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Abstract

Unsupervised representation learning with variational inference relies heavily on
independence assumptions over latent variables. Causal representation learning
(CRL), however, argues that factors of variation in a dataset are, in fact, causally
related. Allowing latent variables to be correlated, as a consequence of causal
relationships, is more realistic and generalisable. So far, provably identifiable
methods rely on: auxiliary information, weak labels, and interventional or even
counterfactual data. Inspired by causal discovery with functional causal models,
we propose a fully unsupervised representation learning method that considers a
data generation process with a latent additive noise model (ANM). We encourage
the latent space to follow a causal ordering via loss function based on the Hessian
of the latent distribution.

1 Introduction

The objective of extracting meaningful representations from unlabelled data is a longstanding pursuit
in the field of deep learning [1]. Conventionally, methods of unsupervised representation learning
have concentrated on unveiling statistically independent latent variables [2, 3, 4, 5, 6], demonstrating
appreciable success in synthetic benchmarks and datasets where generation parameters can be
carefully manipulated [7]. However, it is essential to acknowledge the differences between controlled
environments and real-world scenarios. In the latter, the factors contributing to data variation are
often intertwined within causal relationships. Therefore, it is not merely advantageous but imperative
to integrate causal understanding into the process of learning representations [8], which can improve
the models from a generalisation, and interpretability, viewpoint.

The main challenge in learning meaningful and disentangled latent representations is identifiability,
i.e. ensuring the true distribution of a data generation process can be learned (up to a simple
transformation, given the inherent limitation that we can never observe the hidden latent factors from
observational data alone), implying the model to be injective (one-to-one mapping) onto the observed
distribution. Identifiability ensures that if an estimation method perfectly fits the data distribution,
the learned parameters will correspond to the true generative model. For example, discovering
independent sources of variation which are observed via a nonlinear mixing function is impossible
[9]. This established result from the nonlinear ICA literature has been replicated for disentangled
representation learning [7].
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Figure 1: [Left] Independence assumption used in previous work for disentangled representations
such as β-VAE and extensions. [Right] We propose to model causally related latent variables. CRL
is made possible by using a mixture model in the latent space which approximates a structural causal
model (SCM) with functional constraints. z1, z2 are latent variables, and u correspond to mixture
components.

Representation learning becomes identifiable when non-i.i.d. (independent and identically distributed)
samples from a given data generation process are considered [10, 11]. For instance, temporal
contrastive learning [12] and iVAE [10] can provably ensure identifiability by utilising knowledge of
auxiliary information. Indeed, [10] develops a comprehensive proof that generative models become
identifiable when variables in the latent space are conditionally independent, given the auxiliary
information. Conditional independence given external information allows variables to be dependent
(or correlated) [13], which is more realistic. Further reinforcing the notion of dependence between
latent variables, the identifiability of unsupervised representations can be proven by assuming a latent
space to follow a Gaussian Mixture Model (GMM) and an injective decoder [14]. Any distribution
can be approximated by a mixture model with sufficiently many components, including distributions
following a causal model. The mixture component can correspond to using a “learned” auxiliary
variable [15], bridging the gap with [10].

Previous work [12, 10, 13, 15, 11] on identifiable representation learning from observational data do
not consider latent causal structure. They build up, however, a theory around identifiable representa-
tion learning which allows arbitrary distribution encoding statistical dependencies in latent variables.
Discovering the dependency structure in the latent space is at the core of causal representation
learning (CRL) [8] via the common cause principle1 [16]. Learning causally related variables enable
(i) robustness to distribution shifts via the independent causal mechanism (ICM) principle; (ii) better
generalisation, e.g. in transfer learning settings; (iii) answering causal queries, i.e. estimation of
interventional and counterfactual distributions. Previous work on CRL, however, utilises data from
interventional [17, 18] or counterfactual (pre- and post-intervention) [19, 20, 21] distributions for
learning identifiable causal representations.

Contributions. In this work, we propose the COVAE (causally ordered Variational AutoEncoder)
and bridge the gap between identifiable representation learning from observational data and CRL by
using functional constraints (common in causal discovery [22]). We propose an unsupervised CRL
method which enables drawing causal insights, from the learned latent representations. This can be
done by assuming a data generation process in which the latent space adheres to an additive noise
model (ANM) and applies an injective nonlinear mapping to generate observational data. In summary,
the main contributions in this work include: (i). We propose an estimation method that encourages
causal ordering in the latent space, allowing us to draw causal insights from representations; (ii). We
introduce the notion stronger equivalence class (∼τ - permutational block diagonal equivalence)
for model with causally ordered latent representations; (iii). We provide theoretical results on
∼τ −identifiability, and demonstrate the effectiveness of COVAE of multiple datasets.

1“If two observables X and Y are statistically dependent, then there exists a variable Z that causally
influences both and explains all the dependence in the sense of making them independent when conditioned on
Z. As a special case, Z can coincide with X or Y .”
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2 Data Generation Process

We assume the data generation process maps the samples from latent space z ∼ Z to the samples
from observational space x ∼ O. z is a structural causal model (SCM) where each node zi depends
on its parents pa(zi) and some independent noise ϵi, as illustrated in Figure 2. Formally,

x = fo(z), p(z) =
∏
i

p(zi | pa(zi)). (1)

fo : Rd → Ro is a mixing function mapping latent to observation space, d is the number of latent
variables and o = |O| ≥ d. pa(zi) are the parents of zi in G.

3 Enforcing Causal Ordering in LANM
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Figure 2: Data generation process
with a latent SCM (endogenous and
exogenous variables) causing an ob-
servation space.

We now derive an estimation procedure for learning the data
generation process in Equation 1. We do not have access to G
during estimation. Nevertheless, the goal is to obtain causal
insights from the structure of the latent space. Therefore, we
propose to encourage the latent space to be causally ordered.
Causal ordering is a universal property for DAGs (Assumption
2) and therefore applicable to most causal representation learn-
ing settings. Therefore, we proceed to define what is causal
order and a loss function that will ensure that the latent space
is causally ordered. Then, we describe a variational inference
estimation method which models latent variables using a GMM
leveraging Assumption 5.
Definition 1 (Causal Ordering). Assume G to be a DAG, there is a non-unique permutation τ of d
nodes such that a given node always appears first in the list compared to its descendants. Formally,
τi < τj ⇐⇒ j ∈ de(zi) where de(zi) are the descendants of zi in G (Appendix B in [22]).

It is well known in the causal discovery literature [23] that a complete causal graph is not identifiable
from observational data without extra assumptions. If the functional form of the causal mechanism is
assumed to be an ANM, causal directions become identifiable due to asymmetries.

Interestingly, previous works on causal discovery [24, 25] explore a property of the distribution of
ANMs to find a causal ordering. The property is based on the Hessian of an ANM distribution w.r.t.
its input, ∇2

zi
log p(z). In particular, under Assumptions [2,3], ∇2

zi
log p(z) = a ⇐⇒ zi is a leaf

node, where a is some constant and ∇2
zi
log p(z) is ith diagonal element of the distribution’s Hessian.

Here, we use the same property to enforce causal ordering instead of discovering it. We encourage
the Hessian of a particular node to be constant (or its variance to be zero), see Proposition 1.

