

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 FROM TRANSLATION TO MULTILINGUALITY: REVISIT THE ROLE OF PARALLEL DATA IN MULTILINGUAL LLM PRE- TRAINING

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Multilingual large language models (MLLMs) are commonly trained with parallel data (i.e.,
014 concatenated translation pairs) to introduce cross-lingual alignment signal and induce capabili-
015 ties transfer for non-English languages. However, it remains unclear whether this *de facto* prac-
016 tice improves general multilingual ability beyond translation. We conduct a controlled, large-
017 scale study comparing two ways of using parallel data in pretraining: (1) standard concatenated
018 translation pairs as a single sample, and (2) treating each side as an independent sample. Across
019 diverse experimental settings, we find consistent results: parallel concatenation yields substan-
020 tial gains on translation metrics, but offers limited benefits for general monolingual abilities
021 and cross-lingual abilities. This result suggests that while parallel-form alignment signals di-
022 rectly build translation ability, they do not readily transfer into broader multilingual competence
023 through standard learning process. Motivated by this gap, we propose a pragmatic multi-step
024 pipeline to leverage the translation ability induced by parallel data in a data-driven perspective,
025 which consistently improves general monolingual and cross-lingual performance. Our findings
026 clarify the role and limits of parallel data in MLLM pretraining and offer a practical recipe for
027 building more comprehensively capable multilingual models.

031 1 INTRODUCTION

032 Multilingual large language models (MLLMs) (Le Scao et al., 2023; Üstün et al., 2024; Wei et al., 2023) un-
033 derpin a growing range of applications, from global information access and cross-lingual retrieval to translation,
034 multilingual assistants, and knowledge transfer across linguistic communities. Yet, with high-resource languages
035 (notably English) dominating the web-scale training mixture, the pretraining of MLLMs remains fundamentally
036 constrained by the scarcity and imbalance of low-resource data. A prevailing industry practice seeks to mitigate
037 the shortfall by injecting cross-lingual alignment signals through parallel data (Qorib et al., 2025; Reid & Artetxe,
038 2022; Kale et al., 2021)—concatenated translation pairs of semantically equivalent content from two languages,
039 typically English and a low-resource language, within a single training sample.

040 The formation of parallel data is intuitively appealing: by co-presenting aligned semantics across languages, it
041 appears to offer a direct supervision signal for the model to form shared representations between languages, which
042 may help to transfer capabilities from high-resource to low-resource languages, and to complete cross-lingual
043 tasks (Qorib et al., 2025; Cheng et al., 2025). Despite its widespread adoption, however, the extent to which
044 this concatenation-based use of parallel data enhances general multilingual ability beyond translation remains an
underexplored empirical question.

045 In this paper, we investigate the role and limitations of parallel data in MLLM pretraining. We pose a focused
046 research question: How does the concatenation format of parallel data influence the multilingual capabilities of
047 MLLMs? More concretely, does training on concatenated translation pairs improve general monolingual abilities
048 and cross-lingual abilities such as reasoning and understanding that go beyond translation?

049 To answer these questions, we conduct a controlled study that isolates the effect of the parallel-data format in
050 pretraining. We systematically compare two protocols: (1) the standard practice of concatenating translation pairs
051 into a single sample, and (2) treating each side of the translation pair as an independent sample within the pretrain-
052 ing corpus. We undertake extensive and comprehensive data preparation covering 18 languages, encompassing
053 both monolingual and cross-lingual training corpora as well as evaluation sets that probe a broad spectrum of
054 multilingual abilities. On this foundation, we establish concise baselines and benchmarks. To ensure the robust-
055 ness and generality of our findings, we vary a diverse set of experimental settings, including choices of language
056 combination (English plus single non-English language with varying linguistic similarity, and English plus multi-
057 ple co-existing non-English languages), the proportion of parallel data, whether to use English-then-multilingual
pretraining schedules, and different model scales.

Our experiments yield clear and consistent results, shedding light on the effect and limits of parallel data in multilingual pretraining. Based on the results, we also propose a practical approach that leverages the benefits of parallel data to achieve broader improvements in multilingual capabilities. Taken together, these results provide concrete guidance for turning parallel data into multilingual gains in LLM pretraining practice. In summary, this work makes three contributions:

- We provide a systematic, controlled comparison between standard concatenated parallel data and split (independent) translation pairs across a wide range of pretraining configurations.
- We crystallize a key insight: directly using concatenated parallel data primarily improves translation ability, but does not significantly enhance general monolingual competence or cross-lingual ability.
- We propose and validate a practical approach that takes advantage of the translation ability obtained from parallel data, yielding robust gains in both monolingual and cross-lingual performance.

