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Abstract

Diffusion probabilistic models have achieved success in many generative modeling
tasks, from image generation to inverse problem solving. A distinct feature of these
models is that they correspond to deep hierarchical latent variable models optimiz-
ing a variational evidence lower bound (ELBO) on the data likelihood. Drawing on
a basic connection between likelihood modeling and compression, we explore the
potential of diffusion models for progressive coding, resulting in a sequence of bits
that can be incrementally transmitted and decoded with progressively improving
reconstruction quality. Unlike prior work based on Gaussian diffusion or condi-
tional diffusion models, we propose a new form of diffusion model with uniform
noise in the forward process, whose negative ELBO corresponds to the end-to-end
compression cost using universal quantization. We obtain promising first results on
image compression, achieving competitive rate-distortion and rate-realism results
on a wide range of bit-rates with a single model.

1 Introduction

Popularized by their impressive sample quality, diffusion models (Sohl-Dickstein et al., 2015) have
quickly dominated the task of likelihood estimation (Kingma et al., 2021; Nichol & Dhariwal, 2021).
Given the close connection between density estimation and data compression (MacKay, 2003; Yang
et al., 2022), diffusion models have been shown to naturally lead to progressive compression codecs
(Ho et al., 2020; Theis et al., 2022). Such as a progressive codec has the advantage of enabling
dynamic rate-distortion (and computation) tradeoff while achieving high realism, all with a single
model. Unfortunately, such a method requires the communication of Gaussian samples across many
steps, and has to date not been implemented in a practical compression algorithm. In this work,
we take first steps towards making such a diffusion-based progressive codec tractable. The key
idea is to replace the Gaussian distributions in the forward diffusion process with suitable uniform
distributions, and correspondingly adjust the reverse process distributions. These modifications allow
the application of universal quantization (UQ) for simulating the uniform noise channel, avoiding the
intractability of Gaussian channel simulation in the method of Theis et al. (2022).

2 Background and Related Work

Diffusion models Diffusion probabilistic models learn to model data by inverting a Gaussian
noising process. Following the setup of VDM (Kingma et al., 2021), the forward noising process
begins with a data observation x, and defines a sequence of increasingly noisy latent variables zt
with a conditional Gaussian distribution,

q(zt|x) = N (αtx, σ
2
t I), t = 0, 1, ..., T.
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Figure 1: Example reconstructions from several traditional and neural codecs, picked to have roughly
similar bitrates. At high bitrates, UQDM preserves details (e.g. shape and color pattern of the spider)
better than other neural codecs. Reconstructions at low bitrates highlight the artifacts introduced by
each codec. Note that only CTC and UQDM allow for progressive coding.

Here αt and σ2
t are positive scalar-valued functions of time, with a strictly monotonically increasing

signal-to-noise-ratio SNR(t) := α2
t /σ

2
t . The variance-preserving process of (Ho et al., 2020)

corresponds to the choice α2
t = 1− σ2

t . The reverse-time generative model is defined by a collection
of conditional distributions p(zt−1|zt), a prior p(zT ) = N (0, I), and likelihood model p(x|z0).
The conditional distributions p(zt−1|zt) := q(zt−1|zt,x = x̂θ(zt, t)) are chosen to have the same
distributional form as the “forward posterior” distribution q(zt−1|zt,x), with x estimated from its
noisy version zt through the learned denoising model x̂θ. Further details on the forward and backward
processes can be found in Appendix A and B. The model is trained by minimizing the negative ELBO

L(x) = KL(q(zT |x) ∥ p(zT ))︸ ︷︷ ︸
:=LT

+E [− log p(x|z0)]︸ ︷︷ ︸
:=Lx|z0

+

T∑
t=1

E [KL(q(zt−1|zt,x) ∥ p(zt−1|zt))]︸ ︷︷ ︸
:=Lt−1

, (1)

where the expectations are taken with respect to the forward process q(z0:T |x). Kingma et al. (2021)
showed that a larger T corresponds to a tighter bound on the marginal likelihood log p(x), and as
T → ∞ the loss approaches the loss of a class of continuous-time diffusion models that includes the
ones considered by Song et al. (2020).

