposed SAC3

framework does not restrict the type of LLM em-
ployed and can be naturally extended to various



types of target LLMs. To verify this, in addi-
tion to GPT-3.5 (gpt-3.5-turbo), we conduct
experiments using GPT-4 (gpt-4) and PaLM 2
(chat-bison) on the considered four datasets in
the setting of the balanced dataset. The experimen-
tal results of comparing the proposed SAC3-Q with
the SC2 baseline are summarized in Table 5. We
observe that the proposed SAC3-Q consistently out-
performs the SC2 baseline across all LLM variants.

Method
Prime

Number
Senator
Search

HotpotQA
-halu

NQ-open
-halu

SC2 (gpt-3.5-turbo) 48.2 29.6 74.2 70.5
SC2 (gpt-4) 38.3 18.4 79.7 76.3
SC2 (chat-bison) 26.9 19.2 75.8 67.9
SAC3-Q (gpt-3.5-turbo) 93.2 97.0 81.3 77.2
SAC3-Q (gpt-4) 91.1 61.6 87.2 82.9
SAC3-Q (chat-bison) 90.3 66.3 82.8 72.7

Table 5: Accuracy of different LLMs (GPT-3.5, GPT-4,
and PaLM 2) on classification and generation QA tasks.

Computational Cost. We monitor the computa-
tional cost of our approach based on the number
of model evaluations consumed by OpenAI API
and open-source LLMs inference. Assuming the
number of samples equals the number of perturbed
questions, i.e., ns = nm = nq = nqm, the cost
of SC2 is ns API calls, and our SAC3-all needs
ns target LM calls plus 2 × ns verifier LM calls.
Beyond the model evaluations, SAC3 may have addi-
tional costs from question perturbations and seman-
tic equivalence checking via prompting. Additional
discussions can be found in the Appendix C.1.

7 Conclusion and Discussion

We investigate the relationship between the self-
consistency of LM and the factuality of the re-
sponse and propose SAC3 as a robust hallucination
detection approach for black-box LMs. Through
extensive empirical analysis, our work highlights
several findings. First, self-consistency checking
alone is insufficient to effectively detect question-
level and model-level hallucinations, where LMs
generate consistently wrong responses to certain
questions. Second, cross-checking between seman-
tically equivalent questions can reduce the occur-
rence of persistent hallucinations, potentially by re-
ducing question-level ambiguity. Third, there exists
a model-level disparity in hallucinations, which we
attribute to the inherent differences in LM capabili-
ties originating from different training procedures
and data. Thus, the verifier LM can be selected

according to specific tasks to maximize detection
accuracy. We believe that our work is an important
step towards building reliable LLMs.

Ethics Statement

This paper studies hallucination detection in LMs,
which has significant broader impacts in the field
of natural language processing (NLP) and helps
to address ethical considerations regarding trust-
worthiness and reliability. The research outcome
may contribute to the development of more accu-
rate and reliable LMs by mitigating the risks of
misinformation and biased outputs and promoting
accountability and trust in AI systems.

Limintations

Our current experiments focus on the question-
answering setting. Further research is needed to
assess the generalizability of the proposed frame-
work and the accuracy of semantic equivalence
checks on more complex tasks such as conversa-
tional or dialogue-based prompting. Additionally,
it would be interesting to investigate the efficiency-
utility trade-off: we expect increasing sample sizes
to improve detection accuracy but may introduce
additional cost and latency. Speeding up the im-
plementation through parallelization is also worth
exploring.
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A Factuality Assessment of LLMs

This section first introduces the background of LM
factuality assessment and reviews the key compo-
nents of existing black-box factuality assessment
approaches.

A.1 Background

Existing studies (Manakul et al., 2023) showed
that the factuality of LMs’ statements can be as-
sessed by capturing the output uncertainty. If
permitted with complete white-box access, hal-
lucinations of LMs can be detected through un-
certainty metrics such as entropy, which mod-
els the uncertainty of the output distribution as
H(s) = −

∑N
i=1 p(si|s<i) log p(si|s<i) for a se-

quence of N tokens s = {si}Ni=1. The insight is
that factual sentences are likely to be composed of
high-probability tokens and thus should have less
entropy, whereas non-factual statements are likely
to be associated with lower probability and higher
entropy.