2 RELATED WORK

2.1 MULTILINGUAL LARGE LANGUAGE MODELS

The emergence of Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023; Jiang et al., 2023) has profoundly reshaped the landscape of Natural Language Processing (NLP). Although initial breakthroughs were primarily in English (Biderman et al., 2023; Groeneveld et al., 2024), a substantial research effort has since focused on extending these capabilities to multiple languages, leading to the development of Multilingual Large Language Models (MLLMs) (Le Scao et al., 2023; Üstün et al., 2024; Wei et al., 2023). Following the success of its monolingual predecessor, the first major multilingual model, multilingual BERT (mBERT) (Devlin et al., 2019), was introduced. It adapted the BERT training procedure to a massive dataset of Wikipedia text in 104 languages. This breakthrough paved the way for a new generation of multilingual large language models, including XLM-R (Conneau et al., 2019), mBART (Liu et al., 2020), and mT5 (Xue et al., 2020). Over time, larger models like PaLM (Chowdhery et al., 2023), BLOOM (Le Scao et al., 2023), and LLaMA (Touvron et al., 2023) have been developed to achieve state-of-the-art results on complex, multi-step reasoning tasks in multiple languages.

Nezhad & Agrawal (2024) investigated how various factors affect the performance of multilingual large language models. For seen languages, the most significant factor influencing performance is the pretraining data size. For unseen languages, script type and language family are the most crucial factors. The study also found that model size and architecture had little impact on these key findings, offering insights for building more effective multilingual NLP systems. To understand how LLMs process multilingual text and their underlying mechanisms, Tang et al. (2024) proposes a new method called Language Activation Probability Entropy (LAPE) to pinpoint language-specific neurons within LLMs. Using LAPE, the researchers found that an LLM’s proficiency in a specific language is largely due to a small group of neurons, mainly located in the model’s top and bottom layers.

2.2 PARALLEL DATA

The pretraining of Multilingual Large Language Models (MLLMs) is profoundly influenced by the data they are trained on. A widely held belief in the field is that parallel data, which consists of text aligned across two or more languages, is crucial for developing strong machine translation and cross-lingual understanding capabilities (Qorib et al., 2025; Reid & Artetxe, 2022; Kale et al., 2021). Prior work has explored the nuances of this relationship. For example, Reid & Artetxe (2022) utilize unsupervised machine translation to create synthetic parallel data. Their research reveals that even generated parallel data can improve multilingual performance on downstream tasks. Kale et al. (2021) examines the effect of including parallel data during the pretraining of mT5. The findings show that adding tasks like machine translation to the pretraining process is a simple and effective way to boost performance on various multilingual and cross-lingual tasks. However, we note that contracting training with and without parallel data introduces discrepancy of data in the content level, potentially confounding the real effect of parallel formation.

Additionally, the research by Qorib et al. (2025) systematically investigates the effect of including parallel data on large language models’ multilingual capabilities, specifically on translation and multilingual common-sense reasoning. However, their experiments only focus on English, Chinese and Indonesian, and evaluate only monolingual performance, which makes the results somewhat limited. We expand on previous research by including more languages, conducting more detailed and equitable comparisons under various settings, and performing more comprehensive testing.

116
117

3 INVESTIGATING THE EFFECT OF PARALLEL DATA

118

3.1 DATA PREPAREATION

119
120 We perform extensive data curation for the experiments. All of our data are derived from web-collected sources
121 (e.g., Common Crawl, CCAligned (El-Kishky et al., 2019), CCMatrix (Schwenk et al., 2019), ParaCrawl (Bañón
122 et al., 2020)) and undergo an pipeline of parsing and filtering. We apply a language classifier to label all texts and
123 retain 18 languages, including English. To approximate real-world MLLM pretraining while keeping the setup
124 concise, we intentionally exclude data sources that are common in practice but extraneous to our research objective
125 (e.g. code and math data). For parallel data, we retain only translation pairs that has an English text part. When
126 using standard parallel data, following Cheng et al. (2025), the text pair is concatenated with an explicit language
127 tag (e.g., <en>) to indicate the boundary and identity of both segments. The order of the pair is randomized.
128129

3.2 PROTOCOLS

130 To investigate the effect of parallel data in multilingual LLM pretraining, we conduct systematical experiments
131 with a focus on its featuring format. Specifically, we compare two ways of incorporating parallel data in training
132 dataset:133 (1) **Standard**: Adopt the standard parallel-format data (i.e., concatenated translation pairs). When trained on a
134 parallel sample, a model has access to the translation counterpart through its context window, which provides
135 explicit cross-lingual alignment signal.
136137 (2) **Split**: Split the pair, and treat the text of each side as an independent sample. In this way, each split part is
138 analogue to a normal monolingual sample, offering no direct cross-lingual supervision.
139140

