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ABSTRACT

Proteins exist as a dynamic ensemble of multiple conformations, and these mo-
tions are often crucial for their functions. However, current structure predic-
tion methods predominantly yield a single conformation, overlooking the con-
formational heterogeneity revealed by diverse experimental modalities. Here, we
present a framework for building experiment-grounded protein structure genera-
tive models that infer conformational ensembles consistent with measured exper-
imental data. The key idea is to treat state-of-the-art protein structure predictors
(e.g., AlphaFold3) as sequence-conditioned structural priors, and cast ensemble
modeling as posterior inference of protein structures given experimental measure-
ments. Through extensive real-data experiments, we demonstrate the generality
of our method to incorporate a variety of experimental measurements. In particu-
lar, our framework uncovers previously unmodeled conformational heterogeneity
from crystallographic densities, and generates high-accuracy NMR ensembles or-
ders of magnitude faster than the status quo. Notably, we demonstrate that our
ensembles outperform AlphaFold3 Abramson et al. (2024) and sometimes better
fit experimental data than publicly deposited structures to the Protein Data Bank
(PDB, Burley et al. (2017)). We believe that this approach will unlock building
predictive models that fully embrace experimentally observed conformational di-
versity.

1 INTRODUCTION

Proteins are inherently dynamic entities, sampling a continuum of conformational states to ful-
fill their biological roles. Experimental techniques such as X-ray crystallography, nuclear mag-
netic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM) inherently report
on ensemble-averaged data rather than singular static snapshots. In X-ray crystallography, the re-
solved electron density map represents a spatial and temporal average over all molecules in the
crystal lattice, with regions of flexibility manifesting as diffuse or poorly resolved density. NMR
spectroscopy measures the interaction between nuclear spins (e.g., magnetization transfer due to nu-
clear Overhauser effect, NOE) and spins and electrons (e.g., chemical shifts) arising from dynamic
conformational ensembles in solution, with these experimental restraints used computationally to
resolve compatible structural states. Cryo-EM similarly resolves multiple conformational states, as
individual particles frozen in vitreous ice adopt distinct orientations and conformations, which are
computationally classified into discrete or continuous flexibility ranges.

On the computational front, ab initio protein structure determination based on modeling the
molecule’s free energy and its subsequent minimization (e.g., Rosetta and many of its variants Baek
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et al. (2021; 2024)) have been only partially successful and computationally expensive. A giant leap
in protein structure prediction resulted from the fundamental discovery of the coevolution of con-
tacting residues Göbel et al. (1994); Hopf et al. (2014), underlying deep learning-based models such
as AlphaFold Jumper et al. (2021); Abramson et al. (2024), which had a groundbreaking impact on
structural biology and was awarded the recent 2024 Nobel Prize in Chemistry.

Protein structure predictors are trained exclusively on X-ray crystallographic models, which are
themselves fitted to electron density maps averaged over trillions of molecule instances. While it has
been recognised several decades ago that the conformations of proteins in crystals are heterogeneous
Smith et al. (1986); Furnham et al. (2006), early crystallographic refinements prioritized single-
conformer models. Advances in resolution, the more widespread application of room-temperature
crystallographic experiments (as opposed to those performed at 100 K), and progress in refinement
tools now permit explicit modeling of alternative conformations (“altlocs”) within overlapping den-
sity regions Furnham et al. (2006); van den Bedem & Fraser (2015); Wankowicz et al. (2024). Recent
studies analyzing the PDB reveal that such multi-conformer annotations are widespread, reflecting
inherent structural variability captured in crystallography Rosenberg et al. (2024a). In NMR spec-
troscopy, the experimental observables, such as inter-atomic distances or bond-vector orientations
reflect the time- and ensemble average, and NMR structures are always reported as bundles of con-
formations. However, AlphaFold’s training objective – to predict a single “most probable” structure
– biases its output toward static snapshots, effectively marginalizing conformational heterogeneity
encoded in its training data.

Over the past year, multiple sequence-conditioned protein structure generative models like Al-
phaFlow Jing et al. (2024), and the recent AlphaFold3 Abramson et al. (2024) have been proposed to
move beyond the one-sequence–one-structure paradigm. However, since these approaches remain
trained on unimodally-modeled PDB entries derived predominantly from crystallographic data, the
generated ensembles fail to capture the full heterogeneity implied by experimental measurements,
thus limiting their practical utility Rosenberg et al. (2024b). This emphasizes the need for new
models that can explicitly model protein ensembles that are faithful to experimental measurements.
Developing such models is the focus of the present work.

2 CONTRIBUTIONS

In this work, we introduce experiment-guided AlphaFold3, a computational framework that inte-
grates experimental data with deep learning priors to generate structural ensembles consistent with
experimental observables. Our key insight is that AlphaFold3 can be viewed as a strong sequence-
conditioned protein structure prior that may be further leveraged to solve inverse problems in the
space of protein structures. By solving these inverse problems under the prior imposed by Al-
phaFold3, we bridge the gap between data-driven predictions and experimental evidence, yielding
ensembles that are both physically plausible and experimentally consistent.

Experiment-guided AlphaFold3. Our primary technical contribution is a three-stage ensemble-
fitting pipeline (Figure 1). First, we present Guided AlphaFold3, where we adapt the diffusion-
based structure module of AlphaFold3 to incorporate experimental measurements during sampling.
To properly handle ensemble measurements, we introduce a non-i.i.d. sampling scheme that jointly
samples the ensemble, directing conformational exploration toward regions compatible with the
experimental constraints. We show that this approach effectively captures multi-modal ensemble
measurements, where standard i.i.d. sampling methods fail (Figure 8). To our knowledge, this
represents the first application of guided sampling within AlphaFold3 for experimental structural
resolution. Second, we address artifacts introduced during guided sampling by using AlphaFold2’s
computationally efficient force-field relaxation step, effectively projecting candidate structures onto
physically realistic conformations. Finally, we develop a matching-pursuit ensemble selection al-
gorithm to iteratively refine the ensemble by maximizing agreement with experimental data while
preserving structural diversity. We validate our framework through case studies on two foundational
challenges in structural biology: (1) X-ray crystallographic structure modeling, where we recover
conformational heterogeneity obscured in static electron density maps, and (2) NMR structure de-
termination, where we resolve ensembles that obey NOE-derived distance restraints.

Improved crystal density modeling. X-ray crystallography is one of the most accurate techniques
for protein structure determination. A typical pipeline involves the crystallization of protein sam-
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Figure 1: Schematic depiction of the proposed method. AlphaFold3 allows the sampling of pro-
tein structures given an amino acid sequence. To further condition the model by experimental obser-
vations, at each time step of the AlphaFold3 diffusion model, an ensemble of structures is generated.
Likelihoods of experimental observations are calculated given each individual ensemble member
(e.g., to enforce a substructure) and on ensemble averages (e.g., calculated electron density Fc and
average inter-atomic distances). The gradient of the combined log-likelihood terms is used as the
guidance score. At the final diffusion step, the generated ensemble is refined by force field relaxation
and pruned by an orthogonal matching pursuit-like procedure to improve the likelihood terms.

ples and the subsequent fitting of atomic structures to electron density maps generated from X-ray
diffraction patterns. However, this procedure is expensive, time-consuming, and often requires man-
ual intervention by crystallographers Doudna (2000). As a result, several structures deposited in the
PDB exhibit human-induced biases that can degrade structural accuracy. Another limitation of crys-
tallographic pipelines is the misleading notion of “single crystal and single structure”. However, the
PDB exhibits multimodality in the density that cannot be fully captured by models like AlphaFold3
that predict single structures. This limitation, recognized early on in protein crystallography Smith
et al. (1986), is particularly evident in altloc regions Rosenberg et al. (2024b), where multiple con-
formations coexist in the same lattice van den Bedem & Fraser (2015); Furnham et al. (2006). This
inadequacy presents a compelling case for protein generative models to improve crystallographic
structural modeling.

