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ABSTRACT

Learning with guidance has proven effective across a wide range of machine learn-
ing systems. Guidance may, for example, come from annotated datasets in super-
vised learning, pseudo-labels in semi-supervised learning, and expert demonstra-
tion policies in reinforcement learning. However, guidance signals can be noisy
due to domain shifts and limited data availability and may not generalize well.
Blindly trusting such signals when they are noisy, incomplete, or misaligned with
the target domain can lead to degraded performance. To address these challenges,
we propose Adaptive Conformal Guidance (AdaConG), a simple yet effective
approach that dynamically modulates the influence of guidance signals based on
their associated uncertainty, quantified via split conformal prediction (CP). By
adaptively adjusting to guidance uncertainty, AdaConG enables models to reduce
reliance on potentially misleading signals and enhance learning performance. We
validate AdaConG across diverse tasks, including knowledge distillation, semi-
supervised image classification, gridworld navigation, and autonomous driving.
Experimental results demonstrate that AdaConG improves performance and ro-
bustness under imperfect guidance, e.g., in gridworld navigation, it accelerates
convergence and achieves over 6 x higher rewards than the best-performing base-
line. These results highlight AdaConG as a broadly applicable solution for learn-
ing under uncertainty.

1 INTRODUCTION

Machine learning systems often rely on some form of guidance during training to enhance perfor-
mance (Hinton) 2015} Romero et al., |2014; [Zagoruyko and Komodakis| 2016}, [Passalis and Tefas,
2018), bootstrap learning in data-scarce scenarios (Sohn et al., [2020; Zhang et al., 2021), and im-
prove sample efficiency (Hu et al., |2023; |Bhaskar et al., 2024). While such guidance has proven
valuable, a critical challenge arises when this guidance is noisy. In supervised learning, richly an-
notated datasets provide guidance to enhance model performance, and leveraging pretrained models
(Hinton, |2015; Romero et al.,|2014;|Zagoruyko and Komodakis, 2016; |Passalis and Tefas|2018; |Kim
et al., 2018} Wang et al.| 2023} Xue et al.|, 20225 Huo et al.,|2024;|Gu et al., 2023} Jin et al.}[2023) has
become an effective strategy to boost performance and enable deployment in resource-constrained
environments, with lighter-weight models that either use reduced modalities or smaller architec-
tures during inference (Shen et al [2023; [Liu et al.| 2025} |Gu et al., 2023)). These teacher—student
frameworks allow the student to benefit from the teacher’s superior predictions. However, this setup
critically assumes that the teacher’s outputs remain reliable when applied to the student’s target
domain. In practice, domain shifts can render the teacher’s guidance noisy or misleading.

Similarly, semi-supervised learning (SSL) expands the effective training set through pseudo-labeling
to bootstrap learning in data-scarce scenarios (Sohn et al., [2020; |Zhang et al., 2021). However, the
quality of these pseudo-labels may not be high due to the inherent uncertainty. This uncertainty
stems from several factors (Scherer et al., 2022} |Xia et al., 2023 |[Kage et al., 2024): the small
labeled set may not fully represent the data distribution, the model’s early mistakes can propagate
through self-training, and the confidence thresholds for pseudo-labeling may not perfectly filter out
incorrect labels. As a result, noisy pseudo-labels can misguide the learning process, potentially
reinforcing errors and degrading model performance.

In reinforcement learning, agents employ imitation-learned policies for guidance (Hu et al., 2023}
Bhaskar et al., 2024) to reduce exploration demands and improve sample efficiency, yet a critical
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Figure 1: Overview of the AdaConG approach. AdaConG leverages split CP with calibration to
quantify the uncertainty of guidance signals and adaptively modulate their influence. The estimated
uncertainty u is converted into an adaptive weight w, which reweights the guidance loss. This
weighted guidance loss is then combined with the task loss to update the model, enabling effective
learning under uncertain guidance.

challenge emerges when the target environment differs from the ones used for the expert demon-
strations. While imitation learning provides valuable behavioral priors, these policies often struggle
to generalize beyond their training distribution. When the RL agent encounters states or observa-
tions outside the expert’s demonstration space, the imitation policy’s guidance becomes increasingly
noisy, potentially leading to suboptimal exploration.

In all these scenarios, blindly relying on noisy guidance can propagate errors and lead to subopti-
mal model performance, as the learning system overfits to potentially misleading information, yet
discarding potentially valuable guidance wastes computational resources and domain knowledge.
Despite its fundamental importance, the challenge of effectively leveraging noisy guidance while
maintaining robust learning capabilities remains largely unaddressed across machine learning sys-
tems. The central question becomes: How can we effectively leverage potentially valuable guidance
while appropriately accounting for its uncertainty to ensure robust model learning?

While prior works have explored uncertainty-aware learning (Angelopoulos et al., [2020; [Mossina
et al.,[2024} Lu et al.}|2022; Karimi and Samavi,[2023;|Zhao et al.,2024;|Su et al., |2025;Zhang et al.}
2024;|[Edupuganti et al.,[2020; [Kwon et al.,|2020; Wang et al.,|2020; \Gao and Zhang},|2021};/Gao et al.}
2023)), they typically focus on heuristic uncertainty estimates, domain-specific solutions, or post-hoc
calibration. Monte Carlo dropout (Zhao et al., [2024)), entropy-based reweighting (Su et al., 2025), or
perturbation of the distillation loss [Zhang et al.|(2024)), tackle uncertainty by modulating loss terms
via heuristics or series approximations. However, these approaches remain confined to supervised
classification, and the effectiveness may degrade under distribution shifts. Other methods address
uncertainty only within narrow domains, e.g., medical imaging (Edupuganti et al. [2020; [Kwon
et al.,[2020; Wang et al.||2020) or human-robot interaction|Gao and Zhang|(2021));|Gao et al.|(2023).
Techniques such as conformal prediction (CP) have been used primarily to calibrate model outputs
after training (Angelopoulos et al., [2020; Mossina et al., [2024; |Lu et al.| 2022; |[Karimi and Samavi,
2023)).

In contrast, we propose the first framework AdaConG that embeds split CP directly into the training
loop to adaptively weight guidance across supervised, semi-supervised, and reinforcement learning
settings. Simple yet effective, our method serves as a broadly applicable solution for incorporat-
ing uncertainty-aware guidance, as illustrated in Fig. While CP has primarily been applied for
post-hoc calibration, its potential to inform real-time training dynamics remains underexplored. CP
provides a distribution-free, model-agnostic approach to constructing prediction sets (Shafer and
Vovk! 2008; |/Angelopoulos and Bates} 2021)), making it suited across diverse learning systems. Un-
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like heuristic uncertainty estimates such as entropy (Namdari and Li, [2019) or maximum softmax
probability (MSP) (Pearce et al.l [2021) which rely on the softmax outputs that are often overcon-
fident and poorly calibrated, CP provides more rigorous uncertainty estimates (Shafer and Vovk,
2008 |/Angelopoulos and Bates| 2021)), even when the underlying distribution changes (Zhou et al.,
20255 |Gibbs and Candes, [2021).

We validate our approach through extensive experiments across multiple tasks, including knowledge
distillation, semi-supervised image classification, gridworld navigation, and autonomous driving,
demonstrating improvements in performance and robustness compared to conventional methods.
Our results underscore the critical importance of adaptive uncertainty weighting in scenarios where
guidance signals may be imperfect, providing a solution toward more reliable machine learning
systems. Overall, the key contributions of our work are as follows:

* We propose AdaConG, an approach that adaptively modulates the influence of guidance signals
based on their uncertainty, ensuring effective learning without over-relying on unreliable guidance.