3.3 EXPERIMENT SETTINGS

141 The training data comprises exactly three components: (i) English monolingual data, (ii) non-English monolingual
142 data, and (iii) parallel data (or the split version). To ensure the generality of our findings, we compare the two
143 protocols for using parallel data across varying settings on multiple dimensions. Specifically, we explore the
144 following axes:
145146

- **Setting I: English plus single non-English language.** In this setting, each controlled comparison constructs
147 training data from English plus one non-English language. Based on linguistic similarity to English, we carefully
148 select three languages: German, French, and Japanese. German is most similar to English as both belong to the
149 Germanic branch; French and English are from different branches but within the Indo-European family; Japanese
150 belongs to a totally different language family. For each of these languages, we contrast pretraining with standard
151 concatenated parallel data versus split parallel data, thereby examining how the effectiveness of parallel data varies
152 with different degrees of similarity to English.
- **Setting II: English plus multiple non-English languages.** In this setting, we train with English plus all
153 17 non-English languages we have collected, covering a spectrum of linguistic similarity and variability
154 in richness of data resource. Non-English monolingual data comprises 36% of training tokens while
155 parallel data comprises 14% share. See figure 1 and figure 2 for non-English languages we use and their
156 relative proportion. This enables a more holistic assessment of how parallel data behaves when many
157 languages co-exist in the corpus.
- **Setting III: Proportion of parallel data.** In comparison to the 14% share of parallel data in Setting
158 II, in this setting, we increase the parallel proportion to 20% and decrease it to 8% to evaluate whether
159 the effectiveness of parallel data is sensitive to changes in proportion. Given the limited availability of
160 parallel data, this covers the typical range of parallel proportion in practice.
- **Setting IV: Two-stage multilingual training.** Some prior studies (Qorib et al., 2025; Cheng et al.,
161 2025) adopt a two-stage curriculum that pretrains on English first and then on multilingual data. We
162 replicate this setup: Stage 1 trains on English-only data; Stage 2 trains on multilingual monolingual data
163 and parallel data under both protocols. We then measure whether the effect of parallel data remains
164 consistent in this curriculum.
- **Setting V: Model scale.** Experiments in Setting I to IV use relatively small-sized 1.5B-parameter model
165 due to computational resource limitation. To examine whether model scale alters the conclusions, we
166 conduct additional comparison with an 8B-parameter model to assess the impact of parallel data at larger
167 scales.

168 **Implementation Details** Due to the scarcity of available data for single non-English language, experiments in
169 Setting I are trained with 100B tokens, others with 300B tokens. For the same reason, parallel data comprises
170
171

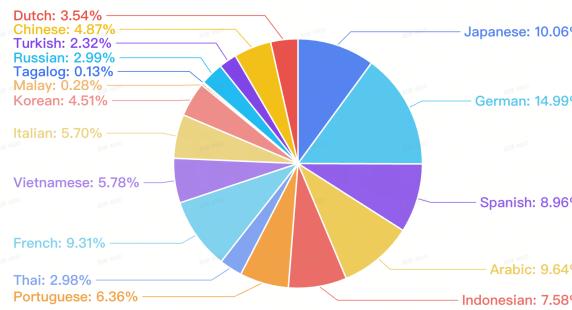


Figure 1: Relative proportion for non-English languages in monolingual data.

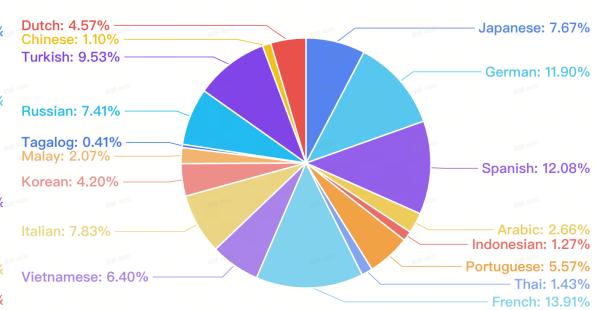


Figure 2: Relative proportion for non-English languages in parallel data.