Hence, we introduce Density-guided AlphaFold3, which guides AlphaFold3-generated structural en-
sembles to be faithful to experimental electron density maps. Density-guided AlphaFold3 renders
structures that are consistently more faithful to the observed electron density maps than unguided
AlphaFold3İn some cases, the guided structure outperforms PDB-deposited structure’s faithfulness
to the density (Table 3). Additionally, guided structures capture structural heterogeneity more ac-
curately than AlphaFold3 (Figures 4, 6). In some cases, guided structures capture the structural
heterogeneity that PDB-deposited structures fail to model (Figure 3). Lastly, we are able to leverage
the strong prior learned by AlphaFold3 to generate density-faithful ensembles in a fraction of the
time required by conventional X-ray crystallography pipelines Adams et al. (2010). In our opinion,
this advancement not only improves the accuracy of computational structural modeling but also has
the potential to automate workflows for crystallographers.

Accelerated NMR ensemble structure determination. Solution-state NMR enables the study
of proteins in near-physiological aqueous environments, capturing conformational heterogeneity
through nuclear interaction restraints such as nuclear Overhauser effects (NOEs) and scalar cou-
plings (J-couplings). NMR-based structure determination typically employs restrained molecular
dynamics (MD) simulations, requiring hundreds of independent trajectories to adequately sam-
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ple conformational spaces consistent with experimental data—a computationally intensive process
that struggles to balance accuracy, efficiency, and ensemble diversity Lindorff-Larsen et al. (2005);
Lange et al. (2008).

Here, we propose NOE-guided AlphaFold3, which refines AlphaFold-generated structural ensem-
bles to satisfy NOE-derived distance restraints. The resulting ensembles adhere to experimental
NOE data more faithfully than AlphaFold3 predictions and, in some cases, even surpass the accu-
racy of existing PDB-deposited NMR ensembles (see Table 4). In particular, we demonstrate that
the ensembles produced by NOE-guided AlphaFold3 on ubiquitin, a benchmark system for NMR
structure and dynamics, accurately capture experimentally observed conformational flexibility, as in-
dependently validated against experimentally-measured N-H S² order parameters (Figure 5; Lienin
et al. (1998)). In contrast, standard AlphaFold3 predictions generate overly rigid ensembles incon-
sistent with ubiquitin’s dynamic behavior. Finally, we note that our method dramatically improves
the NMR structure determination process from many hours to a few minutes, while retaining the
accuracy obtained through MD. We believe this will enable new experimental workflows for NMR
structural biologists.

3 PROTEIN STRUCTURE INVERSE PROBLEMS

Notation. We denote the amino-acid sequence of a protein as a and the corresponding 3D Cartesian
coordinates of all atoms as X = (x1, . . . ,xm), where xi denotes the i-th atom in the structure. Note
that X implicitly depends on a as the atom configuration is dependent on the amino acid identities.

Problem statement. Given a protein sequence a and an experimental observation y, sample a
non-i.i.d. ensemble of structures X = {X1, . . . ,Xn} from the posterior p(X | a,y).

Using Bayes’ rule, the posterior distribution can be factorized as, p(X | a,y) ∝ p(y | X ,a) ·p(X |
a), where p(y | X ,a) is the data term representing the likelihood of the experimental observation
given the structural ensemble and amino acid sequence. The knowledge of the instrument’s forward
model is embodied by the likelihood term. On the other hand, p(X | a) is the prior term representing
the probability of a structural ensemble given the amino acid sequence. A key distinction between
these two terms is that the prior can be factorized into a product of independent priors for each
sample in the ensemble X , whereas the likelihood is conditioned on the entire ensemble and hence
is inseparable.

As the prior, we use AlphaFold3 Abramson et al. (2024) to generate ensembles. To model the data
term, we consider three distinct experimental modalities: crystallographic electron density maps
(Section 3.1), nuclear Overhauser effect (NOE) restraints (Section 4), and sub-structure conditioning
using known atom locations (Section 3.3).

3.1 CRYSTALLOGRAPHIC ELECTRON DENSITIES

This section introduces the forward model of crystallographic electron density observables. Electron
densities are volumetric images of the spatial charge distribution within the unit cell of a protein
crystal lattice Riley et al. (2021); van Zundert et al. (2018). The process of obtaining these maps
begins with purifying and crystallizing the protein sample, followed by X-ray diffraction analysis
Smyth & Martin (2000). When the crystal is exposed to an X-ray beam, it generates multiple
diffraction patterns encoding the Fourier transform of the electron density function that is periodic
on the crystal lattice (the Fourier transform is thus discrete on the reciprocal lattice). However,
during this process phase information is lost, and a molecular replacement procedure is required
to impute the missing phase angles, after which a 3D electron density distribution is reconstructed.
The resulting electron density map reflects the average density of trillions of protein molecules in
the crystal rather than that of an individual molecule.

We denote the observed electron density map as Fo : R3 → R without explicitly distinguishing
between the continuous map and its discretized version. Given Fo and a protein structure ensemble
X , the log-likelihood log p(Fo | X ,a) quantifies the agreement between the experimental data
and the electron density predicted by the ensemble. To compute this likelihood, we calculate the
predicted electron density Fc(X) for each structure X in the ensemble (see Appendix F for details).
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The resulting log-likelihood is given by

log p(Fo | X ,a) = −

∥∥∥∥∥Fo −
1

n

n∑
k=1

Fc(X
k,a)

∥∥∥∥∥
1

, (1)

where we pragmatically choose the L1 norm to quantify the discrepancy between the observed
density and its calculated counterpart. Note that both Fc and Fc(X) are functions of the spatial
coordinate ξ as explicated in the Appendix.

3.2 NUCLEAR OVERHAUSER EFFECT RESTRAINTS

This section introduces the forward model for the nuclear Overhauser effect (NOE) restraints as
measured using NMR spectroscopy. NOE restraints provide essential information about interatomic
distances between biomolecules. The NOE arises from through-space dipolar interactions between
nuclear spins, usually involving hydrogen atoms. The interactions are also dependent on spatial
proximity, with NOE effects observed typically when atoms are less than 6Å apart. NOE measure-
ments represent an ensemble average over all conformations of the protein in solution, capturing its
intrinsic structural heterogeneity.

Interatomic distances are usually measured in NOE spectroscopy (NOESY) experiments, which
consist of a two-dimensional correlation spectrum. The proximity between two atoms is evidenced
by a correlation peak at a position in the spectrum that correspond to the two resonance frequencies
of the spins. The intensity of the NOE signals is proportional to the temporal average of the inverse
sixth power of the interatomic distance and can be used to estimate spatial constraints within the
protein. NMR signal intensities depend on several other factors, which obscures the dependency on
the inverse sixth power of the distance to extent. While quantitative distances can be obtained Vögeli
(2014), it is common to use the NOE signal intensity only semi-quantitatively. With some abuse of
NMR physics, we henceforth assume that the distance average is observed directly, and define the
NOE constraints as a set D = {(dij , dij) : (i, j) ∈ P} of pairs of lower and upper bounds on the
ensemble average, dij(X ) = 1

n

∑n
k=1 dij(X

k) of the distances dij(X
k) = ∥xk

i − xk
j ∥ between

pairs of atoms i, j in individual structures Xk. We define the log-likelihood as

log p(D | X ,a) = −
∑

(i,j)∈P

([
dij − dij(X )

]2
+
+

[
dij(X )− dij

]2
+

)
, (2)

where [x]+ = max(x, 0). Additional computational details and a discussion of limitations are
provided in App. K.

