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ABSTRACT

Training a deep model is fundamentally about reducing loss, and we often believe
that a “good model” is one that trained with a “good loss.” This paper investi-
gates that belief. We show that even when learning with unstructured, randomized
labels, models can still discover generalized features. We propose that generaliza-
tion in deep learning is not about learning the structure of data through a well-
structured loss, but rather a process akin to “pan for gold,” where gradient descent
shakes through the function space, naturally stabilizing useful features. To support
this, we present quantitative and qualitative experimental evidence, and introduce
the Panning through Unstructured Label (PUL) algorithm. We demonstrate its ef-
fectiveness across various fields, showing improvements in unsupervised domain
adaptation, state-of-the-art performance in object discovery, and its ability to mit-
igate massive attention issues. Finally, we offer a new interpretation of existing
deep learning assumptions, challenging the conventional beliefs in the field.

1 INTRODUCTION

Most modern deep learning involves reducing a certain loss in an overparameterized model using
SGD. Since SGD tries to minimize a given loss, this inherently reflects the assumption that the
lower the loss, the better the model. The loss serves as a metric for how well the model captures
the structure in the data during training. A lower loss implies that the model has learned more about
the data structure from the training data. For instance, in image classification problems, we define
a classification loss that reflects the structure of image-category pairs (Deng et al., 2009) or use
a consistency loss (Chen et al., 2020; He et al., 2020; Grill et al., 2020; Caron et al., 2021b) that
encodes our belief that two transformed versions (e.g., through cropping or rotation) of the same
image should represent the same object. In any case, this process rests on two key ideas: 1) SGD
reduces the given loss, and 2) meaningful reduction requires a well-defined structure.

This paper deals with the following question: Is structure itself the essence of a ‘good’ result? We
approached this question with a proof by contradiction: if structure were essential for producing
good results, removing the structure should lead to poor results. We completely removed the struc-
ture from the learning process by randomizing the class labels, and found that the model actually
was able to learn from data despite the complete randomization and even performed better from a
generalization perspective. Based on these observations and mathematical analysis, we propose a
hypothesis about the driving force of generalization in deep learning. We argue that the success of
deep learning is not due to the encoding of human beliefs, but to the stochasticity of SGD and diverse
exploration of the loss surface of overparameterized models throughout the learning process. The
process can be compared to panning for gold: just as randomly shaking a pan sifts out all the impuri-
ties except for the gold, there is a very strong shaking in the functional space throughout the learning
process which automatically shakes out the noisy features and leaves the ‘good’ features. In doing
so, we show that the unstructured random labels leaves more ‘gold’. In this paper, we present strong
experimental evidence supporting our bold hypothesis. Furthermore, we present an algorithm that
exploits our hypothesis to dramatically improve performances on existing deep learning problems
reaching state-of-the-art performance in some areas in a very simple way.

To analyze this observation, we view the development of deep learning in the functional space.
First, we investigate the condition of functional descent necessary for loss reduction. Alongside this
analysis, we observed a swing phenomenon, where the output of the neural network fluctuates dra-
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matically during the early stages of training. We explain this phenomenon using the Neural Tangent
Kernel (NTK) (Jacot et al., 2018). Based on our observations and analysis, we propose the “pan for
gold” hypothesis, which suggests that as learning progresses, the swings of the function diminish,
highlighting only the important features of the given dataset. To verify our hypothesis of Pan for
Gold, we conducted several experiments. First, we confirmed the presence of effective functional
descent by demonstrating the positive definiteness of the NTK and observing a flattened loss sur-
face along the gradient direction. Next, using Grad-CAM visualizations (Selvaraju et al., 2017), we
illustrated that even models trained with unstructured labels naturally focus on meaningful features.