Protocol	General Monolingual Ability						Δ	Translation Ability			
	HellaSwag	ArcC	ArcE	MMLU	XNLI	Avg		EN→XX	XX→EN	Avg	Δ
Setting I: English + German											
Standard	44.47	30.72	58.38	30.78	45.66	42.00	+0.16	53.69	61.23	57.46	+13.28
Split	44.08	30.46	58.33	30.03	46.31	41.84		39.70	48.65	44.18	
Setting I: English + French											
Standard	50.72	33.70	60.19	30.64	47.51	44.55	+0.31	60.94	61.62	61.28	+13.70
Split	50.37	32.59	60.48	30.34	47.43	44.24		42.63	52.36	47.50	
Setting I: English + Japanese											
Standard	39.45	28.92	50.34	27.72	-	36.61	-0.33	31.90	44.67	38.29	+16.13
Split	39.76	29.18	50.97	27.85	-	36.94		19.19	25.12	22.16	

Table 1: Evaluation results of experiments in Setting I. We use 10-shot test for Hellaswag, 25-shot for ArcChallenge and ArcEasy, 5-shot for MMLU, XNLI and FloresTranslate. We report normalized accuracy (acc_norm) percentage for HellaSwag, ArcChallenge, ArcEasy and MMLU, accuracy percentage for XNLI, and CHRF score for FloresTranslate. For MMLU, we evaluate with the lighteval variant (Alzahrani et al., 2024) for better consistency. Δ column shows the difference between the average performance of two protocols (Standard relative to Split).

10% of training data in Setting I, and 14% in Setting II, IV and V. In all experiments, English monolingual data comprises 50% of training datasets. The rest share is left for non-English monolingual data. The order of samples in training dataset is randomly shuffled. For the 1.5B model, we use a 24-layer Llama-structured transformer (Touvron et al., 2023). The 8B model has the same structure, with 32 layers and higher hidden dimension.

3.4 EVALUATION

To comprehensively assess multilingual capability, we group evaluations into three categories: general monolingual ability, general cross-lingual ability and translation ability. For experiments in Setting I, we evaluate only the target language; for all other settings, we evaluate across the full set of 17 languages.

General monolingual ability These benchmarks probe general abilities within a single non-English language (e.g., natural language understanding, commonsense reasoning, technical reasoning, etc.). Performance on these benchmarks reflect whether parallel data help with ability transfer from high-resource language into low-resource ones. We evaluate on HellaSwag (Zellers et al., 2019), ARC-Easy (Clark et al., 2018), ARC-Challenge (Clark et al., 2018), MMLU (Hendrycks et al., 2009), XNLI (Conneau et al., 2018) and XStoryCloze (Lin et al., 2022). XNLI and XStoryCloze do not support all languages we used. In that case, we report the results on covered languages.

General cross-lingual ability Cross-lingual ability refers to the ability to complete tasks in a required language other than that of the context. We evaluate experiments in Setting II V on the cross-lingual benchmarks provided by MuBench (Han et al., 2025) that pair English with a non-English language, including cross-lingual version of

Protocol	General Monolingual Ability							
	HellaSwag	ArcC	ArcE	MMLU	XNLI	XStoryCloze	Avg	Δ
Setting II: English plus multiple non-English languages								
Standard	45.03	32.15	56.37	30.19	42.10	57.75	43.93	+0.15
Split	44.43	32.40	56.03	30.23	42.07	57.51	43.78	
Setting III: Proportion of parallel data (8%)								
Standard	45.36	33.27	56.90	30.42	42.83	57.74	44.42	+0.32
Split	44.85	32.70	56.11	30.35	43.21	57.40	44.10	
Setting III: Proportion of parallel data (20%)								
Standard	44.52	32.29	56.03	30.25	41.89	57.64	43.77	+0.12
Split	43.92	32.35	55.97	29.98	42.26	57.40	43.65	
Setting IV: Two-stage multilingual training								
Standard	43.37	30.83	54.08	29.05	43.22	57.43	43.00	+0.28
Split	42.90	30.62	53.57	28.95	43.29	57.00	42.72	
Setting V: 8B-parameter model scale								
Standard	53.19	41.85	66.43	34.50	43.61	61.64	50.20	+0.38
Split	53.33	40.87	65.35	34.29	43.64	61.44	49.82	

Protocol	General Cross-lingual Ability							Translation Ability			
	HellaSwag	ArcC	ArcE	MMLU	StoryCloze	Avg	Δ	EN→XX	XX→EN	Avg	Δ
Setting II: English plus multiple non-English languages											
Standard	43.38	30.24	43.45	27.12	59.60	40.76	-0.54	47.98	58.32	53.15	+8.78
Split	43.82	29.55	45.53	27.39	60.22	41.30		38.51	50.22	44.36	
Setting III: Proportion of parallel data (8%)											
Standard	44.06	30.93	44.93	27.52	59.52	41.39	+0.12	47.45	57.56	52.51	+7.92
Split	43.94	30.76	43.45	27.61	60.60	41.27		38.35	50.82	44.59	
Setting III: Proportion of parallel data (20%)											
Standard	43.87	30.84	44.72	27.25	60.84	41.50	-0.21	48.72	58.53	53.63	+10.10
Split	43.86	30.33	46.21	27.60	60.53	41.71		37.69	49.35	43.52	
Setting IV: Two-stage multilingual training											
Standard	40.48	27.66	40.31	27.02	58.82	38.86	-0.08	49.02	58.14	53.58	+9.15
Split	40.61	27.06	41.50	27.03	58.51	38.94		39.57	49.28	44.43	
Setting V: 8B-parameter model scale											
Standard	51.92	35.05	51.67	28.85	64.78	46.45	+0.06	52.31	61.76	57.03	+5.87
Split	51.98	33.59	51.67	29.41	65.33	46.40		45.42	56.90	51.16	

