
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

Under review as a conference paper at ICLR 2026

FROM TRANSLATION TO MULTILINGUALITY: REVISIT THE
ROLE OF PARALLEL DATA IN MULTILINGUAL LLM PRE-
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multilingual large language models (MLLMs) are commonly trained with parallel data (i.e.,
concatenated translation pairs) to introduce cross-lingual alignment signal and induce capabili-
ties transfer for non-English languages. However, it remains unclear whether this de facto prac-
tice improves general multilingual ability beyond translation. We conduct a controlled, large-
scale study comparing two ways of using parallel data in pretraining: (1) standard concatenated
translation pairs as a single sample, and (2) treating each side as an independent sample. Across
diverse experimental settings, we find consistent results: parallel concatenation yields substan-
tial gains on translation metrics, but offers limited benefits for general monolingual abilities
and cross-lingual abilities. This result suggests that while parallel-form alignment signals di-
rectly build translation ability, they do not readily transfer into broader multilingual competence
through standard learning process. Motivated by this gap, we propose a pragmatic multi-step
pipeline to leverage the translation ability induced by parallel data in a data-driven perspective,
which consistently improves general monolingual and cross-lingual performance. Our findings
clarify the role and limits of parallel data in MLLM pretraining and offer a practical recipe for
building more comprehensively capable multilingual models.

1 INTRODUCTION

Multilingual large language models (MLLMs) (Le Scao et al., 2023; Üstün et al., 2024; Wei et al., 2023) un-
derpin a growing range of applications, from global information access and cross-lingual retrieval to translation,
multilingual assistants, and knowledge transfer across linguistic communities. Yet, with high-resource languages
(notably English) dominating the web-scale training mixture, the pretraining of MLLMs remains fundamentally
constrained by the scarcity and imbalance of low-resource data. A prevailing industry practice seeks to mitigate
the shortfall by injecting cross-lingual alignment signals through parallel data (Qorib et al., 2025; Reid & Artetxe,
2022; Kale et al., 2021)—concatenated translation pairs of semantically equivalent content from two languages,
typically English and a low-resource language, within a single training sample.

The formation of parallel data is intuitively appealing: by co-presenting aligned semantics across languages, it
appears to offer a direct supervision signal for the model to form shared representations between languages, which
may help to transfer capabilities from high-resource to low-resource languages, and to complete cross-lingual
tasks (Qorib et al., 2025; Cheng et al., 2025). Despite its widespread adoption, however, the extent to which
this concatenation-based use of parallel data enhances general multilingual ability beyond translation remains an
underexplored empirical question.

In this paper, we investigate the role and limitations of parallel data in MLLM pretraining. We pose a focused
research question: How does the concatenation format of parallel data influence the multilingual capabilities of
MLLMs? More concretely, does training on concatenated translation pairs improve general monolingual abilities
and cross-lingual abilities such as reasoning and understanding that go beyond translation?

To answer these questions, we conduct a controlled study that isolates the effect of the parallel-data format in
pretraining. We systematically compare two protocols: (1) the standard practice of concatenating translation pairs
into a single sample, and (2) treating each side of the translation pair as an independent sample within the pretrain-
ing corpus. We undertake extensive and comprehensive data preparation covering 18 languages, encompassing
both monolingual and cross-lingual training corpora as well as evaluation sets that probe a broad spectrum of
multilingual abilities. On this foundation, we establish concise baselines and benchmarks. To ensure the robust-
ness and generality of our findings, we vary a diverse set of experimental settings, including choices of language
combination (English plus single non-English language with varying linguistic similarity, and English plus multi-
ple co-existing non-English languages), the proportion of parallel data, whether to use English-then-multilingual
pretraining schedules, and different model scales.
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Our experiments yield clear and consistent results, shedding light on the effect and limits of parallel data in
multilingual pretraining. Based on the results, we also propose a practical approach that leverages the benefits of
parallel data to achieve broader improvements in multilingual capabilities. Taken together, these results provide
concrete guidance for turning parallel data into multilingual gains in LLM pretraining practice. In summary, this
work makes three contributions:

• We provide a systematic, controlled comparison between standard concatenated parallel data and split
(independent) translation pairs across a wide range of pretraining configurations.