3.3 SUBSTRUCTURE CONDITIONING

In many cases, especially when refining crystallographic structures, it is useful to determine the pro-
tein structure only for a subset of amino acids while keeping the rest frozen. This can be achieved by
a specialized likelihood term, that parallels the SubstructureConditioner in Chroma Ingra-
ham et al. (2023), which incorporates a reference structure to constrain and guide the optimization
process during inference.

As the input, we will assume to be given a collection of reference atom locations Y = {yi : i ∈ A}
for some sub-set of atom indices A. Using a quadratic penalty on the deviation, the log-likelihood
assumes the form

log p(Y | X ,a) = − 1

n

n∑
k=1

∑
i∈A

∥xk
i − yi∥2 (3)

Note that unlike the previously discussed forward models, this term is separable with respect to the
individual ensemble constituents.

4 ORGANIZATION

Due to space constraints, we encourage the reader to refer to the Appendix for additional details.
The Appendix is organized as follows:
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• Appendix A presents the standard pipeline for ensemble generation through experimental
guidance with AlphaFold3, including key post-processing strategies.

• Appendices B and C provide a analysis of generated ensembles achieved through crystal-
lographic electron density maps and NOE restraints, respectively.

• Appendices M through L offer extended methodological discussions, detailing experimen-
tal protocols, parameter optimization, quantitative evaluation metrics, and a conclusion.
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SF Lienin, T Bremi, B Brutscher, R Brüschweiler, and RR Ernst. Anisotropic intramolecular back-
bone dynamics of ubiquitin characterized by nmr relaxation and md computer simulation. Journal
of the American Chemical Society, 120(38):9870–9879, 1998.

Kresten Lindorff-Larsen, Robert B Best, Mark A DePristo, Christopher M Dobson, and Michele
Vendruscolo. Simultaneous determination of protein structure and dynamics. Nature, 433(7022):
128–132, 2005.
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Figure 2: NOE constraint violations in the Methanocaldococcus jannaschii MJ1198 protein in the
NMR structure ensemble (PDB: 2K52) and ensembles predicted by AlphaFold3 and using NOE-
guidance with strength 0.2 and 0.5. Violated constraints are depicted as lines color-coded by the
amount of violation. Percentage of violated constraints (out of total 1212) and their median violation
are reported below each structure. A single best-fitting structure from each ensemble is shown for
clarity.
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A EXPERIMENT-GROUNDED AlphaFold3

A.1 GUIDING AlphaFold3

One of the key features distinguishing AlphaFold3 from its predecessors Jumper et al. (2021), is the
introduction of a diffusion-based Ho et al. (2020) generative model for protein structure prediction.
This model acts as a prior over the all-atom distribution of protein structures and enforces structural
coherence. AlphaFold3’s forward diffusion process is modeled as a variance-preserving stochastic
differential Equation (SDE) Song & Ermon (2019); Weiss et al. (2023), whose backward SDE is a
simplified variant of the formulation in Karras et al. (2022),

dX = −
(1
2
X+∇X log pt(X | a)

)
βtdt+

√
βtN. (4)

Here X containing the atomic coordinates acts as a diffusion variable, βt defines the noise schedule
parameters, and N ∼ N (0, I) is sampled from an isotropic normal distribution. The score function
∇X log pt(X | a) is modeled using a atom-transformer based denoising network Jumper et al.
(2021); Abramson et al. (2024); Vaswani (2017). AlphaFold3 samples random latent vectors from
the base distribution XT ∼ N (0, β0I) and numerically integrate equation (4) from t = T down to
t = 0.

Here, rather than predicting a single structure, we propose to sample an ensemble X =
(X1, . . . ,Xn) of n structures. The SDE for single-structure generation in Equation (4) can be
straightforwardly generalized for ensemble sampling. In order to sample a non-i.i.d sample from
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Figure 3: Crystallographic observations of a pair of homologous proteins (PDB: 4NE4 at 1.73Å
resolution and 5TEU at 1.62Å). The pair features a distinct turn conformation at a corresponding site
in residues 73-76 in 4NE4 and 91-94 in 5TEU despite identical local amino acid sequences and
contacts with the environment (A). AlphaFold3 predicts the conformation of 4NE4 in both sequences
mispredicting the conformation of 5TEU (B). Electron density-guided AlphaFold3 corrects these
predictions by producing ensembles fitting well into the observed electron densities Fo of both
structures depicted as the 0.3 [e−/Å3]-isosurfaces (C). The ensemble predicted for 5TEU exhibits
conformation heterogeneity with two flipped states of the carbonyl oxygen in A82 (highlighted in
red) and a flexible side chain in A82 (dark green) better explaining the Fo (D).

the posterior distribution, we further plug in the guidance score, obtaining,

d

X
1

...
Xn

 = −

1

2

X
1

...
Xn

+

∇X1 log pt(X
1 | a)

...
∇Xn log pt(X

n | a)


βdt

− η∇X log p
(
y
∣∣X1, . . . ,Xn,a

)
βdt+

√
βt

N
1

...
Nn

 , (5)

where Nk ∼ N (0, I). In the above equation, unconditional score term ∇Xk log pt(X
k | a) is

separable in the ensemble members. However, the guidance score term is not separable due to the
non-i.i.d nature of the likelihood function. Additionally, the hyperparameter η can be used to scale
the guidance score and direct the diffusion model to generate samples with high posterior likelihood.
The pseudocode for guided AlphaFold3 and other implementation details are presented in Appendix
D.

A.2 FORCE-FIELD RELAXATION

After performing non-i.i.d. guided diffusion, we noticed that when sampling a large ensemble, the
conformations tend to overfit to the noise in the experimental observations. This can significantly
degrade the ensemble quality, often leading to artifacts such as broken bands and atomic clashes
Shapovalov & Dunbrack (2011). To eliminate these artifacts, we remove from the ensembles struc-
tures with broken bonds (distance between any pair of bonded atoms exceeding the threshold τbond
Å) or steric clashes (distance between any two atoms is less than τclash Å). Specific threshold values
and implementation details are provided in Appendix G.

Post-filtering, subtle bond length violations and geometric inconsistencies may persist. To accurately
model molecular interactions and eliminate geometric violations, we relax the structures with an
off-the-shelf harmonic force-field, such as AMBER Hornak et al. (2006). This ensures that all
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Figure 4: Two crystallographic observations of the SARS-CoV-2 ORF8 protein at 1.62Å resolu-
tion (PDB: 7JX6 and 7F5F color coded as purple and green, respectively). The two structures
exhibit major differences at three sites despite sharing a nearly identical main acid sequence defer-
ring by a single mutation L67S (A). AlphaFold3 prediction appears practically identical for the two
sequences mispredicting the structure of the turn at site 38-41, correctly predicting the structure
of 7F5F and mispredicting that of 7JX6 at site 72-78, and correctly predicting the structure of
7JX6 mispredicting that of 7F5F at site 102-112 (B). Electron density-guided AlphaFold3 cor-
rects these predictions by producing ensembles fitting well into the observed electron densities Fo

of both structures depicted as the 0.3 [e−/Å3]-isosurfaces (C).

remaining structures are physically plausible with no structural artifacts while still maximizing the
log-likelihood of the experimental observations.

A.3 ENSEMBLE FILTERING USING MATCHING PURSUIT

Post relaxation, we employ a matching pursuit-based approach Mallat & Zhang (1993) to greedily
select a subset of the relaxed ensemble, X I = {Xk : k ∈ I}, that best fits the observation y.
Starting with I = ∅, during every iteration of the matching pursuit algorithm, we seek to maximize
log p(y | X I∪{k},a) over all k /∈ I. The optimal element k is then added to the support set I and the
process is repeated until the likelihood no longer increases or the maximum allowed ensemble size
nmax is reached. A detailed explanation of the matching pursuit-based ensemble filtering procedure,
along with its pseudocode, is provided in Appendix H.