Table 2: Evaluation results of Setting II to V. We report 0-shot accuracy for XStoryCloze, 5-shot normalized accuracy for cross-lingual StoryCloze. Metrics used for other cross-lingual benchmarks are the same as their corresponding monolingual ones. Performance is averaged over 17 languages.

from HellaSwag, ARC-Easy, ARC-Challenge, StoryCloze, and MMLU. Experiments in Setting I is not evaluated for the lack of dedicated benchmarks.

Translation ability Though translation can be thought of as a special case of cross-lingual task, we consider it separately for its direct relation to the formation of parallel data. We evaluate on FLORES-Translate (Goyal et al., 2022), covering both translating directions: English to non-English and the opposite.

3.5 RESULTS

Table 1 reports results for experiments combining English with a single non-English language. Across all three target languages, the Standard protocol yields substantial gains in bidirectional translation performance relative to

Experiment	General Monolingual Ability							
	HellaSwag	ArcC	ArcE	MMLU	XNLI	XStoryCloze	Avg	Δ
Baseline	53.19	41.85	66.43	34.50	43.61	61.64	50.20	+1.34
Proposed	56.20	43.53	68.40	35.62	43.85	61.61	51.54	

Experiment	General Cross-lingual Ability						Translation Ability				
	HellaSwag	ArcC	ArcE	MMLU	StoryCloze	Avg	Δ	EN→XX	XX→EN	Avg	Δ
Baseline	51.92	35.05	51.67	28.85	64.78	46.45	+2.93	52.31	61.76	57.03	+0.84
Proposed	55.69	38.49	54.35	29.41	68.96	49.38		53.26	62.49	57.87	

Table 3: Evaluation results of proposed approach. Both experiments are under standard protocol. Δ column shows the average performance gains of proposed approach.

the Split protocol, with CHRF score improvements over 10 points. This aligns with intuition, as the construction of parallel data directly targets translation objectives.

In contrast, general monolingual abilities in the three languages do not exhibit notable improvements. The average difference between the two protocols remains within approximately +0.3%, with no clear correlation to linguistic similarity with English (French shows slightly larger gains than the other two languages, yet its similarity to English lies between them). These findings indicate that the model does not trivially leverage the cross-lingual alignment signal in parallel data to transfer the dominant English competence into stronger monolingual abilities for low-resource languages.

Building on the insights from Setting I experiments, Settings II–V expand to the full set of languages and incorporate evaluations beyond translation to assess general cross-lingual abilities. The results are summarized in Table 2. Once again, we observe that the standard parallel data yields substantial improvements in translation performance relative to split version. However, regardless of whether we vary the proportion of parallel data, adopt a two-stage training schedule, or scale the model up to 8B parameters, the gains in general monolingual ability remain limited, with the largest improvement being +0.38%. Moreover, we find no clear advantage of the standard protocol over the split protocol on general cross-lingual abilities under any configuration, in stark contrast to the consistent improvement on translation benchmark.

Putting it altogether, these results clearly reveal the effect and limitations of parallel data in multilingual pre-training: they chiefly improve performance on translation tasks, with no remarkable contribution to other general multilingual tasks (neither monolingual nor cross-lingual). This reflects the dominant influence of data formation in model learning: the concatenated format of parallel data aligns directly with the translation objective and therefore has an immediate effect. In contrast, the relationship between general multilingual tasks and translation ability is indirect. Under the standard training process, the model does not readily achieve such capability transfer.