* AdaConG is broadly applicable across diverse learning systems including supervised, semi-
supervised, and imitation-guided reinforcement learning.

* AdaConG can extract useful insights even when guidance underperforms, unlike conventional
methods that assume guidance is always trustworthy. In gridworld navigation, it enables faster
convergence and achieves over 6x higher rewards than the strongest baseline.

2 RELATED WORK

Learning with Guidance. Learning with guidance has been a common and effective strategy
across various machine learning systems. In supervised learning, annotated datasets provide explicit
guidance for model training, and many works leverage pretrained models to further boost perfor-
mance. For instance, [Hinton| (2015)); Jin et al.| (2023)); |Sun et al.| (2024) focused on transferring
soft probabilities from teacher models’ logits to guide student models, while Romero et al.| (2014);
Zagoruyko and Komodakis| (2016)); |[Passalis and Tefas| (2018); Kim et al.|(2018) emphasized trans-
ferring intermediate features. Cross-modal guidance has also been explored: Wang et al. (2023)
proposed a prototype-based distillation method for medical image segmentation, where a multi-
modal teacher guides a single-modal student; [Shen et al.| (2023)) introduced the Auxiliary Modality
Learning (AML) framework, enabling a teacher model with access to multiple modalities to transfer
knowledge to a student operating with fewer modalities at test time; and [Liu et al.| (2025) extended
this idea to multi-agent settings. In semi-supervised learning (Sohn et al.,[2020; Zhang et al.l|2021),
pseudo-labels generated from unlabeled data provide implicit guidance to bootstrap learning with
limited labeled data. In reinforcement learning, pretrained imitation learning (IL) policies (Hu et al.,
2023} Bhaskar et al.l [2024) derived from expert demonstrations have been used to guide RL agents
and improve sample efficiency.

However, a key limitation of most existing methods is their reliance on static guidance, which as-
sumes that guidance signals are always reliable. This assumption often breaks down when guid-
ance contains uncertainty, due to domain shifts in supervised learning, limited labeled data in
semi-supervised learning, or generalization constraints of IL policies in reinforcement learning. In
contrast, AdaConG introduces a principled approach that dynamically modulates the influence of
guidance signals based on their associated uncertainty, offering a simple yet effective, and broadly
applicable solution for incorporating uncertainty-aware guidance.

Conformal Prediction. Conformal prediction (CP) (Angelopoulos et al.,2020;|Angelopoulos and
Bates|, 2021 Mossina et al.l 2024} [Karimi and Samavi, 2023}, [Tibshirani et al.| 2019; |[Shafer and
Vovk! [2008}; Vovk et al.; 2020) is a non-parametric, distribution-free, and model-agnostic framework
designed to provide reliable prediction sets. In machine learning systems, CP has primarily been
utilized for post-hoc uncertainty calibration. For instance, Angelopoulos et al.|(2020) introduced an
algorithm that adapts any image classifier to output predictive sets containing the true label with a
user-specified probability. Mossina et al.|(2024) proposed a computationally lightweight approach to
quantify predictive uncertainty in semantic image segmentation using CP. Similarly, Lu et al.|(2022)
applied CP to deep learning models for grading the severity of spinal stenosis in lumbar spine MRI,
while |Karimi and Samavi| (2023) leveraged CP to measure uncertainty in deep learning models.

Despite recent advancements, the application of CP to inform real-time training dynamics remains
underexplored. In this work, we extend split CP to learning with guidance under uncertainty, using it
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as a module for adaptive weighting. By modulating the uncertainty of the guidance signal, we enable
the model to reduce dependence on potentially misleading guidance and encourages the model to
discover patterns that may be overlooked when strictly following uncertain guidance.

3 APPROACH

Preliminaries. In our framework, we leverage split conformal prediction (CP) to conformalize a
guidance signal and quantify its uncertainty. CP is a distribution-free method that provides predic-
tion sets with guaranteed coverage levels, regardless of the underlying model or data distribution
(Angelopoulos and Bates, [202 1} |Shafer and Vovk, [2008]).

Split CP uses a nonconformity score s to measure how unusual a prediction is for a new test input,
based on a calibration set D, a held-out dataset used to compute the empirical distribution of non-
conformity scores. The score s can be defined in various ways. For instance, in regression, it is often
the absolute residual s = |y — 4(Z)|, where 7 is the ground truth and §(Z) is the model’s prediction
for an input T € Dgy. In classification, a common choice is the confidence score s = 1 — py(Z),
where py(Z) is the model’s estimated probability for the true class §. Additional examples can be
found in (Angelopoulos and Bates, 2021} |Shafer and Vovk, |2008)). Given a calibration set, we com-
pute the quantile ¢;_,, of the nonconformity scores with « as an allowable error rate. The quantile
is denoted as g1, = Quantile;_,(s1, 82, ..., Schall)’ representing a threshold below which 1 — «
of the data falls. This threshold is then used to construct prediction sets. For a test input @, the
prediction set is constructed as C(Zes) = {y : $(Trest, ¥) < ¢1—a ). Under the assumption of ex-
changeability, the coverage guarantee holds that the probability of the true label v falling within
C(Zest) satisfies P(yest € C(Trest)) > 1 — o (Angelopoulos and Bates, [2021).

Adaptive Conformal Guidance. AdaConG is a general framework, as illustrated in Fig. I} We
show how to use it in supervised, semi-supervised, and imitation-guided reinforcement learning
settings. The core idea is to learn adaptive weights based on the uncertainty of the guidance signal,
enabling dynamic modulation of its influence during training.

SUPERVISED LEARNING. We consider a supervised learning problem in which a pretrained model
guides the training of a target model under potential domain shift. Formally, let the source domain
dataset be denoted as D, and the (shifted) target domain dataset as D;. We represent the pretrained
model on D; as f, : X — Y, and the target model under training as f; : X — ), where X is
the input space and ) is the output space. Our goal is to leverage f, to bootstrap the learning of
ft so that it outperforms both supervised training from scratch and standard knowledge distillation
under domain shift. To do so, we introduce an adaptive weighting mechanism based on split CP to
modulate the guidance of the pretrained model. This is particularly important when D, differs from
D, making f,(z) uncertain for input = € D;.

Given the target domain dataset D;, we split it into three subsets: the training set D, , used to train

the target model f;; the calibration set Dy, used to transform any heuristic measure of uncertainty
from the pretrained model f;, into a rigorous one; and the testing set Dy for validate the target model
performance. This setup ensures that the calibration set is representative of the inputs on which the
guidance will be applied. We conformalize the pretrained model f, following the approach as
described in Section 3] To quantify the guidance uncertainty, we leverage the size of the prediction
set C(x) for an input x. Specifically, we define the guidance uncertainty as

u(z) = g(|C(z)]), (D)
where g is a mapping ensuring u(z) € [0,1] (e.g., g(n) = =% for a K-class problem). The
adaptive weight is computed as

w(z) = h(u(z)), (2)

where h is a monotonically decreasing function (e.g., exponential decay h(u) = exp(—~yu) with a
temperature v > 0) such that high uncertainty results in a lower weight. Then we define the loss
function of training the target model as £ = ALt + w(z) - Aguide Ly, Where Ly is the task loss
(e.g., cross entropy loss), L, is the guidance loss (e.g., KL divergence between target model and
pretrained model logits), Aask and Agige are the coefficients. Essentially, the adaptive weighting
mechanism of AdaConG allows the model to balance between relying on the pretrained guidance
and self-exploration.
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SEMI-SUPERVISED LEARNING. In semi-supervised learning (SSL), our goal is to leverage a lim-
ited set of labeled data D; = {(z;,y;)}~', along with a large set of unlabeled data D,, = {z;}\*,.
For each unlabeled sample = € D,,, the model f produces a prediction §j = f(Zyeax) using a weakly
augmented view Ty.. The pseudo-label y is is obtained by thresholding the model’s output on this
weakly augmented input. The same model is then trained to predict y from a strongly augmented

VETSION Tgrong Of the same input.