Relative Entropy Coding (REC) Relative Entropy Coding (REC) deals with the problem of
efficiently communicating a single sample from a target distribution q using a coding distribution p.
Given a shared random number generator and “prior” distribution p between two parties, a Relative
Entropy Coding (REC) method (Flamich et al., 2020; Theis & Ahmed, 2022) allows the sender
to transmit a sample z ∼ q using close to KL(q ∥ p) nats, up to a logarithmic overhead. A major
challenge of REC algorithms is that their computational complexity generally scales exponentially
with the amount of information being communicated (Agustsson & Theis, 2020; Goc & Flamich,
2024). This difficulty can be partly remedied by performing REC on sub-problems with lower
dimensions (Flamich et al., 2020, 2022), for which computationally efficient REC algorithms exist
(Flamich et al., 2024; Flamich, 2024), but comes at the expense of worse bitrate efficiency.

Progressive Coding with Diffusion Given a REC algorithm, we can use a trained diffusion model
to perform progressive compression (Ho et al., 2020; Theis et al., 2022) as follows: Initially, at time
T , the sender transmits a sample of q(zT |x) under the prior p(zT ), using LT nats on average. At
each subsequent time step t, the sender transmits a sample of q(zt−1|zt,x) given the previously
transmitted zt, under the (conditional) prior p(zt−1|zt), using approximately Lt−1 nats. Finally,
at t = 0, x can be losslessly transmitted given z0 under the entropy model p(x|z0) using roughly
Lx|z0

nats. Thus the overall cost of losslessly compressing x sums up to L(x) nats, as in eq. (1).
Crucially, at any time t, the receiver can make use of the most-recently received zt to already
estimate a data reconstruction x̂t. For this, several options are possible: Ho et al. (2020) consider
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using the diffusion model’s denoising prediction x̂θ(zt), while Theis et al. (2022) consider sampling
x̂t ∼ p(x|zt), either by ancestral sampling or a probability flow ODE (Song et al., 2020). Note that
if the reverse generative model captures the data distribution perfectly, then x̂t ∼ p(x|zt) follows the
same marginal distribution as the data and has the desirable property of perfect realism, i.e., being
indistinguishable from real data (Theis et al., 2022). We note that several diffusion-based neural
compression methods exist, but they use conditional diffusion models (Yang & Mandt, 2023; Careil
et al., 2023; Hoogeboom et al., 2023) which are less flexible and do not permit progressive decoding.
Other existing progressive neural compression methods are based on hierarchical VAEs (Lu et al.,
2021; Lee et al., 2022; Jeon et al., 2023; Lee et al., 2024), and do not directly target realism.

Universal Quantization We focus on the special case of REC, where the target distribution q is
defined by a uniform noise channel, which is solved efficiently by Universal Quantization (UQ)
(Roberts, 1962; Zamir & Feder, 1992). Specifically, suppose we (the sender) have access to a scalar
r.v. Y ∼ pY , and would like to communicate a noise-perturbed version of it,

Ỹ = Y + U,

where U ∼ U(−∆/2,∆/2) is an independent r.v. with a uniform distribution on the interval [−∆/2,∆/2].
UQ accomplishes this as follows: Step 1. Perturb Y by adding another independent noise U ′ ∼
U(−∆/2,∆/2), and quantize the result to the closet quantization point K on a uniform grid of
width ∆, i.e., computing K := ∆⌊Y+U ′

∆ ⌉ where ⌊·⌉ denotes rounding to the nearest integer. Step
2. Entropy code and transmit K under the conditional distribution of K given U ′. Step 3. The
receiver draws the same U ′ by using the same random number generator and obtains a reconstruction
Ŷ := K − U ′ = ∆⌊Y+U ′

∆ ⌉ − U ′. Zamir & Feder (1992) showed that Ŷ indeed has the same
distribution as Ỹ , and the entropy coding cost of K is related to the differential entropy of Ỹ via

H[K|U ′] = I(Y ; Ỹ ) = h(Ỹ )− log(∆).