Although these methods provide an accurate es-
timate of the LM’s uncertainty, computation of
such metrics involves token-level output probabil-
ity distribution, which is typically not accessible
for prominent LMs like ChatGPT that are only
available through black-box interactions.

A.2 Black-box Assessment via Checking
Consistency in Sampled Responses

One natural way to extend the above white-box
factuality assessment methods to restrictive black-
box settings is to approximate the uncertainty
metrics by sampling LM responses. Existing
approaches (Manakul et al., 2023) mostly focus
on assessing factuality through inspecting LM’s
self-consistency. The typical process of self-
consistency check is as follows. First, for a given
user-queried prompt x, let the LM generate a can-
didate response s with a low (default) tempera-
ture. Next, to assess the factuality of the candidate
statements, a higher temperature value is used to
stochastically sample a diverse set of supporting
responses {s1, s2, ..., sm} from the LM. Finally,
a hallucination score S ∈ [0, 1] is calculated by
measuring the consistency between the candidate
response and the supporting responses: S → 0 if
the supporting responses agree with the candidate
response and S → 1 if they disagree. The consis-
tency between two responses is typically measured
by checking the textual entailment or lexical simi-

larity using an additional pre-trained NLU model
such as BERT (Manakul et al., 2023; Kuhn et al.,
2023).

B Complete Prompts

The prompt templates that we used are provided in
Table 7, specifically the question perturbations us-
ing semantically equivalent prompts and semantic
equivalence checks between two QA pairs.

C Additional Details and Discussions

C.1 Computational Cost
High computational cost is a common research
challenge faced in many areas of black-box LLM
studies, including self-consistency (Wang et al.,
2022) and self-check (Manakul et al., 2023). Com-
pared with these existing works, our framework
enables model-level parallel execution of LLM in-
ferences (either target or verifier LM) in the form of
parallel API calls, which helps to mitigate the over-
head. Moreover, we may further employ more ad-
vanced prompt strategies for semantic consistency
checking that condense the pairwise comparisons
to a single inference call to substantially reduce the
time complexity. Finally, our framework also of-
fers the flexibility for the user to adjust the balance
between computational cost and accuracy: users
may choose to trade off accuracy for efficiency in
scenarios where low overhead is more valued than
high detection precision.

To achieve a more balanced trade-off, we pri-
marily recommend two strategies: (1) Utilizing a
smaller sample size, such as the number of ques-
tion perturbations and self-evaluations. Our abla-
tion experiments demonstrate that the performance
of SAC3 improves with an increase in question
samples, but the performance gain plateaus after
exceeding five question samples. This indicates
that using 2-4 question samples in practice could
yield satisfactory results with minimal computa-
tional expense. (2) Implementing an optimized
prompt strategy. With the original input question,
we prompt the GPT model to generate multiple
paraphrases in a single API call, i.e., O(1) for ques-
tion paraphrasing. Although semantic consistency
checking via a pairwise method can be slightly bur-
densome, we can devise an advanced prompt strat-
egy to parallelize the pairwise consistency check,
i.e., through one API call instead of multiple calls,
effectively reducing the inference complexity from
O(n) to O(1). These strategies empower users



Method Input Model Output Semantic
Consistency

SC2 Q Target Yes, there was a US senator that represented the state of North Dakota
and whose alma mater was MIT. His name was Quentin N. Burdick. ✓

Q Target Yes, there was a US senator who represented the state of North Dakota
and whose alma mater was MIT. His name was Quentin N. Burdick. ✓

SAC3-Q Q1 Target
As an AI language model, I do not have access to the most recent updates
or news. However, as of my last update, there is no North Dakota US senator
who graduated from MIT.

✗

Q2 Target
As an AI language model, I do not have access to real-time information
or current events. However, as of my last update, I am not aware of any
US senators from North Dakota who were also MIT graduates.