Proposition 1. Under Assumptions [2,3] and let Hi
var(z) = var

(
∇2

zi log p(z)
)

. The latent space z

can be causally ordered by minimising the causal ordering loss defined as

Lorder = −
d−1∑
i

log
Hi

var(zi, . . . , zd)
−1∑d

j=i H
j
var(zi, . . . , zd)

−1 (2)

Proof. The proof directly extends from analysing the score of the ANM distribution

∇zi log p(z) =
∂ log pϵ(zi − fi(pa(zi)))

∂zi
−

∑
j∈ch(zi)

∂fj
∂zi

∂ log pϵ(zj − fj(pa(zj)))
∂zi

. (3)

As described in [24], the minimum variance in the latent log-likelihood’s hessian corresponds to a
leaf node. The loss term Lorder is minimum if, and only if, the nodes at position i are leaves. We
show this by contradiction; without loss of generality, consider the random latent order τ , s.t. τi ̸= i,
then H0

var(z) ≥ ϵ ⇒ Lorder > 0. Based on the above expression Lorder → 0, ⇐⇒ τi = i, where
τi correspond to true causal order. It is important to note that as the representations are learned
end-to-end, enforcing this loss would organise the latent space to follow the causal ordering.
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Hessian Estimation. To compute Hi
var(z), we approximate the score’s Jacobian (Hessian) with

Stein kernel estimators [26] as described in [24] and detailed in the Appendix E along with complexity
analysis and discussion of appropriate mini-batch approximations.

Algorithm 1 Compute topological loss (Lorder)

1: Initialize: Lorder = 0, K̃ = {i : K}i=0,...d−1, α
2: Given: z = f−1

o (x)
3: for i = 0, . . . , d− 1
4: z̃ = z[i :]
5: v = Hvar(z̃) ▷ Compute variance of the Hessian
6: ṽ = softmax(− logv) ▷ Smallest variance → highest ṽ
7: Lorder+ = BCE(ṽ, [1, 0 . . . 0]) ▷ First element should have smallest variance
8: return Lorder

Algorithmic Description. The proposed regularization technique operates on the estimated latent
representations z ∈ Rd. It follows an iterative process where we sequentially remove elements from
z, resulting in a modified latent representation z̃ ∈ Rd−i at each iteration i. During each iteration,
we calculate the variance of the Hessian matrix of z̃ with respect to the input x. We apply a softmax
activation function and compute binary cross-entropy loss to promote competition among nodes to
align to a global leaf node at that iteration. This process is applied iteratively for d − 1 iterations,
effectively encouraging each element zj to be causally influenced by the nodes zk>j .

4 Identifiability

A key challenge in unsupervised representation learning is identifiability. The intuition is that if
two parameters result in an identical distribution of observations, then they must be equivalent in
order to ensure model identifiability. Note that identifiability is the property of the data generation
process, and not of the estimation method. Identifiability is important because it gives theoretical
guarantees that an estimation method is capable of learning the true variables that generated the
observed data. Formally, a data generation process resulting in a distribution pθ(x) is ∼-identifiable
up to equivalence relation ∼ on θ, if

pθ1(x) = pθ2(x) ⇒ θ1 ∼ θ2. (4)

This exact definition of model identifiability can be too restrictive [10, 14]. In reality, identifying a
representation up to a simple transformation is sufficient. For example, previous work [10, 14] define
a weaker form which guarantees identifiability up to affine transformation ∼A or permutation, scaling
and shift ∼P . In the case of an ANM data generating process, [27] demonstrates the identifiability of
models with only observational data, assuming that all variables are observed. Further, [24] discuss
the identifiability of ANM models under data score functions. However, they do not discuss the
identifiability of latent ANM models.

In this section, we show that stronger forms of identifiability can be guaranteed when the latent ANMs
are causally ordered. Firstly, we define an equivalence class considering our data generation process
and estimation method. Then, we outline prior research on identifiability [14] upon which our study
is built. Finally, we present our identifiability results, which goes beyond affine and permutation
equivalence.

Background. Recently, [14] established the identifiability of unsupervised representation learning
from observational data without the need for auxiliary information. Here, we build upon their robust
theoretical guarantees. However, we aim to extract causal insights from the latent space structure
which was unexplored before. Thus, prior to presenting our findings, we provide an overview of their
key results and establish a connection with our assumptions. We use Theorem 3.10 (a,d) in [14] which
states that f and p(z) are identifiable from p(x) up to an affine transformation (∼A equivalence) if
Assumption 1 and 5 are satisfied. Therefore, our data generation process is, at least, ∼A-identifiable.
We later this ∼A-identifiability for proving our stronger result.
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4.1 Identifiability Class

We now define an identifiability class which further reduces the space of transformations. As proven
in Section 4.2, latent variables which are causally ordered enable stronger identifiability guarantees.
The stronger guarantee derives from the fact the true causal DAG G can have several valid causal
ordering, given the graph topology.
Example 1. If G has d nodes and no edges (independent variables), there are d! possible causal
orderings, since any permutation of the nodes is valid. Conversely, if the DAG is a straight line (a
single path), there is only one valid causal ordering.
Definition 2. (Permutational Block Diagonal Transformation, p) For any random variable z ∈ Z ,
a permutational block diagonal transformation is defined by p(z) = Pτ · z such that Pτ is a block
diagonal matrix where the blocks themselves are permutational matrices. Pτ ∈ P ⊆ {0, 1}d×d.

In other words, the transformation Pτ corresponds to permutations between two valid causal ordering
τi and τj of a causal graph G. Moreover, the union of all permutation matrices between all possible
causal orderings is block-diagonal, hence, block-diagonal equivalence. Computing the block size
is equivalent to the maximum shift in node indices through all possible causal orderings. Finding
an analytical expression for the number of causal ordering known to be ♯P -complete problem [28].
However, we empirically show that the space of permutations between different orderings is much
smaller than the space of permutations (refer Appendix G).
Definition 3. (∼τ -identifiability) For θ = {f ,p} a set of parameters corresponding to the mixing
function and prior, the equivalence relation ∼τ on θ is defined as:

(f ,p) ∼τ (f̃ , p̃) ⇐⇒ ∃ Pτ ∈ P,D ∈ Rd×d, c ∈ Rd

s.t. f−1(x) = D · (Pτ · f̃−1(x)) + c,∀x ∈ O, (5)

where Pτ ,D are permutational block diagonal and scaling matrix, and c is a shift vector.

4.2 Identifiability of Latent ANMs

We prove that the latent distribution and the mixing function are identifiable under our assumptions.
Theorem 1. (∼τ -identifiability of p(z) under causal ordering) Under Assumptions [1, 2, 3, 4, 5] ,
p(z) is ∼τ -identifiable from p(x) if z is causally ordered.

Proof outline: Based on Theorem C.2 in [14], we known that p(z) is identifiable up to an affine
transformation. With this result, we can consider z̃ = P z + q ∀z ∼ p(z) for some invertable
affine transformation P : Rd → Rd and translation vector q. Then, considering that both z̃ and
z are causally ordered, we show that z̃, z can be recovered up to permutational block diagonal
transformation followed by scaling and translation (indicating ∼τ identifiability) (ref. Appendix D).
Remark 1. In practice, we encourage the causal ordering to be a trivial sequence where the first node
is a leaf (global effect), and the last node is a root (global cause).
Theorem 2. (Model identifiability under causal ordering) Let τ̂ be the set of all possible causal
ordering for the considered data distribution. Let z ∼ p(z) and z̃ ∼ p̃(z), where p(z) and p̃(z) are
latent distributions following causal ordering τp and τq ∈ τ̂ respectively. For two invertible mixing
functions fo, f̃o : Rd → R|O|. Suppose fo(z), f̃o(z̃) are equally distributed, then there exist a linear
transformation l : Rd → Rd and a permutational block diagonal transformation p : Rd → Rd, such
that fo = f̃o ◦ l−1 ◦ p−1, indicating fo ∼τ f̃o.