In the above, the optimal entropy coding distribution P(K|U ′ = u′) is obtained by discretizing
pỸ = pY ∗ U(−∆/2,∆/2) on a grid of width ∆ and offset by U ′ = u′ (Zamir & Feder, 1992). If the
true pỸ is unknown, we can replace it with a surrogate density model fθ(y) during entropy coding,
and incur a higher coding cost,

Ey∼PY
[KL(u(·|y) ∥ fθ(·))] ≥ I(Y ; Ỹ ), (2)

where u(·|y) denotes the density function of the uniform noise channel qỸ |Y=y = U(y−∆/2, y+∆/2).
It can be shown that the optimal choice of fθ is the convolution of pY with U(−∆/2,∆/2). Therefore,
as in prior work (Agustsson & Theis, 2020; Ballé et al., 2018), we will choose fθ to have the form of
another underlying density model gθ convolved with uniform noise, i.e.

fθ(·) = gθ(·) ∗ U(· ;−∆/2,∆/2). (3)

3 Universally Quantized Diffusion Models

We follow the same conceptual framework of progressive compression with diffusion models as in
(Ho et al., 2020; Theis et al., 2022), but propose to avoid the communication of Gaussian samples by
using UQ instead. We therefore introduce a new model with a modified forward process and reverse
process, which we term universally quantized diffusion model (UQDM).

3.1 Forward process

The forward process of a standard diffusion model is often given by the transition kernel q(zt+1|zt)
(Ho et al., 2020), which in turn determines the conditional (reverse-time) distributions q(zT |x) and
{q(zt−1|zt,x)|t = 1, ..., T} appearing in the NELBO eq. (1). As we are interested in operationalizing
and optimizing the coding cost associated with eq. (1), we will directly specify these conditional
distributions to be compatible with UQ, rather than deriving them from a transition kernel. We
thus specify the forward process with the same factorization as in DDIM (Song et al., 2021) via
q(z0:T |x) = q(zT |x)

∏T
t=1 q(zt−1|zt,x). Specifically, we consider{

q(zT |x) := N (αTx, σ
2
T I),

q(zt−1|zt,x) := U
(
b(t)zt + c(t)x− ∆(t)

2 , b(t)zt + c(t)x+ ∆(t)
2

)
, t = 1, 2, ..., T,

(4)
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where b(t), c(t), and ∆(t) are scalar-valued functions of time. Note that unlike in Gaussian diffusion,
q(zt−1|zt,x) is chosen to be a uniform distribution so that it can be efficiently simulated with
UQ. There is freedom in other choices of the forward process, but for simplicity we base them
closely on the Gaussian case: we choose the same Gaussian q(zT |x), and set b(t), c(t), ∆(t) so that
q(zt−1|zt,x) has the same mean and variance as in the Gaussian case (see Sec. A for more details).

We note here that q(zt|zT ,x) can be written as a sum of uniform distributions, which as we increase
T → ∞, converges in distribution to a Gaussian by the Central Limit Theorem. Under the assump-
tions αT = 0 and σT = 1, the forward process q(zt|x) therefore also converges to a Gaussian,
showing that our forward process has the same underlying continuous-time limit as in VDM (Kingma
et al., 2021). See Appendix A.3 for details and proof. As in VDM (Kingma et al., 2021), the forward
process schedules (i.e., αt and σt, as well as b(t), c(t),∆(t)) can be learned end-to-end, e.g., by
parameterizing σ2

t = sigmoid(ϕ(t)), where ϕ is a monotonic neural network. We did not find this to
yield significant improvements compared to using a linear noise schedule as in (Kingma et al., 2021).