Based on our hypothesis, we proposed an algorithm, Panning through Unstructured Label (PUL)
that improves the generalization ability of existing deep learning models by using unstructured la-
bels. First, we demonstrated that PUL enhances performance in unsupervised domain adaptation,
where accessing target labels is restricted. By simply assigning random labels to the unlabeled tar-
get data, we increased performance in classification and object detection. Moreover, we achieved
state-of-the-art (SOTA) performance in the object discovery task within just a few epochs using
ResNet50, despite not using any source labels, which made the problem more challenging. These
improvements demonstrated that unstructured labels can enhance attention maps. We also observed
a significant improvement in the activation distribution and successfully alleviated the widespread
attention issues (Xiao et al., 2024), which are a major challenge in the quantization field. The pro-
vided results show that our ‘gold-preserving’ algorithm significantly enhances performance across
various domains that require generalization. Lastly, we argued that our methodology not only im-
proves existing algorithms quantitatively but also offers a new perspective on certain phenomena.
For example, while the edge-biasing issue observed in XAI methods like Grad-CAM (Selvaraju
et al., 2017) is often regarded as a flaw of these methods, we confirmed that it is not a defect, but
rather a natural outcome of the model’s learning process.

2 LEARNING FROM UNSTRUCTURED DATA

2.1 CONVENTIONAL BELIEF ON DATA

The goal of deep learning is to learn from data according to structures defined by humans. These
structures are shaped by human prior knowledge or established beliefs. They form the essence of the
model’s learning process. People mathematically conceptualized this belief as ‘Energy’, and we use
the Energy-Based-Models (EDM) (Xie et al., 2022) for developing our idea.

Humans have a belief that data can be categorized based on certain criteria that are used to define
input-query pairs. For a given data x ∈ X , they classify it and assign a structured label y ∈ Y
according to these assumptions. The supervision energy function Esup, which represents the state
of the model fθ, and hence the data, can be defined as follows for an arbitrary distance metric d:

Esup(f) ≜ E(x,y)∼p(X ,Y) [d(fθ(x), y)] , (1)
where a pseudo-metric in the probability space, such as cross-entropy (CE) is typically used for d.

Another key human belief about data is augmentation-invariance: the idea that the essence of an
image remains unchanged for a slight deformation. This belief is applied in Self-Supervised Learn-
ing (SSL) where a set of data augmentations A is defined, and the model is trained to minimize the
energy defined as the output distance between different versions of the same image. The SSL energy
Essl is defined as follows:

Essl(f) ≜ Ex∼p(X )Ea1,a2∼p(A) [d(fθ(a1(x)), fθ(a2(x)))] . (2)
In the end, humans have conventionally believed that what matters is how humans structure the data,
whose structure is shaped by the underlying human beliefs about the data itself.

2.2 CONTRADICTION: LEARNING OCCURS EVEN WITHOUT STRUCTURE

We can verify the validity of this belief through a simple experiment. By assigning random structures
to the dataset (essentially applying unstructured labels), we can determine whether the model is able
to learn. If the belief is correct, the model should not learn effectively under these conditions.

We trained a model on an unstructured dataset (X ,Yu), where the labels lacked any inherent struc-
ture. The model was trained until it appeared to have learned sufficiently. We then measured the
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Table 1: Classification accuracy of linear probing on CIFAR-10 and SVHN. ‘Random Init’ denotes
initialization with random weights, while ‘Yu trained’ refers to initialization using the weights of a
model trained on the CIFAR-10 dataset with unstructured labels.

Dataset Random Init (%) Yu trained (%)

CIFAR 19.60 32.51

SVHN 19.31 34.19

performance of its encoder. To assess whether the model had truly learned anything meaningful, we
applied transfer learning to the frozen encoder.

Table. 1 demonstrates the result that the model learns meaningful knowledge even from unstructured
data. Thus, we can infer that the energy-based hypothesis of deep learning fails to explain the se-
crets of generalization. Now, we need a new hypothesis to understand how learning occurs without
inherent structure of data. Where does generalization come from?

3 PAN FOR GOLD

We propose a new hypothesis regarding the learning process of deep models, which we call the
“pan for gold.” We suggest that, akin to sifting for gold in a river, stochastic gradient descent (SGD)
inherently filters out unnecessary features as it navigates through the function space of an overpa-
rameterized model. Just as water and sand (irrelevant features) pass through a sieve, leaving behind
valuable gold (essential features), this filtering occurs naturally, without any active search for use-
ful elements. We argue that this process takes place independently of human-imposed structures or
belief systems.