Proof outline: Given both the mixing functions fo, f̃o are equally distributed, based on Theorem
C.7 in [14], we known that there exists an invertable affine transformation h : Rd → Rd such that
h(z) = z̃. Contrary to this, here we demonstrate that given causal ordering over latent factors, the
affine function h can be reduced to the composition of l ◦ p (ref. Appendix D).

5 Experiments

We use synthetic tabular data and image data (MorphoMNIST and Causal3DIdent datasets). We
conduct a comparative evaluation of our proposed model against three baseline methods: VAE [29],
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β-VAE [2], and MFC-VAE [30], each employing a single facet. We compute different variants of
MCC: (i) across multiple random seeds (MCC-R): measures the stability of the training process given
the model; (ii) with respect to ground truth variables (MCC-GT): measures the faithfulness of the
estimated latent variables to true latent variables [13]; and (iii) subset MCC (MCC-SG): in the case
when all parents of x are not observed, we measure the faithfulness by considering a subset of latent
variables. As these MCC measures are permutation invariant by nature, to capture the perceived order
among latent variables, we also calculate COD, which measures the divergence of the topological
order in an estimated causal graph from the causal order. These metrics are formally defined in
Appendix F. In addition, to quantify the injectiveness of the model we compute MIC and RRO as
described in Appendix H. Table 1: MCC and COD results on synthetic datasets with 2,

15, and 50 nodes in the latent space along with imaging datasts
MorphoMNIST-IT and MorphoMNIST-TSWI.

METHODS(↓),
METRICS(→)

SYN-2

COD (↓) MCC-R(↑) MCC-G(↑) R2(↑)
VAE 0.13 ± 0.08 0.11 0.26± 0.03 0.10 ± 0.01

(β = 0.1)-VAE 0.08 ± 0.04 0.14 0.10± 0.01 0.18 ± 0.04
(β = 0.5)-VAE 0.11 ± 0.08 0.21 0.12± 0.01 0.06 ± 0.01
(β = 2.0)-VAE 0.06 ± 0.04 0.26 0.34± 0.00 0.11 ± 0.00

MFC-VAE 0.17 ± 0.09 0.14 0.35± 0.06 0.12 ± 0.03
COVAE 0.00 ± 0.01 0.62 0.52 ± 0.07 0.37 ± 0.06

SYN-15

VAE 1.68 ± 0.22 0.21 0.22 ± 0.02 0.41 ± 0.01
(β = 0.1)-VAE 2.04 ± 0.15 0.13 0.21 ± 0.06 0.38 ± 0.04
(β = 0.5)-VAE 1.94 ± 0.12 0.28 0.18 ± 0.04 0.41 ± 0.01
(β = 2.0)-VAE 1.83 ± 0.24 0.24 0.33 ± 0.01 0.52 ± 0.00

MFC-VAE 1.43 ± 0.24 0.26 0.26 ± 0.03 0.48 ± 0.08
COVAE 0.03 ± 0.01 0.42 0.34 ± 0.03 0.56 ± 0.05

SYN-50

VAE 5.53 ± 0.81 0.23 0.28 ± 0.24 0.63 ± 0.01
(β = 0.1)-VAE 5.29 ± 0.41 0.11 0.28 ± 0.04 0.62 ± 0.12
(β = 0.5)-VAE 4.15 ± 0.35 0.22 0.30 ± 0.00 0.66 ± 0.00
(β = 2.0)-VAE 5.38 ± 0.19 0.26 0.35 ± 0.01 0.66 ± 0.00

MFC-VAE 5.17 ± 0.62 0.31 0.26 ± 0.01 0.62 ± 0.00
COVAE 0.78 ± 0.46 0.39 0.34 ± 0.02 0.68 ± 0.01

METHODS(↓),
METRICS(→)

MORPHOMNIST-IT

COD (↓) MCC-R(↑) MCC-SG(↑) R2(↑)
VAE 1.61 ± 0.44 0.29 0.23 ± 0.11 0.29 ± 0.18

MFC-VAE 1.04 ± 0.46 0.36 0.34 ± 0.09 0.42 ± 0.16
COVAE 0.0 0.59 0.47 ± 0.08 0.66 ± 0.10

MORPHOMNIST-TSWI

VAE 0.81 ± 0.26 0.47 0.21 ± 0.00 0.24 ± 0.04
MFC-VAE 1.35 ± 0.24 0.52 0.28 ± 0.04 0.25 ± 0.06

COVAE 0.0 0.61 0.31 ± 0.04 0.26 ± 0.04

Results. In all our exper-
iments, we employ a neural
network model that complies
with the characteristics outlined
in Appendix H. Our observa-
tions, specifically with regard
to the Mean Injectivity Coeffi-
cient (MIC) and Row Rank Ra-
tio (RRO) metrics, indicate that
the injectiveness of the decoder
is primarily influenced by the se-
lection of architecture and the
specific dataset being analyzed.
In the case of synthetic datasets,
we observe the MIC of 1.0, 0.68,
and 1.0 for SYN-2, SYN-15, and
SYN-50 datasets, respectively,
with the corresponding RRO val-
ues of 0.88, 0.93, and 0.95. Sim-
ilarly, in the case of imaging
datasets for both MorphoMNIST-
IT and MorphoMNIST-TSWI we
observe the MIC of 1.0 and RRO
of 0.85. To assess the effective-
ness of stability and faithfulness,
we compiled in Table 1 the quan-
titative results.

In our analysis, we compute
MCC-R using five random seeds,
Table 1 illustrates the mean and
standard deviation across these
five runs for COD and MCC-GT.
These results provide evidence
that the proposed regularization, particularly in the presence of additive noise models in the latent
space, effectively enforces a specific causal ordering. This is evident from the decreasing COD values
approaching 0. Furthermore, based on the MCC and R2 results, it can be observed that the proposed
regularization also contributes to a more effective disentanglement of latent representations, improv-
ing the identifiability of the model when compared against VAE [29], β−VAE [2], and MFC-VAE
[30]. Additional experiments on other variants of the MorphoMNIST dataset and Causal3DIdent are
detailed in the Appendix J.

6 Conclusion

In this work, we propose a fully unsupervised causal representation learning method for data adhering
to a latent ANM by imposing a causal ordering on the latent space that corresponds to the underlying
causal graph. The causal ordered latent space enables stronger identifiability results with ∼τ equiva-
lence. More importantly, it allows an understanding of causal ordering in the latent space. That is, a
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given latent variable always appears first in the latent space vector compared to its causal descendants.
Possible future works would be to investigate the sample efficiency and robustness of the models
trained with the proposed estimation method. Additionally, extending the proposed approach to other
functional causal models and relaxing modelling assumptions and identifiability of the number of
latent variables would be of particular interest.