3.2 Backward process

Analogously to the Gaussian case, we want to define a conditional distribution p(zt−1|zt) that
leverages a denoising model x̂t = x̂θ(zt, t) and closely matches the forward “posterior” q(zt−1|zt,x).
In our case, the forward “posterior” corresponds to a uniform noise channel with width ∆(t), i.e.,
zt−1 = b(t)zt + c(t)x+∆(t)ut,ut ∼ U(−1/2, 1/2); to simulate it with UQ, we choose a density
model for zt−1 with the same form as the convolution in eq. (3). Specifically, we let

p(zt−1|zt) = gθ(zt−1; zt, t) ⋆ U(−∆(t)/2,∆(t)/2), (5)

where gθ(zt−1; zt, t) is a learned density chosen to match q(zt−1|zt,x). Recall in Gaussian diffusion
(Kingma et al., 2021), p(zt−1|zt) is chosen to be a Gaussian of the form q(zt−1|zt,x = x̂θ(zt; t)),
i.e., the same as q(zt−1|zt,x) but with the original data x replaced by a denoised prediction x =
x̂θ(zt; t). For simplicity, we base gθ closely on the choice of p(zt−1|zt) in Gaussian diffusion, e.g.,

gθ(zt−1; zt, t) = N (b(t)zt + c(t)x̂θ(zt; t), σ
2
Q(t)I), (6)

where σ2
Q(t) is the variance of the Gaussian forward “posterior”, and we use the same noise-prediction

network for x̂θ as in (Kingma et al., 2021). We found that a logistic distribution with the same mean
and variance to be numerically more stable than the Gaussian, and adopt it in our experiments.
Inspired by (Nichol & Dhariwal, 2021), we found that learning a per-coordinate variance in the
reverse process to significantly improve the log-likelihood, which we demonstrate in Sec. 4. In
practice, this is implemented by doubling the output dimension of the score network to also compute
a tensor of scaling factors sθ(zt), so that the variance of gθ is σ2

θ = σ2
Q(t)⊙ sθ(zt). We adopt the

same form of categorical likelihood model p(x|z0) as in VDM (Kingma et al., 2021), as well as the
use of Fourier features.

4 Experiments

We train UQDM end-to-end and perform compression experiments on toy swirl data, CIFAR10, and
ImageNet64× 64. When comparing UQDM with VDM (Kingma et al., 2021), we always use the
same U-net architecture for both, except UQDM uses twice as many output dimensions for both the
denoising prediction and learned reverse-process variance (see Sec. 3). We refer to Appendix Sec. C
for further experiment and implementation details.

4.1 Swirl Toy Data

We obtain initial insights into the behavior of our proposed UQDM by experimenting on toy swirl
data and comparing with VDM (Kingma et al., 2021).

First, we train UQDM with various T , and ablate on learning the reverse process variance. For
comparison, we also train a single VDM with T = 1000, but compute the progressive-coding
NELBO eq. (1) for various values of T . Fig. 2 plots the resulting NELBO, corresponding to the
bits-per-dimension of lossless compression. We observe that for UQDM, learning the reverse-process
variance significantly improved the NELBO across all T , and a higher T is not necessarily better.
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Figure 2: Results on swirl data. Left: Lossless compression rates v.s. the choice of T , for UQDM
with/without learned reverse-process variance (blue/orange) and VDM (green). For UQDM, learning
the reverse-process variance significantly improved the NELBO, and an optimal T ≈ 5. Middle,
Right: Progressive lossy compression performance for VDM (hypothetical) and UQDM, measured
in fidelity (PSNR) v.s. bit-rate (middle), or realism (sliced Wasserstein distance) v.s. bit-rate (right).

Figure 3: Progressive lossy compression performance of UQDM on the CIFAR10 dataset, comparing
reconstruction quality (PSNR) and realism (FID) with bit-rate per pixel (bpp).

In fact, we find the optimal T ≈ 5, yielding a bpd of around 8. The performance of VDM, by
comparison, monotonically improves with T (green), until it converges to a bpd of 5.8 at T = 1000.

