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Abstract001

The emergence of large language models002
(LLMs) like GPT-4 has revolutionized natu-003
ral language processing (NLP), enabling di-004
verse, complex tasks. However, extensive token005
counts lead to high computational and financial006
burdens. To address this, we propose Efficient007
and Flexible Prompt Compression (EFPC), a008
novel method unifying task-aware and task-009
agnostic compression for a favorable accuracy-010
efficiency trade-off. EFPC uses GPT-4 to gen-011
erate compressed prompts and integrates them012
with original prompts for training. During train-013
ing and inference, we selectively prepend user014
instructions and compress prompts based on015
predicted probabilities. EFPC is highly data-016
efficient, achieving significant performance017
with minimal data. Compared to the state-of-018
the-art method LLMLingua-2, EFPC achieves019
a 4.8% relative improvement in F1-score with020
1% additional data at a 4× compression rate,021
and an 11.4% gain with 10% additional data022
on the LongBench single-doc QA benchmark.023
EFPC’s unified framework supports broad ap-024
plicability and enhances performance across025
various models, tasks, and domains, offering a026
practical advancement in NLP.027

1 Introduction028

The rise of large language models (LLMs) such029

as GPT-4 has significantly advanced the field of030

natural language processing, making it possible031

to tackle a wide range of complex tasks. Various032

prompting techniques, such as Chain-of-Thought033

(COT) (Wei et al., 2022), In-context Learning034

(ICL) (Dong et al., 2023), and Retrieval Aug-035

mented Generation (RAG) (Lewis et al., 2020),036

have been instrumental in maximizing the potential037

of these models by generating rich and informa-038

tive prompts. However, these methods often re-039

quire prompts that are tens of thousands of tokens040

long, resulting in increased computational and fi-041

nancial overhead as well as diminished information042

2 4 6 8 10
Compression Ratio

30

32

34

36

38

40

42

44

F1
 S

co
re

 o
n 

Lo
ng

Be
nc

h 
Si

ng
le

Do
c LLMLingua-2

EFPC (Ours, 1% data)
EFPC (Ours, 10% data)

Figure 1: Performance under varying compression rates
and training data amounts. Our EFPC method achieves
significant improvements with minimal training data
and larger gains with higher compression rates.

perception abilities of the LLMs (e.g., degraded 043

performance when processing noisy and lengthy 044

contexts (Jiang et al., 2023c)). 045

To address these challenges, prompt compres- 046

sion has emerged as a promising solution. The 047

goal is to shorten prompts without losing essential 048

information, thereby improving efficiency and re- 049

ducing costs. Existing methods generally fall into 050

two categories: task-aware and task-agnostic. Task- 051

aware methods (Jiang et al., 2023c; Xu et al., 2024; 052

Jung and Kim, 2023; Huang et al., 2023), tailor 053

compressed prompts to specific tasks or queries, 054

achieving enhanced performance on downstream 055

tasks. However, these methods often face chal- 056

lenges in terms of efficiency and generalizability, 057

requiring multiple compressions of the same doc- 058

ument depending on the associated queries and 059

typically relying on time-consuming Transformer 060

decoder architectures (Vaswani et al., 2017). Task- 061

agnostic methods (Jiang et al., 2023b; Li et al., 062

2023), propose to compress prompts by remov- 063

ing tokens or lexical units based on information 064

entropy, irrespective of the downstream task. Re- 065
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cently, LLMLingua-2 (Pan et al., 2024) approachs066