Along with obtaining pseudo-labels, we introduce an adaptive weighting mechanism grounded in
split CP to modulate the influence of each pseudo-label during training. We construct a calibration
set D, by taking the labeled data and applying the same weak augmentation used for the unlabeled
data. The CP procedure for generating a prediction set C(z) for an unlabeled sample « follows the
approach detailed in Section [3| The adaptive weight w(z) is defined similarly as in Eq. Then
the unsupervised loss is defined as £,, = ﬁ > wep, W(T) O(f (2grong ), §), where £(-,-) denotes
the cross-entropy loss commonly used in SSL, which enforces consistency regularization between
the strongly augmented prediction and the pseudo-label. This loss is adaptively weighted by the
confidence of the pseudo-label w(x). The supervised loss over the labeled set is given by another
cross-entropy loss £, = ITll\ > (e, L(f(x),y). The final objective function, which balances the
contributions from both supervised and unsupervised components, is defined as £ = L4 + A\, Ly,
with A, controlling the relative weight of the unsupervised loss.

IMITATION-GUIDED REINFORCEMENT LEARNING. Consider a Markov Decision Process de-
fined by the tuple {S,.A,P,R,~}, where S is the state space, A is the action space, P is the
transition dynamics, R is the reward function, and + is the discount factor. We focus on off-policy
RL methods due to their higher sample efficiency. We focus on cases where there is an imitation
policy learned from expert demonstrations to guide the reinforcement learning.

To quantify uncertainties of IL and RL policy via split CP, we use the nonconformity score s(s, a) =
—log (als). For the static imitation policy 71, we pre-collect a calibration set Dey. 1 = {(si, ;) } Y,
by rolling out 7y in the target environment. Then we compute a constant quantile ¢; for the IL

policy. For the RL policy Wét), we leverage adaptive CP (Zhou et al.| 2025} [Gibbs and Candes)
(t)

2021), maintaining a dynamic calibration set D,

(0)

cal,

r Via a sliding window of size [N, which we

initialize as D,,/ x = Dca,1. At each subsequent training step ¢, we add a new batch of m state-

action pairs from rollouts of 771(;) and discard the oldest. Then we update the RL quantile qu({t) using

an exponential moving average (EMA): (jf({t) +— (1 - 7)(}1(571) + 7(}'1(:), where qu) is computed

from the current window’s scores and -y is a smoothing factor. We warm-start the RL quantile by
initializing it with the quantile of the imitation policy, i.e., qlgo) = ¢;. Finally, the IL and RL policy
uncertainties are defined as ui(s) = g(|Ci(s)|) and ur(s) = g(|Cr(s)|), using the static quantile

¢i for m; and the adaptive quantile qff) for 771(;), where ¢ is a mapping, e.g., the identity function.

The loss for training the RL policy is defined as £ = L; + w(s) - L4, where L, is the task loss
(e.g., E[—log fs(als) - A(s,a)] with A(s,a) as the advantage function), which corresponds to the
RL objective. £, = E [KL(7mr(+|s) || mi(-|s))] is the KL divergence between the RL policy and the
IL policy, serving as the guidance loss. The weight w is defined as: w(s) = h(ui(s), ur(s)), e.g.,

— exp(—wi(s))
w(8) = Gt Fexp(—unte))
uncertainty is high.

This reduces reliance on imitation guidance when the IL policy’s

4 EXPERIMENTS

To validate our approach, we conduct experiments across a diverse range of tasks, including knowl-
edge distillation, semi-supervised image classification, gridworld navigation, and autonomous driv-
ing steer prediction.

Knowledge Distillation. We first evaluate our framework’s effectiveness in improving classifica-
tion performance over traditional supervised learning by leveraging knowledge distillation from a
pretrained teacher to a student model. This evaluation is conducted under domain shift and noise,
where the teacher may underperform. Specifically, we aim to address the following question: When
the teacher model is underperformance, can it still provide useful “dark knowledge” to enhance the
performance of the student model beyond what is achievable by training from scratch?
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EXPERIMENTAL SETUP. We conduct our experiments on the CIFAR-100 dataset (Krizhevsky
et al., 2009) and report the mean and standard deviation over four repeated runs. We introduce do-
main shifts to the datasets by adding Gaussian noise of zero mean and a standard deviation of 0.05,
which may lead to underperformance of the teacher model. We evaluate two settings: (1) Homoge-
neous Structure, where the teacher and student share the same architecture type (e.g., ResNet-32x4
and ResNet-8x4), and (2) Heterogeneous Structure, where the teacher and student use different ar-
chitectures (e.g., ResNet-32x4 and ShuffleNet-V1). For further details of the models evaluated and
the dataset, please refer to Appendix To quantify the prediction uncertainty of the pretrained
teacher model f,,, we utilize the RAPS algorithm (Angelopoulos et al., 2020). Given an input image
x, we obtain the prediction set C(x) with @ = 0.1 and define the uncertainty as u(x) = %
(Vovk et al.} 2016), where iK' = 100 is the total number of classes. The adaptive weight is computed
as w = exp(—yu) with v = 10.0, as described in Section [3] Please see Appendix for an
detailed analysis of the design choices for the hyperparameters. We follow the same experimental
settings as in previous work (Tian et al., 2019; [Sun et al.,[2024) for the coefficients Ajg and Aguide,
as well as other training details.

BASELINES. We measure Top-1 classification accuracy for a range of baselines, including classic
distillation methods, KD (Hintonl 2015)), FitNet (Romero et al., 2014), PKT (Passalis and Tefas,
2018), FT (Kim et al., 2018)), and LS-KD (Sun et al.,|2024), evaluating each both with and without
our approach AdaConG, alongside uncertainty-aware adaptations such as EA-KD (Su et al., [2025)
and PTLoss (Zhang et al.| [2024), as well as KD leveraging heuristic confidence estimators including
maximum softmax probability (MSP) (Pearce et al., [2021]), Monte Carlo (MC) dropout (Gal and;
Ghahramani, [2016), and output entropy (Namdari and Li, [2019)).

Table 1: Top-1 accuracy (%) of various knowledge distillation methods on CIFAR-100 under ho-
mogeneous structure where the teacher models are underperforming due to domain shift. We use
A to show mean performance gain relative to conventional knowledge distillation methods without
AdaConG. Following the protocol in (Sun et al.,2024])), we highlight in A greater than 0.15,
indicating non-trivial enhancement. We observe up to +10.89% higher accuracy.