• We crystallize a key insight: directly using concatenated parallel data primarily improves translation
ability, but does not significantly enhance general monolingual competence or cross-lingual ability.

• We propose and validate a practical approach that takes advantage of the translation ability obtained from
parallel data, yielding robust gains in both monolingual and cross-lingual performance.

2 RELATED WORK

2.1 MULTILINGUAL LARGE LANGUAGE MODELS

The emergence of Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023; Jiang et al., 2023)
has profoundly reshaped the landscape of Natural Language Processing (NLP). Although initial breakthroughs
were primarily in English (Biderman et al., 2023; Groeneveld et al., 2024), a substantial research effort has since
focused on extending these capabilities to multiple languages, leading to the development of Multilingual Large
Language Models (MLLMs) (Le Scao et al., 2023; Üstün et al., 2024; Wei et al., 2023). Following the success of
its monolingual predecessor, the first major multilingual model, multilingual BERT (mBERT) (Devlin et al., 2019),
was introduced. It adapted the BERT training procedure to a massive dataset of Wikipedia text in 104 languages.
This breakthrough paved the way for a new generation of multilingual large language models, including XLM-
R (Conneau et al., 2019), mBART (Liu et al., 2020), and mT5 (Xue et al., 2020). Over time, larger models like
PaLM (Chowdhery et al., 2023), BLOOM (Le Scao et al., 2023), and LLaMA (Touvron et al., 2023) have been
developed to achieve state-of-the-art results on complex, multi-step reasoning tasks in multiple languages.

Nezhad & Agrawal (2024) investigated how various factors affect the performance of multilingual large language
models. For seen languages, the most significant factor influencing performance is the pretraining data size.
For unseen languages, script type and language family are the most crucial factors. The study also found that
model size and architecture had little impact on these key findings, offering insights for building more effective
multilingual NLP systems. To understand how LLMs process multilingual text and their underlying mechanisms,
Tang et al. (2024) proposes a new method called Language Activation Probability Entropy (LAPE) to pinpoint
language-specific neurons within LLMs. Using LAPE, the researchers found that an LLM’s proficiency in a
specific language is largely due to a small group of neurons, mainly located in the model’s top and bottom layers.

2.2 PARALLEL DATA

The pretraining of Multilingual Large Language Models (MLLMs) is profoundly influenced by the data they are
trained on. A widely held belief in the field is that parallel data, which consists of text aligned across two or more
languages, is crucial for developing strong machine translation and cross-lingual understanding capabilities (Qorib
et al., 2025; Reid & Artetxe, 2022; Kale et al., 2021). Prior work has explored the nuances of this relationship.
For example, Reid & Artetxe (2022) utilize unsupervised machine translation to create synthetic parallel data.
Their research reveals that even generated parallel data can improve multilingual performance on downstream
tasks. Kale et al. (2021) examines the effect of including parallel data during the pretraining of mT5. The findings
show that adding tasks like machine translation to the pretraining process is a simple and effective way to boost
performance on various multilingual and cross-lingual tasks. However, we note that contracting training with and
without parallel data introduces discrepancy of data in the content level, potentially confounding the real effect of
parallel formation.