prompt compression as a token classification task067

and take the predicted probability of each token068

being labeled as preserve as the compression met-069

ric. While offering better generalizability, these070

methods suffer from insuperior performanace on071

tasks such as question answering.072

Building on previous foundational works, we073

propose an Efficient and Flexible Prompt Com-074

pression method, named EFPC, which can adapt075

between task-aware and task-agnostic scenarios076

based on the specific use case to maintain high effi-077

ciency. Specifically, our method leverages GPT-4078

to compress prompts while ensuring their ability079

to perform tasks such as answering user questions.080

These compressed prompts are then paired with081

the original ones to create a binary classification082

training set, and a binary classifier with a Trans-083

former encoder architecture (Devlin et al., 2019)084

is trained on this set. During training and infer-085

ence, user instructions are concatenated with the086

original prompts to predict the retention probability087

for each word, which is then used to compress the088

prompts by discarding low-probability words. For089

task-agnostic compression, the user instruction is090

set to an empty string.091

Moreover, this work addresses two primary chal-092

lenges in the field: balancing efficiency and accu-093

racy, and mitigating high data costs associated with094

prompt compression.095

• Efficiency and Accuracy Balance. Existing096

work such as LongLLMLingua (Jiang et al.,097

2023c) employs decoder-based LLM LLaMA-098

2-7B (Touvron et al., 2023) for prompt compres-099

sion, achieving high accuracy at the expense of100

efficiency, making it less suitable for resource-101

limited scenarios requiring low latency. In con-102

trast, encoder-based methods like LLMLingua-103

2 (Pan et al., 2024) offer a more lightweight104

structure that enhances efficiency but underper-105

forms on tasks like question answering (QA).106

Our method bridges these gaps by enabling107

LLMLingua-2 to incorporate both task-aware108

and task-agnostic capabilities, significantly im-109

proving performance in QA and similar tasks.110

• Data Efficiency. LLMLingua-2 uses data distil-111

lation with GPT-4 to create compressed datasets,112

incurring high financial and energy costs. Our113

method enhances data efficiency within the same114

framework as Pan et al. (2024). As illustrated in115

Figure 1, our method achieves a 4.8% improve-116

ment in F1-score on the LongBench (Bai et al., 117

2024) single-doc benchmark with only 1% more 118

data at a 4x compression rate. When the addi- 119

tional data is slightly increased to 10%, the rela- 120

tive improvement markedly rises to 11.4%. Our 121

approach boosts performance while minimizing 122

additional data use, cutting API costs and energy 123

consumption. 124

In summary, our EFPC offers an innovative and 125

efficient solution to prompt compression, contribut- 126

ing to the practical advancements in NLP. The pri- 127

mary contributions of our work are as follows: 128

• Flexible Compression Framework: EFPC effec- 129

tively bridges task-aware and task-agnostic ap- 130

proaches through a simple switch in the prompt 131

prefix. This dual capability substantially im- 132

proves the performance of tasks like document 133

question answering. 134

• Data Efficiency: Our method is highly data- 135

efficient and achieves significant improvements 136

with minimal additional data, reducing the need 137

for costly API usage and thereby saving both 138

money and energy. 139

• Training and Inference Efficiency: Unlike tradi- 140

tional decoder-based methods, EFPC employs a 141

lightweight encoder structure, leading to more 142

efficient training and inference processes. 143

• Generalizability. We validated the effectiveness 144

of our approach across various tasks and do- 145

mains using multiple benchmarks. Moreover, 146

our method is compatible with different compres- 147

sion models and target LLMs. It is designed for 148

plug-and-play integration, demonstrating excel- 149

lent generalization capabilities. 150

2 Related Works 151

Depending on whether task information is utilized, 152

prompt compression methods can be classified as 153

either task-aware or task-agnostic. 154

Task-aware compression adapts the context 155

based on the downstream task or current query. For 156

example, LongLLMLingua (Jiang et al., 2023c) 157

uses a question-aware coarse-to-fine approach to 158

estimate token information entropy, adjusting it ac- 159

cording to the question. Reinforcement Learning 160

(RL)-based methods (Jung and Kim, 2023; Huang 161

et al., 2023) train models with reward signals from 162

downstream tasks to achieve prompt compression. 163

Soft prompt tuning methods (Wingate et al., 2022; 164

Mu et al., 2023) typically require fine-tuning for 165

specific tasks, while (Xu et al., 2024) trains a sum- 166
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Our Instruction for Compression:
Compress some text to short expressions, and such that you (GPT-4) 
can reconstruct it as close as possible to the original. Unlike the usual 
text compression, I need you to comply with the 6 conditions below: 
1. You can ONLY remove unimportant words. 
2. Do not change the order of words.
3. Do not change the original words.
4. Do not use abbreviations or emojis. 
5. Do not add new words or symbols
6. Ensure that the compressed text can answer the given question.
Compress the origin aggressively by removing words only. 
Compress the origin as short as you can, while retaining as much 
information as possible to answer the given question. If you 
understand, the given question is {given_question}, please compress 
the following text:{text_to_compress}
The compressed text is: 

Figure 2: Our instruction used for data distillation: send-
ing user instructions and the original text to GPT-4
for compression, and the compressed text is required
to complete the user instructions. The highlighted
part shows the difference between our method and
LLMLingua-2 (Pan et al., 2024) in data collection.