ResNet110 ResNet56  ResNet32 x4 VGG13 WRN-40-2  WRN-40-2
Teacher

58.78 56.23 62.61 61.47 58.76 58.76

Student ResNet20 ResNet20 ResNet8 x4 VGG WRN-40-1 WRN-16-2

66.51+£0.14  66.51+0.14  69.14+0.21  67.18+£0.18 69.03+0.21 70.34+0.20
KD (Hinton{|2015) 57.23+0.24  56.27+£0.17  58.90£0.31  61.00+0.25 58.44+0.16 59.40+0.33
KD + AdaConG 66.53+£0.55 66.98+0.25  68.45+0.29  67.53£0.18 69.31+0.25 70.29£0.39
A
FitNet (Romero et al.]2014]) 64.65+£0.30 64.984+0.16  69.21+0.17  67.19+£0.39  68.74+0.24  70.49+0.27
FitNet + AdaConG 67.06+£0.13  66.91+0.14  69.49+0.18  67.58+0.30 69.114+0.18 71.00£0.23
A
PKT (Passalis and Tefas![2018) 66.67+£0.17 66.54+0.26  69.69+0.34  67.06+£0.09 69.12+0.22 70.55+0.26
PKT + AdaConG 67.55+0.11 67.42+0.51  70.27+0.39  68.50+0.13  70.03+0.51 71.22+0.47
A
FT (Kim et al.|[2018) 66.47£0.09 66.05+£0.40  69.55+0.33  67.284+0.17 68.05+0.42 69.86£0.24
FT + AdaConG 66.58+0.12  66.55+0.39  69.85+0.23  67.54+0.19 69.03+0.33  70.91£0.30
A 0.11
LS-KD (Sun et al.[[2024) 63.38+£0.29  62.66+0.29  63.49+0.06  66.66+0.10 65.72+0.10 66.58+0.17
LS-KD + AdaConG 67.17£0.08 67.284+0.18  70.33+0.14  68.99+0.23 69.80+0.18 71.48+0.28
A
Entropy (Namdari and Li![2019) 60.24+0.23  60.29+0.19  62.37+0.23 64.37£0.9 62.47+£0.21 63.17+0.23
MC dropout (Gal and Ghahramanif2016) 63.59+0.13  63.42+0.27  67.94+0.05 67.90+£0.36 69.64+0.11 70.23+0.24
MSP (Pearce et al.[|2021) 60.71£0.19  60.62+0.16  62.77+0.36  64.56+0.23 62.80+0.22 63.70£0.10
PTLoss (Zhang et al.[[2024) 65.96+0.18 66.28+0.16  68.27+0.02  66.524+0.19 68.59+0.21 69.35+£0.31
EA-KD (Su et al.]2025) 66.30+0.20 66.52+0.30  69.04+0.15  67.05+0.07 69.37+0.23 70.33£0.20

EXPERIMENTAL RESULTS. We present the results in Table|l} Following the protocol outlined in
(Sun et al.| [2024), we highlight in orange the improvements greater than 0.15, indicating non-trivial
enhancements. Traditional knowledge distillation methods typically assume that the teacher model
is reliable and superior to the student. However, as shown in Table [I} when the teacher performs
worse than the student under domain shift, following the teacher will result in students that perform
worse than those trained from scratch. In contrast, integrating AdaConG not only improves model
performance by up to 10.89% but also enables the student to surpass that from scratch. These find-
ings highlight AdaConG’s effectiveness in enhancing supervised learning, leveraging a pretrained
model as guidance, even when the guidance is unreliable. By selectively leveraging useful “dark
knowledge” while avoiding misleading supervision, AdaConG ensures robust model learning.
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We also compare against other uncertainty-aware KD methods (Su et al.l 2025} |Zhang et al., [2024;
Pearce et al., 2021; [Namdar1 and L1, 2019 |Gal and Ghahramani, 2016). Results show that KD
combined with AdaConG outperforms these baselines. This is because existing methods primarily
rely on heuristic uncertainty estimates, which can be overconfident and poorly calibrated, particu-
larly under domain shifts. In contrast, AdaConG can provide more adaptive and reliable guidance.
Moreover, methods such as MC dropout require multiple forward passes, which is computationally
expensive. Please refer to Appendix for a comparison of the computation overhead between
AdaConG and MC dropout.

ABLATION STUDIES. We evaluate the performance of a heterogeneous teacher-student framework
and present the results in Table [5] in Appendix [A.2.2] The results show that, for all knowledge
distillation methods, performance improves when combined with AdaCongG, further validating the
effectiveness of our approach across different teacher-student structures.

We also explore another hard version of the weighting function: w = 1ifu =0, w =0ifu > 0
(Vovk et all 2016), which is similarly effective, please see the results in Appendix The
rationale for the hard weighting function follows (Vovk et al., 2016), which aims to ensure that
prediction sets are as close as possible to single-element sets, making them more informative.

Semi-Supervised Image Classification. We evaluate the effectiveness of our framework in im-
proving the performance of semi-supervised learning methods, regarding classification tasks.

EXPERIMENTAL SETUP. We conduct experiments on several SSL image classification bench-
marks, including CIFAR-10/100 (Krizhevsky et al., |2009) and STL-10 (Coates et al.l 2011). For
all experiments, we report the mean and standard deviation over four repeated runs. We measure
the Top-1 accuracy for a range of baselines, including UDA (Xie et al., 2020), FixMatch (Sohn
et al.| 2020) and FlexMatch (Zhang et al.,[2021), evaluating each both with and without AdaConG.
For an unlabeled image =, we construct the prediction set C(x) for pseudo-labeling using confi-
dence score as described in Section [3] with @ = 0.05. The associated uncertainty is defined as

u(x) = % (Vovk et al.,[2016)), where K is the total number of classes. The adaptive weight is

given by w = exp(—~yu) with v = 8.0. Please refer to Appendix for a sensitivity analysis of
the hyperparameter choices and Appendix [A.3.]|for the training details.

Table 2: Top-1 accuracy (%) of various baselines with and without AdaConG on several semi-
supervised image classification benchmarks, using cross-entropy as the guidance loss. We use A to
show mean performance gain relative to conventional methods without AdaConG, observing upto
+5.98 % higher accuracy.

Approach CIFAR-10 CIFAR-100 STL-10

40 Tabels 250 Tabels 4000 labels 400 Tabels 2500 Tabels 10000 Tabels 40 Tabels 250 Tabels 1000 lTabels
UDA (Xie et al.|[2020) 5773698 89.44+£1.57 91.86+0.75 2595+1.07 57.574+0.12 66.94+0.16 53.88£0.58 76.91+0.10 87.5940.34
UDA +AdaConG 61.28+6.33  92.69+0.12 93.17+£0.10 28.02+0.54 58.544+0.80 67.50+0.35 54.70+0.51 77.45+0.12 88.31+0.10
A 3.55 3.25 1.31 3.07 0.97 0.56 0.82 0.54 0.72
FixMatch (Sohn et al.]2020] 64.18+4.57 89.97+£1.04 91.29+0.65 40.36+0.83 61.14+0.40 67.50+0.85 58.03+£1.28 78.89+0.46 88.54+0.10
FixMatch + 2daConG 70.16+3.34  92.23+0.72  93.97+0.11 41.98+0.55 63.414+1.46 70.03+0.29 62.70+0.84 80.83+0.39  89.35+0.10
A 5.98 2.26 2.66 1.62 2.27 243 4.67 1.94 0.81
FlexMatch (Zhang et al.[[2021}  73.24+1.61 90.62+0.49 92.11+0.47 51.25+1.63 63.59+1.03 71.63+£0.48 62.55+2.22 82.63+£1.20 89.94+0.20
FlexMatch + AdaConG 76.98+0.45 92.89+0.10 94.28+0.10 55.63£1.20 69.2240.52 72.71+0.28 65.98+£1.55 83.94+0.23 92.2740.10
A 3.74 2.27 2.17 4.38 5.63 1.08 343 131 2.33