7 Acknowledgement

This work was supported by the University of Edinburgh, the Royal Academy of Engineering and
Canon Medical Research Europe via P.P. Sanchez’s and Konstantinos Vilouras’ PhD studentships. A.
Kori was supported by UKRI (grant agreement no. EP/S023356/1), in the UKRI Centre for Doctoral
Training in Safe and Trusted AI. S.A. Tsaftaris acknowledges the support of Canon Medical and the
Royal Academy of Engineering and the Research Chairs and Senior Research Fellowships scheme
(grant RCSRF1819\8\25).

References
[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and

new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–
1828, 2013.

[2] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017.

[3] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in Neural Information Processing Systems, 2016.

[4] Frederik Träuble, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh
Goyal, Bernhard Schölkopf, and Stefan Bauer. On disentangled representations learned from
correlated data. In Proceedings of the 38th International Conference on Machine Learning,
2021.

[5] Xiao Liu, Pedro Sanchez, Spyridon Thermos, Alison Q. O’Neil, and Sotirios A. Tsaftaris.
Learning disentangled representations in the imaging domain. Medical Image Analysis, 80,
2022.

[6] Irina Higgins, Sébastien Racanière, and Danilo Rezende. Symmetry-based representations for
artificial and biological general intelligence. Frontiers in Computational Neuroscience, 16,
2022.

[7] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
of disentangled representations. In international conference on machine learning, pages 4114–
4124. PMLR, 2019.

[8] Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109, 2021.

[9] Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence
and uniqueness results. Neural networks, 12(3):429–439, 1999.

[10] Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational au-
toencoders and nonlinear ica: A unifying framework. In International Conference on Artificial
Intelligence and Statistics, pages 2207–2217. PMLR, 2020.

[11] Aapo Hyvärinen, Ilyes Khemakhem, and Ricardo Monti. Identifiability of latent-variable and
structural-equation models: from linear to nonlinear, 2023.

7



[12] Aapo Hyvärinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive
learning and nonlinear ica. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, 2016.

[13] Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvarinen. Ice-beem: Identi-
fiable conditional energy-based deep models based on nonlinear ica. In Advances in Neural
Information Processing Systems, volume 33, 2020.

[14] Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Identifiability
of deep generative models without auxiliary information. Advances in Neural Information
Processing Systems, 35:15687–15701, 2022.

[15] Matthew Willetts and Brooks Paige. I don’t need u: Identifiable non-linear ica without side
information. arXiv preprint arXiv:2106.05238, 2021.

[16] Hans Reichenbach. The direction time. Univ. of California Press, 1956.

[17] Kartik Ahuja, Yixin Wang, Divyat Mahajan, and Yoshua Bengio. Interventional causal repre-
sentation learning. arXiv preprint arXiv:2209.11924, 2022.

[18] Burak Varici, Emre Acarturk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Score-
based causal representation learning with interventions. arXiv preprint arXiv:2301.08230,
2023.

[19] Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and
Michael Tschannen. Weakly-supervised disentanglement without compromises. In International
Conference on Machine Learning, pages 6348–6359. PMLR, 2020.

[20] Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco S Cohen. Weakly supervised causal
representation learning. Advances in Neural Information Processing Systems, 35:38319–38331,
2022.

[21] Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, and Stratis Gavves.
Citris: Causal identifiability from temporal intervened sequences. In International Conference
on Machine Learning, pages 13557–13603. PMLR, 2022.

[22] Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal Inference: Founda-
tions and Learning Algorithms. The MIT Press, 2017.

[23] Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on
graphical models. Frontiers in Genetics, 10, 2019.

[24] Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russell, Dominik Janzing, Bernhard
Schölkopf, and Francesco Locatello. Score matching enables causal discovery of nonlinear
additive noise models. In International Conference on Machine Learning, pages 18741–18753.
PMLR, 2022.

[25] Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A. Tsaftaris. Diffusion models for
causal discovery via topological ordering. In The Eleventh International Conference on Learning
Representations, 2023.

[26] Yingzhen Li and Richard E Turner. Gradient estimators for implicit models. arXiv preprint
arXiv:1705.07107, 2017.

[27] Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery
with continuous additive noise models. Journal of Machine Learning Research, 15:2009–2053,
2014.

[28] Graham Brightwell and Peter Winkler. Counting linear extensions is #p-complete. In Proceed-
ings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC ’91, page
175–181, 1991.

[29] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

8



[30] Fabian Falck, Haoting Zhang, Matthew Willetts, George Nicholson, Christopher Yau, and
Chris C Holmes. Multi-facet clustering variational autoencoders. Advances in Neural Informa-
tion Processing Systems, 34:8676–8690, 2021.

[31] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep
embedding: An unsupervised and generative approach to clustering. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, 2017.

[32] Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
Disentangled representation learning via neural structural causal models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9593–9602, 2021.

[33] Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Weakly
supervised disentangled generative causal representation learning. Journal of Machine Learning
Research, 23:1–55, 2022.

[34] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Proceedings of the 35th
International Conference on Machine Learning, Proceedings of Machine Learning Research,
2018.

[35] Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative evaluation of
disentangled representations. In International Conference on Learning Representations, 2018.

[36] Emile Mathieu, Tom Rainforth, N Siddharth, and Yee Whye Teh. Disentangling disentanglement
in variational autoencoders. In Proceedings of the 36th International Conference on Machine
Learning, 2019.

[37] Simon Buchholz, Michel Besserve, and Bernhard Schölkopf. Function classes for identifiable
nonlinear independent component analysis. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[38] Xiaojiang Yang, Yi Wang, Jiacheng Sun, Xing Zhang, Shifeng Zhang, Zhenguo Li, and Junchi
Yan. Nonlinear ICA using volume-preserving transformations. In International Conference on
Learning Representations, 2022.

[39] Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables
and generalized contrastive learning. In Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, volume 89, pages 859–868. PMLR, 2019.

[40] Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
causal discovery with additive noise models. In Advances in Neural Information Processing
Systems, volume 21, 2008.

[41] Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery
with continuous additive noise models. Journal of Machine Learning Research, 15, 2014.

[42] Joris M Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bernhard Schölkopf.
Distinguishing cause from effect using observational data: methods and benchmarks. The
Journal of Machine Learning Research, 17(1):1103–1204, 2016.

[43] Hien D Nguyen and Geoffrey McLachlan. On approximations via convolution-defined mixture
models. Communications in Statistics-Theory and Methods, 48(16):3945–3955, 2019.

[44] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational
deep embedding: An unsupervised and generative approach to clustering. arXiv preprint
arXiv:1611.05148, 2016.

[45] Matthew James Johnson, David Duvenaud, Alexander B. Wiltschko, Sandeep R. Datta, and
Ryan P. Adams. Composing graphical models with neural networks for structured represen-
tations and fast inference. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, 2016.

[46] Markus Kalisch and Peter Bühlman. Estimating high-dimensional directed acyclic graphs with
the pc-algorithm. Journal of Machine Learning Research, 8(3), 2007.

9



[47] Keli Zhang, Shengyu Zhu, Marcus Kalander, Ignavier Ng, Junjian Ye, Zhitang Chen, and Lujia
Pan. gcastle: A python toolbox for causal discovery, 2021.

[48] Daniel C Castro, Jeremy Tan, Bernhard Kainz, Ender Konukoglu, and Ben Glocker. Morpho-
mnist: Quantitative assessment and diagnostics for representation learning. Journal of Machine
Learning Research, 20(178):1–29, 2019.