marization model to compress context based on167

the query. These task-aware approaches are often168

tailored to particular tasks and compression ratios,169

potentially limiting their applicability in real-world170

scenarios. Compared to these methods, our method171

can flexibly switch between task-aware and task-172

agnostic modes by simply setting prefix prompts,173

and can dynamically select the compression rate.174

In contrast, task-agnostic methods compress175

prompts without considering specific tasks, making176

them versatile for various applications and black-177

box LLMs. However, generating compressed text178

that generalizes across different tasks is challeng-179

ing. Information entropy-based metrics are com-180

monly used to prune redundant information (Li181

et al., 2023; Jiang et al., 2023b), with a small lan-182

guage model estimating token importance. While183

these methods do not require training, they may not184

optimally capture token importance distributions185

for specific LLMs and often incur high compu-186

tational costs. Summarization-based methods are187

also used (Chen et al., 2023; Packer et al., 2023) but188

often exclude essential details and struggle to gen-189

eralize effectively. Recently, LLMLingua-2 (Pan190

et al., 2024) proposes a data distillation procedure191

to derive knowledge from an LLM to compress192

prompts without losing crucial information.193

3 The Proposed Method194

The overall framework of our method is shown in195

Figure 4. We begin with the data collection process196

in Sec. 3.1, followed by our training and inference197

algorithm in Sec. 3.2.198
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Figure 3: Compression ratio distribution on Meeting-
Bank (Hu et al., 2023). It shows that our collected
dataset achieves a much higher compression ratio (5
times more) compared to LLMLingua-2.

3.1 Instruction-Aware Data Collection 199

In this paper, we propose an instruction-aware data 200

collection method for prompt compression. As 201

shown in Figure 2, we send the user instruction 202

together with the original text for compression and 203

ask the LLM to generate compressed text which 204

can complete the user task. Following Pan et al. 205

(2024), we segment each long context into chunks, 206

each containing no more than 512 tokens and end- 207

ing with a period, and instruct GPT-4 to compress 208

each chunk individually. 209

For fair comparison with LLMLingua-2, we uti- 210

lize MeetingBank (Hu et al., 2023) as the source 211

dataset. In Figure 3, we present a histogram of 212

the compression ratio distribution for each chunk. 213

The compression ratio is calculated as follows: 214

LEN(text before compression)/LEN(text after com- 215

pression), where LEN(·) denotes the length func- 216

tion. We compare our results with the dataset re- 217

leased by LLMLingua-21, which is task-agnostic. 218

As shown in Figure 3, our instruction-aware data 219

collection method achieves significantly higher 220

compression rates. The average compression ratio 221

of our dataset is 10.9, whereas the LLMLingua-2 222

dataset has an average ratio of 2.7. This outcome is 223

expected, as fulfilling a specific task often requires 224

only a subset of the original text’s information. 225

For label generation, we first search for the cor- 226

responding word in the original prompt for each 227

word in the compressed prompt. If a match is found, 228

the word is assigned a label of 1; otherwise, it is 229

assigned a label of 0. 230

1https://huggingface.co/datasets/microsoft/MeetingBank-
LLMCompressed
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Figure 4: The proposed method. From left to right are the data collection, model training, and inference processes.