B MODELING CRYSTALLOGRAPHIC ENSEMBLES

In what follows, we investigate three distinct cases of conformational heterogeneity evident in X-ray
crystal structures that are consistently mispredicted by the unguided AlphaFold3 and demonstrate
that AlphaFold3 guidance with electron densities significantly improves these predictions.

Structurally heterogeneous homologous proteins. The first is the most obvious case where a spe-
cific protein is captured in different conformations over multiple experiments. Apart from different
interactions with molecular partners, these altered conformations can result from differences in the
expression or purification processes or different solvent conditions. As an illustration, we use the
SARS-CoV-2 accessory protein that is encoded by the open reading frame ORF8 and facilitates
immune evasion in infected host cells. This small (104 amino acids) protein has been structurally
resolved in several independent works that demonstrate significant structural variability in the loop
regions. PDB structures 7F5F and 7JX6 differing only by a single point mutation, crystallized in-
dividually without the presence of molecular partners and diffracting to the same resolution (1.6Å)
exhibit major conformational variations in three loops as depicted in Figure 4. Due to essentially
identical sequence conditioning, AlphaFold3 fails to capture both global conformations well, pre-
dicting a tight ensemble that is similar to one of the variants at one site and to the other at the other.
Guiding the ensemble generation with the observed electron density allows to better capture the
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Figure 5: Comparison of conformational flexibility in ubiquitin ensembles predicted by AlphaFold3
and our i.i.d and non-i.i.d NOE-guided method. The N-H order parameter S2 is calculated on the
ensembles and compared to the experimental NMR observables. For guided predictions, plotted
are the mean and standard deviation on 5 independent runs. Green and purple shadings indicate
α-helices and β-strands as predicted by DSSP (A). AlphaFold3 exhibits the lowest correlation to
the experimental measurement (r = 0.47), while guiding AlphaFold3 with NOE measurements
improves it to r = 0.52 for i.i.d guidance and r = 0.72 with non-i.i.d. ensembles (B). For two
lysines at site 11 (entrance into the second β-strand from a flexible loop) and 29 (middle of α-
helix) highlighted in (C), guided ensembles exhibit more variability of the amide N-H bond direction
in the flexible turn, while showing less variability in the inflexible helix, in agreement with the
experimental observation (D).

physical reality of these different structures. A quantitative evaluation of this example is presented
in Table 1.

Heterogeneity in equivalent environments. The second case we explore is a more local and subtle
version of the former, highlighting that the same amino acid segment in distinct but homologous
proteins can adopt different conformations, even when the immediately surrounding protein envi-
ronment is equivalent (and, thus, the local segments have identical contact networks). A key compo-
nent of AlphaFold3 prediction is based on coevolutionary signals from multiple sequence alignment
(MSA) of homologous proteins in order to discern contact maps (which, in the form of MSA embed-
ding, condition the diffusion model as depicted in Figure 1). It is, therefore, unsurprising then that
homologous proteins harboring regions of identical amino acid sequence embedded into an equiv-
alent spatially adjacent amino acid environment are predicted to have identical local conformation
even from distinct protein sequences. As an illustration, we show in Figure 3 a pair of such homol-
ogous proteins (PDB 4NE4 and 5TEU) featuring a sequence of 4 amino acids in two distinct turn
conformations. While the 5TEU conformation variant is mispredicted by AlphaFold3, adding elec-
tron density guidance reproduces both variants faithfully. We also observe a more heterogeneous
ensemble generated in the latter case, including flipped carbonyl oxygen and sidechain flexibility
that better explain the density. A quantitative evaluation of this and additional homologous pairs is
presented in Table 2.

Heterogeneity within the same crystal. In the last case we consider, the heterogeneous confor-
mations are intrinsic to the protein itself and are observed in a single crystal measurement, with the
electron density appearing markedly bi- or multi-modal. While the phenomenon is very common
in flexible side chains, the heterogeneity in the backbone conformations has remained underappre-
ciated. In fact, common visualization platforms (e.g., PyMOL DeLano et al. (2002) and ChimeraX
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Figure 6: Crystallographic observation of the human NBR1 protein at 2.52Å resolution (PDB:
4OLE) exhibits a multi-modal backbone distribution at 423-431 (conformation modes A and B
color-coded in green and purple, respectively). AlphaFold3 predicts only conformation B while
completely missing the helical conformation A. Electron density-guided AlphaFold3 predicts a bi-
modally distributed ensemble better describing the observed electron density Fo. Light blue surfaces
and gray meshes in the zoomed-in inserts depict the 0.3 [e−/Å3]-isosurfaces of the observed and cal-
culated electron densities, Fo and Fc, respectively. Side chains in the inserts are omitted for clarity.

Pettersen et al. (2021)) and structural modeling tools (e.g., GROMACS Van Der Spoel et al. (2005))
frequently reading the first listed conformation as default and disregarding alternate conformations
Gutermuth et al. (2023). Nevertheless, the Protein Data Bank is actually riddled with such altlocs. A
recent study by Rosenberg et al. (2024a) compiled a comprehensive catalog of alternate conforma-
tions from PDB structures and the same group showed that even for regions with well-separated and
stable alternate conformations, structural ensemble predictors such as AlphaFold3 fail to reproduce
the experimentally determined distributions or capture the bimodal nature of backbone conforma-
tions Rosenberg et al. (2024b). Here we demonstrate that this same set of separated and stable
conformations is well-modeled using electron density guidance. As an illustration, we use a protein
decoded from NBR1, the neighbor of the human BRCA1 gene 1 implicated in breast cancer. The
PDB structure 4OLE resolved to 2.52Å contains a region of 9 amino acids that was modeled as a
superposition of two alternate conformations (Figure 6). While AlphaFold3 accurately predicts only
one of the conformations, electron density guidance generates an ensemble capturing the bi-modal
nature of the backbone and better explaining the density. A quantitative evaluation of this an other
11 cases is presented in Table 3. Figure 8 presents a quantitative evaluation of ensemble bi-modality
(refer to Appendix J for details) and demonstrates that density-guided AlphaFold3 consistently pro-
duces bi-modally distributed ensembles, while its unguided counterpart typically produces a single
mode.

C MODELING NMR ENSEMBLES

NMR exploits the magnetic resonance of atomic nuclei to probe into protein structure and dynamics.
NOEs acquired from solution-state NMR, in particular, provide distances between atoms averaged
over the ensemble of molecules in the sample and over time scales up to milliseconds. NOE-derived
distances, thus, comprise the conformational heterogeneity.

Status quo. NMR structures are determined by integrating molecular dynamics (MD) simula-
tions with NMR-derived restraints, using biomolecular force fields Wang et al. (2004); Schwi-
eters et al. (2006); Güntert (2004). However, since NMR observables inherently reflect ensemble-
averaged measurements, simulating single conformers often leads to mode collapse, producing rigid
ensembles that poorly capture true conformational dynamics (Figure 4 in Lindorff-Larsen et al.
(2005)). To address this, ensemble-based MD approaches—pioneered by Lindorff-Larsen et al.
(2005) and Lange et al. (2008)—simulate multiple conformers simultaneously to satisfy experimen-
tal restraints. While effective, these methods remain computationally prohibitive, requiring days
even for small systems like the 76-residue ubiquitin. While AlphaFold has revolutionized structure
prediction, its training on static X-ray crystallography data biases its ensembles toward rigid confor-
mations, failing to capture conformational heterogeneity or satisfy NMR-derived restraints (Figure 7
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and Table 4). This limits its utility for modeling protein dynamics. In what follows, we demonstrate
that NOE-guided AlphaFold3 recovers ensembles that (i) rigorously obey NOE distance restraints;
(ii) reproduce experimentally observed flexibility; and (iii) achieve this in minutes, overcoming the
computational bottleneck of traditional ensemble methods.