Additionally, the research by Qorib et al. (2025) systematically investigates the effect of including parallel data
on large language models’ multilingual capabilities, specifically on translation and multilingual common-sense
reasoning. However, their experiments only focus on English, Chinese and Indonesian, and evaluate only mono-
lingual performance, which makes the results somewhat limited. We expand on previous research by including
more languages, conducting more detailed and equitable comparisons under various settings, and performing more
comprehensive testing.
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3 INVESTIGATING THE EFFECT OF PARALLEL DATA

3.1 DATA PREPAREATION

We perform extensive data curation for the experiments. All of our data are derived from web-collected sources
(e.g., Common Crawl, CCAligned (El-Kishky et al., 2019), CCMatrix (Schwenk et al., 2019), ParaCrawl (Bañón
et al., 2020)) and undergo an pipeline of parsing and filtering. We apply a language classifier to label all texts and
retain 18 languages, including English. To approximate real-world MLLM pretraining while keeping the setup
concise, we intentionally exclude data sources that are common in practice but extraneous to our research objective
(e.g. code and math data). For parallel data, we retain only translation pairs that has an English text part. When
using standard parallel data, following Cheng et al. (2025), the text pair is concatenated with an explicit language
tag (e.g., <en>) to indicate the boundary and identity of both segments. The order of the pair is randomized.

3.2 PROTOCOLS

To investigate the effect of parallel data in multilingual LLM pretraining, we conduct systematical experiments
with a focus on its featuring format. Specifically, we compare two ways of incorporating parallel data in training
dataset:

(1) Standard: Adopt the standard parallel-format data (i.e., concatenated translation pairs). When trained on a
parallel sample, a model has access to the translation counterpart through its context window, which provides
explicit cross-lingual alignment signal.

(2) Split: Split the pair, and treat the text of each side as an independent sample. In this way, each split part is
analogue to a normal monolingual sample, offering no direct cross-lingual supervision.

3.3 EXPERIMENT SETTINGS

The training data comprises exactly three components: (i) English monolingual data, (ii) non-English monolingual
data, and (iii) parallel data (or the split version). To ensure the generality of our findings, we compare the two
protocols for using parallel data across varying settings on multiple dimensions. Specifically, we explore the
following axes:

• Setting I: English plus single non-English language. In this setting, each controlled comparison con-
structs training data from English plus one non-English language. Based on linguistic similarity to En-
glish, we carefully select three languages: German, French, and Japanese. German is most similar to
English as both belong to the Germanic branch; French and English are from different branches but
within the Indo-European family; Japanese belongs to a totally different language family. For each of
these languages, we contrast pretraining with standard concatenated parallel data versus split parallel
data, thereby examining how the effectiveness of parallel data varies with different degrees of similarity
to English.

• Setting II: English plus multiple non-English languages. In this setting, we train with English plus all
17 non-English languages we have collected, covering a spectrum of linguistic similarity and variability
in richness of data resource. Non-English monolingual data comprises 36% of training tokens while
parallel data comprises 14% share. See figure 1 and figure 2 for non-English languages we use and their
relative proportion. This enables a more holistic assessment of how parallel data behaves when many
languages co-exist in the corpus.

• Setting III: Proportion of parallel data. In comparison to the 14% share of parallel data in Setting
II, in this setting, we increase the parallel proportion to 20% and decrease it to 8% to evaluate whether
the effectiveness of parallel data is sensitive to changes in proportion. Given the limited availability of
parallel data, this covers the typical range of parallel proportion in practice.

• Setting IV: Two-stage multilingual training. Some prior studies (Qorib et al., 2025; Cheng et al.,
2025) adopt a two-stage curriculum that pretrains on English first and then on multilingual data. We
replicate this setup: Stage 1 trains on English-only data; Stage 2 trains on multilingual monolingual data
and parallel data under both protocols. We then measure whether the effect of parallel data remains
consistent in this curriculum.

• Setting V: Model scale. Experiments in Setting I to IV use relatively small-sized 1.5B-parameter model
due to computational resource limitation. To examine whether model scale alters the conclusions, we
conduct additional comparison with an 8B-parameter model to assess the impact of parallel data at larger
scales.

Implementation Details Due to the scarcity of available data for single non-English language, experiments in
Setting I are trained with 100B tokens, others with 300B tokens. For the same reason, parallel data comprises
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Figure 1: Relative proportion for non-English
languages in monolingual data.