3.2 Flexible Token Classification Model231

Architecture Following Pan et al. (2024), we adopt232

a Transformer encoder as the feature encoder fθ233

and a linear classification layer on top. In this234

paper, we propose instruction-aware training and235

inference based on a token classification model.236

The input consists of two parts. The first part is237

an optional instruction (e.g., a question) composed238

of M words, xp = {xi}Mi=1, where M = 0 means239

that there is no extra instruction input. The second240

part is the original input text consisting of N words,241

xo = {xi}M+N
i=M+1. The final input concatenates xp242

before xo and the whole process is:243

h = fθ(x), (1)244

p(xi,Θ) = softmax(Whi + b), (2)245

where x = [xp,xo], h = {hi}M+N
i=1 denotes fea-246

ture vectors for all words, p(xi,Θ) ∈ R2 denotes247

the probability distribution of labels {preserve, dis-248

card} for the i-th word xi, and Θ = {θ,W, b}249

represent all the trainable parameters.250

Loss Function We formulate the prompt com-251

pression task as a binary classification problem,252

using cross entropy (CE) loss for training. Let253

y = {yi}M+N
i=1 ∈ {0, 1} be the labels correspond-254

ing to all words in x, where yi = 0 means the i-th255

word is discarded, and yi = 1 means it is preserved.256

The labels for the words from i = M+1 to M+257

N are derived directly from the matching results258

between the original and compressed text. For the259

instruction part, there are two approaches: one way260

is to directly set the labels of the prepended part to261

zero, as it is not intended to be retained in the final 262

output. The corresponding loss function is: 263

Ldrop(Θ) =
1

M +N

M+N∑
i=1

CE(yi; p(xi,Θ)) ,

(3) 264

where {yi}Mi=1 = 0. 265

Alternatively, we can ignore this part of the out- 266

put during training since it is not used when pre- 267

dicting. The corresponding loss function is: 268

Lmask(Θ) =
1

N

M+N∑
i=M+1

CE(yi; p(xi,Θ)). (4) 269

For a more intuitive comparison, we also con- 270

sider the loss function of LLMLingua-2, which is 271

task-agnostic and does not take additional xp as 272

input (M = 0). The loss function is defined as 273

follows: 274

Lagnostic(Θ) =
1

N

N∑
i=1

CE(yi; p(xi,Θ)). (5) 275

Subsequent results show that both Lmask and 276

Ldrop outperform Lagnostic, proving the effective- 277

ness of our methods. Notably, Lmask is superior 278

to Ldrop because it maintains consistency between 279

tranining and inference, allowing the instruction 280

part to guide the output of the original prompt part 281

xo without using its prediction probability. 282

Training Strategy To equip our model with both 283

task-agnostic and task-aware capabilities, we pro- 284

pose two strategies: 285
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Table 1: Data Efficiency of our method. The first row is uncompressed and the second row is LLMLingua-2.

Extra Training Data Compression
Ratio

LongBench Single-Doc QA
Fraction # Documents narrativeQA qasper multifield_en multifield_zh AVG

- - 1× 22.87 41.37 52.60 60.37 44.30
0% 0

4.4×

16.01 38.75 43.48 44.16 35.16
1% 50 16.62 39.54 44.59 48.35 37.28
5% 250 14.89 42.42 48.59 50.50 39.10
10% 500 16.09 40.38 50.53 54.63 40.41
100% 5000 17.44 44.57 51.48 55.11 42.15

(1) Incremental training. Building on the286

pre-trained LLMLingua-2 model, we add extra287

instruction-aware compression data for training, as288

detailed in Sec. 3.1. Experimental results demon-289

strate that our method is highly data-efficient and290

can achieve significant improvements with only a291

small amount of additional data.292

(2) Joint training. We combine task-agnostic293

data from LLMLingua-2 with our task-aware data.294

For fair comparisons, we keep the total data amount295

constant, adjusting only the ratio between the two.296

Inference Stage Our method for compressing the297

initial prompt xo = {xi}M+N
i=M+1 to achieve a target298

compression ratio of 1/τ involves three main steps.299

Here, τ represents the ratio of the number of words300

in the compressed prompt x̃o relative to the num-301

ber of words in the original prompt xo. First, we302

determine the target number of words/tokens to be303

maintained in the compressed prompt as Ñ = τN .304

Next, the token classification model estimates the305

probability pi for each word xi being assigned306

the label “preserve”. Finally, we select the top Ñ307

words from the original prompt xo with the highest308

pi values, maintaining their original sequence, to309

construct the compressed prompt x̃o.310

Notably, our model can switch between task-311

agnostic and task-aware modes during inference by312

altering the prefix prompt. For instruction-aware313

tasks, such as question answering, we concatenate314

the user instruction, xp, with the original text xo315

as the input. Conversely, when instruction-agnostic316

compression is required, we set xp to null.317

4 Experimental Results318

We provide implementation details in Sec. 4.1 and319

evaluate the data efficiency in Sec. 4.2. Exper-320

iments on benchmark datasets are discussed in321

Sec. 4.3. In Sec. 4.4, we conduct ablation stud-322

ies to analyze the impact of different components323

integrated into our method. All experiments were324

conducted using PyTorch on Tesla V100 GPUs.325
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Figure 5: Data Efficiency of our method. We keep the
same amount of training data and set target token to
3,000 during compression.

4.1 Implementation Details 326

Datasets To ensure a fair comparison with 327

LLMLingua-2 (Pan et al., 2024), we construct our 328

text compression dataset using training examples 329

from MeetingBank (Hu et al., 2023) as the train- 330

ing set, as illustrated in Sec. 3.1. The compressed 331

prompts are evaluated on two groups of datasets: 332

(i) In-Domain: We utilize the MeetingBank test 333

set for in-domain evaluation. In addition to the 334

summarization task, we adopt the QA task as out- 335

lined in (Pan et al., 2024). For both tasks, we used 336

the same evaluation metrics as (Pan et al., 2024). 337

(ii) Out-of-Domain: For long-context scenarios, 338

we use LongBench (Bai et al., 2024) and Zero- 339

SCROLLS (Shaham et al., 2023), employing the 340

same evaluation metrics as LongLLMLingua (Jiang 341

et al., 2023c). 342

Training Details Our approach is imple- 343

mented using Huggingface’s Transformers 344

and PyTorch 2.0.1 with CUDA-12.2. We use 345

multilingual-BERT (Devlin et al., 2019) as the 346

feature encoder fθ in our compressor, fine-tuning 347

both models for 10 epochs. We employe the Adam 348

optimizer (Kingma and Ba, 2015) with a learning 349

rate of 1e-5 and a batch size of 10. Unless specified 350
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Table 2: In-domain evaluation of different methods on MeetingBank. Results marked with † are sourced from Pan
et al. (2024), while those indicated with ⋄ are reproduced using LLama-3.1-8b-instruct to ensure fair comparisons.