Ubiquitin, widely regarded as the benchmark system for NMR-based protein dynamics studies,
served as a critical test case for our method. To incorporate experimental constraints, we applied
NOE-based guidance by integrating the likelihood term derived in Appendix 4 into the ensemble
refinement framework defined by Equation (5). This framework was explicitly parameterized with
NOE-derived distance restraints obtained from the NMR structure PDB 1D3Z. NMR experiments
based on 15N spin relaxation are a well-established way to assess protein dynamics Palmer (2004).
Particularly, these experiments, which are entirely independent from NOE measurements, provide
the amplitude of motion of the amide bond vector on time scales shorter than a few nanoseconds.
This amplitude is expressed as (1-S2), where S2 is the so-called squared order parameter. This
parameter is, thus, a convenient independent to validate the heterogeneity found in the ensembles
determined by our NOE-guided AlphaFold approach. We computed the N-H S2 bond order pa-
rameters and compared them against experimental measurements reported in Lienin et al. (1998)
(see Appendix K.2 for details). As illustrated in Figure 5, AlphaFold3 predictions yield ensembles
dominated by rigid conformations, exhibiting only moderate correlation with the experimental S2

(r = 0.47). In contrast, NOE-guided AlphaFold significantly improves agreement: i.i.d. guidance
achieves r = 0.52 for i.i.d guidance, whereas non-i.i.d. ensemble sampling elevates it to r = 0.72.
Notably, the refined ensembles better replicate the dynamic behavior observed in both flexible and
structured regions, as evidenced by the distribution of N-H bond orientations across conformers.

Figure 7: Conformation ensembles generated for six proteins using AlphaFold3 (first row) and the
proposed NOE guidance (second row). Ensembles are visualized in blue overlaid on corresponding
NMR structures solved from the same NOESY data. PDB identifiers are indicated above each
structure. The numbers below report the percentage of violated constraints and the median violation.

Peptides. We used the benchmark from McDonald et al. (2023) from which we selected 20 peptides
worst predicted by AlphaFold3, for which the NMR structures result violate less than 10% distance
restraints. This resulted in three structures, namely, 1DEC, 2LI3, 3BBG (Figure 7), for which
AlphaFold3 produces a partially wrong fold than what is suggested by NMR measurements. This is
visually depicted in Figure 7, and is evidenced by the violation of restraints of AlphaFold3 baseline
presented in Table 4. We observed that NOE-guided AlphaFold3, both produces ensembles that
obey > 15% more restraints and an order of magnitude lower error (see Table 4) and fixes the
misprediction made by unguided AlphaFold3 (Figure 7).
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100 NMR spectra database. We evaluated the proposed method on 9 proteins (55− 102 residues)
from a recently compiled database of NMR structures Klukowski et al. (2024). While AlphaFold3
largely retains the correct fold for these systems, its baseline predictions exhibit, on average, 8%
more NOE restraint violations than the deposited NMR structures (Table 4). In all cases, NOE-
guided AlphaFold reduced violations, and in half of the cases, the guided ensembles even out-
performed PDB-deposited NMR structures in restraint compliance. Visual alignment with NMR
ensembles (Figure 7) and quantitative agreement in ρ-RMSF (Table 4) confirm that guidance re-
covers conformational heterogeneity consistent with NMR structures. Increasing the guidance scale
progressively enforces restraint satisfaction, as shown in Figure 2. Critically, these improvements
are achieved within minutes—reaching the accuracy of MD-derived ensembles at a fraction of the
computational cost.

D GUIDANCE USING AlphaFold3

In this section, we extend Algorithm 18 from the Supplemental Information of AlphaFold3 Abram-
son et al. (2024) to incorporate additive guidance using experimental observations. The modified
Algorithm is detailed in Algorithm 1.

Below, we describe the hyperparameters and log-likelihood formulations used for density-guidance
and NOE-guidance.

For density-guidance, we used Equation (1) as the primary log-likelihood function. However, due to
the local nature of density-guidance, we apply the density loss function to atoms within a continuous
residue region of the amino acid a: r = [rmin, rmax], where 1 ≤ rmin < rmax ≤ |a|. To ensure
stability outside this region, we used the Substructure Conditioner loss in equation (3) to anchor the
remaining atoms. Hence, we used the following log-likelihood for density-guidance.

log p(Fo | X ,a) = −

∥∥∥∥∥Fo −
1

n

n∑
k=1

Fc(X
k,a)

∥∥∥∥∥
1

− λ

n

n∑
k=1

∑
i∈A

∥xk
i − yi∥2

Where A is the set of reference atom locations within the residue region r. The specific choice of
the r depends on the protein and is detailed in the latter sections. We used λ = 0.1 to scale the
substructure conditioner. For guidance, we used η = 0.1 in equation (5).

Unlike density-guidance which focuses local fitting, NOE-derived restraints are global in nature.
Therefore, we do not apply the substructure conditioner when using equation (2) for NOE guidance.
For guidance, we evaluated η = 0.3, 0.5 in equation (5), and selected the parameter based on the
number of restrained obeyed.

To ensure numerical stability during guided diffusion, we apply gradient clipping Zhang et al. (2019)
to clip the guidance score. This prevents instability due to large gradients, ensuring a smooth inte-
gration of experimental constraints into the diffusion process.

E AlphaFold3 MODEL AND HARDWARE RESOURCES

Across all experiments in this paper, we used the open-sourced Protenix Chen et al. (2025) model,
a PyTorch-based Paszke et al. (2019) reimplementation of AlphaFold3. However, for the Al-
phaFold3 baseline comparisons, we report predictions generated using the official AlphaFold3
weights and source code Abramson et al. (2024). All computations were performed on NVIDIA
H100 and L40S GPUs.

F CALCULATING Fc FROM A PROTEIN STRUCTURE

In equation (1), we compute the L1 norm of the difference between Fo and expected value of Fc

along the protein ensemble X . Here, Fc : R3 → R is the calculated electron density determine
using the 3D Cartesian coordinates of a specific protein structure X = (x1, . . .xm). Formally, Fc
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can be computed using a sum over a finite number of kernel density estimates,

Fc (ξ) =

Ns∑
q=1

m∑
i=1

5∑
j=1

aij ·
(

4π

bij +B

) 3
2

· exp
(
− 4π2

bij +B
∥Rqxi + tq − ξ∥22

)
, (6)

where Ns is the number of symmetry operations Brock et al. (2016), m is the number of atoms in
the asymmetric unit, Rq is the rotation matrix of the q-th symmetry operation, tk is the translation
vector of the k-th symmetry operation, xi ∈ R3 is the location of the i-th atom, aij and bij are
tabulated form factors defined for every heavy atom Prince (2004), B is the B-factor, and ξ ∈ R3

is the point in Euclidean space where density is calculated. In standard crystallographic pipelines,
the B-factor is used to model experimental electron density as a mixture of Gaussians. However, we
consider the B-factor to be a bandwidth parameter in kernel density estimation (KDE) techniques
Terrell & Scott (1992). Ideally, we would like to optimize the B-factor when guiding the diffusion
process; however, due to the stochastic nature of the diffusion process, optimizing B-factor proved
to be quite unstable and often pushed the diffusion variable off of the diffusion manifold. Hence,
we used a uniform B-factor that is inversely related to the size of the ensemble, B = 4

n , for all the
atoms in the ensemble. We consistently performed density guidance on an ensemble of size 16. For
some bigger proteins, we used a batch size 12 to avoid out of memory exceptions.

G FILTERING & RELAXATION AFTER DENSITY GUIDANCE

Following the guided (non-i.i.d.) diffusion sampling procedure using density maps, we apply a
two-stage filtering and refinement procedure to ensure the physical plausibility of the generated
structures. To remove structurally invalid samples, we first identify and eliminate structures with
broken covalent bonds and/or steric clashes.