Figure 2: Relative proportion for non-English
languages in parallel data.

Protocol General Monolingual Ability Translation Ability

HellaSwag ArcC ArcE MMLU XNLI Avg ∆ EN→XX XX→EN Avg ∆

Setting I: English + German
Standard 44.47 30.72 58.38 30.78 45.66 42.00

+0.16
53.69 61.23 57.46

+13.28
Split 44.08 30.46 58.33 30.03 46.31 41.84 39.70 48.65 44.18

Setting I: English + French
Standard 50.72 33.70 60.19 30.64 47.51 44.55

+0.31
60.94 61.62 61.28

+13.70
Split 50.37 32.59 60.48 30.34 47.43 44.24 42.63 52.36 47.50

Setting I: English + Japanese
Standard 39.45 28.92 50.34 27.72 - 36.61

-0.33
31.90 44.67 38.29

+16.13
Split 39.76 29.18 50.97 27.85 - 36.94 19.19 25.12 22.16

Table 1: Evaluation results of experiments in Setting I. We use 10-shot test for Hellaswag, 25-shot for ArcCha-
llenge and ArcEasy, 5-shot for MMLU, XNLI and FloresTranlate. We report normalized accuracy (acc norm)
percentage for HellaSwag, ArcChallenge, ArcEasy and MMLU, accuracy percentage for XNLI, and CHRF score
for FloresTranslate. For MMLU, we evaluate with the lighteval variant (Alzahrani et al., 2024) for better consis-
tency. ∆ column shows the difference between the average performance of two protocols (Standard relative to
Split).

10% of training data in Setting I, and 14% in Setting II, IV and V. In all experiments, English monolingual
data comprises 50% of training datasets. The rest share is left for non-English monolingual data. The order
of samples in training dataset is randomly shuffled. For the 1.5B model, we use a 24-layer Llama-structured
transformer (Touvron et al., 2023). The 8B model has the same structure, with 32 layers and higher hidden
dimension.

3.4 EVALUATION

To comprehensively assess multilingual capability, we group evaluations into three categories: general monolin-
gual ability, general cross-lingual ability and translation ability. For experiments in Setting I, we evaluate only the
target language; for all other settings, we evaluate across the full set of 17 languages.

General monolingual ability These benchmarks probe general abilities within a single non-English language
(e.g., natural language understanding, commonsense reasoning, technical reasoning, etc.). Performance on these
benchmarks reflect whether parallel data help with ability transfer from high-resource language into low-resource
ones. We evaluate on HellaSwag (Zellers et al., 2019), ARC-Easy (Clark et al., 2018), ARC-Challenge (Clark
et al., 2018), MMLU (Hendrycks et al., 2009), XNLI (Conneau et al., 2018) and XStoryCloze (Lin et al., 2022).
XNLI and XStoryCloze do not support all languages we used. In that case, we report the results on covered
languages.

General cross-lingual ability Cross-lingual ability refers to the ability to complete tasks in a required language
other than that of the context. We evaluates experiments in Setting II V on the cross-lingual benchmarks provided
by MuBench (Han et al., 2025) that pair English with an non-English language, including cross-lingual version of
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Protocol General Monolingual Ability

HellaSwag ArcC ArcE MMLU XNLI XStoryCloze Avg ∆

Setting II: English plus multiple non-English languages
Standard 45.03 32.15 56.37 30.19 42.10 57.75 43.93

+0.15
Split 44.43 32.40 56.03 30.23 42.07 57.51 43.78

Setting III: Proportion of parallel data (8%)
Standard 45.36 33.27 56.90 30.42 42.83 57.74 44.42

+0.32
Split 44.85 32.70 56.11 30.35 43.21 57.40 44.10

Setting III: Proportion of parallel data (20%)
Standard 44.52 32.29 56.03 30.25 41.89 57.64 43.77