✗

SAC3-M Q Verifier No, there has never been a US senator who represented the
state of North Dakota and attended MIT. ✗

SAC3-QM Q1 Verifier No, a North Dakota US senator did not have MIT listed as their alma mater. ✗
Q2 Verifier There are no known US senators from North Dakota who are also MIT graduates. ✗

Table 6: Input Question (Q) and Answer (A): Q = “Was there ever a US senator that represented the state of North
Dakota and whose alma mater was MIT? ” A = “Yes, there was a US senator who represented the state of North
Dakota and whose alma mater was MIT. His name was Quentin Burdick.” Semantically rephrased questions: Q1
= “Did a North Dakota US senator have MIT listed as their alma mater? ” Q2 = “Were there any US senators from
North Dakota who were also MIT graduates?

Objective Template

Semantic
question
perturbation

For the question [QUERIED QUESTION], provide ${k} semantically equivalent questions \n
Are the following two inputs semantically equivalent? \n
[QUERIED INPUT] \n
[GENERATED INPUT]

Semantic
equivalence
check

Are the following two Question-Answering (QA) pairs semantically equivalent? Provide your best guess
and the probability that it is correct (0.0 to 1.0). Given ONLY the guess (Yes or No) and probability, no
other words or explanation. For example: \n Guess: <most likely guess, as short as possible; not a complete
sentence, just the guess!>\n Probability: <the probability between 0.0 and 1.0 that your guess is correct,
without any extra commentary whatsoever; just the probability! \n \n
The first QA pair is: \n Q: ${THE QUESTION} \n A: ${THE ANSWER} \n
The second QA pair is: \n Q: ${THE QUESTION} \n A: ${THE ANSWER}

Table 7: Prompt templates for different objectives, including semantically equivalent perturbations of input questions
and semantic equivalent check of QA pairs.

to optimally balance efficiency (light version) and
accuracy (performance version), facilitating more
informed decisions in practice.

C.2 Semantic Consistency Checking

The goal of our research is to provide a flexible
framework for the effective detection of hallucina-
tions in black-box LLMs. Compared to previous
approaches (Manakul et al., 2023) based on similar-
ity metrics such as BERTScore, employing LLM
for semantic consistency checking not only offers
better accuracy but also eliminates the need for in-
volving additional models. We note that our design
is not dependent on any specific type of LLM and
the users are allowed to choose freely for each com-
ponent. Specifically, we chose GPT as the instanti-
ation in our experiments due to its well-acclaimed
ability to follow human instructions which is cru-

cial for evaluation. In practice, the user may choose
any open-sourced LLMs that have been aligned to
follow instructions.

C.3 Data Annotations

For the two classification QA tasks (Prime Num-
ber and Senator Search), we use the synthesized
hallucinated answers following prior work (Zhang
et al., 2023a). For the task of prime number, the
factual/true answer is always “Yes”, i.e., all the test-
ing numbers are prime numbers. The synthesized
hallucinated response is “No”. The factual/true
answer of the senator search is always "No" and
the synthesized hallucinated answer is “Yes”. Such
an experimental setting on the binary classifica-
tion tasks is realistic since we have verified that on
these datasets most of the responses generated by
gpt-3.5-turbo are indeed “Yes” or “No” which



align with the synthesized response.
For the generation QA tasks (HotpotQA-halu

and NQ-Open-halu), we used answers generated
by LLM (gpt-3.5-turbo) for experiments, which
do not have pre-defined factual/non-factual labels.
Therefore, we manually annotated these LLM-
generated answers by comparing them with the
ground truth.

We would like to note that in practice, a more
versatile hallucination detection approach should
be able to evaluate the factuality of a sample regard-
less of its origin (e.g., synthesized or generated by
itself / other LLMs). In our framework, this is
achieved through semantically equivalent question
perturbation and cross-model response consistency
checking. We plan to release the annotated datasets
to facilitate future research.

D Additional Examples

Table 6 provides another illustrative example to
explain our methodology in the senator search
dataset.