[49] Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf,
Michel Besserve, and Francesco Locatello. Self-supervised learning with data augmentations
provably isolates content from style. Advances in neural information processing systems,
34:16451–16467, 2021.

[50] Avinash Kori, Ben Glocker, and Francesca Toni. Glance: Global to local architecture-neutral
concept-based explanations. arXiv preprint arXiv:2207.01917, 2022.

10



A Related Works

Table 2 describes data and latent space assumptions of previously existing models in comparison to
the proposed method.

Table 2: Comparison of assumptions for identifiability. We describe methods by data: observational
(obs), interventional (int) or counterfactual (ctf ); and latent assumptions: independent (ind), condi-
tionally independent (cond ind), auxiliary information (aux) or structural causal model (SCM).

Method Data Latents

ADA-GVAE [19] ctf ind
IVAE [10] obs + aux cond ind | aux
VADE [31, 15];
MFC-VAE [30, 14] obs cond ind | learned aux

CAUSALVAE [32], DEAR [33] obs + aux SCM
[17], [18] int SCM
ILCM [20], CITRIS [21] ctf SCM
Ours (COVAE) obs SCM (ANM)

Disentangled Representation Learning. Early efforts on unsupervised representation learning
focused on the Variational Autoencoder framework [29]. β-VAE [2] and extensions [34, 35, 36] rely
on independence assumptions between latent variables to learn disentangled representations [5, 6].
Despite showing some success, learning independent (disentangled) representations from i.i.d. data in
an unsupervised manner is provably impossible [9, 7]. More recently, it was found that restricting the
class of the mixing (decoder) functions to conformal maps [37] or volume-preserving transformations
[38] results in identifiable models. Contrary to initial disentanglement works, we argue that latent
variables can be causally related as illustrated in Figure 1. Here, we use injectivity constraints on the
mixing function which is a weaker assumption which is possible due to our imposed latent distribution
asymmetries.

Representation Learning with Auxiliary Information. A line of work based on nonlinear ICA
leverages auxiliary information to learn identifiable models. [39, 10] derive a more general proof of
identifiability using the concept of conditional independence given auxiliary variables. An extension
of nonlinear ICA, called Independently Modulated Component Analysis (IMCA) was proposed in
[13], where the components are allowed to be dependent. On the contrary, [14] prove the identifiability
of deep generative models can also be achieved without auxiliary information by considering a GMM
prior in the latent space. In the same line, empirical results in [15] show that the GMM prior
assumption is as efficient as utilising auxiliary information in terms of learning stability (latents
learned for different training seeds are correlated). We use [14] proofs as a starting point for our
proofs.

Causal Representation Learning. It is possible to model causal relationships given access to either
interventional or non-i.i.d. data. [17] uses an injective polynomial decoder and the overall model is
trained on both observational and interventional data. [18] consider the case of an injective linear
decoder and directly optimize the score function of the distribution (in both the latent and observation
space). In [19] observations are collected before and after unknown interventions (i.e. counterfactual
data), while [20] extends this idea to causal graphs of higher complexity. Under the non-iid scenario,
[21] focuses on extracting causal factors from spatio-temporal data by performing interventions
across different time steps. Works also exist that assume some level of supervision, i.e. having access
to ground-truth causal factors. [33] propose a GAN-based method where the prior follows a nonlinear
SCM. Others [32] instead model exogenous noise directly, which is then mapped to causal latent
variables via a linear SCM. Contrary to previous work, we aim at deriving causal knowledge from
the latent space learning from observation data only by imposing other constraints inspired in causal
discovery [23].
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B Assumptions

Assumption 1 (Mixing function). The mixing function fo is nonlinear piecewise affine injective
function.

Under certain constraints, common neural network architectures such as multilayer perceptrons
(MLPs) with LeakyRelu activation functions, follow Assumption 1. Therefore, it corresponds to a
flexible and realistic class of mixing functions. We describe the constraints and propose a metric to
measure injectivity of a neural network in Appendix H.
Assumption 2 (Latent DAG). The latent distribution p(z) is a SCM following a directed acyclic
graph (DAG) G, containing d nodes, which describes the true causal structure of the latent.
Assumption 3 (Latent Additive Noise Model, LANM). We assume that the latent SCM consists of a
collection of assignments following an additive noise model (ANM) zi := fi(pa(zi)) + ϵi. ϵi is a
noise term independent of xi, also called exogenous noise. ϵi are i.i.d. from a smooth distribution pϵ.
When using an ANM assumption over z, the latent distribution in Equation 1 becomes

p(z) =
∏
i

p(zi | pa(zi)) =
∏
i

pϵ(zi − fi(pa(zi))), (6)

where fi is a nonlinear function and pϵ is any quadratic exponential noise prior (e.g. Gaussian-like)
[24, 25].

Assuming a functional form for the causal mechanism between variables, such as ANMs [40, 41], is
an established method for identifying causal relationships [22, 23] due to asymmetries in the joint
distribution. Moreover, the ANM assumption has been shown to perform well on real benchmarks
from various domains such as meteorology, biology, medicine, engineering and economy [42], for
causal discovery.
Assumption 4 (Number of causal factors). We assume that a known number of causal factors,
denoted as d, interact to generate the observational data x.
Assumption 5 (p(z) as GMM). The latent distribution p(z) =

∏
i p

ϵ(zi − fi(pa(zi))) =∑J
j=1 πjN (µj ,Σj) can be modelled as a Gaussian Mixture Model with J > 1.

GMMs with a sufficient amount of components can model any densities in the limiting case [43].
Multiple components, in turn, ‘breaks the symmetry‘ in the latent space behaving like auxiliary
information in iVAE [15, 14], resulting in an identifiable model.

C Variational Inference

We are now interested in modelling a latent space with an arbitrarily complex distribution based on
an ANM using the deep variational framework. That is, learning a posterior distribution that can
approximate the ANM prior p(z) given a sample from the observational distribution.

Prior. A multivariate diagonal Gaussian prior, as commonly used in variational autoencoders
(VAE), cannot model these distributions because variables are not independent. Therefore, we
consider Gaussian Mixture Model (GMM) prior under Assumption 5, following established literature
[44, 45, 30], which is proven to be identifiable and have universal approximation capabilities [14].

ELBO. We consider the generative model to be p(x, z,u) = p(x | z)p(z | u)p(u), following [30].
The posterior can be written as q(u, z | x) = q(u | x)q(z | x), where q(z | x) is a multivariate
Gaussian with diagonal covariance and q(u | x) a categorical distribution over GMM components.
The mixture components are inferred via prior as q(u | x) ∝ exp(Eq(z|x) log p(u | z)). In this case,
the posterior q(u, z | x) is a GMM and can approximate the prior p(z) following an ANM. A detailed
derivation can be found in Appendix D.3. The ELBO for this model can be described as

LELBO = −E [log p(x | z)] + E
[
KL

(
q(z | x) || p(z | u)

)]
+KL

(
q(u | x) || p(u)

)
, (7)

where E is over the q(z | x) distribution. Based on the Proposition 1, models trained with Ltotal result
in a causally ordered latent space z, formally

Ltotal = LELBO + αLorder (8)
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Discussion. Proposition 1 shows that, given sufficient data and compute, under Assumption 3, latent
representations are causally ordered. Additionally, given the organised latent representations, the
causal relationships among the representations can be estimated using conditional independencies as
commonly done in causal discovery [46, 24, 25]. The causal mechanisms between latent variables
are learned implicitly.