4 A PRACTICAL APPROACH LEVERAGING PARALLEL DATA

Building on the above results and analyses, in this section, we propose a practical approach that leverages parallel data to enhance general multilingual capabilities beyond translation. Guided by insights into the data-driven nature of model learning, we adopt a staged pipeline:

- **Step 1:** Train a strong translator. We first train a model with parallel data to develop strong translation capability and then, with lightweight post-training, derive a translation specialist model.
- **Step 2:** Synthesize ability-oriented multilingual corpora from English data with the specialist model. Specifically, for general monolingual ability, we use the specialist to synthesize non-English monolingual data; for general cross-lingual ability, we synthesize code-switch data (Wang et al., 2025) by replace each English sentence with its translation with 50% probability; for translation, we synthesize parallel data by concatenating a English sentence and its translated version with language tag.
- **Step 3:** Integrate synthesized data into pretraining. We add the synthesized corpora to the training mix, enabling the new model to acquire the corresponding capabilities.

Experiment setup We evaluate this approach with the standard-protocol 8B model from Setting V as a baseline. We post-train the model on 100,000 instances from our parallel data plus public FLORES development set (Goyal et al., 2022) and OpenHermes (Teknium, 2023), yielding the translation model. From the baseline’s English corpus, we randomly sample a portion as the source for translation, generating non-English monolingual data,

Experiment	General Monolingual Ability										
	HellaSwag	ArcC	ArcE	MMLU	XNLI	XStoryCloze	Avg	Δ			
Baseline	44.43	32.40	56.03	30.23	42.07	57.51	43.78	-0.04			
Unpaired	44.21	32.31	55.79	30.15	43.16	57.30	43.82				
Experiment	General Cross-lingual Ability						Translation Ability				
	HellaSwag	ArcC	ArcE	MMLU	StoryCloze	Avg	Δ	EN→XX	XX→EN	Avg	Δ
Baseline	43.82	29.55	45.53	27.39	60.22	41.30	-0.12	38.51	50.22	44.36	
Unpaired	43.44	31.36	45.06	27.85	59.37	41.42		38.12	50.05	44.08	+0.28

Protocol	General Monolingual Ability						
	HellaSwag	ArcC	ArcE	MMLU	XNLI	XStoryCloze	Avg
Standard	45.03	32.15	56.37	30.19	42.10	57.75	43.93
Split	44.43	32.40	56.03	30.23	42.07	57.51	43.78
Discard	44.21	32.31	55.79	30.15	43.16	57.30	43.82

Protocol	General Cross-lingual Ability						Translation Ability		
	HellaSwag	ArcC	ArcE	MMLU	StoryCloze	Avg	EN→XX	XX→EN	Avg
Standard	43.38	30.24	43.45	27.12	59.60	40.76	47.98	58.32	53.15
Split	43.82	29.55	45.53	27.39	60.22	41.30	38.51	50.22	44.36
Discard	43.44	31.36	45.06	27.85	59.37	41.42	38.12	50.05	44.08

Table 4: Evaluation results of unpaired data experiment. Δ column shows the average performance difference (Baseline relative to Unpaired).

code-switch data and parallel data as described in step 2. We then replace one-third of the baseline’s non-English data with synthesized monolingual data and code-switch data respectively, and replace baseline’s parallel data with synthesized parallel data, keeping the total data volume unchanged. Relative proportions between languages and all other experimental configurations remain identical to the baseline.

Results Table 3 reports the results of the proposed approach compared to the baseline. The method delivers broad improvements in multilingual capability: gains in general monolingual ability and general cross-lingual ability are markedly higher than those achieved by the use of standard parallel data itself (if any), and translation performance further improves on top of the already strong baseline under standard protocol. These results demonstrate the effectiveness of leveraging translation capability obtained from parallel corpora to enhance general multilingual performance in a data-driven paradigm.

Discussion Note that while introducing translated data incurs some additional cost, this cost is one-off: the synthesized datasets can be reused in subsequent training runs. In practice, the efficacy of this approach also helps alleviate the scarcity of low-resource language data (both monolingual and parallel), and has the potential to extend to other data format and contribute to associated multilingual tasks.

5 ABLATION STUDY

5.1 UNPAIRED DATA

Under the split protocol, the two sides of a translation pair are used as independent samples. Although the model cannot access explicit alignment signals within the same training context, it could, in principle, still implicitly associate the two sides across samples. To ablate this potential effect, we conduct an unpaired data experiment.

Using the Setting II split-protocol experiment as a baseline, we randomly retain half of the English samples obtained from the split parallel corpus and, for the non-English side, exclude the corresponding paired half. This

406 yields an unpaired dataset. We replace the baseline’s split parallel data with this unpaired corpus and upsample it
 407 by 2x to keep the total token count unchanged. All other experimental configurations are identical to the baseline.
 408

409 Results are shown in Table 4. We observe that the unpaired setup performs similarly to the baseline across
 410 all multilingual abilities. This indicates that, under the split protocol, the model does not implicitly leverage
 411 independent translation samples in the data to enhance multilingual capability.