To check for structures with broken bonds, we determine all bonded atom pairs within the protein
structure using Gemmi Wojdyr (2022) and compute their Euclidean distances. A structure is con-
sidered to have broken bonds if the distance between any bonded atoms exceeds τbond = 2.1 Å. In
addition, to check for structures with steric clashes, we compute all pairwise interatomic distances
and classify a structure as exhibiting steric clashes if the distance between any two atoms is less than
τclash = 1.1 Å.

After the initial filtering, we further refine the remaining samples by relaxing them with AMBER
force field Wang et al. (2004). This process resolves minor bond length deviations and improves
structural consistency by ensuring that atomic interactions conform to physically realistic energy
landscapes. For this, we use the publicly available ColabFold implementation Mirdita et al. (2022).

H ENSEMBLE PRUNING WITH MATCHING PURSUIT

The matching pursuit-based Mallat & Zhang (1993) ensemble selection procedure is detailed in
Algorithm 2. Below, we describe additional optimizations and hyperparameters used for ensemble
selection following density guidance.

Before selecting the ensemble, we optimize a scalar B-factor B to maximize the log-likelihood in
equation (1). This step adjusts the bandwidth of the ensemble’s theoretical electron density Fc to
best fit the observed density Fo. While optimizing B during the diffusion process can introduce
numerical instabilities, we avoid the issue here because B is optimized after structure generation,
filtering, and relaxation is complete. Hence, we do not encounter similar instabilities here. We
optimized B using Adam Diederik (2014) optimizer with a step size of 1.0 over 100 iterations. The
optimized B-factor B∗ is used uniformly across all atoms in the remaining structures. Following
this, we apply the matching pursuit algorithm to select the best-fit ensemble.

Across all experiments, we set the maximum ensemble size to nmax = 5. For NMR guided ensem-
bles, we do not employ ensemble selection and our results are evaluated on the full ensemble.
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Figure 8: Distribution of normalized distances to conformations A (−1) and B (+1) in generated
ensembles for 12 protein structures. Compared are ensembles generated by AlphaFold3 and our
electron density i.i.d. and non-i.i.d. guidance. While unguided AlphaFold3 typically fails to capture
the multi-modal nature of these structures, non-i.i.d. consistently produces multi-modal ensembles.

I ELECTRON DENSITY PRE-PROCESSING

Since the electron density maps available in the PDB are mean-centered and lack an absolute scale,
we converted them to physical units of density [e− /Å3] using the method described in Lang et al.
(2014). A comprehensive list of proteins used in our experiments and their corresponding residue
regions is provided in Tables 1-3. While most density maps in our dataset are of high resolution,
our method performs exceptionally well on density maps with relatively lower resolution like PDB
entries 4OLE, 6JF2, and 6QQF.

J ENSEMBLE BI-MODAL DISTRIBUTION EVALUATION

In Appendix B, we demonstrated that density-guided diffusion effectively captures structural het-
erogeneity present in the protein crystal. Specifically, we evaluated this method on altloc regions
of proteins listed in Table 3 and observed that our non-i.i.d. density guidance framework consis-
tently outperforms i.i.d. density guidance across most proteins in the dataset. Also, both methods
consistently outperform AlphaFold3.

In this section, we describe a quantitative evaluation demonstrating that non-i.i.d. density guidance
better captures the bimodality inherent to altloc regions compared to other methods. To this end,
we use samples from three sets of experiments, density-guided (i.i.d.), density-guided (non-i.i.d.),
and AlphaFold3 (unguided). In each case, we filter, relax (Appendix G), and refine the generated
ensemble using matching pursuit-based selection (Appendix J). To quantify bimodality, we compute
the normalized distance of each sample in the ensemble X relative to the known altloc configurations
(A or B). Consider an individual sample X ∈ Rm×3 from the ensemble X and the reference altloc
A and B structures Xa,Xb ∈ Rm×3, respectively. Following Rosenberg et al. (2024b), we define
the signed normalized distance between X and the reference conformations as

da = ∥X−Xa∥22
db = ∥X−Xb∥22

Normalized Distance =

[
1−min

(
db

da
,
da

db

)]
· sign(da − db). (7)

This metric provides an interpretable method for quantifying ensemble distributions. Specifically,
samples closer to reference conformation A have the normalized distance approaching −1, while
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those closer to reference conformation B have the normalized distance approaching +1. Conse-
quently, negative values indicate proximity to mode A, while positive values indicate proximity to
mode B.

The resulting normalized distance distributions are visualized in Figure 8. We notice that non-i.i.d.
guided sampling consistently achieves bimodal and multimodal behavior with proximity to both
reference conformations (positive and negative modes in the plot). In comparison, i.i.d. guided sam-
pling achieves a moderate degree of bimodality but is less effective than non-i.i.d. sampling in terms
of accurately capturing the full extent of conformational heterogeneity present in the electron den-
sity. In comparison, AlphaFold3 (unguided) often fails to correctly recover bimodal modal behavior.
This demonstrates that non-i.i.d. guidance significantly outperforms i.i.d. guidance in modeling
bimodal distributions in electron density maps. In addition, both guided approaches perform signif-
icantly better than AlphaFold3.

K ESTIMATING NOE RESTRAINTS FROM AN ENSEMBLE

Measuring distance restraints on an ensemble. Given an ensemble X and NOE restraints D =
{(dij , dij) : (i, j) ∈ P} of pairs of lower and upper bounds, the NOE restraints are employed on
the ensemble average, dij(X ) = 1

n

∑n
k=1 dij(X

k) of the distances dij(Xk) = ∥xk
i − xk

j ∥ between
pairs of atoms i, j in individual structures Xk, as written in equation (2).

Heavy atom approximation. AlphaFold3 models only heavy atoms (i.e., it does not include hy-
drogen atoms), whereas all NOE restraints—based on internuclear interactions—are defined be-
tween hydrogen atoms. To address this discrepancy during guidance, each NOE restraint in ex-
perimental data D, initially specified between hydrogen atoms, is approximated by applying an
equivalent distance constraint to their covalently bonded heavy atoms (e.g., N for NH or C for CH
groups). Given fixed bond lengths (N–H: 1.0Å, C–H: 1.1Å), the maximum error introduced by this
substitution is 4.4Å = 2 × (1.1Å + 1.1Å). During evaluation, hydrogen atoms are placed into the
model at the relaxation stage (Appendix A.2), enabling correct evaluation of NOE restraints against
explicit hydrogen positions without employing the heavy atom approximation.

Distances vs. peak intensities NOE measurements in NMR arises from dipolar interactions be-
tween nuclei (typically protons) within ∼ 6Å. The intensity of NOE cross-peaks in a NOESY spec-
trum is inversely proportional to the sixth power of the interatomic distance

(
I ∝ 1/r6

)
. Post peak

assignment, the cross-peak intensities are converted into distance restraints via r = rref (Iref/I)
1/6,

where rref and Iref are the distance and peak intensity of a reference nuclei pair. To ensure physical
accuracy, the NOE-implied distance between two atoms in an ensemble should be computed by first
averaging the calibrated peak intensities, and then converting the resulting mean intensity back into
a distance. We will adopt this more rigorous approach in our follow-up work.