Backbone QA Summary Length
F1 Score BELU Rouge1 Rouge2 RougeL BERTScore Tokens 1/τ

Selective-Context (Li et al., 2023)† 66.28 10.83 39.21 18.73 27.67 84.48 1,222 2.5×
LLMLingua (Jiang et al., 2023b)† 67.52 8.94 37.98 14.08 26.58 86.42 1,176 2.5×
LLMLingua-2 (Pan et al., 2024)⋄ 77.26 15.65 41.47 18.94 30.41 86.50 984 3.0×

EFPC (Ours)⋄ 83.35 16.71 42.29 20.63 31.75 87.49 998 3.0×
Original⋄ 84.46 17.32 43.19 22.90 33.96 88.24 3,003 1.0×

Table 3: Out-of-domain evaluation on general long-context scenarios. Results with † come from Pan et al. (2024)

Methods LongBench ZeroSCROLLS
Single-Doc Multi-Doc Summ. FewShot Synth. Code AVG Tokens 1/τ AVG Tokens 1/τ

2,000-token constraint
Task(Question)-Agnostic Compression
Selective-Context (2023)† 16.2 34.8 24.4 15.7 8.4 49.2 24.8 1,925 5× 19.4 1,865 5×

LLMLingua (2023b)† 22.4 32.1 24.5 61.2 10.4 56.8 34.6 1,950 5× 27.2 1,862 5×
LLMLingua2 (2024)† 29.8 33.1 25.3 66.4 21.3 58.9 39.1 1,954 5× 33.4 1,898 5×

SBERT (2019)† 33.8 35.9 25.9 23.5 18.0 17.8 25.8 1,947 5× 20.5 1,773 6×
OpenAI† 34.3 36.3 24.7 32.4 26.3 24.8 29.8 1,991 5× 20.6 1,784 5×

LongLLMLingua (2023c)† 39.0 42.2 27.4 69.3 53.8 56.6 48.0 1,809 6× 32.5 1,753 6×
EFPC (Ours) 41.7 42.2 25.8 67.3 27.0 57.6 43.6 1,972 5× 32.7 1,877 5×

3,000-token constraint
Selective-Context (2023)† 23.3 39.2 25.0 23.8 27.5 53.1 32.0 3,328 3× 20.7 3,460 3×

LLMLingua (2023b)† 31.8 37.5 26.2 67.2 8.3 53.2 37.4 3,421 3× 30.7 3,366 3×
LLMLingua-2 (2024)† 35.5 38.7 26.3 69.6 21.4 62.8 42.4 3,392 3× 33.5 3,206 3×

SBERT (2019)† 35.3 37.4 26.7 63.4 51.0 34.5 41.4 3,399 3× 24.0 3,340 3×
OpenAI† 34.5 38.6 26.8 63.4 49.6 37.6 41.7 3,421 3× 22.4 3,362 3×

LongLLMLingua (2023c)† 40.7 46.2 27.2 70.6 53.0 55.2 48.8 3,283 3× 32.8 3,412 3×
EFPC (Ours) 42.9 46.6 26.9 70.4 32.5 59.7 46.5 3,415 3× 33.9 3,327 3×

Original Prompt† 39.7 38.7 26.5 67.0 37.8 54.2 44.0 10,295 - 34.7 9,788 -
Zero-Shot† 15.6 31.3 15.6 40.7 1.6 36.2 23.5 214 48× 10.8 32 306×