412 5.2 DISCARDING PARALLEL DATA

414 Some prior studies (Qorib et al., 2025; Reid & Artetxe, 2022; Kale et al., 2021) contrasted training with versus
 415 without parallel data. Though straightforward, such comparisons can be confounded by differences in content
 416 distribution between parallel and non-parallel sources (quality, diversity, language mix, etc.). Our primary protocol
 417 differs: we compare parallel data as a special-format sample (concatenated translation pairs) against splitting the
 418 pairs into ordinary samples. We argue that this design better controls content distribution and avoids introducing
 419 new variables.

420 Nevertheless, we additionally conduct a direct ”Discard” protocol experiment that removes parallel data. Building
 421 on Setting II, we add this new experiment to quantify the impact of excluding parallel data. We upsample the rest
 422 of training data to keep the total training volume unchanged, and all other configurations are identical to Setting
 423 II.

424 Results are shown in Table 5. Coincidentally, in our setup, the presence or absence of parallel data has only minor
 425 effects on monolingual and cross-lingual abilities, whereas translation performance improves substantially more
 426 than the other two categories. This indicates that the inclusion of parallel data primarily contributes to translation
 427 ability, aligning with our earlier conclusions.

429 6 CONCLUSION

432 In this paper, we investigate the role of parallel data in pretraining multilingual large language models. Across a
 433 broad range of configurations, we compare the standard practice of using concatenated translation pairs with an
 434 alternative that treats each side of the pair as an independent sample, and we obtain consistent findings: parallel
 435 data primarily enhances translation ability, but does not directly improve general monolingual competence or
 436 general cross-lingual capabilities.

437 Guided by this insight, we propose to leverage the translation capability induced by parallel data to synthesize tar-
 438 geted corpora to strengthen general multilingual performance, and validate the effectiveness of this approach. Our
 439 experiments clarify both the effect and the limits of parallel data in multilingual pretraining, offering actionable
 440 guidance and inspiration for building more universally capable multilingual language models.

441 7 LIMITATIONS

444 While our experiments validate the effects of parallel data across multiple configuration dimensions, they are
 445 constrained by computational resources and do not exhaust all possibilities. We did not explore model scales
 446 larger than 8B. In terms of data composition, we adopt a setting where English monolingual data accounts for half
 447 of the corpus to reflect its practical dominance, but we do not study the impact of varying the English proportion.
 448 Our proposed approach leverages translation capability from parallel data to synthesize training corpora. The
 449 improvement can depend on the amount and quality of English data source for translation, which we do not
 450 analyze. Nevertheless, we note that in practice, high-quality English data is far more available than non-English
 451 data, which lends our findings continued practical relevance.

452 REFERENCES

454 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
 455 Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint*
 456 *arXiv:2303.08774*, 2023.

458 Norah Alzahrani, Hisham Alyahya, Yazeed Alnumay, Sultan Alrashed, Shaykhah Alsubaie, Yousef Almushayqih,
 459 Faisal Mirza, Nouf Alotaibi, Nora Al-Twairesh, Areeb Alowisheq, et al. When benchmarks are targets: Re-
 460 vealing the sensitivity of large language model leaderboards. In *Proceedings of the 62nd Annual Meeting of the*
 461 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13787–13805, 2024.

462 Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L.
 463 Forcada, Amir Kamran, Faheem Kirefu, Philipp Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere, Gema
 464 Ramírez-Sánchez, Elsa Sarrías, Marek Strelec, Brian Thompson, William Waites, Dion Wiggins, and Jaume

464 Zaragoza. ParaCrawl: Web-scale acquisition of parallel corpora. In Dan Jurafsky, Joyce Chai, Natalie
 465 Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Com-
 466 putational Linguistics*, pp. 4555–4567, Online, July 2020. Association for Computational Linguistics. doi:
 467 10.18653/v1/2020.acl-main.417. URL <https://aclanthology.org/2020.acl-main.417/>.

468
 469 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
 470 Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for
 471 analyzing large language models across training and scaling. In *International Conference on Machine Learning*,
 472 pp. 2397–2430. PMLR, 2023.

473 Shanbo Cheng, Yu Bao, Qian Cao, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, Wenhao Zhu, Jingwen
 474 Chen, Zhichao Huang, et al. Seed-x: Building strong multilingual translation llm with 7b parameters. *arXiv*
 475 preprint arXiv:2507.13618, 2025.

476 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
 477 Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
 478 with pathways. *Journal of Machine Learning Research*, 24(240):1–113, 2023.

479 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
 480 Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint*
 481 arXiv:1803.05457, 2018.