Overview Our claim is that model generalization naturally arises when certain conditions (Eq. (3))
are satisfied. In Sec. 3.2, we analyze what these conditions mean in terms of functions, under the
idea that because overparameterized models memorize any training dataset, the corresponding loss
should decrease in an overparameterized setting. We explore experimentally in Sec. 3.3 that this
process can be highly unstable, and analyze it through NTK. From these observations, we deduce
the “pan for gold” hypothesis in Sec. 3.4. Finally, in Sec. 3.5, we qualitatively assess whether our
hypothesis holds true and if the learning process follows the pattern we propose.

3.1 PRELIMINARIES

A deep learning model can be viewed as a function conditioned by parameters, which generates
outputs for various inputs. From this perspective, the change in weights during gradient descent can
be interpreted as the development of the function over time. By observing how the function evolves
over time, we can gain a deeper understanding of the model’s learning process.

In this context, the Neural Tangent Kernel (NTK) (Jacot et al., 2018) serves as a powerful tool
for such functional analysis. NTK models the deep learning model f(·, θ) as a kernel k(·, ·), and by
analyzing this kernel, we can perform functional analysis of the learning dynamics. Through this
approach, we can mathematically interpret the complex learning process of deep learning models.
By analyzing the eigenvalues of the NTK, for instance, we can determine how rapidly the model is
changing during training and how efficiently it is minimizing the loss.

3.2 FUNCTIONAL GRADIENT DESCENT

In the end, what we know is that an overparameterized deep model can fit to any dataset (X ,Y). But
what does it actually mean to fit? In a simple term, it means that the loss decreases as the number
of epochs increases, i.e. L(X ,Y; θt+1) < L(X ,Y; θt). To meet this condition, the following two

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Unstructured LabelStructured Label

Predicted Class Index

N
um

be
r o

f s
am

pl
es

Epoch 0 Epoch 15 Epoch 0 Epoch 15

Figure 1: The swing phenomenon. For both structured (CIFAR10) and unstructured (CIFAR10 with
random label) data, the network outputs concentrated on a single class at an early stage of learning
(Epoch 0). We call this ‘swing phenomenon’ and it lasted longer for the unstructured data (Epoch
15). x-axis is the predicted class index (among 10 classes) and y-axis represents the number of
samples. The first row presents the results after the first iteration, while the second row corresponds
to the results after the second iteration.

assumptions are highly likely to be satisfied:

A1. ∇2
θL(X ,Y; θ)︸ ︷︷ ︸

Hessian H

∇θL(X ,Y; θ)︸ ︷︷ ︸
Gradient g

≃ 0,

A2. f(X , θt − α∇θL(X ,Y; θt) + ε) ≃ f(X , θt − α∇θL(X ,Y; θt)).

(3)

The first condition relates to the complexity of the model’s loss landscape, especially in an overpa-
rameterized model. Since Gradient Descent (GD) is an algorithm that approximates the model in a
locally linear fashion, it simplifies the problem by ignoring the high-order terms that describe the
nonlinearity of the loss surface. In reality, however, due to overparameterization, the loss landscape
is highly complex and can be highly nonlinear. To ensure the loss to decrease in this setting, it is
crucial to account for these higher-order terms, particularly the second-order effects represented by
the Hessian H.

To ensure that the GD algorithm drives the model towards a lower loss despite this complex loss
surface, the following inequality must be satisfied (Lee et al., 2023):∫ 1

0

∇θL(θ(τ)) · ∇θL(θt)dτ ≈
∫ 1

0

∥∇θL(θt)∥22 − ατ∇θL(θt)T∇2
θL(θt)∇θL(θt)dτ > 0, (4)

where we linearly interpolate θt and θt+1 updated by GD with learning rate α for a continuous time,
τ ∈ [0, 1], as θ(τ) ≈ θt − ατ∇θL(θt). Note that θ(0) = θt and θ(1) = θt+1. To meet Eq. (4),
H · g = ∇2

θL(θt)∇θL(θt) should be small which corresponds to Eq. (3)-A1 (Lee et al., 2023).