otherwise, due to resource constraints, all reported351

metrics use multilingual-BERT as the compres-352

sor and Llama-3.1-8b-instruct (Dubey et al.,353

2024) as the target LLM for downstream tasks.354

For fair comparison with mainstream methods in355

Table 3, we employ GPT-3.5-Turbo-0613 as the356

target LLM for downstream tasks, with greedy357

decoding at a temperature of 0 to ensure enhanced358

stability across experiments.359

4.2 Data Efficiency of Our Method360

Before delving into detailed experimental results,361

it is essential to highlight our method’s data effi-362

ciency. As discussed in Sec. 3.2, this is evaluated363

via two primary approaches: incremental training364

with small additional amounts of data and joint365

training with fixed data volume but varying propor-366

tions of instruction-aware data. As noted in Sec-367

tion 3.1, our collected data is instruction-aware (see368

Figure 2), while instruction-agnostic data comes369

from Pan et al. (2024).370

In Table 1, we extend the training of the pre-371

trained LLMLingua-2 model by adding a small372

amount of extra data. Different dataset ratios are 373

employed to create subsets with a target token limit 374

of 3,000 for compression, achieving an effective 375

compression rate of approximately 4.4. As shown 376

in Table 1, our EFPC exhibits remarkable data effi- 377

ciency. With just a 1% increment in training data 378

(around 50 additional documents from Meeting- 379

Bank (Hu et al., 2023)), we see a 6% improve- 380

ment in the F1-score on the LongBench single-doc 381

QA benchmark. When the additional data ratio in- 382

creases to 10%, the improvement surges to 14.9%. 383

In Figure 5, we keep the total training data vol- 384

ume constant while varying the ratio of instruction- 385

aware data α (with the ratio of instruction-agnostic 386

data being 1 − α). As the proportion of our col- 387

lected data increased, QA tasks consistently im- 388

prove, while summarization tasks remain stable. 389

Experimental results in Table 1 and Figure 5 390

validate our method’s effectiveness and data effi- 391

ciency. Our approach achieves significant perfor- 392

mance improvements with minimal additional data, 393

highlighting its potential for efficient data utiliza- 394

tion in various applications. 395

6



Original Text: The Official 
2006 NBA Draft Early-Entry List. 30 
International Players, 62 
underclassmen and one lone 5th 
year high school player make up this 
year's list, for a total of 93 early-
entrants. Extensive commentary and 
early draft status projections are 
included.. For comparison, in 2005, 
108 players declared (61 NCAA, 12 
high school, 35 internationals), up 
from 94 in 2004, and 73 in 
2003.\nThere were no major 
surprises on the early-entry list, 
besides a few ……

Compress Text: Official 2006 
NBA Draft Early - Entry List. 30 
International Players, 62 
underclassmen and one 5th year 
high school player ‘ for 93 early -
entrants. draft projections included. 
in 2005 108 players declared 61 
NCAA 12 high school 35 
internationals from 94 in 2004 73 in 
2003. no major surprises on early -
entry list mid – II NAIA players 5th 
year high school player Clarence 
Holloway……
Pred: 62

Compress Text: 93 early -
entrants. 2005 108 players 61 NCAA 
12 high school 35 internationals 94 
2004 73 2003. \n no major surprises 
early - entry mid - major Division II 
NAIA players 5th year high school 
player Clarence Holloway. Hrvoje
Peric Renaldas Seibutis Kyrylo 
Fesenko. NCAA Joakim Noah Al 
Horford Corey Brewer Josh 
McRoberts Brandon Rush Tyler 
Hansbrough Marco Belinelli Uros 
Tripkovic……
Pred: 53

Compress Text: 2006 NBA 
Draft. 30 International Players 62 5th 
93 entrants. 2005 108 61 NCAA 12 
35 internationals 94 2004 73 2003. 
no surprises Holloway. Hrvoje Peric
Fesenko. NCAA Joakim Noah Al 
Horford Corey Brewer Josh 
McRoberts Brandon Rush Tyler 
Hansbrough Marco Belinelli 
Tripkovic Goran Dragic. Akbar 
Abdul…….
Pred: At least 24 underclassmen 
are on the NBA Draft Early-Entry List.

(a) Original Text (d) Ours-Task Aware(c) Ours-Task Agnostic(b) LLMLingua-2

Query: How many underclassmen are on the NBA Draft Early-Entry List? Answer: 62.

Figure 6: Comparison of compressed text by different methods. (a) Original text. (b) LLMLingua-2. (c) Our method
without task-aware inference. (d) Our method with task-aware inference. It can be observed that our method is able
to retain more information relevant to the problem, thereby enabling the LLM to generate correct answers.

Table 4: Ablation Study of task-aware design. For fair comparison, we use 3000-token constraint here.

Task-Aware
Training?

Task-Aware
Inference?

LongBench
Single-Doc Multi-Doc Summ. Few-Shot AVG

× × 35.16 31.13 15.79 33.88 28.99
× ✓ 36.51 31.98 15.70 34.44 29.66
✓ × 35.64 31.99 15.97 37.01 30.15
✓ ✓ 42.15 36.59 16.12 38.99 33.46