482 Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R Bowman, Holger Schwenk, and
 483 Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. *arXiv preprint* arXiv:1809.05053,
 484 2018.

485 Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco
 486 Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual
 487 representation learning at scale. *arXiv preprint* arXiv:1911.02116, 2019.

488 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
 489 transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter
 490 of the association for computational linguistics: human language technologies, volume 1 (long and short
 491 papers)*, pp. 4171–4186, 2019.

492 Ahmed El-Kishky, Vishrav Chaudhary, Francisco Guzmán, and Philipp Koehn. Ccaligned: A massive collection
 493 of cross-lingual web-document pairs. *arXiv preprint* arXiv:1911.06154, 2019.

494 Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Krishnan,
 495 Marc’Aurelio Ranzato, Francisco Guzmán, and Angela Fan. The flores-101 evaluation benchmark for low-
 496 resource and multilingual machine translation. *Transactions of the Association for Computational Linguistics*,
 497 10:522–538, 2022.

498 Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh Jha,
 499 Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the science of language models.
 500 *arXiv preprint* arXiv:2402.00838, 2024.

501 Wenhan Han, Yifan Zhang, Zhixun Chen, Binbin Liu, Haobin Lin, Bingni Zhang, Taifeng Wang, Mykola Pech-
 502 enizkiy, Meng Fang, and Yin Zheng. Mubench: Assessment of multilingual capabilities of large language
 503 models across 61 languages. *arXiv preprint* arXiv:2506.19468, 2025.

504 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
 505 Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/>, pp. 20, 2009.

506 Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
 507 de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
 508 Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
 509 William El Sayed. Mistral 7b. *ArXiv*, abs/2310.06825, 2023. URL <https://api.semanticscholar.org/CorpusID:263830494>.

510 Mihir Kale, Aditya Siddhant, Noah Constant, Melvin Johnson, Rami Al-Rfou, and Linting Xue. nmt5—is parallel
 511 data still relevant for pre-training massively multilingual language models? *arXiv preprint* arXiv:2106.02171,
 512 2021.

513 Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné,
 514 Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-parameter open-access mul-
 515 tilingual language model. 2023.

522 Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman
 523 Goyal, Shruti Bhosale, Jingfei Du, et al. Few-shot learning with multilingual generative language models.
 524 In *Proceedings of the 2022 conference on empirical methods in natural language processing*, pp. 9019–9052,
 525 2022.

526 Yinhai Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke
 527 Zettlemoyer. Multilingual denoising pre-training for neural machine translation. *Transactions of the Association
 528 for Computational Linguistics*, 8:726–742, 2020.

529 Sina Bagheri Nezhad and Ameeta Agrawal. What drives performance in multilingual language models? *arXiv
 530 preprint arXiv:2404.19159*, 2024.

531 Muhammad Reza Qorib, Junyi Li, and Hwee Tou Ng. Just go parallel: Improving the multilingual capabilities of
 532 large language models. *arXiv preprint arXiv:2506.13044*, 2025.

533 Machel Reid and Mikel Artetxe. On the role of parallel data in cross-lingual transfer learning. *arXiv preprint
 534 arXiv:2212.10173*, 2022.

535 Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave, and Armand Joulin. Ccmatrix: Mining
 536 billions of high-quality parallel sentences on the web. *arXiv preprint arXiv:1911.04944*, 2019.

537 Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu Wei, and Ji-Rong
 538 Wen. Language-specific neurons: The key to multilingual capabilities in large language models. *arXiv preprint
 539 arXiv:2402.16438*, 2024.

540 Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023. URL <https://huggingface.co/datasets/teknium/OpenHermes-2.5>.

541 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
 542 tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language
 543 models. *arXiv preprint arXiv:2302.13971*, 2023.

544 Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel Bhan-
 545 dari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, et al. Aya model: An instruction finetuned open-access multi-
 546 lingual language model. *arXiv preprint arXiv:2402.07827*, 2024.

547 Zhijun Wang, Jiahuan Li, Hao Zhou, Rongxiang Weng, Jingang Wang, Xin Huang, Xue Han, Junlan Feng, Chao
 548 Deng, and Shujian Huang. Investigating and scaling up code-switching for multilingual language model pre-
 549 training. *arXiv preprint arXiv:2504.01801*, 2025.

550 Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li, Pei Zhang, Xingzhang Ren, Mei Li, Yu Wan, Zhiwei Cao,
 551 Binbin Xie, et al. Polylm: An open source polyglot large language model. *arXiv preprint arXiv:2307.06018*,
 552 2023.

553 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin
 554 Raffel. mt5: A massively multilingual pre-trained text-to-text transformer. *arXiv preprint arXiv:2010.11934*,
 555 2020.

556 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish
 557 your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579