+0.12
Split 43.92 32.35 55.97 29.98 42.26 57.40 43.65

Setting IV: Two-stage multilingual training
Standard 43.37 30.83 54.08 29.05 43.22 57.43 43.00

+0.28
Split 42.90 30.62 53.57 28.95 43.29 57.00 42.72

Setting V: 8B-parameter model scale
Standard 53.19 41.85 66.43 34.50 43.61 61.64 50.20

+0.38
Split 53.33 40.87 65.35 34.29 43.64 61.44 49.82

Protocol General Cross-lingual Ability Translation Ability

HellaSwag ArcC ArcE MMLU StoryCloze Avg ∆ EN→XX XX→EN Avg ∆

Setting II: English plus multiple non-English languages
Standard 43.38 30.24 43.45 27.12 59.60 40.76

-0.54
47.98 58.32 53.15

+8.78
Split 43.82 29.55 45.53 27.39 60.22 41.30 38.51 50.22 44.36

Setting III: Proportion of parallel data (8%)
Standard 44.06 30.93 44.93 27.52 59.52 41.39

+0.12
47.45 57.56 52.51

+7.92
Split 43.94 30.76 43.45 27.61 60.60 41.27 38.35 50.82 44.59

Setting III: Proportion of parallel data (20%)
Standard 43.87 30.84 44.72 27.25 60.84 41.50

-0.21
48.72 58.53 53.63

+10.10
Split 43.86 30.33 46.21 27.60 60.53 41.71 37.69 49.35 43.52

Setting IV: Two-stage multilingual training
Standard 40.48 27.66 40.31 27.02 58.82 38.86

-0.08
49.02 58.14 53.58

+9.15
Split 40.61 27.06 41.50 27.03 58.51 38.94 39.57 49.28 44.43

Setting V: 8B-parameter model scale
Standard 51.92 35.05 51.67 28.85 64.78 46.45

+0.06
52.31 61.76 57.03

+5.87
Split 51.98 33.59 51.67 29.41 65.33 46.40 45.42 56.90 51.16

Table 2: Evaluation results of Setting II to V. We report 0-shot accuracy for XStoryCloze, 5-shot normalized
accuracy for cross-lingual StoryCloze. Metrics used for other cross-lingual benchmarks are the same as their
corresponding monolingual ones. Performance is averaged over 17 languages.

from HellaSwag, ARC-Easy, ARC-Challenge, StoryCloze, and MMLU. Experiments in Setting I is not evaluated
for the lack of dedicated benchmarks.

Translation ability Though translation can be thought of as a special case of cross-lingual task, we consider it
separately for its direct relation to the formation of parallel data. We evaluate on FLORES-Translate (Goyal et al.,
2022), covering both translating directions: English to non-English and the opposite.

3.5 RESULTS

Table 1 reports results for experiments combining English with a single non-English language. Across all three
target languages, the Standard protocol yields substantial gains in bidirectional translation performance relative to
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Experiment General Monolingual Ability

HellaSwag ArcC ArcE MMLU XNLI XStoryCloze Avg ∆

Baseline 53.19 41.85 66.43 34.50 43.61 61.64 50.20
+1.34

Proposed 56.20 43.53 68.40 35.62 43.85 61.61 51.54

Experiment General Cross-lingual Ability Translation Ability

HellaSwag ArcC ArcE MMLU StoryCloze Avg ∆ EN→XX XX→EN Avg ∆

Baseline 51.92 35.05 51.67 28.85 64.78 46.45
+2.93

52.31 61.76 57.03
+0.84

Proposed 55.69 38.49 54.35 29.41 68.96 49.38 53.26 62.49 57.87

Table 3: Evaluation results of proposed approach. Both experiments are under standard protocol. ∆ column shows
the average performance gains of proposed approach.

the Split protocol, with CHRF score improvements over 10 points. This aligns with intuition, as the construction
of parallel data directly targets translation objectives.