Additionally, the second assumption arises due to the stochasticity of SGD. Since SGD is essentially
an algorithm that estimates the true gradient g, the gradient estimate g̃ obtained through SGD on a
minibatch can be viewed in the form of g̃ = g + ϵ for some noise ϵ. At this point, the goal of SGD,
like gradient descent, is to move in the direction that reduces the loss surface. Therefore, even when
using g̃, it must function similarly to the actual gradient g, as described in Eq. (3)-A2.

Interpretation of Eq. (3) If the two assumptions hold, it implies that, independent of any label
Y , SGD itself causes the model to learn certain characteristics. As gradient descent progresses, the
model f naturally distinguishes the direction of gradient descent in a unique way. Through this pro-
cess, the model develops robustly against the noise that arises during training. The most notable
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Figure 2: Red: error rate (%), Blue: KL(softmax(ft+1), softmax(ft)). Note that the speed of function
∥df
dt∥ (KL divergence) decreases much faster than the loss (error), which means the adaptation of

NTK to the dataset. For better visualization, we plotted the KL values on a log scale and applied a
moving average for both KL and error rate.

feature of unstructured label Yu is that it makes the gradient updates extremely unstable during the
learning process. This instability is largely due to the randomness of unstructured labels in the mini-
batch sampling process of SGD. Specifically, when the model learns, SGD selects a random subset
of samples from the dataset for training (minibatch) at each step. However, with unstructured labels,
since there is no regularity in these sampled data, the correlation between successive gradients, g̃t
and g̃t+1, becomes very weak.

In other words, in contrast to structured labels, training with unstructured labels results in each
minibatch being completely random in structure, leading to a different label pattern every time. As a
result, the likelihood of the gradient being updated in a significantly different direction at each time
increases. If at one time the gradient g̃t pulled the model in a certain direction, the gradient at the
next time g̃t+1 could update in a completely unrelated direction. Through this process, SGD fails
to maintain consistency in the direction of the gradient over consecutive time steps, and as train-
ing progresses, the gradient updates consistently lose coherence in environments with unstructured
labels, leading to a very unstable training process.

3.3 SWING PHENOMENON

So, does the training process indeed become ‘noisy,’ as we suspect? To verify this, we plotted the
model’s predicted categories for training data by binning them. In Fig. 1, we confirmed that our
hypothesis was correct, and observed a phenomenon even more extreme than we had anticipated. At
each iteration t, the function ft made completely different predictions on the training dataset, with
the bin values consistently concentrated on a specific index different for each t. This phenomenon
occurred in both models trained with unstructured and structured labels during the very early stages
of training, but lasted much longer in the unstructured setting. We call this phenomenon the ‘swing
phenomenon’.

Understanding swing phenomenon through NTK We can explain this phenomenon through
neural tangent kernel (NTK), a functional analysis tool for deep learning.

Consider a loss function, L, made up of N sample-specific losses, ℓ:

L(θ) = 1

N

N∑
i=1

ℓ(f(x(i); θ), y(i)), (5)

where θ ∈ RP is the parameter vector and f ∈ RC outputs the logit vector for a C-class classifica-
tion problem.
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Using the gradient flow, dθ
dt = −∇θL(θ) = − 1

N

∑N
i=1 ∇θf(x

(i); θ)∇f ℓ(f, y
(i)), the temporal

change of the function for a specific input, x, can be described by the NTK as below:

df(x; θ)

dt
=

df(x; θ)

dθ

dθ

dt
= − 1

N

N∑
i=1

∇θf(x; θ)
⊤∇θf(x

(i); θ)︸ ︷︷ ︸
Neural tangent kernel Θ

∇f ℓ(f, y
(i)). (6)

The swing phenomenon suggests that the output logit distribution at the initial learning phase is
indeed concentrated around a certain label, which indicates that f(x(i)) ≃ f(x(j)), ∀i, j. Because
all the data points lie on the same level surface Lc = {x ∈ X : f(x; θt) = c} at a time, and suddenly
move to another level surface L′

c = {x ∈ X : f(x; θt+1) = c′}, we conjecture that the gradient
would also be similar for different data points, i.e. ∇θf(x