D Proofs

D.1 Identifiability of latent distribution under causal ordering

Under assumptions [1, 2, 3, 5] , p(z) is ∼τ -identifiable from p(x) if z is causally ordered.

Proof. Let τ̂ = {τ1, . . . τk} correspond to the set of k possible causal ordering of features. Let
G1,G2 ∼ G be an adjacency graph of two samples of true DAG, following topological ordering
τ1, τ2 modelling y, ỹ respectively. Given GMM’s can model distribution, by breaking them into
multiple piece-wise affine components, without any loss of generality we can consider:

z ∼ p(z) =
∏
i

pG(zi | pa(zi)) =
J∑

j=0

π(j)N (µj ,Σj) (9)

Where Σj is diagonal covariance matrix, which can further be decomposed as Σj = (Āj ⊙ Āj)Σ̄
where Σ̄ is a diagonal root node covariance matrix and Āj is diagonal scaling coefficients for that
particular component. Similarly, vector µj can be expressed as µj = Āj µ̄+ b̄j , where µ̄ is a mean
vector expressed in terms of means of root node and b̄j is translation with respect to root nodes with
respect to that component.

Let us consider a simple causal graph x → y, where the mechanism f(x) is non-linear (which can
be modelled as piece-wise affine). For one such component where x ∈ (x0, x1), y = ax + b, the
joint distribution, in this case, can be described using isotropic Gaussian N (µ,Σ), where µx, σ

2
x are

mean and variance of the root node. µy = aµx + b and σ2
y = a2σ2

x, which can jointly described as
µ = Aµ̄,Σ = (A⊙A)Σ̄.

Without loss of generality consider any component j ∈ {0, . . . J}, resulting in covariance of ỹ to be:

Σ̃j = PΣjP
T = P (Āj ⊙ Āj)Σ̄jP

T

Given Σ̃j , Σ̃j are positive semi-definite (PSD), spectral decomposition of Σ̃j = VjV
T
j = V ′

jV
′T
j ,

where Vj ,V
′
j are PSD matrices and are unique up to orthogonal transformation ⇒ Vj = RjV

′
j for

some unitary matrix Rj for each and every j ∈ {0, . . . , J}. Given the G1 and G2 only vary in the
causal ordering, there exists a block-diagonal transformation B, (transformation matrix with ones
in the node indexes which belong to the same causal hierarchy), such that G1 = BG2, this block
diagonal transformation should also be reflected in the parameters of every component (given the
latent variable is ordered, the mean and covariance across components also follow the same ordering),
with this we can rewrite the covariances as follows:

(Σ̃j)
1/2 = VjRj = P (Σj)

1/2 = P (BΣj)
1/2

Without loss of generality, let’s consider two components j = 1 and j = 2,

(Σ̃1)
1/2(Σ1)

−1/2 = (Σ̃2)
1/2(Σ2)

−1/2 ⇒ V1R1(Σ1)
−1/2 = V2R2(Σ2)

−1/2

By rearranging terms, we get:

R1(Σ1)
−1/2(Σ2)

1/2)R−1
2 = V −1

1 V2

Similarly, we get V −1
2 V1 = R2(Σ2)

1/2(Σ1)
−1/2)R−1

1 By rewriting Σ1 in terms of Σ̄ we get:

V −1
2 V1 = R2((Ā2 ⊙ Ā2)Σ̄)

1/2((Ā1 ⊙ Ā1)Σ̄)
−1/2)R−1

1

⇒ R2((Ā2 ⊙ Ā2))
1/2Σ̄1/2Σ̄−1/2((Ā1 ⊙ Ā1)

−1/2)R−1
1
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⇒ R2((Ā2 ⊙ Ā2))
1/2((Ā1 ⊙ Ā1)

−1/2)R−1
1

As R1,R2 are unitary, Ā1, Ā2 are diagonal, PSD, and are causally ordered with respect to G ∼ G,
similar to B there exists transformation matrix B1,B2, such that G1 = B1G,G2 = B2G. The
elements in (Ā2⊙Ā2)

1/2(Ā1⊙Ā1)
−1/2 are distinct (given mixture distributions are non-degenerate

and each component capture different parts of complex non-linear function), they can be uniquely
determined upto block diagonal permutation matrix B1. The spectral decomposition of V −1

2 V1

results in R′ such that:

V1R
′
1B1 = PΣ

1/2
1 , forP ′ := V1R

′
1, we have (P ′)−1P = B1(Σ1)

−1/2

Based on this, we can conclude that, given the latent representations that follow certain causal graphs,
GMMs can be identifiable up to scaling and translation (captured by the mean of components in the
mixture models).

Corollary 3. In the case when the causal graph is known, permutational block diagonal matrix Bp

reduces to identity, giving us a scale and translation equivalence.

If the correct causal DAG is known, the block permutation matrix Bp in theorem 1 trivially reduces
to identity, resulting in scaling and translation equivalence, much stronger than affine or permutation
equivalence.

D.2 Decoder identifiability under causal ordering

Let τ̂ be the set of all possible causal ordering for the considered data distribution. Let z ∼ p(z)
and z̃ ∼ p̃(z), where p(z) and p̃(z) are latent distributions following causal ordering τp and τq ∈ τ̂

respectively. For two invertible mixing functions fo, f̃o : Rd → R|O|. Suppose fo(z), f̃(z̃) are
equally distributed, then there exist a linear transformation l : Rd → Rd and a permutational block
diagonal transformation p : Rd → Rd, such that fo = f̃o ◦ l−1 ◦ p−1.

Proof. Given both the mixing functions fo, f̃o are equally distributed, by Theorem C.7 [14], we know
that there exists an invertable affine transformation h : Rd → Rd, such that h(z) := z̃.

Based on our assumption that both distributions p, p̃ only vary in there partial order and the theorem
1, we can reduce the affine function as a decomposition of linear and permutation transformation,
resulting in (l◦p)(z) = z̃, for some invertable linear function l : Rd → Rd and invertable permutation
function p : Rd → Rd.

Based on the above formulation we have fo(z) ∼ (f̃o ◦ l ◦ p)(z), which can be rewritten as
z ∼ (p−1 ◦ l−1 ◦ f̃−1

o ◦ fo)(z).

If both mixing functions are equally distributed (f̃−1
o ◦ fo)(z)∀ ∼ p(z) correspond to ˜p(z). This

implies, based on theorem 1, (f̃−1
o ◦fo) ≡ (l′ ◦p′) for some random linear and permutation functions

l′ and p′ respectively.

This results in (p−1 ◦ l−1 ◦ f̃−1
o ◦ fo) = (l′ ◦ p′) on domain f−1

o (O).

We get f̃o(z̃) = (fo ◦ l′ ◦ p′)(z) ∀ z ∈ f̃−1
o (O)

D.3 ELBO Derivation

We now derive the ELBO used in this work which follows (author?) [30].

For this, we start with the data distribution as p(x), and the aim is to maximize the log-likelihood of
this distribution:

log p(x)

= log

∫
u

∫
z

p(x,u, z)dzdu
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Figure 3: Variational posterior Q(u, z | x) used during inference on the left and generative model on
the right. We do not give a causal interpretation for c in this case.