In contrast, general monolingual abilities in the three languages do not exhibit notable improvements. The average
difference between the two protocols remains within approximately +0.3%, with no clear correlation to linguistic
similarity with English (French shows slightly larger gains than the other two languages, yet its similarity to
English lies between them). These findings indicate that the model does not trivially leverage the cross-lingual
alignment signal in parallel data to transfer the dominant English competence into stronger monolingual abilities
for low-resource languages.

Building on the insights from Setting I experiments, Settings II–V expand to the full set of languages and incorpo-
rate evaluations beyond translation to assess general cross-lingual abilities. The results are summarized in Table 2.
Once again, we observe that the standard parallel data yields substantial improvements in translation performance
relative to split version. However, regardless of whether we vary the proportion of parallel data, adopt a two-stage
training schedule, or scale the model up to 8B parameters, the gains in general monolingual ability remain lim-
ited, with the largest improvement being +0.38%. Moreover, we find no clear advantage of the standard protocol
over the split protocol on general cross-lingual abilities under any configuration, in stark contrast to the consistent
improvement on translation benchmark.

Putting it altogether, these results clearly reveal the effect and limitations of parallel data in multilingual pre-
training: they chiefly improve performance on translation tasks, with no remarkable contribution to other general
multilingual tasks (neither monolingual nor cross-lingual). This reflects the dominant influence of data forma-
tion in model learning: the concatenated format of parallel data aligns directly with the translation objective and
therefore has an immediate effect. In contrast, the relationship between general multilingual tasks and translation
ability is indirect. Under the standard training process, the model does not readily achieve such capability transfer.

4 A PRACTICAL APPROACH LEVERAGING PARALLEL DATA

Building on the above results and analyses, in this section, we propose a practical approach that leverages parallel
data to enhance general multilingual capabilities beyond translation. Guided by insights into the data-driven nature
of model learning, we adopt a staged pipeline:

• Step 1: Train a strong translator. We first train a model with parallel data to develop strong translation
capability and then, with lightweight post-training, derive a translation specialist model.

• Step 2: Synthesize ability-oriented multilingual corpora from English data with the specialist model.
Specifically, for general monolingual ability, we use the specialist to synthesize non-English monolingual
data; for general cross-lingual ability, we synthesize code-switch data (Wang et al., 2025) by replace each
English sentence with its translation with 50% probability; for translation, we synthesize parallel data by
concatenating a English sentence and its translated version with language tag.

• Step 3: Integrate synthesized data into pretraining. We add the synthesized corpora to the training mix,
enabling the new model to acquire the corresponding capabilities.

Experiment setup We evaluate this approach with the standard-protocol 8B model from Setting V as a baseline.
We post-train the model on 100,000 instances from our parallel data plus public FLORES development set (Goyal
et al., 2022) and OpenHermes (Teknium, 2023), yielding the translation model. From the baseline’s English
corpus, we randomly sample a portion as the source for translation, generating non-English monolingual data,
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Experiment General Monolingual Ability

HellaSwag ArcC ArcE MMLU XNLI XStoryCloze Avg ∆

Baseline 44.43 32.40 56.03 30.23 42.07 57.51 43.78
-0.04

Unpaired 44.21 32.31 55.79 30.15 43.16 57.30 43.82

Experiment General Cross-lingual Ability Translation Ability

HellaSwag ArcC ArcE MMLU StoryCloze Avg ∆ EN→XX XX→EN Avg ∆

Baseline 43.82 29.55 45.53 27.39 60.22 41.30
-0.12

38.51 50.22 44.36
+0.28

Unpaired 43.44 31.36 45.06 27.85 59.37 41.42 38.12 50.05 44.08

Table 4: Evaluation results of unpaired data experiment. ∆ column shows the average performance difference
(Baseline relative to Unpaired).