EXPERIMENTAL RESULTS. We present the Table 3: Top-1 accuracy (%) on CIFAR-100 for
results in Table As shown, integrating semi-supervised image classification, comparing
AdaConG consistently improves performance different baselines with and without AdaCong,
across all baselines. This highlights the effec- using MSE as the guidance loss. A denotes the
tiveness of AdaConG in semi-supervised learn- mean performance gain over the corresponding
ing. By adaptively reweighting the influence of baseline without AdaConG.

pseudo-labels, AdaConG reduces reliance on

noisy supervision, mitigating error propagation _Approach 400 labels 2500 labels 10000 labels

; ; UDA (Xie et al.|[2020} 6.36+£047 31484038 57.50 £0.31

and leading to improved overall performance. UDA+Ad&ConG 7764015 32604021 59.79+0.11
. . . .. A 1.40 112 2.29

As ablation studies, in addition to the com- 5y Gohmeral]Bo20] 5562026 55142069 60.0 2041

monly used cross-entropy loss for guidance in FixMatch+AdaConG 9.82£0.62 35.36=1.03 61.74+£0.20
. . A 1.26 2.22 0.81

SSL, we investigate the ) mean-sqqared €ITOT g\ Match (Zhang ot al|2021] 10.04 £ 024 36.10=0.36 61.36+ 0.07

(MSE) loss as an alternative. Specifically, we  FlexMatch+AdaConG 11.07£0.55 38.87+0.82 62.80+0.21
A 1.03 2.77 144

apply the MSE loss between the logits of a
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strongly augmented input Zsone and its weakly augmented counterpart Zyeak. As shown in Table
our method remains effective under this alternative formulation and continues to yield performance
improvements.

Gridworld Navigation. We investigate the use of reinforcement learning for solving gridworld
navigation tasks, leveraging a pretrained imitation policy as prior guidance. We demonstrate how
AdaConG improves policy learning efficiency and robustness in challenging and unseen environ-
ments when the imitation policy is limited due to generalization constraints.

EXPERIMENTAL SETUP. We evaluate AdaConG across three gridworld environment (Chevalier-
Boisvert et al., 2024) scenarios, as illustrated in Fig. @ For the environment details, please refer
to Appendix [A.4] We collect expert demonstration for the Lava 1 and Door environments to train
IL policies via behavior cloning. After training the IL policy 7, we utilize it to guide the training
of the RL policy mg. The Lava 2 environment represents a shifted variant of Lava 1, featuring
modified environmental configurations. Importantly, we do not collect expert demonstration for
Lava 2, and no IL policy is trained on this environment. For a given state s, the guidance weight

is defined as: w(s) = (7;1’(‘;’)()17:)5;2)7UR )7 Where ur and ug are the prediction uncertainties of

the IL and RL policies as described in Section [3| And we sample the action a € {ar,ar} to take
according to the distribution induced by this guidance weight. Furthermore, we explore another
hard variant of AdaCongG, instead of defining w(s) as a probability distribution informed by the
relative uncertainties of the IL and RL policies, we take argmax to compare IL and RL prediction
uncertainties: w(s) = 1 when u;(s) < ur(s), otherwise w(s) = 0. Based on w(s), we dynamically
decide which action to take: a = a if w(s) = 1, otherwise a = ag.

BASELINES. We compare AdaConG and Hard AdaConG against several baselines, including (1)
Soft Actor Critic (SAC) (Haarnoja et al.,2018)), a purely RL approach, (2) IBRL (Hu et al.,|2023)),
which leverages a pretrained imitation learning (IL) model to bootstrap RL. During the training
process, IBRL queries the target Q-network and selects actions by comparing the Q-values of two
candidate actions and taking the action with the higher Q-value, and (3) Soft IBRL (Hu et al.,|2023)),
a probabilistic variant of IBRL. Instead of selecting the action via a hard argmax, Soft IBRL samples
the action according to a distribution proportional to the Q-values.

EXPERIMENTAL RESULTS. We run all experiments across ten random seeds and present the re-
sults in Fig. 2] First, we compare the learning curves of AdaConG and Hard AdaConG against
other baselines across three environments: Lava 1, Lava 2, and Door. Both AdaConG and Hard
AdaConG demonstrate similar performance, converging faster and achieving higher rewards than
all other baselines. Before the agent reaches the goal, the reward function is defined as the negative
Manhattan distance between the agent’s current location and the goal, normalized by the maximum
step limit of 100. Consequently, the accumulated episode rewards initially decrease as the agent
explores the environment and accrues negative rewards but increase as it learns. The rewards of
AdaConG and Hard AdaConG are consistently higher than those of other baselines while con-
verging faster. This can be attributed to the efficiency of AdaConG, as it compares the prediction
uncertainties of teacher and student models instead of relying on Q-values. Methods like IBRL and
Soft IBRL, which depend on Q-values to decide between IL or RL actions, may make suboptimal
decisions initially due to poorly trained Q-networks. For instance, even if an IL action is superior,
its Q-value might be lower than that of an RL action.

In the shifted environment Lava 2, the overall rewards of the IL policy are lower due to gener-
alization constraints. IBRL and Soft IBRL rewards eventually converge close to the IL policy’s
performance, as these methods are not uncertainty-aware. Blindly relying on a IL policy underper-
forming due to environment shifts can lead to suboptimal performance. In contrast, AdaConG and
Hard AdaConG consider the IL policy’s prediction uncertainty, enabling faster convergence and
achieving rewards over 6x higher than the best-performing baselines after convergence. When the
IL policy’s predictions are confident, the RL agent relies more on them; otherwise, the RL agent
explores independently. Even though the IL policy’s overall reward is not high, it still provides use-
ful knowledge. This allows the RL agent to learn from the IL policy and eventually achieve higher
rewards than the IL policy.

We also show the average policy prediction uncertainties of AdaConG and Hard AdaConG, for
Lava 1 environment, in Fig. Over time, their prediction uncertainties decrease and approach that
of the IL policy, demonstrating the progression toward a well-learned RL policy.
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Figure 2: (a-c) Learning Curves. We compare AdaConG and Hard AdaConG with other baselines,
including SAC, IBRL, and Soft IBRL, and present their learning curves across three environments:
(a) Lava 1, (b) Lava 2, and (c) Door. AdaConG and Hard AdaConG perform similarly, converging
faster and achieving higher rewards than other baselines in all environments. (d) Prediction Uncer-
tainty. We show the average prediction uncertainties of AdaConG and Hard AdaConG, taking the
Lava 1 environment as the example. Over time, their prediction uncertainties shrink and approach
that of the IL policy, demonstrating the development of a well-learned RL policy.

Autonomous Driving. This task involves learning a steering prediction policy in autonomous driv-
ing for an RGB-only input model, guided by a pretrained multi-modal teacher to transfer knowledge
to the student mdoel. We evaluate the effectiveness of different knowledge distillation methods un-
der domain shifts and sensor noise, comparing performance with and without the use of AdaConG.