We then examine the lossy compression performance of progressive coding. Here we train UQDM end-
to-end with learned reverse-process variances, and perform progressive reconstruction by ancestral
sampling. Fig. 2 plots the results in fidelity v.s. bit-rate and realism v.s. bit-rate. For reference,
we also show the theoretical performance of VDM using T = 100 discretization steps, assuming a
hypothetical REC algorithm that operates with no overhead. The results are consistent with those on
lossless compression, with a similar performance ranking for T among UQDM, and a gap remains to
the hypothetical performance of VDM.

4.2 CIFAR10

Next, we apply our method to CIFAR10 images. For our UQDM model we empirically note that
T = 4 yields the best trade-off between bit-rates and reconstruction quality. We train end-to-end on
the progressive coding NELBO eq. (1) with learned reverse-process variances. We compare against
the wavelet-based codecs JPEG, JPEG2000, and BPG (Bellard, 2018). For JPEG and BPG we use a
fixed set of quality levels and encode the images independently, for JPEG2000 we use its progressive
compression mode to obtain a rate-distortion curve from one bitstream. As shown in Figure 3, we
consistently outperform both JPEG and JPEG2000 over all bitrates and metrics. Even though BPG,
achieves better reconstruction fidelity (as measured in PSNR) in the low bit-rate regime, our method
closely matches BPG in realism (as measured in FID) and even beats BPG in PSNR at higher bit-rates.
The theoretical performance of compression with Gaussian diffusion (e.g., VDM) (Theis et al., 2022),
especially with a high number of steps such as T = 1000, is computationally infeasible, both due to
the the large number of neural function evaluations required, and due the intractable runtime of REC
algorithms in the Gaussian case. Still, for reference we report theoretical results both for T = 1000
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Figure 4: Progressive lossy compression performance of UQDM on the Imagenet dataset, comparing
reconstruction quality (PSNR) and realism (FID) with bit-rate per pixel (bpp). While the reconstruc-
tion quality of other codecs plateaus at higher bitrates, our method continues to gradually improve
quality and realism even at higher bitrates.

and T = 20, where the latter uses a smaller and more practical number of diffusion/progressive
reconstruction steps.

4.3 ImageNet 64 × 64

Finally, we present result on the ImageNet 64 × 64 dataset. We train a baseline VDM model with the
same architecture as in (Kingma et al., 2021), reproducing their reported BPD of around 3.4, and a
UQDM of the same architecture with learned reverse-process variances and T = 4. In addition to the
baselines described in the previous section we also compare with CTC (Jeon et al., 2023), a recent
progressive neural codec, and CDC (Yang & Mandt, 2023), a non-progressive neural codec based on
a conditional diffusion model that can trade-off between distortion and realism via a hyperparameter
p. We separately report results for both p = 0, which only optimizes PSNR, and p = 0.9, which
prioritizes more realistic reconstructions. For CTC we use pre-trained model checkpoints from the
official implementation (Jeon et al., 2023); for CDC we fix the architecture but train a new model
for each bit-rate v.s. reconstruction quality/realism trade-off. The results are shown in Figure 4.
When obtaining progressive reconstructions from denoised predictions, UQDM again outperforms
both JPEG and JPEG2000. Our results are comparable to, if not slightly better than, CTC and even
though the reconstruction quality of other codecs plateaus at higher bitrates, our method continues to
gradually improve quality and realism even at higher bitrates. Refer to Fig.1 and 5 for qualitative
results demonstrating progressive coding and comparison across codecs.

5 Discussion

In this paper, we presented a new progressive coding scheme based on a novel adaptation of the
standard diffusion model. Our universally quantized diffusion model (UQDM) implements the idea of
progressive compression with an unconditional diffusion model (Theis et al., 2022), but bypasses the
intractability of Gaussian channel simulation by using universal quantization (Zamir & Feder, 1992)
instead. We present promising first results that match or outperform classic and neural compression
baselines, including a recent progressive neural image compression method (Jeon et al., 2023). Given
the practical advantages of a progressive neural codec – allowing for dynamic trade-offs between
rate, distortion and computation, support for both lossy and lossless compression, and potential for
high realism, all in a single model – our approach brings neural compression a step closer towards
real-world deployment.