K.1 NMR DATA COLLECTION AND PRE-PROCESSING

NOE-based distance restraints were extracted from NMR STAR files correspond-
ing to the PDB entries. The pynmrstar library was employed to parse these
restraints, with explicit selection of NOE-derived constraints (categorized under
Gen dist constraint list.Constraint type). All non-NOE structural restraints

(e.g., hydrogen bonds, dihedral angles, or RDC-derived constraints) were excluded to focus
specifically on distance geometry derived from NOEs. Ambiguous NOE assignments involving
multiple proton pairs were retained without filtering to reflect inherent NMR uncertainty and
are considered for evaluation. Distance lower and upper bounds were directly obtained from
the STAR file fields Gen dist constraint list.Distance lower bound val and
Gen dist constraint list.Distance upper bound val, respectively. Missing

lower bounds were explicitly set to 0 Å to enforce a physically meaningful minimum distance.
Parsed bounds were retained in Ångström units as provided, with no additional thresholding or
normalization applied to preserve the experimental restraint set. These bounds were used directly
as inputs to the likelihood term (Appendix 4), which models NOE-derived distance uncertainties
through a truncated super-Gaussian potential acting between the parsed lower and upper bounds.
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K.2 COMPUTATIONAL ESTIMATION OF N-H BOND ORDER

The N-H bond order parameter S2 captures the backbone flexibility. Physically, S2 measures the
long-time limit of the autocorrelation function of the N-H bond vector. Given a structural ensemble
X , the N-H bond order can be computationally estimated as follows Palmer (2004):

1. Align the ensemble to a reference structure Xref, to account for rotational and translational
symmetries.

2. For every structure Xk ∈ X in the ensemble, compute the normalized N-H bond-vectors
{dk

i } at all residues i.

3. Given the normalized N-H bond-vector, the calculated bond-order S2
c is given by

S2
c ≈

1

n(n− 1)

n∑
k ̸=l

P2(dk · dl),

where n = |X | is the ensemble size, and P2(x) =
1
2

(
3x2 − 1

)
is the Legendre polynomial

of order 2.

L EVALUATION METRICS USED IN NMR STRUCTURE DETERMINATION
EXPERIMENTS

In what follows, we describe how we compute quantitative metrics reported in Table 4 and Figure
7. Given a structural ensemble X and a restraint list D = {(dij , dij) : (i, j) ∈ P}, we measure the
quality of X in terms of its adherence to D and as a secondary measure, we evaluate the recovered
conformational flexibility with respect to the NMR ensemble XNMR. To evaluate restraint violation
across the ensemble, we first compute the ensemble distance matrix D(X ), whose entries are given
by dij(X ) = 1

n

∑n
k=1 dij(X

k).

Restraint violation percentage (Viol. %) For each experimental restraint in D, a violation occurs
if the ensemble averaged distance dij(X ) lies outside the interval [dij , dij ]. Viol. % is the percentage
of restraints in D that are violated.

Restraint violation distance (Viol. Å). For each restraint, the violation magnitude is the absolute
deviation of from the nearest bound (lower or upper) if outside the interval; otherwise, it is zero.
Viol. Å is the average of these deviations across all restraints in D.

Handling ambiguous restraint groups. In NMR experiments, distance restraints are often orga-
nized into restraint groups G ⊆ D with intra-group OR conditions to account for assignment
ambiguity. For violation metrics, we compute the effective violation of a group G as:

Viol(G) = min
{

Viol(g) | g ∈ G
}

where Viol(g) is the violation of constituent restraint g (measured via Viol.% or Viol. Å). This
ensures a group is considered satisfied if at least one constituent restraint complies with the experi-
mental bounds.

ρ-RMSF with respect to XNMR. Given X , this metric measures the correlation in conformational
flexibility with respect to XNMR. We first align X and XNMR to a reference structure Xref to account
for rotational and translational symmetries. Then, for each residue location i in the ensemble X , the
root mean square fluctuation (RMSF) is computed as,

RMSFi
X =

√√√√ 1

n

n∑
k=1

∥∥xk
i − xi

∥∥2, where xi =
1

n

n∑
k=1

xk
i ,

and xk
i represent the coordinates of the CA atom in residue i in sample k of the ensemble. The

ρ-RMSF is the Pearson correlation coefficient between the RMSF profiles of X and XNMR. This
effectively measures their similarity in residue-wise conformational flexibility. Higher ρ-RMSF
values indicate better agreement in flexibility patterns.
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M CONCLUSION

In this paper, we presented a general methodology for guiding AlphaFold3 using experimental ob-
servables and systematically evaluated its utility in fitting structural ensembles to crystallographic
and NMR data. In crystallography, the robustness and generality of our method are demonstrated by
the wide range of conditions of the evaluated targets: electron density maps covering a wide range of
resolutions (from sub-Å to medium-low resolution) and qualities (covering high and low B-factors),
protein segments with different lengths, variable amino acid identities, different secondary structure
contexts, and AlphaFold3 mispredictions of severity ranging from the subtle conformation of the
carbonyl oxygen to loop regions predicted tens of Ångstroms away from the experimentally ob-
served location. Likewise, in NMR we show a great variability of the number and quality of NOE
constraints in the evaluated structures. In the future, we intend to generalize the method to jointly
sampling ensembles representing multiple molecules to model protein complexes and protein-ligand
interactions. We also plan to extend the model to single- and multi-particle cryoEM where handling
conformational heterogeneity constitutes a major challenge.
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PDB ID Residue Region Region Sequence Resolution (Å) PDB AlphaFold3 Guided (non-i.i.d.)
7F5F:A 102− 112

CSFYEDFLEYH
1.62 0.717 0.562 0.699

7JX6:A 102− 112 1.61 0.698 0.561 0.696
7F5F:A 38− 41

PIHF
1.62 0.788 0.645 0.785

7JX6:A 38− 41 1.61 0.739 0.579 0.736
7F5F:A 72− 78

QYIDIGN
1.62 0.668 0.660 0.736

7JX6:A 72− 78 1.61 0.652 0.552 0.657

Table 1: Quantitative evaluation of cosine similarity between the observed and calculated electron
density maps (higher is better) on three structurally dissimilar crystallographic structures of the
SARS-CoV-2 ORF8 protein. Colored in green are the cases in which the ensemble produced by
the density-guided AlphaFold3 better fits the observed electron density better than the unguided
counterpart, and in blue the cases in which the generated ensemble also outperforms the structure
deposited in the PDB.

PDB ID Residue region Region sequence Resolution [Å] PDB AlphaFold3 Guided (non-i.i.d.)
4QTD:A 225− 228

FPGR
1.5 0.825 0.666 0.810

7KSI:A 263− 266 1.75 0.831 0.627 0.819
4QTD:A 280− 291

FPADSEHNKLKA
1.5 0.792 0.626 0.771

7KSI:A 318− 329 1.75 0.783 0.575 0.780
5LL7:A 238− 241

CGVY
1.40 0.855 0.754 0.830

3DW0:A 283− 286 1.60 0.767 0.625 0.749
2D7C:A 110− 113

RDHA
1.75 0.782 0.685 0.785

2F9L:A 110− 113 1.55 0.701 0.693 0.739
3F1L:A 21− 24

SDGI
0.95 0.886 0.744 0.859

3G1T:A 21− 24 1.70 0.859 0.810 0.850
5XNE:A 211− 214

EDCT
1.50 0.820 0.775 0.821

6J3D:A 211− 214 1.70 0.849 0.798 0.841
4NE4:A 73− 76

ADDP
1.73 0.734 0.628 0.728

5TEU:A 91− 94 1.62 0.754 0.666 0.763
2ESK:A 17− 20

PPAQ
1.36 0.699 0.626 0.709

1Z2U:A 17− 20 1.10 0.751 0.561 0.728
2ESK:A 26− 29

VGDD
1.36 0.710 0.648 0.696

1Z2U:A 26− 29 1.10 0.761 0.611 0.745
2ESK:A 113− 119

PNPDDPL
1.36 0.774 0.712 0.777

1Z2U:A 113− 119 1.10 0.799 0.635 0.778
2IE8:A 321− 324

VPPF
1.80 0.654 0.404 0.560

1V6S:A 321− 324 1.50 0.864 0.518 0.851
2IE8:A 284− 287

PVPY
1.80 0.697 0.483 0.671

1V6S:A 284− 287 1.50 0.812 0.540 0.817
2IE8:A 354− 363

VNRLGLKERF
1.80 0.639 0.454 0.640

1V6S:A 354− 363 1.50 0.725 0.487 0.731

Table 2: Quantitative evaluation of cosine similarity between the observed and calculated electron
density maps (higher is better) on homologous protein pairs harboring locally identical amino acid
sequences in the identical environment (same contacts). Colored in green are the cases in which
the ensemble produced by the density-guided AlphaFold3 better fits the observed electron density
better than the unguided counterpart, and in blue the cases in which the generated ensemble also
outperforms the structure deposited in the PDB.
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Guided AlphaFold3
PDB ID Residue region Region sequence Resolution [Å] PDB AlphaFold3 Non-i.i.d. i.i.d.