EXPERIMENTAL SETUP. We adopt mean ac- Table 4: Mean accuracy (%) of steer prediction
curacy (mAcc) as the evaluation metric for the of different knowledge transfer methods with and
task of steer prediction, following prior works without AdaConG under domain shifts.
(Shen et al., [2021; 2023; 2024). We use the
real-world driving dataset SullyChen (Chen,  approach

Mean Accuracy (%)
without AdaConG  with AdaConG A

2018) for evaluation, which includes diverse Kb 735 76.8 33
driVir}g scenarios with various road types and  pey Lo ®s 3
conditions. We use Nvidia PilotNet (Bojarski, ;T S ;g; 764 33

eacher +Depth+! € . — —
2016) as the backbone for both the teacher and  sudent (RGB) - © 18 B N

student models. The teacher model is a multi-

modal network that takes RGB images, depth, and edge maps as input, while the student model is
unimodal, relying solely on RGB images. For more details of the setup, please see Appendix [A.5.1]
We first train the teacher model f,, offline. Then we use it to guide the student model f; learning,
while the RGB images for f; training have domain shifts by Gaussian noise corruption compared
to the ones used for f, training. Detailed information about domain shifts and model training can
be found in Appendices and[A.5.4] respectively. We evaluate multiple knowledge distillation
methods as baselines, comparing their performance with and without the integration of AdaConG,
including KD (Hinton, 2015), FitNet (Romero et al., 2014), PKT (Passalis and Tefas,[2018)), and FT
(Kim et al., 2018)).

EXPERIMENTAL RESULTS. We report the mean accuracy of steer prediction for various KD
methods under domain shifts with and without AdaConG in Table 4] As observed, incorporating
AdaConG consistently enhances the accuracy. This demonstrates the effectiveness of AdaConG in
improving model performance, as its adaptive guidance mechanism strategically prevents over-
reliance on uncertain teacher predictions, facilitating more reliable and robust target model learning.

5 CONCLUSIONS

We propose AdaConG, an approach for learning with guidance under uncertainty. AdaConG inte-
grates split conformal prediction to adaptively modulate the influence of guidance signals based on
their associated uncertainty. By selectively leveraging reliable signals and filtering out misleading
supervision, AdaConG enables effective learning even in the presence of noise. Unlike conven-
tional methods that assume guidance is always trustworthy, AdaConG can still extract useful “dark
knowledge” under uncertainty. The framework is simple yet effective, and broadly applicable to a
wide range of tasks. We validate AdaConG across diverse settings and tasks including knowledge
distillation, semi-supervised image classification, gridworld navigation, and autonomous driving,
demonstrating improved performance and robustness. For a discussion on future work, please see

Appendix [A.6]
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6 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of all training setups in the experiment
Section[d] with additional specifications in Appendix [A.2] Appendix[A.3.1] Appendix[A.4] and Ap-
pendix[A.5.1] All datasets used are publicly available, and we will release the code upon publication.
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A APPENDIX

A.1 THE USE OF LLMSs

We use LLMs to polish writing and refine grammar of the manuscript.

A.2 KNOWLEDGE DISTILLATION

We evaluate two settings: (1) Homogeneous Structure, where both the teacher and student models
share the same type of architecture (e.g., ResNet-32x4 and ResNet-8x4), and (2) Heterogeneous
Structure, where the teacher and student models are of different architectures (e.g., ResNet-32x4
and ShuffleNet-V1). We evaluate a wide range of neural network architectures, including ResNet
(He et al., 2016), WRN (Zagoruyko, 2016), VGG (Simonyan, 2014), ShuffleNet-V1 (Zhang et al.,
2018)/V2 (Ma et al.,[2018)), and MobileNet-V2 (Sandler et al., 2018)).

A.2.1 DATASET DETAILS

We conduct our experiments on the CIFAR-100 dataset [Krizhevsky et al.| (2009), which consists
of 60K images, S0K for training and 10K for testing, across 100 distinct categories. We introduce
domain shifts to the dataset for training the target model. We add Gaussian noise with zero mean and
a standard deviation of 0.05 to 40% of the training data of 50K images, where the noisy samples are
selected uniformly at random across the entire dataset to ensure consistent noise distribution. Then
we shuffle the dataset and randomly split it into a 90% training set D}, and a 10% calibration
set Dy, ensuring that both sets are drawn from the same underlying distribution. Additionally, the
same Gaussian noise is added to 40% of the testing data of 10K images, to form the noisy test set

Direst, which allows us to evaluate the performance of the target model.

A.2.2 HETEROGENEOUS TEACHER-STUDENT STRUCTURE

Table 5: Top-1 accuracy (%) of various knowledge distillation methods with and without
AdaConG on CIFAR-100 under heterogeneous structure. We use A to show mean performance
gain relative to conventional knowledge distillation methods without AdaConG. We highlight in
orange deltas greater than 0.15, indicating non-trivial enhancement following the protocol in [Sun
et al.[(2024).

Teach ResNet50 VGGI13 WRN-40-2
cacher 62.79 61.47 58.76
Student ShuffleNet-V1  MobileNet-V2  ShuffleNet-V2
64.5240.62 56.474+0.03 66.354+0.12
KD |Hinton|(2015) 58.30+0.24 53.08+0.57 59.61+0.03
KD + AdaConG 65.71+0.36 57.69+0.52 67.57+0.22
A
FitNetRomero et al.|(2014) 63.9740.25 54.7740.40 66.034+0.48
FitNet + AdaConG 64.4940.15 55.754+0.37 67.6940.11
A
PKT|Passalis and Tefas|[(2018)  66.26+0.26 56.53+0.13 66.38+0.18
PKT + AdaConG 66.65+0.16 57.01+0.18 67.88+0.42
A
FT Kim et al.|(2018) 63.854+0.34 56.364+0.49 66.344+0.21
FT + AdaConG 65.13+0.43 57.40+0.20 67.29+0.12
A

As part of our ablation studies, we evaluate the performance of a heterogeneous teacher-student
framework and present the results in the following Table [5] The table shows that, for all knowl-
edge transfer methods, performance improves when combined with AdaConG, further validating
the effectiveness of our approach across different teacher-student structures.

A.2.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We conduct sensitivity analysis for the design choices of the key hyperparameters, including the
error rate « for split CP and the temperature v of the adaptive weighting w = exp(—~yu). We use
ResNet-110 as the pretrained teacher and ResNet-20 as the student model to train.
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Figure 3: Top-1 accuracy of KD using AdaConG with varying temperature ~ values for adaptive
weighting.
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Figure 4: Top-1 accuracy of KD using AdaConG with varying « values. The results demonstrate
that our approach is robust to the choice of o and consistently outperforms standard KD.

We first analyze the sensitivity of the temperature parameter +y in the adaptive weighting function.
The results are presented in Fig. [3] showing how y affects the student’s Top-1 accuracy with o = 0.1.
Across all tested values, combining KD with AdaConG consistently outperforms standard KD. We
observe that accuracy generally increases as <y increases. This trend is intuitive, when -y is too
small, the exponential decay used for reweighting may not sufficiently suppress the influence of

noisy teacher predictions. We select v = 10.0 as our default setting, since performance tends to not
increase for vy > 10.0.