Future work may close the performance gap between our method and that of Gaussian diffusion
(Theis et al., 2022), by e.g., considering improved reconstruction schemes (e.g., based on an ODE
as in DiffC-F (Theis et al., 2022)), alternative forward/reverse process specification than ours, or
investigate further efficiency improvements based on ideas such as latent diffusion (Rombach et al.,
2022), distillation (Sauer et al., 2024), or consistency models (Song et al., 2023).
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Appendix

A Forward process details

A.1 Gaussian (DDPM/VDM)

For completeness and reference, we restate the forward process and related conditionals given in
(Kingma et al., 2021). The forward process is defined by

q(zt|x) := N (αtx, σ
2
t I),

where αt and σ2
t are positive scalar-valued functions of t. As in (Kingma et al., 2021), we define the

following notation shorthand which are used in the rest of the appendix: for any s < t, let

αt|s :=
αt

αs
, σ2

t|s := σ2
t −

α2
t

α2
s

σ2
s , bt|s :=

αt

αs

σ2
s

σ2
t

, ct|s := σ2
t|s

αs

σ2
t

, βt|s := σt|s
σs

σt
.

By properties of the Gaussian distribution, it can be shown that for any 0 ≤ s < t ≤ T ,
q(zt|zs) = N (αt|sx, σ

2
t|sI),

q(zs|zt,x) = N (bt|szt + ct|sx, β
2
t|sI),

In particular,
q(zt−1|zt,x) = N (bt|t−1zt + ct|t−1x, β

2
t|t−1I),

q(zt|zT ,x) = N (bT |tzt + cT |tx, β
2
T |tI),

and we can use the reparameterization trick to write
zt−1 = bt|t−1 zt + ct|t−1 x+ βt|t−1 ϵt, ϵt ∼ N (0, I), (7)

zt = bT |t zT + cT |t x+ βT |t ϵT , ϵT ∼ N (0, I) (8)

A.2 Uniform (Ours)

Our forward process is specified by q(zT |x) and q(zt−1|zt,x) for each t, and closely follows that of
the Gaussian diffusion. We set q(zT |x) to be the same as in the Gaussian case, i.e.,

q(zT |x) := N (αTx, σ
2
T I),

and q(zt−1|zt,x) to be a uniform with the same mean and variance as in the Gaussian case, s.t.

q(zt−1|zt,x) := U(bt|t−1zt + ct|t−1x−
√
3βt|t−1, bt|t−1zt + ct|t−1x+

√
3βt|t−1),

or in other words,
zt−1 = bt|t−1zt + ct|t−1x+

√
12βt|t−1ut, ut ∼ U(−1/2, 1/2).

In the notation of eq. (4) this corresponds to letting b(t) = bt|t−1, c(t) = ct|t−1, ∆(t) =
√
12βt|t−1.

It follows by algebraic manipulation that

zt = bT |t zT + cT |t x+

T∑
v=t+1

√
12δv|tuv︸ ︷︷ ︸

:=ωt

,

where
uv ∼ U(−1/2, 1/2), v = t+ 1, ..., T

are independent uniform noise variables, and

δv|t = βv|v−1

v−1∏
j=t+1

bj|j−1 =
σ2
t

αt

√
SNR(v − 1)− SNR(v).

We can show that

Var (ωt) =

T∑
v=t+1

δ2v|t =
σ4
t

α2
t

[SNR(t)− SNR(T )] = β2
T |t,

or in other words, our forward-process “posterior” distribution q(zt|zT ,x) at any step t has the same
mean and variance as in the Gaussian case.
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A.3 Convergence to the Gaussian case

We show that both parameterizations are equivalent in the continuous-time limit. To allow comparison
across different number of steps T , we suppose that αt and σt are obtained from continuous-time
schedules α(·) : [0, 1] → R+ and σ(·) : [0, 1] → R+ (which were fixed ahead of time), such that
αt := α(t/T ) and σt := σ(t/T ) for t = 0, . . . , T , for any choice of T . We further assume that the
continuous-time signal-to-noise ratio snr(·) = α(·)2/σ(·)2 is strictly monotonically decreasing.
Theorem A.1.
For every t, q(zt|zT ,x)

d−→ N (bT |t zT + cT |t x, β
2
T |t I) as T → ∞.