(i); θ) ≃ ∇θf(x
(j); θ) ∈ RP×C , ∀i, j,

which suggests the positive definiteness of NTK Θ(x, x(i)) ∈ RC×C :

Θ(x, x(i)) := ∇θf(x; θ)
⊤∇θf(x

(i), θ) ⪰ 0 ∀i. (7)

In the early stage, most training samples will likely produce predictions different from the ground
truth, resulting in large ℓ which would produce large ∇f ℓ (Sutskever et al., 2013). With a positive-
definite NTK, this implies that the function will change very rapidly at the early stage of training.

Fig. 1 confirms our explanation. At each iteration, from a binning perspective, the function moves
toward an extreme direction, and since the logits always concentrate in this process, ∥∇f ℓ(f, y

(i))∥
takes large values for most samples. As the NTK at this stage is positive definite with large eigen-
values, the function moves fast and cannot converge. However, we know that overparameterized
models can memorize all structures, (X ,Y). Convergence means that the sequence becomes in-
creasingly stable as it progresses. In other words, the sequence ft := f(x; θt) is a Cauchy sequence,
which implies that the rate of change ∥df

dt∥, i.e., the learning speed, must gradually decrease. Thus,
in Eq. (6), it can be inferred that the term Θ, related to the learning speed, undergoes a condition-
ing process during training. As the deep learning model learns, Θ naturally develops so that it has
smaller eigenvalues in magnitude. Based on this analysis, we can derive the following conjecture.

3.4 CONJECTURE: PAN FOR GOLD

Based on the observations above, we propose the following hypothesis: the generalization of deep
learning arises from the process of learning the function itself. This learning process is highly un-
stable and causes drastic change of the function. SGD naturally resolves these instabilities and as
the learning process stabilizes, what we call ‘gold features’ naturally emerge. In this context, gold
features refer to elements that satisfy Eq. (3). During the learning process, the model must be able to
distinguish between gradients and noise, and furthermore, it should not be significantly affected by
the curvature of the loss function’s surface as it traverses it. By retaining gold features while elimi-
nating the remaining characteristics within the function space, the model achieves generalization.

Unstructured Labels Leave Out More Gold According to our assumption, the generalization of
deep learning is ultimately a process of leaving only the ‘gold features,’ and if we simply perturb
the model, those ‘gold’ will be automatically obtained. The remaining question, then, is how can we
leave behind more of this gold? We can find the answer directly in Eq. (3). Generalization is the dis-
tinction between the stochastic gradient g̃ and the unintended noise ε from a functional perspective,
and the difficulty of this distinction increases drastically when unstructured labels are used. To dis-
tinguish g̃, we must understand it, which implies that g̃ must be consistent over time t. In the case of
unstructured labels, since there is no structure in the data, this consistency is much lower compared
to structured labels. Therefore, to enhance this consistency, as much ‘gold feature’ as possible must
be retained. With this approach, we can simply improve the generalization capability of the existing
models, as demonstrated in Sec. 4.

3.5 ANALYSIS

To support the above ‘pan for gold’ hypothesis, we have proposed that the function’s speed is very
fast at the early stages and that loss does not decrease as fast. We suggested that the reduction in loss
occurs as the instability is resolved, leading to a decrease in the function’s speed, and that this process
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itself produces good features. To verify this conjecture, we present the evidence by answering the
following questions: 1. Is our assumption about speed correct? 2. Does a good functional descent
actually occur? 3. And finally, do ‘good’ features really remain as a result?