Protocol General Monolingual Ability

HellaSwag ArcC ArcE MMLU XNLI XStoryCloze Avg

Standard 45.03 32.15 56.37 30.19 42.10 57.75 43.93

Split 44.43 32.40 56.03 30.23 42.07 57.51 43.78

Discard 44.21 32.31 55.79 30.15 43.16 57.30 43.82

Protocol General Cross-lingual Ability Translation Ability

HellaSwag ArcC ArcE MMLU StoryCloze Avg EN→XX XX→EN Avg

Standard 43.38 30.24 43.45 27.12 59.60 40.76 47.98 58.32 53.15

Split 43.82 29.55 45.53 27.39 60.22 41.30 38.51 50.22 44.36

Discard 43.44 31.36 45.06 27.85 59.37 41.42 38.12 50.05 44.08

Table 5: Evaluation results of discarding parallel data.

code-switch data and parallel data as described in step 2. We then replace one-third of the baseline’s non-English
data with synthesized monolingual data and code-switch data respectively, and replace baseline’s parallel data
with synthesized parallel data, keeping the total data volume unchanged. Relative proportions between languages
and all other experimental configurations remain identical to the baseline.

Results Table 3 reports the results of the proposed approach compared to the baseline. The method delivers
broad improvements in multilingual capability: gains in general monolingual ability and general cross-lingual
ability are markedly higher than those achieved by the use of standard parallel data itself (if any), and transla-
tion performance further improves on top of the already strong baseline under standard protocol. These results
demonstrate the effectiveness of leveraging translation capability obtained from parallel corpora to enhance gen-
eral multilingual performance in a data-driven paradigm.

Discussion Note that while introducing translated data incurs some additional cost, this cost is one-off: the
synthesized datasets can be reused in subsequent training runs. In practice, the efficacy of this approach also
helps alleviate the scarcity of low-resource language data (both monolingual and parallel), and has the potential to
extend to other data format and contribute to associated multilingual tasks.

5 ABLATION STUDY

5.1 UNPAIRED DATA

Under the split protocol, the two sides of a translation pair are used as independent samples. Although the model
cannot access explicit alignment signals within the same training context, it could, in principle, still implicitly
associate the two sides across samples. To ablate this potential effect, we conduct an unpaired data experiment.

Using the Setting II split-protocol experiment as a baseline, we randomly retain half of the English samples
obtained from the split parallel corpus and, for the non-English side, exclude the corresponding paired half. This
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yields an unpaired dataset. We replace the baseline’s split parallel data with this unpaired corpus and upsample it
by 2× to keep the total token count unchanged. All other experimental configurations are identical to the baseline.

Results are shown in Table 4. We observe that the unpaired setup performs similarly to the baseline across
all multilingual abilities. This indicates that, under the split protocol, the model does not implicitly leverage
independent translation samples in the data to enhance multilingual capability.

5.2 DISCARDING PARALLEL DATA

Some prior studies (Qorib et al., 2025; Reid & Artetxe, 2022; Kale et al., 2021) contrasted training with versus
without parallel data. Though straightforward, such comparisons can be confounded by differences in content
distribution between parallel and non-parallel sources (quality, diversity, language mix, etc.). Our primary protocol
differs: we compare parallel data as a special-format sample (concatenated translation pairs) against splitting the
pairs into ordinary samples. We argue that this design better controls content distribution and avoids introducing
new variables.

Nevertheless, we additionally conduct a direct ”Discard” protocol experiment that removes parallel data. Building
on Setting II, we add this new experiment to quantify the impact of excluding parallel data. We upsample the rest
of training data to keep the total training volume unchanged, and all other configurations are identical to Setting
II.

Results are shown in Table 5. Coincidentally, in our setup, the presence or absence of parallel data has only minor
effects on monolingual and cross-lingual abilities, whereas translation performance improves substantially more
than the other two categories. This indicates that the inclusion of parallel data primarily contributes to translation
ability, aligning with our earlier conclusions.