Proof.
As snr(t) by assumption is both continuous, strictly monotone, and defined on a compact domain, it
has finite range and is thus uniformly continuous. For σ2

ni := 12σ4
0/α

2
0(snr((i− 1)/n)− snr(i/n))

the latter implies maxi∈{1,...,n} σ
2
ni → 0 as n → ∞. Let Xni := σni uni,uni ∼ U(−1/2, 1/2) iid,

then Xni is a triangular array with independent rows, E [Xni] = 0, and Var (Xni) = σ2
ni < ∞.

Thus, we can apply the Lindeberg-Feller CLT which yields that Zn :=
∑n

i=1 Xni
d−→ N (0, s) if

1

s

n∑
i=1

E
[
X2

ni1{|Xni| ≥ ϵ}
] n→∞−−−−→ 0

holds for all ϵ > 0. In this case, s = Var (Zn) = σ4
0/α

2
0(snr(0) − snr(1)) = β2

T |0. The condition
holds trivially as by construction P (|Xni| ≥

√
3σni) = 0 and for every ϵ > 0 there exists Nϵ with

ϵ >
√
3σni for all i and n > Nϵ as maxi∈{1,...n} σ

2
ni → 0. The statement follows for t = 0 as

Zn ∼ ωt|T=n, and analogously for arbitrary t by considering σ2
ni := 12σ4

t /α
2
t (snr(t+ (i− 1)(1−

t)/n)− snr(t+ i(1− t)/n)).

Corollary A.1.1.
If we assume σT = 1 and αT = 0, then for every t, q(zt|x)

d−→ N (αtx, σ
2
t I) as T → ∞, that is,

our forward model approaches the Gaussian forward process of VDM with an increasing number of
diffusion steps.

Proof. As q(zT |x) = N (αTx, σ
2
T I) = N (0, I) does not depend on T , the joint distri-

bution q(zt, zT |x) = q(zt|zT ,x)q(zT |x) converges in distribution, which in turn implies
convergence of q(zt|x). The statement follows from N (zt;αtx, σ

2
t I) =

∫
N (zt; bT |t zT +

cT |t x, β
2
T |t I)N (zT ;αTx, σ

2
T I)dzT .

B Backward process details

B.1 Gaussian (DDPM/VDM)

Kingma et al. (2021) set p(zt−1|zt) := q(zt−1|zt,x = x̂t) = N (bt|t−1 zt + ct|t−1 x̂t, βt|t−1I)
which yields

Lt = KL(N (bt|t−1 zt + ct|t−1 x, βt|t−1I) ∥N (bt|t−1 zt + ct|t−1 x̂t, βt|t−1I))

=
1

2

c2t|t−1

β2
t|t−1

∥x− x̂0∥22 =
1

2
(SNR(t− 1)− SNR(t)) ∥x− x̂0∥22 .

We have that Lt → 0 as T → ∞, due to the continuity of SNR(· /T ) = snr(·) = α(·)2/σ(·)2.

B.2 Uniform (Ours)

Recall that we choose each coordinate of the reverse-process model p(zt−1|zt) to have the density

p(zt−1|zt)i := gt(z) ⋆ U(z;−∆/2,∆/2)

=
1

∆t

∫ z+∆t/2

z−∆t/2

gt(z) dz =
1

∆t
(Gt(z + ∆t/2)−Gt(z − ∆t/2)).
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Using the shorthand µt = bt|t−1z+ct|t−1x (here, z := (zt)i and x := (x)i extract the ith coordinate),
we can derive the rate associated with the ith coordinate

Lt = KL(U(z;µt − ∆t/2, µt + ∆t/2) ∥ gt(z) ⋆ U(z;−∆t,∆t))