Let’s consider variational distributions q(u, z | x).

= log

∫
u

∫
z

p(x,u, z)
q(u, z | x)
q(u, z | x)

dzdu

≥ Eq(u,z|x) log
p(x,u, z)

q(u, z | x)

Based on modelling assumption described in Figure 3, q(u, z | x) decomposes as q(u | x)q(z | x)

= Eq(u,z|x)

[
log p(x | z) + log

p(u)

q(u | x)
+ log

p(z | u)
q(z | x)

]

= Eq(z|x) log p(x | z) + Eq(z|x)Eq(u|x) log
p(u | z)
q(u | x)

+ Eq(z|x) log
p(z)

q(z | x)

= Eq(z|x) log p(x | z)− Eq(z|x)KL
(
q(u | x)∥p(u)

)
−KL

(
q(z | x)∥p(z | u)

)

⇒ LELBO = −Eq(z|x) log p(x | z) + KL
(
q(u | x)∥p(u)

)
+ Eq(u|x)KL

(
q(z | x)∥p(z | u)

)
E Hessian Estimation

To compute Hi
var(z), we approximate the score’s Jacobian (Hessian) with Stein kernel estimators

[26] as described in [24] and detailed in the Appendix:

JStein = −diag(GStein(GStein)T ) + (K+ ηI)−1⟨∇2
diag,K⟩ (10)

Where GStein = −(K+ ηI)−1⟨∇,K⟩ is the Stein gradient estimator [26], K is the median kernel,
I is the Identity matrix, and ⟨a, b⟩ correspond to applying operation a on b element-wise. The final
algorithm for computing Lorder is described in Alg. 1.

Complexity analysis. As outlined in Algorithm 1, our proposed framework includes two main
complexity-inducing steps (i) Jacobian estimation (line 5 of algorithm 1): for this we use kernel-based
estimation method detailed in Equation 10, which requires inverting b× b matrix (b is the batch size
used) resulting in an additional complexity of O(b3), and (ii) the loop over all latent variables (line 3
in Alg. 1): this further increases the factor of complexity resulting in O(db3). The complexity can be
reduced by the heuristic of causally ordering top m variables, where m << d, resulting in the final
complexity of O(mb3).

Kernel estimation to mini-batch approximation. The stein estimator in Equation 10 is a kernel-
based approach, which means it requires an entire data distribution to compute jacobian, here we
approximate it using mini-batch optimization while preserving the kernel characteristics. For this,
we consider the moving average over kernel statistics across batches, which eventually converges to
entire dataset statistics.
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Algorithm 2 Compute variance of the Hessian (Hvar(z))

1: Given: z = f−1(x)

2: K̃[i] = (1− α)K̃[i] + αK(z)

3: Compute: GStein(z̃, K̃[i]) ▷ Compute gradient
4: v = var

(
JStein(GStein, z, K̃[i])

)
▷ Compute variance of a Jacobian of a score

F Metrics

We compute different variants of MCC: (i) across multiple random seeds (MCC-R): measures the
stability of the training process given the model; (ii) with respect to ground truth variables (MCC-GT):
measures the faithfulness of the estimated latent variables to true latent variables [13]; and (iii) subset
MCC (MCC-SG): in the case when all parents of X are not observed, we measure the faithfulness
by considering a subset of latent variables. All three variants are formally described in definition 4.
As these MCC measures are permutation invariant by nature, to capture the perceived order among
latent variables, we also calculate COD, which measures the divergence of the topological order in an
estimated causal graph from the causal order, formally defined in equation 13. In addition, to quantify
the injectiveness of the model we compute MIC and RRO defined in 6.

Definition 4. (Mean Correlation Coefficient) We compute the mean correlation coefficient with
respect to ground truth (MCC-G) as described in [13]. MCC-SG and MCC-R are based on MCC-G
and are described as:

MCC-SG(ẑ, z) = max
{

MCC-G(ẑ[Sj ], z), ∀j = {1, . . . , |S|}, S =

(
|ẑ|
|z|

)}
(11)

MCC-R({ẑ0, . . . , ẑK}) = 1

K − 1

∑
k

MCC-G(ẑk, ẑ0), (12)

where ẑk = f−1
k (X), S is the set of all the partition indices of ẑ with the size of |z|, z corresponds to

the ground truth latent features and K total number of experimental runs.

Definition 5. (Causal Order Divergence, COD) Similar to divergence metric in [24, 25], we define
COD as:

COD(τ,A) =

d∑
i=0

d∑
j>i

Aij (13)

where τ = {0, . . . , d} is the expected order and A is an estimated adjacency graph predicted using
the resulting latent space after training.

G Empirical Analysis of Equivalence Class

Here, we empirically analyse the benefits of stronger block diagonal transformation in reducing
search space. For this, we randomly generated a DAG as illustrated in Figure 4(a). Our results show
that, on average, at most (depending on the number of nodes), 1% of all permutations are possible
causal orderings. Figure 4(b) demonstrates all possible causal ordering for the considered DAG in
Figure 4(a), it can be observed that all possible permutation for this particular graph is 8!, while
selecting between a set of causal ordered is just 14. The graph in Figure 5 demonstrates the search
space ratio as the number of nodes and edges increases in the graph.

H Neural Network Constraints for Injective Decoders

It is common to assume an injective decoder (mixing function) for proving the identifiability of
a data generation process [14]. When implementing a deep generative model in practice, some
constraints in the decoder are necessary to ensure that neural networks are modelling injective
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(a) Random DAG (b) Causal Ordering

Figure 4: Figure illustrates a random DAG and its all corresponding causal orders

Figure 5: Figure illustrates the ratio between the number of causal orders and total number of
permutations

functions. We follow similar modelling assumptions of ICE-BeeM [13]: (i) Monotonicity: The
latent dimension of the decoder is monotonically increasing, i.e., dl+1 ≥ dl ∀l ∈ {0, . . . , L− 1},
where dl corresponds to the feature dimension at layer l and L is the total number of layers in
the decoder. (ii) Activation: The activation function after every layer corresponds to LeakyReLU
(max(0, x) + αmin(0, x), α ∈ (0, 1)). (iii) Full rank: All weight matrices fl are full row ranked, as
the number of rows is greater than or equal to the number of columns. (iv) Invertible sub-matrix: All
weight sub-matrices f ′l of size dl × dl are invertible.

Based on the network constraints described above, we propose MIC, a measure of injectivity of the
model of the resulting model (after training).

Definition 6. (Mean Injectivity Coefficient, MIC) MIC is formally described as

MIC(f) = min
{ 1

|C|
∑
j

Rank(fi(Cj)T )
ri

∀j ∈ {0, . . . , |C|}
}

(14)

where, ci, ri correspond to number of columns and rows of fi, with abuse of notation, we use C =
(
ci
ri

)
as a set of all partitions of column indices with size ri, and |S| is the cardinality of set S.