We then analyze the sensitivity of c. We present the results in Fig. [ showing how « influences
the student’s Top-1 accuracy with v = 10.0. The results demonstrate that our approach is robust
to the choice of a and consistently outperforms standard KD. We choose o = 0.1 which yields
slightly better results. The underlying insight is as follows: when « is small, the prediction set
becomes large, indicating lower teacher confidence. As a result, the teacher’s guidance becomes
less informative, and the student relies more on its own learning, reducing the benefit of distillation,
even when the teacher is accurate. Conversely, when « is large, the prediction set shrinks, making the
teacher appear overly confident. In this case, the student may rely too heavily on potentially noisy
teacher predictions, leading to suboptimal knowledge transfer. We further support this interpretation

by presenting the average size of the prediction set for the teacher model in Fig. [5] which aligns
with our observations.
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Figure 5: Average size of the prediction set for the teacher model.

A.2.4 HARD WEIGHTING FUNCTION

We explore another hard version of weighting function: w = 1if u = 0, w = 0 if u > 0 (Vovk
et al., 2016). We use ResNet-110 as the pretrained teacher and ResNet-20 as the student model to
train. The rationale for the hard weighting function follows (Vovk et al.,[2016)), which aims to ensure
that prediction sets are as close as possible to single-element sets, making them more informative.
This scheme is simple and effective, allowing the student to learn from high-confidence teacher
predictions while filtering out potentially misleading guidance. Experimental results in Table [f]
show that combining this hard weighting scheme with AdaConG outperforms standard knowledge
distillation methods.

Table 6: Top-1 accuracy (%) of various knowledge distillation methods without and with
AdaConG using the hard weighting function. We use A to show performance gain relative to con-
ventional knowledge distillation methods and highlight in orange deltas greater than 0.15, indicating
non-trivial enhancement following the protocol in (Sun et al., 2024).

Approach Accuracy (%)
KD (Hinton, 2015) 57.21
KD + AdaConG 66.52
A

FitNet (Romero et al.,[2014) 64.65
FitNet + AdaConG 66.88
A

PKT (Passalis and Tefas, [2018)) 66.50
PKT + AdaConG 66.83
A

FT (Kim et al,2018) 66.47
FT + AdaConG 66.69
A

LS-KD (Sun et al.,[2024) 63.40
LS-KD + AdaConG 67.11
A

A.2.5 DIRECT USE OF NONCONFORMITY SCORES

We conduct additional experiments to compare the performance of directly using nonconformity
scores versus applying AdaConG with quantile computation, as ablation studies, across different
teacher/student setups with KD (Hinton, 2015). The results are shown in Table [/| reporting the
mean and standard deviation over four repeated runs. As shown, AdaConG outperforms the direct
use of nonconformity scores. This indicates that computing the quantile of the nonconformity scores
is helpful, it is necessary to construct the prediction set for split CP, therefore transferring non
conformalized uncertainty measures into rigorous ones.
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Table 7: Top-1 accuracy (%) on CIFAR-100 for the KD approach, comparing direct use of noncon-
formity scores versus AdaConG using quantile computation. AdaConG outperforms the direct use
of nonconformity scores.

Approach ResNetl110/ResNet20  ResNet56/ResNet20  ResNet32x4/ResNet8x4  VGG13/VGGS8  WRN-40-2/WRN-40-1
Nonconformity score 64.17 4+ 0.41 64.90 +0.28 66.89 + 0.15 65.19 +0.34 68.06 +0.13
AdaConG 66.53 £ 0.55 66.98 +0.25 68.45 £ 0.29 67.53 £0.18 69.31 £0.25

A.2.6 TRAINING DETAILS

For the experiments, we use the stochastic gradient descents (SGD) (Sutskever et al., 2013) as the
optimizer with momentum 0.9 and weight decay 5e — 4. The epoch number is 240 and the batch size
is 128. The initial learning rate is set to 0.01 for MobileNet (Sandler et al., | 2018)/ShuffleNet (Zhang
et al., 2018)) architectures and 0.05 for other architectures. The model is trained on an Nvidia RTX
3090 GPU with AMD Ryzen 9 5900 CPU and 32 GB RAM.

A.2.7 COMPUTATION OVERHEAD

We compare the training cost of our approach AdaConG against standard knowledge distillation
(KD) and KD with MC dropout on an RTX 3090 GPU. For MC dropout,we perform ten forward
passes and average the outputs. Compared to MC dropout, the training cost of using AdaConG is
much lower. Compared to standard KD, the training cost of AdaConG is close, since using split CP
is just a single pass, which adds minimal computation overhead by a latency of 0.08ms per sample.

Table 8: Comparison of computational overhead between standard KD, KD with AdaConG, and
KD with MC dropout.

Approach Time/Epoch (s)

KD 6.87
AdaConG 7.04
MC dropout 44.90

A.3 SEMI-SUPERVISED IMAGE CLASSIFICATION
A.3.1 TRAINING DETAILS

Following the setup in |Sohn et al.| (2020); Zhang et al.|(2021), we use the WRN-28-8 architecture
Zagoruyko, (2016) for the CIFAR-10 and CIFAR-100 datasets |Krizhevsky et al.|(2009), and WRN-
37-2 Zagoruyko| (2016) for the STL-10 dataset Coates et al.| (2011). We adopt stochastic gradient
descent (SGD) Sutskever et al.|(2013)) as the optimizer with a momentum of 0.9. The weight decay
is set to 5 x 10~ for CIFAR-10 and STL-10, and 1 x 102 for CIFAR-100. Models are trained
for 51,200 iterations with a batch size of 64 and an initial learning rate of 0.03. Experiments are
conducted on an Nvidia RTX 3090 GPU with AMD Ryzen 9 5900 CPU and 32 GB RAM.

A.3.2 HYPERPARAMETER SENSITIVITY ANALYSIS

We conduct sensitivity analysis for the design choices of the key hyperparameters, including « for
split CP and the temperature +y for the adaptive weighting w = exp(—~yu). We conduct experiments
using the approach FixMatch (Sohn et al.,2020) combined with AdaConG on the CIFAR-10 dataset
with 40 labels.

We first analyze the sensitivity of the temperature parameter v in the adaptive weighting function.
The results are presented in Fig. [3] showing how  affects the prediction accuracy with o = 0.1.
Across all tested values, accuracy generally increases as +y increases, which is expected, when 7 is
too small, the exponential decay used for reweighting may not sufficiently suppress the influence of
noisy pseudo-labels. We select v = 8.0, as performance begins to slightly decline when v > 8.0.

We then analyze the sensitivity of . The results, shown in Fig[7] illustrate how « affects prediction
accuracy with v = 8.0. FixMatch combined with AdaConG outperforms the standard approach
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Figure 6: Prediction accuracy of FixMatch using AdaConG with varying temperature v values for
adaptive weighting.
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Figure 7: Prediction accuracy of FixMatch using AdaConG with varying « values.

across all values. The accuracy first increases and then decreases as « increases, with the highest
performance achieved at « = 0.05. Therefore, we select « = 0.05. The underlying insights are
similar to those observed in the knowledge distillation experiments.