3OHE:A 98− 103 YQGDPAW 1.20 0.773 0.706 0.761 0.755
2YNS:A 183− 185 GNG 1.60 0.750 0.702 0.745 0.733
2Q3G:A 24− 27 FNVP 1.11 0.755 0.687 0.737 0.716
3V3S:B 245− 250 KAQERD 1.90 0.798 0.736 0.800 0.804
7EC8:A 187− 190 DGGI 1.35 0.878 0.839 0.860 0.855
2O1A:A 50− 53 KQNN 1.60 0.749 0.739 0.757 0.746
5G51:A 290− 295 GSASDQ 1.45 0.748 0.447 0.749 0.742
4OLE:B 423− 431 STEKKDVLV 2.52 0.880 0.809 0.882 0.854
6JF2:A 129− 133 VTAGG 2.00 0.862 0.752 0.857 0.845
4NPU:B 133− 136 FEEI 1.50 0.795 0.730 0.797 0.784
7R7W:B 46− 50 IEKVE 1.17 0.760 0.718 0.761 0.748
6QQF:A 68− 75 RTPGSRNL 1.95 0.833 0.814 0.832 0.825

Table 3: Quantitative evaluation of cosine similarity between the observed and calculated electron
density maps (higher is better) on structures with separated multi-modal backbone conformations
(altlocs) from Rosenberg et al. (2024a). Colored in green are the cases in which the ensemble
produced by the density-guided AlphaFold3 better fits the observed electron density better than the
unguided counterpart, and in blue the cases in which the generated ensemble also outperforms the
structure deposited in the PDB.

NMR (PDB) AlphaFold3 Guided AlphaFold3
PDB ID len #NOEs Viol.% Viol.Å Viol.% Viol.Å ρ-RMSF Viol.% Viol.Å ρ-RMSF
1DEC 39 602 11.4% 0.019 31.2% 0.673 0.80 15.0% 0.062 0.86
2LI3 30 354 1.0% 0.003 29.3% 1.104 0.57 5.3% 0.023 0.66
3BBG 40 535 3.5% 0.023 33.3% 1.253 0.63 21.7% 0.174 0.49

1YEZ 68 1512 11.4% 0.074 12.4% 0.097 0.76 7.8% 0.046 0.79
2JRM 60 2706 12.2% 0.069 19.7% 0.168 0.83 13.0% 0.072 0.86
2JVD 48 1324 6.5% 0.024 13.1% 0.079 0.60 7.9% 0.032 0.70
2K52 74 1212 14.9% 0.092 27.6% 0.295 0.60 14.3% 0.060 0.80
2K57 55 1200 8.9% 0.070 17.8% 0.135 0.70 10.1% 0.058 0.89
2KIF 102 3124 11.8% 0.077 19.3% 0.168 0.57 13.3% 0.081 0.91
2KRS 74 1305 19.8% 0.145 13.8% 0.117 0.82 10.3% 0.057 0.83
2MA6 61 1077 10.4% 0.070 9.7% 0.076 0.93 8.4% 0.053 0.89
6SOW 58 1589 31.4% 0.201 42.6% 0.422 0.30 36.5% 0.197 0.54

Table 4: Quantitative evaluation of restraint violation and backbone flexibility for protein structures
sourced from the 100 NMR spectra database (NMRDb; Klukowski et al. (2024)) and benchmark
peptides (pept., McDonald et al. (2023)). Violation percentages (Viol. %) quantify the fraction
of experimental NOE restraints that are not satisfied, while violation distances (Viol. Å) report by
how far the modeled ensemble deviates from these restraints. Correlation with ground-truth RMSF
(ρ-RMSF) measures the accuracy of the ensemble’s backbone flexibility. Colored in blue are cases
in which the ensemble produced by NOE-guided AlphaFold3 better satisfies the distance restraints
than the corresponding NMR structure deposited in the PDB. Colored in green are the cases in
which the NOE-guided AlphaFold3 achieves at least 15% fewer restraints than AlphaFold3. Colored
in black are cases in which NOE-guided AlphaFold3better agrees with the NMR structure in terms
of conformational flexibility compared to AlphaFold3. Here, the first three rows peptides and
the rest are NMRDb.
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Algorithm 1 AlphaFold3 guidance

Input: {f∗}, {sinputs
i }, {strunk

i }, {ztrunk
ij }, Noise Schedule [β0, β1, . . . , βT ], γ0 = 0.8, γmin =

1.0, noise scale λ = 1.003, step scale κ = 1.5, experimental observation y, guidance scale η,
reference structure r, substructure conditioner flag b, substructure indices I , batch size n, number
of atoms m
Output: X l Guided Ensemble
X l ∼ β0 · [N1, . . . ,Nn]T Ni ∼ N (0, I3),X ∈ Rn×m×3

for βτ ∈ [β1, . . . , βT ] do
X l ← CentreRandomAugmentation(X l)
γ ← γ0 if βτ > γmin else 0

t̂← βτ−1(γ + 1)√
t2 − β2

τ/βτ−1

ξl ← λ
√
t̂2 − β2

τ · [N1, . . .Nn]T Ni ∼ N (0, I3), ξl ∈ Rn×m×3

X noisy
l ← X l + ξl

X denoised
l ← DiffusionModule({X noisy

l }, t̂, {f∗}, {sinputs
i }, {strunk

i }, {ztrunk
ij })

if b then
for i ∈ I do

X denoised
i ← [ri, . . . , ri] Repeated n times

end for
end if
δl ← (X l −X denoised

l )/t̂
L ← log p(y|X ,a)

g ← ∂L
∂X noisy

l

Guidance Score is with respect to the ensemble

g ← g · ∥δl∥2
∥g∥2

Gradient Scaling

δl ← δl + g · η
dt← βτ − t̂

X l ← X noisy
l + κ · dt · δl

end for
return X l

Algorithm 2 Selecting samples using matching pursuit Mallat & Zhang (1993)

Input: samples in ensemble X = {X1, . . . ,Xn}; experimental observation y; amino acid se-
quence a; likelihood function to be maximized log p(y | X ,a); maximum samples to select
nmax;
I = ∅
scurrent = 0
while |I| < nmax do

L = {ℓk = log p(y | X I∪{k},a) : k ∈ Ic}
k∗ ← argmaxk L s∗ ← maxk L Maximize log p(y|X I∪{k∗},a)
I ← I ∪ {k∗} Add best sample
if s∗ < scurrent then

break
end if
scurrent ← s∗

end while
return X I = {Xk : k ∈ I}

23


	Introduction
	Contributions
	Protein structure inverse problems
	Crystallographic electron densities
	Nuclear Overhauser effect restraints
	Substructure conditioning

	Organization
	Experiment-grounded AlphaFold3
	Guiding AlphaFold3
	Force-field relaxation
	Ensemble filtering using matching pursuit

	Modeling crystallographic ensembles
	Modeling NMR ensembles
	Guidance using AlphaFold3
	AlphaFold3 model and hardware resources
	Calculating Fc from a protein structure
	Filtering & relaxation after density guidance
	Ensemble pruning with matching pursuit
	Electron density pre-processing
	Ensemble bi-modal distribution evaluation
	Estimating NOE restraints from an ensemble
	NMR data collection and pre-processing
	Computational estimation of N-H bond order

	Evaluation metrics used in NMR structure determination experiments
	Conclusion