Empirical evidence on NTK assumption To verify this assumption, we conducted the experi-
ment in the following manner. In Eq. (6), we argued that the speed or the spectral norm of NTK
decreases over time during the data adaptation process. One of the sufficient conditions for the as-
sumption to hold true is: 1. the speed of the function must decrease, and 2. ∇f ℓ(f(x), y) should not
decrease. To this end, we computed the loss value and the speed of ft over time by measuring the
Kullback–Leibler (KL) Divergence of ft and ft+1 by taking softmax outputs of them:

∥∥∥∥dfdt
∥∥∥∥ ≃ ∥ft+1 − ft∥ ∼ KL(softmax(ft+1), softmax(ft)). (8)

Fig. 2 shows that our assumption is true, as the speed of the function df
dt indeed decreases, while,

in contrast, the magnitude of the loss did not decrease. With this and utilizing the fact that
∇f ℓ(f(X ,Y)) ∝ |ℓ| (Sutskever et al., 2013), we confirm that our assumption in Eq. (7) is valid.
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Figure 3: Cosine similarity between the gradients
of the current (θt) and a nearby point (θt + δ), i.e.
cos(∇θL(θt),∇θL(θt+δ)). Blue: gradient direc-
tion (δ ∝ ∇θL(θt)), Black: random direction (δ =
random). Higher similarity means smaller Hessian
in that direction, i.e. smaller ∥H · δ∥.

The condition is met as learning continues
The next thing we need to look at is the gra-
dient direction itself. As shown in Eq. (3), the
direction of the gradient needs to be ‘special’,
i.e. it needs to be robust to noise (assumption 2)
and flat along its path (assumption 1). Fig. 3 il-
lustrates this indeed is true. We computed the
cosine similarity between the gradient at its
current position and that of a nearby position,
cos(∇θL(θt),∇θL(θt + δ)). The blue curve
was plotted with δ being the gradient direction
i.e. δ ∝ ∇θL(θt), while the black curve uses
a random direction as δ. In the random direc-
tion case, the loss landscape appears noisy re-
gardless of the iteration, while the higher cosine
similarity in the gradient direction case shows
that it behaves more like a linear model with a
smoother loss surface in the gradient direction.
This shows that even for an unstructured model, Eq. (3) holds, confirming that the model success-
fully distinguishes between the gradient and noise.

Learning Actually Occurs We hypothesize that learning occurs naturally when a ‘good’ func-
tional gradient descent takes place, distinguishing gradient from noise. This was quantitatively con-
firmed in Table. 1, while Figure. 4 provides a qualitative validation. We utilized the XAI method-
ology to see how the model actually identified images, and the results were quite interesting. We
wanted to observe how a model trained on unstructured labels would classify images over time by
Grad-CAM (Selvaraju et al., 2017). In the early stages when the model just starts to learn, the model
tends to focus on random spots for images. However, as learning progresses, it begins focusing on
key areas of the object, localizing important features.

4 EXPERIMENTS

Implementation detail Base on the“pan for gold” hypothesis, we propose “Panning through Un-
structured Label (PUL)” to enchance generalization across a wide range of tasks. Our algorithm
follows a simple plug-and-play approach, allowing it to be seamlessly applied to any type of dataset.
To demonstrate the efficacy of our method, we conducted two types of tasks: 1. unsupervised domain
adaptation and 2. object discovery. In both tasks, we assigned unstructured labels to the unlabeled
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Train Epoch

Figure 4: Visualization of GradCAM across epochs when training with only unstructured labels. We
denote the randomly assigned label as yu ∈ Yu. The first and third rows show GradCAM for the
assigned unstructured labels, while second and fourth rows display GradCAM for other labels.

Table 2: SFDA classification accuracy (%) on the Digit datasets. S, M, and U refer to SVHN, MNIST,
and USPS, respectively.

M → U S → M U → M Avg

Source Only (ERM) 77.22 73.85 89.10 80.06

Ours 91.35 78.02 91.53 86.97

training data. We added a projector composed of two linear layers after the pre-trained feature ex-
tractor and trained the model using cross-entropy loss. To prevent the learned representations from
significantly deviating from the source pre-trained representations, we introduced an additional reg-
ularization term. Specifically, we applied Kullback-Leibler (KL) divergence between the prediction
distributions of the pre-trained model and the model under training. Notably, we did not use any
ground truth labels from the pre-trained dataset. Instead, we utilized only the pre-trained weights
along with the unlabeled training dataset. All experiments were evaluated using the existing code-
base (Tim, 2020). In the unsupervised domain adatpation for object detection task, because there was
no pre-trained model available for the Cityscapes dataset (Cordts et al., 2016), we utilized both the
Cityscapes dataset and the unlabeled Cityscapes-Foggy dataset (Sakaridis et al., 2018) during train-
ing to straightforwardly verify the effectiveness of our PUL algorithm. Specifically, we followed
the standard object detection training process using the labeled Cityscapes dataset while adopting a
method of assigning unstructured labels to the unlabeled data for training.