A.4 IMITATION-GUIDED REINFORCEMENT LEARNING

The environment scenarios shown in Fig. [§] are adapted from (Yu et al., [2024) and developed using
the Minigrid framework (Chevalier-Boisvert et al.| [2024). They are fully observable with discrete
state and action spaces. In each environment, the agent’s state corresponds to its {x, y} coordinates
on the map, and the action space comprises five discrete actions: left, right, up, down, and stay. Each
episode is capped at a maximum of 100 steps. In the Lava 1 and Lava 2 environments, the reward
function is computed as the negative Manhattan distance between the agent’s current position and
the goal, normalized by the maximum step limit of 100. Upon reaching the goal, the agent receives a

. step count : : : :
terminal reward of 10 — 9 x “max sep Stepping into the lava results in a reward of -1, and the episode

terminates immediately. Similarly, in the Door environment, the reward structure follows the same

formulation but without lava, encouraging the agent to minimize its distance to the goal, with the
same terminal reward applied upon successful completion.

We collect expert demonstration data comprising state-action pairs for the Lava 1 and Door envi-
ronments to train imitation learning (IL) models via behavior cloning (Torabi et al., |2018). The
demonstration data are inherently uncertain, as multiple valid actions may exist for the same state,
as illustrated in (Yu et al.,|2024)), introducing ambiguity in the IL. model’s predictions.
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We calibrate both the IL policy 7 and the RL policy 7g, and estimate their prediction uncertainties
ur and ug with g as the identity mapping, o = 0.1, N = 1000 and m = 128, as described in Section

For a given state s, the guidance weight is defined as: w(s) = exp(iuf)((f)()ii‘x(;z)iw - And we

sample the action a € {ay, ar } to take according to the distribution induced by this guidance weight.
To encourage exploration by the RL policy, we define a probability ¢ = min(0.5 Siw] + 0.5%, 1),
where t is the current training step, e is the current episode, Sy and Eio, are the total training
steps and episodes, respectively. At each step, if a random probability p < ¢, the agent takes an
action from the RL policy, otherwise it takes an action based on AdaConG. As ¢ increases over
time, the agent progressively shifts to a learned RL policy, while initially it relies more on the IL

policy through AdaConG to facilitate learning.

A.4.1 ENVIRONMENT DETAILS

(c) Door

(a) Lava 1 (b) Lava 2

Figure 8: Gridworld Environment Scenarios. (a) Lava 1: An autonomous agent (red dot) must
navigate to a target position (diagonal square) while avoiding lava regions. (b) Lava 2: A domain-
shifted variant of Lava 1 with altered environment dynamics and layout. (c) Door: The agent must
traverse a structured environment with doors and walls to reach the designated target position.

A.4.2 TRAINING DETAILS

For the imitation-guided reinforcement learning experiments, we employ a batch size of 512 and
the Adam optimizer (Kingma, [2014)) with an initial learning rate of 3e—4. For each method and
environment scenario, we train for 1000 episodes across 10 different random seeds. The model is
trained on an Nvidia RTX 3090 GPU with AMD Ryzen 9 5900 CPU and 32 GB RAM.

A.5 AUTONOMOUS DRIVING
A.5.1 EXPERIMENTAL SETTINGS

We first define the accuracy with respect to a specific degree threshold 7 as acc, = count(|§ — é\ <
7)/n, following prior works (Shen et al., [2021; 2023; 2024)), where n is the number of test cases;
0 and 6 represent the ground truth and the predicted steer angle, respectively, for 7 € T =
{1.5,3.0,7.5,15.0}. Then we compute the mean accuracy (mAcc) by averaging acc, across dif-
ferent thresholds.

The SullyChen (Chen, 2018) dataset contains approximately 63,000 images, each with a resolution
of 455 x 256, paired with a corresponding steer angle annotation. We show some sample images
in Fig. 0] To generate edge maps from RGB images, we employ DexiNed (Soria et al.| [2023).
To generate depth maps, we utilize DPT (Ranftl et al., 2021). Following (Shen et al.| 2023), we
use channel-level attention to represent the importance of each modality. For the teacher model
fp» we combine the data from different modalities (RGB, depth, and edge) at the channel level
and pass them through an Squeeze-and-Excitation (SE) block (Hu et al., 2018)), followed by a 1x 1
convolution layer to make the channel number to be the same as the main modality RGB. We first
train the teacher model offline. Then we use it to guide the target student model f; training through
knowledge distillation, while the RGB images for f; training has domain shifts compared to the
ones used for f, training. For the details of domain shift, please refer to Appendix

We compute nonconformity score s as the residuals between the predicted and true steer angles from
the calibration set to get the quantile value q;_,, with o = 0.1. A sensitivity analysis for different o
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values is presented in Fig. Then we use it to construct the prediction set C(z) for a given input
RGB image x. We define the teacher’s uncertainty as the size of the prediction set: u(z) = |C(x)].
The dynamic weight is assigned as w(x) = 1 if u(x) < 7, otherwise w(x) = 0, for7 € T. We
set the coefficients Ayg and Agyige in Eq. |§|f0r all knowledge distillation methods following
2023).

A.5.2 DATA PROCESSING

After generating depth and edge maps, we split the dataset into 80% training and 20% testing.
Then we train the multi-modal teacher model on the training data offline. After training the teacher
model, we introduce domain shift to the training data compared to the teacher’s pretraining data.
Specifically, we add Gaussian noise with zero mean and a standard deviation of 0.1 to 30% of the
RGB images, where the noisy samples are selected uniformly at random across the entire training
set to ensure consistent noise distribution. We do not add Gaussian noise to the generated depth
and edge maps, as they are not used for the student model. Then we shuffle the training data and
randomly split it into a 90% training set D, and a 10% calibration set Dy, ensuring that both sets
are drawn from the same underlying distribution. Additionally, the same Gaussian noise is added to
30% of the testing data of RGB images, to form the noisy test set D, which allows us to evaluate
the performance of the models under noise conditions.

Figure 9: Sample images of the real-world SullyChen dataset. SullyChen (Chen, 2018) is a
real-world driving dataset which includes diverse driving scenarios with various road types and
conditions.
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Figure 10: Mean accuracy of KD for steer prediction using AdaConG with varying « values.

A.5.3 HYPERPARAMETER SENSITIVITY ANALYSIS
We conduct a sensitivity analysis for v and present the results in Fig. [I0] illustrating how different

values of « affect the student model’s mean accuracy (mAcc) on the steer prediction task using KD
(2013)). We select o = 0.10 that yields slightly better performance.
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A.5.4 TRAINING DETAILS

For the experiments, we employ a batch size of 32 and the Adam optimizer (Kingmal 2014)) with an
initial learning rate of 1e—3, and a weight decay of 1e — 5. The model is trained on an Nvidia RTX
3090 GPU with AMD Ryzen 9 5900 CPU and 32 GB RAM for 240 epochs.

A.6 DISUCSSIONS AND FUTURE WORK

AdaConG dynamically modulates the influence of guidance signals, allowing models to reduce
reliance on potentially misleading information and thereby enhance learning performance. It also
suggests promising directions for future work. Currently, AdaConG relies on well-defined ground
truth; however, its foundation in conformal prediction allows for a natural extension to settings with
ambiguous or imprecise labels (Caprio et al.,2025). By designing nonconformity scores that capture
label ambiguity, prediction sets can be constructed to reflect varying degrees of uncertainty. This
flexibility enables adaptive weighting even under uncertain supervision. Furthermore, integrating
concepts from Imprecise Probabilistic Machine Learning, such as credal sets (Caprio et al.| [2024)
and imprecise probabilities (Dutta et al. [2025)), along with strategies from Active Learning and
Continual Learning (Lu et al.}|[2024)), could further enhance AdaConG’s capacity to manage complex
uncertainty.
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