4.3 Experiments on Benchmark Datasets396

Results on In-Domain Benchmark In Table 2,397

our proposed method surpasses strong baselines on398

MeetingBank. Despite the fact that our compres-399

sors are much maller than the LLaMa-2-7B (Tou-400

vron et al., 2023) used in the baselines, our ap-401

proach achieves significantly better performance402

on both the QA and Summary tasks, and nearly403

matches the original prompt’s performance. This404

demonstrates the effectiveness of our constructed405

dataset and the benefits of optimizing the compres-406

sion model using prompt compression knowledge.407

Results on Out-of-Domain Benchmark As shown408

in Table 3, EFPC outperforms LLMLingua-2,409

which is based on the same lightweight model, by410

39.9% on single-doc dataset and 20.8% on multi-411

doc dataset at a 5× compression ratio. Our method412

also achieves comparable results to LongLLMLin-413

gua (Jiang et al., 2023c), which is based on a much414

heavier decoder structure. Notably, LongLLMLin-415

gua incurs higher overhead in terms of memory,416

latency, and power consumption during inference,417

as will be shown in Sec. 4.6.418

Moreover, as the compression ratio increases419

from 3× to 5×, LLMLingua2 exhibits a perfor-420

mance drop of 16.1% on single-doc QA, whereas421

our method only experiences a decline of 2.8%.422

This indicates that our approach is more effective423

at higher compression ratios, showcasing a stronger424

ability to preserve essential information.425

Table 5: Ablation study of loss function. We use 50%
extra data with 3000-token constraint here.

Loss Function LongBench
Single-Doc Multi-Doc Summ. Few-Shot AVG

Lagnostic 35.16 31.13 15.79 33.88 28.99
Ldrop 41.40 35.78 15.98 36.14 32.33

Lmask (Ours) 42.15 36.59 16.12 38.99 33.46

4.4 Ablation Study 426

In this section, we conduct ablation experiments to 427

evaluate the impact of different components in our 428

proposed method (Table 4) and analyze the effect 429

of different loss functions (Table 5). 430

Task-aware Training and Inference We exam- 431

ine the effects of task-aware training and infer- 432

ence. Task-aware inference involves prepending 433

the task instruction to the input (e.g., a query for 434

QA datasets) during inference. Table 4 shows that 435

without task-aware training or inference (first row), 436

the method degrades to LLMLingua-2. When both 437

are used (last row), it represents our EFPC method. 438

Results indicate that task-aware inference consis- 439

tently improves accuracy, regardless of whether 440

task-aware training is used. Moreover, the com- 441

bination of both yields the most significant ben- 442

efits. For example, using task-aware inference 443

without task-aware training improves relative ac- 444

curacy by 3.84% and 2.73% for single-doc and 445

multi-doc QA datasets, respectively. When both 446

are employed (our EFPC), relative improvements 447

increase to 10.95% and 10.24%. 448
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Table 6: Evaluation with Mistral-7B as the Target LLM on MeetingBank and LongBench single-doc QA task. We
report Rouge1 (Lin, 2004) for summary. †: Results from Pan et al. (2024).

Methods MeetingBank LongBench Single-Doc
QA Summ. Tokens 1/τ 2,000-token cons. Tokens 1/τ 3,000-token cons. Tokens 1/τ

Selective-Context (2023)† 58.13 26.84 1,222 2.5× 22.0 2,038 7.1× 26.0 3,075 4.7×
LLMLingua (2023b)† 50.45 23.63 1,176 2.5× 19.5 2,054 7.1× 20.8 3,076 4.7×
LLMLingua-2 (2024)† 75.97 29.93 984 3.0× 25.3 1,949 7.4× 27.9 2,888 5.0×
LLMLingua-2-Large† 76.22 30.18 970 3.0× 26.8 1,967 7.4× 27.3 2,853 5.1×

EFPC (Ours) 80.51 29.72 992 3.0× 29.7 1,994 7.3× 30.2 2,850 5.1×
EFPC-Large (Ours) 81.63 30.43 985 3.0× 31.8 2,002 7.2× 31.9 2,913 5.0×