=
1

∆t

∫ µt+∆t/2

µt−∆t/2

log
1
∆1[µt−∆t/2,µt+∆t/2](z)

1
∆ (Gt(z + ∆t/2)−Gt(z − ∆t/2))

dz

=
1

∆

∫ ∆t/2

−∆t/2

− log(Gt(z + µt + ∆t/2)−Gt(z + µt − ∆t/2)︸ ︷︷ ︸
:= h(z)

dz

C Additional experimental results

C.1 Training

We train UQDM end-to-end by directly optimizing the NELBO loss eq. (1), summing up Lt across
all time steps. This can lead to high memory cost for a large T , but can be avoided by using a
Monte-Carlo estimate based on a single Lt as in the diffusion literature. Our current experiments
found a small T to give the best compression performance, and therefore leave the investigation of a
single time-step Monte-Carlo objective to future work. Note that this would require sampling from
the marginal distribution q(zt|x), which becomes approximately Gaussian for large t (see Sec. 3.1).

C.2 Progressive coding with UQDM

Given a UQDM trained on the NELBO eq. (1), we can use it for progressive compression similarly
to (Ho et al., 2020; Theis et al., 2022) (see Sec. 2).

The initial step t = T involves transmitting a Gaussian zT . Since we do not assume access to an
efficient REC scheme for the Gaussian channel, we will instead draw the same zT ∼ p(zT ) =
N (0, I) on both the encoder and decoder side, with the help of a shared pseudo-random seed.2
To avoid a train/compression mismatch, we therefore always ensure q(zT |x) ≈ p(zT ) and hence
LT ≈ 0. At any subsequent step t, instead of sampling zt−1 = b(t)zt + c(t)x + ∆(t)ut as in
training, we apply UQ to compress the prior mean vector µQ := b(t)zt + c(t)x. Specifically the
sender draws u′ ∼ U(−1/2, 1/2), computes kt = ⌊ µQ

∆(t) + u′⌉, entropy codes/transmits kt under
the discretized p(zt−1|zt); the receiver recovers kt, draws the same u′ ∼ U(−1/2, 1/2), and sets
zt−1 = ∆(t)(kt − u′). Finally, having transmitted z0, x is losslessly compressed using the entropy
model p(x|z0).
We implemented the progressive codec using tensorflow-compression (Ballé et al.), and found
the actual file size to be close to the theoretical NELBO. With our naive entropy coding implementa-
tion, it takes about 5 minutes to compress or decompress a 32 x 32 CIFAR image, with a file size
overhead of ≤ 3% of the theoretical NELBO. The bulk of the computation time is spent on a single
CPU core, where a CDF table is built for each latent dimension for entropy coding (since we use
a learned per-coordinate variance in the reverse model). This is implemented in a for-loop in the
tensorflow-compression library and is embarrassingly parallelizable. Thus we expect the coding
speed to be dramatically faster with a parallel implementation.

C.3 Swirl data

We use the same denoisng network x̂θ as in the official implementation, which consists of 2 hidden
layers with 512 units each.

2This corresponds to a trivial REC problem where a sample from q = p can be transmitted using KL(q∥p) =
0 bits.

11



Figure 5: Example progressive reconstructions from UQDM trained with T = 4, obtained with
denoised prediction (left) or ancestral sampling (right). The latter avoids blurriness but introduces
graininess at low bit-rates, likely because the UQDM is unable to completely capture the data
distribution and achieve perfect realism.

C.4 CIFAR10

We use a scaled-down version of the denoising network from the VDM paper (Kingma et al., 2021)
for faster experimentation. We use a U-Net of depth 8, consisting of 8 ResNet blocks in the forward
direction and 8 ResNet blocks in the reverse direction, with a single attention layer and two additional
ResNet blocks in the middle. We keep the number of channels constant throughout at 128.

C.5 ImageNet 64× 64

We use the same denoising network from the VDM paper (Kingma et al., 2021) – a U-Net of depth
32.
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