Remark 2. We measure the average row rank ratio RRO =
(

1
L

∑
l
Rank(fl)

dl

)
and MIC (ref.

equation 14) to measure the injectivity of the decoder.
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I Experimental Setup

I.1 Data Generation

Simulation Data: To create the synthetic dataset, we initially generate a random latent causal
Directed Acyclic Graph (DAG) with n nodes and e edges using the method proposed in [47]. We then
proceed to randomly select all the associated structural causal models fi with an injective mapping
from pa(zi) to zi. Lastly, we choose an injective random transformation function fo that maps from
the latent space z to the observational data x. In our experimentation, we generated 2,000 data
points from processes denoted as SYN-2, SYN-15, and SYN-50, where SYN-K corresponds to the
aforementioned data generation process, with latent variable z ∈ Rk and observational data x ∈ R2k.

Image Datasets: We also expand the applicability of our method to imaging datasets, specifically
MorphoMNIST [48] variants and Causal3DIdent [49]. Concerning the MorphoMNIST dataset,
we incorporate variants such as MorphoMNIST-IT, MorphoMNIST-TI, MorphoMNIST-TS, and
MorphoMNIST-TSWI, where the letters I, T, S, and W correspond to latent variables z representing
intensity, thickness, slant, and width, respectively. Detailed information about the data generation
processes can be found in the Appendix. Each of the MorphMNIST variants consists of 60,000
training images and 10,000 testing images. Similarly, the Causal3DIdent dataset comprises 252,000
training samples and 25,200 test samples, all generated using a fixed causal graph with 10 nodes
(additional dataset details can be found in [49], Appendix B).

I.2 Data Generating Process - MorphoMNIST dataset

Here, we synthetic data based on MNIST digits [48]. We define multiple data-generating process
with four different variables thickness, width, slant, and intensity, and evaluate our proposed method
in terms of MCC’s and COD. Here, thickness corresponds to the stroke thickness of a digit, width
corresponds to the total width of a written digit, slant corresponds to the shear factor along a hor-
izontal direction, and intensity corresponds to the average intensity of pixels in a digit. Functions
SetIntensity(x; i), SetSlant(x; s), SetWidth(x;w), and SetThickness(x; t) refer to the oper-
ations applied to the original MNIST digit to generate new image x with desired properties by
controlling image morphology. We use the data-generating process similar to the ones described in
[50], we formally describe them below.

Morpho-MNIST-TI: In this setting we consider two causal variables thickness and intensity, where
thickness causes intensity. Mathematically the functional relationship between variables are defined
as described in equation 15.

t := ft ≜ 0.5 + ϵt ϵt ∼ Γ(10, 5)

i := fi ≜ 64 + 191 ∗ σ(2 ∗ w + 5) + ϵi ϵi ∼ N (0, 1)

x := fx = SetIntensity(SetThickness(X; t); i)

(15)

Morpho-MNIST-IT: In this experiment we inverted a directionality from previous setting resulting
in intensity to cause thickness, which is mathematically described in equation 16

i := fi ≜ ϵi ϵi ∼ U(60, 255)
t := ft ≜ 3 + σ(i/255) + ϵs ϵs ∼ N (0, 0.5)

x := fx = SetThickness(SetIntensity(X; i); t)

(16)

Morpho-MNIST-TS: In this setup we use thickness and slant as causal attributes, where thickness
causes digit slantness, which is formally described in equation 17

t := ft ≜ ϵt ϵt ∼ Γ(0, 5)

s := fs ≜ 10 + 5 ∗ σ(2 ∗ t− 5) + ϵs ϵs ∼ N (0, 0.5)

x := fx = SetSlant(SetThickness(X; t); s)

(17)
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Morpho-MNIST-TSWI: In this setup we increased a complexity by using intensity, thickness, slant,
and digit width as a causal attributes, where thickness causes slant, thickness and slant causes width,
and width causes intensity. This data-generating process is formally described in equation 18

t := ft ≜ ϵt ϵt ∼ Γ(0, 5)

s := fs ≜ 10 + 20 ∗ t+ ϵs ϵs ∼ N (0, 5)

w := fw ≜ 10 + 15 ∗ σ(0.5 ∗ t)− 0.25 ∗ s+ ϵw ϵw ∼ N (0, 1)

i := fi ≜ 64 + 191 ∗ σ(w/25) + ϵi ϵi ∼ N(0, 1)
x := fx = SetIntensity(SetWidth(SetSlant(SetThickness(X; t); s);w); i)

(18)

I.3 Code and Implementation

We use the latent GMM loss from MFC-VAE [30] inspired in the implementation from https:
//github.com/FabianFalck/mfcvae. We also append the code for the model and loss functions
used in the paper to the supplemental material.

I.4 Hyperparameters

In Table 3 we detail all the hyper-parameters used in our experiments. We use a fixed decoder
standard deviation in the case of CAUSAL3DIDENT and MORPHOMNIST, while in the case of
SYN-K dataset it remains learnable (described as σ in the table). It is also worth mentioning that
for the VAE method on CAUSAL3DIDENT, we trained a deeper model and also set the KL weight
term β equal to 0 to ensure fair comparison with the other two methods and avoid posterior collapse,
respectively.

J Results

Table 4 depicts final results on MORPHOMNIST-TI, MORPHOMNIST-TS, and CAUSAL3DIDENT
dataset, respectively. For each method, we re-run all experiments and collect metrics across 5
different random seeds for MORPHOMNIST-TI and MORPHOMNIST-TS, and 3 random seeds for
CAUSAL3DIDENT. For the latter dataset, we observed that all three metrics exhibit high variance
across runs; however, it is clear that both MFC-VAE and COVAE are comparable methods.
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Table 3: Experimental details w.r.t models and datasets
DATASETS(↓),
METHODS(→) VAE MFC-VAE COVAE

SYN-K

No. Layers 3 if k < 3 else 6
Training Steps 15600
No. Samples 2000
Batch Size 256
Optimizer Adam
Learning Rate 5e-4
α - 0.0 1.0
β 1.0 1.0 1.0
Decoder σ σ

MORPHOMNIST

No. Layers 6
Training Steps 6000
No. Samples 60000
Batch Size 256
Optimizer Adam
Learning Rate 1e-4
α - 0.0 1.0
β 1.0 1.0 1.0
Decoder σ 0.5 0.5 0.5

CAUSAL3DIDENT

Input resolution 64× 64
No. Layers 4 3 3
Training Steps 19687
No. Samples 252000
Batch Size 128
Optimizer Adam
Learning Rate 5e-4
Hidden dim 256
Latent dim 256 16 16
α - 1.0 1.0
β 0.0 0.01 0.01
Decoder σ 0.1 0.1 0.1

Table 4: MCC and COD results on MorphoMNIST and Causal3DIdent datasets
METHODS(↓),
METRICS(→)

MORPHOMNIST-TI

COD (↓) MCC-R(↑) MCC-SG(↑)

VAE 1.31 ± 0.28 0.31 0.24 ± 0.06
MFC-VAE 1.33 ± 0.38 0.38 0.39 ± 0.07

COVAE 0.0 0.58 0.38 ± 0.06

MORPHOMNIST-TS

VAE 1.47 ± 0.65 0.48 0.38 ± 0.05
MFC-VAE 1.75 ± 0.60 0.51 0.36 ± 0.06

COVAE 0.0 0.56 0.41 ± 0.05

CAUSAL3DIDENT

VAE 22.39 ± 1.49 0.15 0.15 ± 0.0
MFC-VAE 3.56 ± 0.87 0.28 0.27 ± 0.01

COVAE 3.94 ± 0.86 0.26 0.25 ± 0.02
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