4.1 UNSUPERVISED DOMAIN ADAPTATION

In a narrow sense, generalization refers to the performance gap between a train set and a test set
drawn from the same distribution. In this context, the Domain Adaptation task (Ganin et al., 2016;
Hoffman et al., 2018; Sun & Saenko, 2016) is an extension of that concept. If a model works well in
its target domain despite differences in data distributions across domains, we can say that it has the
ability to generalize in a broader sense.

Table 3: SFDA classification accuracy (%) on the Office Home datasets. Ar, Cl, Pr, and Re corre-
spond to the domains defined within the dataset: ‘Art’, ‘Clipart’, ‘Product’, and ‘Real-world’.

ar→cl ar→pr ar→re cl→ar cl→pr cl→re pr→ar pr→cl pr→re re→ar re→cl re→pr avg

Source Only(ERM) 44.05 65.88 73.93 52.31 61.23 64.2 51.54 39.62 72.49 64.39 45.47 77.29 59.37

Ours 45.70 65.26 72.78 55.50 63.00 65.89 53.59 42.34 72.62 65.69 48.95 77.58 60.74
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In this work, we show that we can effectively tackle one of the challenging tasks in domain adap-
tation, source-free domain adaptation (SFDA), by utilizing unstructured labels. SFDA (Liang et al.,
2020; Ding et al., 2022), a sub-category in unsupervised domain adaptation, aims to improve per-
formance on a target domain given a source pretrained model and an unlabeled target dataset.

Table 2 and 3 compare the performance of our PUL algorithm against the source-only baseline on
SFDA tasks for two well-known benchmarks: Digit (Hull, 1994; Lecun et al., 1998; Netzer et al.,
2011) and Office-Home (Venkateswara et al., 2017). For a fair comparision, we used LeNet5 (Lecun
et al., 1998) for USPS ↔ MNIST, a modified version of the LeNet5 for SVHN → MNIST and
ResNet50 (He et al., 2016) for Office-Home, following (Liang et al., 2020). In the experiments, we
assigned unstructured labels to three random classes and conducted training for only 2 epochs. When
applying KL Divergence, we used a temperature of 4. The result of unsupervised domain adaptation
for the object detection task is also provided in Table 4.

Table 4: The results of
unsupervised domain adap-
tation for object detection on
Cityscapes → Cityscapes-
Foggy.

Metric Ours Base

MAP 100:95 0.207 0.194
MAP 50 0.331 0.324

As shown in the results, simply leveraging unstructured labels dur-
ing training effectively addresses the domain gap. We can see that
training with unstructured labels naturally eliminates noisy features
that do not contribute to reduce the domain gap, retaining the ‘gold
features’ that enhance the generalization performance.

4.2 OBJECT DISCOVERY

Object discovery (Siméoni et al., 2023; Shin et al., 2022) refers to
the task of automatically identifying objects in images or visual data
that are not explicitly labeled. Recently, methods utilizing the attention maps of well-trained deep
learning models have become the primary approach for this task (Siméoni et al., 2021). In such
cases, the model must be able to accurately detect objects and reflect them into the attention map,
even under various environments and conditions. Therefore, the model’s generalization ability plays
a crucial role in the performance of object discovery.

Table 5: Accuracies (%) of object discovery us-
ing the LOST (Siméoni et al., 2021) with various
initial weights. We observed that utilizing unstruc-
tured labels during training significantly improves
performance in object discovery tasks.

VOC07 VOC12 COCO20K

Imagenet 33.83 39.06 25.50

DINO 36.84 42.67 26.47

Ours (PUL) 37.22 43.01 27.30

Table 5 presents the object discovery perfor-
mance on various trained models on ResNet50,
including ImageNet pretrained, DINO (Caron
et al., 2021a), and ImageNet pretrained weights
further trained using our method. As can be
seen from the results, even with just a three
epochs of training using unstructured labels,
performance can be easily improved.