6 CONCLUSION

In this paper, we investigate the role of parallel data in pretraining multilingual large language models. Across a
broad range of configurations, we compare the standard practice of using concatenated translation pairs with an
alternative that treats each side of the pair as an independent sample, and we obtain consistent findings: parallel
data primarily enhances translation ability, but does not directly improve general monolingual competence or
general cross-lingual capabilities.

Guided by this insight, we propose to leverage the translation capability induced by parallel data to synthesize tar-
geted corpora to strengthen general multilingual performance, and validate the effectiveness of this approach. Our
experiments clarify both the effect and the limits of parallel data in multilingual pretraining, offering actionable
guidance and inspiration for building more universally capable multilingual language models.

7 LIMITATIONS

While our experiments validate the effects of parallel data across multiple configuration dimensions, they are
constrained by computational resources and do not exhaust all possibilities. We did not explore model scales
larger than 8B. In terms of data composition, we adopt a setting where English monolingual data accounts for half
of the corpus to reflect its practical dominance, but we do not study the impact of varying the English proportion.
Our proposed approach leverages translation capability from parallel data to synthesize training corpora. The
improvement can depend on the amount and quality of English data source for translation, which we do not
analyze. Nevertheless, we note that in practice, high-quality English data is far more available than non-English
data, which lends our findings continued practical relevance.
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Forcada, Amir Kamran, Faheem Kirefu, Philipp Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere, Gema
Ramı́rez-Sánchez, Elsa Sarrı́as, Marek Strelec, Brian Thompson, William Waites, Dion Wiggins, and Jaume

8



464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

Under review as a conference paper at ICLR 2026

Zaragoza. ParaCrawl: Web-scale acquisition of parallel corpora. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pp. 4555–4567, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.417. URL https://aclanthology.org/2020.acl-main.417/.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for
analyzing large language models across training and scaling. In International Conference on Machine Learning,
pp. 2397–2430. PMLR, 2023.

Shanbo Cheng, Yu Bao, Qian Cao, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, Wenhao Zhu, Jingwen
Chen, Zhichao Huang, et al. Seed-x: Building strong multilingual translation llm with 7b parameters. arXiv
preprint arXiv:2507.13618, 2025.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R Bowman, Holger Schwenk, and
Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. arXiv preprint arXiv:1809.05053,
2018.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual
representation learning at scale. arXiv preprint arXiv:1911.02116, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 conference of the North American chap-
ter of the association for computational linguistics: human language technologies, volume 1 (long and short
papers), pp. 4171–4186, 2019.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco Guzmán, and Philipp Koehn. Ccaligned: A massive collection
of cross-lingual web-document pairs. arXiv preprint arXiv:1911.06154, 2019.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Krishnan,
Marc’Aurelio Ranzato, Francisco Guzmán, and Angela Fan. The flores-101 evaluation benchmark for low-
resource and multilingual machine translation. Transactions of the Association for Computational Linguistics,
10:522–538, 2022.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh Jha,
Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the science of language models.
arXiv preprint arXiv:2402.00838, 2024.

Wenhan Han, Yifan Zhang, Zhixun Chen, Binbin Liu, Haobin Lin, Bingni Zhang, Taifeng Wang, Mykola Pech-
enizkiy, Meng Fang, and Yin Zheng. Mubench: Assessment of multilingual capabilities of large language
models across 61 languages. arXiv preprint arXiv:2506.19468, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding, 2021. URL https://arxiv. org/abs, pp. 20, 2009.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b. ArXiv, abs/2310.06825, 2023. URL https://api.semanticscholar.
org/CorpusID:263830494.

Mihir Kale, Aditya Siddhant, Noah Constant, Melvin Johnson, Rami Al-Rfou, and Linting Xue. nmt5–is parallel
data still relevant for pre-training massively multilingual language models? arXiv preprint arXiv:2106.02171,
2021.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné,
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