Original Prompt† 66.95 26.26 3,003 - 24.5 14,511 - 24.5 14,511 -

In Figure 6, we compare the compressed texts449

using different methods (with the 2,000-token con-450

straint for all). Both columns (b) and (c), which451

do not employ task-aware inference, result in com-452

pressed texts that lose critical information required453

to answer user questions. For instance, column (b)454

omits "underclassmen". In contrast, our method455

in column (d) retains all essential information. It456

is worth noting that the same compression ratio457

is used in columns (b), (c), and (d). Notably, col-458

umn (d) demonstrates a variable compression pat-459

tern: key regions are compressed less, while non-460

essential regions are compressed more.461

Loss Function In Table 5, we compare differ-462

ent loss functions from Sec. 3.2. Both Lmask and463

Ldrop outperform Lagnostic, which is equivalent to464

LLMLingua-2 (Pan et al., 2024). Comparing Ldrop465

and Lmask, we see that ignoring the labels and466

predictions of the instruction part during training467

yields better results. This is because it ensures con-468

sistency between the training and inference stages.469

In summary, the experiments in Table 4 and Fig-470

ure 6 show that both task-aware training and in-471

ference are effective. Combining both (ensuring472

consistency between training and inference) yields473

the highest gains. Additionally, Table 5 demon-474

strates the effectiveness of the proposed Lmask.475

4.5 Generalizability476

In this section, we validate our method’s general-477

izability across different model architectures, in-478

cluding prompt compression model and LLM used479

for generating responses. Previously, we tested480

primarily on the bert-base model, but here we ex-481

tend our evaluation to xlm-roberta-large (Con-482

neau et al., 2020) and use Mistral-7b-v0.1 (Jiang483

et al., 2023a) as the target LLM.484

As shown in Table 6, on the in-domain dataset485

MeetingBank QA, our method achieve abso-486

lute improvements of 4.5% and 5.4% over the487

best baseline method, LLMLingua-2, when using488

Table 7: Efficiency comparison on MeetingBank. ⋄: We
re-evaluate these metrics on Tesla V100 GPU. †: Results
from Pan et al. (2024).

1/τ 1× 2× 3× 5× GPU
End2End w/o Compression⋄ 15.8 Mem.

End2End w/ EFPC⋄ - 10.0 8.8 6.7 (GB)
Selective-Context† - 15.9 15.6 15.5 26.5

LLMLingua† - 2.9 2.1 1.5 16.6
LLMLingua-2† - 0.5 0.4 0.4 2.1
LLMLingua-2⋄ - 0.4 0.4 0.4 2.1

EFPC⋄ - 0.4 0.4 0.4 2.1

multilingual-BERT and xlm-roberta-large, 489

respectively. This trend is consistent in out-of- 490

domain evaluations as well. The results in Table 6 491

demonstrate that our method is robust across vari- 492

ous backbones, tasks, domains and target LLMs. 493

4.6 Latency Comparison 494

Table 7 presents the latency and GPU memory us- 495

age of different methods with various compression 496

rates. Sharing the same lightweight architecture, 497

our method shows nearly the same latency as LLM- 498

Lingua2. Compared to other compression tech- 499

niques, EFPC results in significantly lower com- 500

putational overhead and achieves an end-to-end 501

speedup of 1.6× to 2.4×. Additionally, our ap- 502

proach can reduce GPU memory costs by up to 8×, 503

decreasing the demand for hardware resources. 504

5 Conclusions 505

In this paper, we proposed an efficient and flexible 506

prompt compression method EFPC, for improv- 507

ing data, training, and inference efficiency. We 508

identified the challenges faced by existing methods 509

and addressed them accordingly. With only a sin- 510

gle model and once training, our method supports 511

both task-aware and task-agnostic modes, allowing 512

flexible switching between both modes as needed. 513

Extensive experiments across various tasks and do- 514

mains demonstrate that our approach significantly 515

outperforms other baseline methods in terms of 516

performance and compression latency. 517
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Limitations518

While our proposed Efficient and Flexible Prompt519

Compression (EFPC) method demonstrates signifi-520

cant improvements in efficiency and performance,521

several limitations and areas for future work remain522

noteworthy.523

First, although we emphasize the data efficiency524

of our method, the training data for our experi-525

ments was exclusively sourced from MeetingBank.526

This was done to ensure a fair comparison with527

existing methods. While this limitation allowed us528

to demonstrate notable improvements and gener-529

alizability on out-of-domain datasets, we did not530

explore the potential gains that could be achieved531

with larger-scale training datasets. Future research532

could investigate the impact of training with more533

extensive datasets, which may reveal additional534

performance enhancements and insights into the535

scalability of our method.536

Second, due to resource constraints, our exper-537

iments utilized an 8-billion parameter large lan-538

guage model (LLM). We did not systematically539

explore how our prompt compression method per-540

forms across different sizes of LLMs. Intuitively,541

larger LLMs might handle prompt compression542

more effectively, potentially resulting in smaller543

accuracy losses at higher compression rates. Ex-544

ploring the sensitivity of our method to various545

LLM sizes could provide a deeper understanding546

of its adaptability and robustness, offering valu-547

able guidance for future deployments in diverse548

computing environments.549

Lastly, EFPC, while designed for flexibility and550

efficiency, may still face challenges when applied551

to extremely high-compression scenarios or highly552

specialized tasks that were not covered in our ex-553

perimental setup. Future research should explore554

these scenarios to further enhance the robustness555

and versatility of our approach.556

In summary, while EFPC represents a significant557

step forward in the realm of prompt compression,558

addressing these limitations could unlock further559

potential and showcase its applicability across an560

even broader range of tasks and models. We en-561

courage future work to explore these dimensions to562

fully realize the capabilities of prompt compression563

in advancing natural language processing.564
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