To visually observe the role of using unstruc-
tured labels, we extracted degree maps used for
identifying the object, as shown in Fig. 5. As
can be seen in the figure, our algorithm removes
irrelevant features and helps the model focus more effectively on the object in the image. This sug-
gests that, as discussed in the earlier analysis, our algorithm perturbs the functional space naturally
eliminating noisy features while retaining only the gold features that enhance generalization.

4.3 VISION TRANSFORMERS NEED RANDOMNESS: UNSTRUCTURED LABELS MITIGATE
THE NEED FOR REGISTERS FOR QUANTIZATION

Fig. 5 illustrates another potential of our PUL algorithm in improving quantization. As mentioned in
Sec. 3.4, PUL induces the model to favor a specific function space by artificially ‘swinging’ within
function space and relaxing its tension. As a result, we observed that artifacts, such as outliers in the
attention map, were reduced. This aligns with physical intuition, where relaxation of tension leads
to the stabilization of the space, and high-energy regions, like artifacts, are naturally eliminated.

This characteristic not only enhances object discovery by improving attention maps but also helps
address quantization issues caused by massive activation in large models. Massive activation, which
occurs when certain neurons become excessively large, disrupts the quantization process by reduc-
ing precision, thereby degrading model performance. This issue is particularly problematic because
it significantly affects the quantization performance of large models. To address this, large lan-
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OursImagenetDino

Figure 5: Visualization of degree maps (Siméoni et al., 2021) for various initialization weights.
Notably, our algorithm guides the model to focus more on the objects within the image.

guage models (LLMs) adopt massive-activation-aware quantization algorithms (Xiao et al., 2024;
Yao et al., 2022a;b). In vision models, the problem is mitigated by adding a “register” token, which
increases sequence length and helps reduce these artifacts (Darcet et al., 2023). Fig. 6 demonstrates
that the PUL algorithm offers a simpler solution. By applying the PUL algorithm, the instability
caused by massive activation is alleviated, resulting in a more balanced distribution of activations.

4.4 EDGE-LIKE BEHAVIOR OF SALIENCY MAPS ACTUALLY MEANS GOOD

Dinov2 VIT-base trained with unstructured label
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Figure 6: Layer-wise magnitude of two
different models. We plotted top 4 ac-
tivation outliers per layer (x-axis). With
PUL, the massive activation diminishes.

One of the main criticisms of eXplainable Artificial In-
telligence (XAI) methodologies is that saliency maps
of existing methods like GradCAM (Selvaraju et al.,
2017) and GradCAM++ (Chattopadhay et al., 2018) are
fundamentally edge-concentrating algorithm (Adebayo
et al., 2018). In other words, these saliency methods of-
ten end up highlighting areas with concentrated edges,
such as image contours, which doesn’t differ significantly
from simply focusing on edges, rather than providing a
deeper understanding of the AI model’s decision-making
process. This raises questions about the reliability of
XAI methodologies. However, our research shows that
these edge concentrated explanations actually reflect the
model’s learning process and judgment capabilities.

As shown in Fig. 4, this tendency actually reflects the
model’s learning process and its judgment capabilities.
Fig. 4 shows that there exists no edge concentration bias
at the start. However, the bias gradually emerges over
time as learning progresses. Furthermore, this tendency
appears only for the target label and not for other la-
bels. Based on this, we can conclude that the edge-bias
phenomenon is not a weakness, but instead a natural gen-
eralization process that deep learning models acquire as
they continue to learn.

5 CONCLUSION

In this paper, we present a provocative claim that the process of “learning from data” occurs inde-
pendently of human-imposed structures. To support this, we introduce the bold alternative hypoth-
esis called the “Pan for Gold”. Through extensive experiments, we quantitatively and qualitatively
demonstrate the validity of our hypothesis. Based on these findings, we introduce our algorithm,
Panning through Unstructured Label (PUL), showing that it can improve performance across vari-
ous fields with a simple approach, while also providing a fresh reinterpretation of existing beliefs.
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