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Abstract

Aspect Sentiment Triplet Extraction (ASTE)001
aims to co-extract the sentiment triplets in a002
given corpus. Existing approaches within the003
pretraining-finetuning paradigm tend to either004
meticulously craft complex tagging schemes005
and classification heads, or incorporate exter-006
nal semantic augmentation to enhance perfor-007
mance. In this study, we, for the first time,008
re-evaluate the redundancy in tagging schemes009
and the internal enhancement in pretrained rep-010
resentations. We propose a method to improve011
and utilize pretrained representations by in-012
tegrating a minimalist tagging scheme and a013
novel token-level contrastive learning strategy.014
The proposed approach demonstrates compara-015
ble or superior performance compared to state-016
of-the-art techniques while featuring a more017
compact design and reduced computational018
overhead. Additionally, we are the first to for-019
mally evaluate GPT-4’s performance in few-020
shot learning and Chain-of-Thought scenarios021
for this task. The results demonstrate that the022
pretraining-finetuning paradigm remains highly023
effective even in the era of large language mod-024
els.025

1 Introduction026

Aspect-Based Sentiment Analysis (ABSA) aims027

to jointly extract opinion terms, aspect terms (tar-028

gets of the corresponding opinions), and their spe-029

cific sentiment polarities in a given corpus. In030

the milestone research by Peng et al. (2020), the031

compound ABSA subtasks were consolidated into032

the Aspect Sentiment Triplet Extraction (ASTE)033

task framework. For each input corpus, ASTE034

outputs triplets in the form (Aspect, Opinion,035

Polarity), where the Aspect term is the target or036

entity being discussed, the Opinion term is the sen-037

timent or opinion expressed about the aspect, and038

Polarity indicates whether the opinion is positive,039

negative, or neutral. Figure 1 illustrates the ASTE040

task.041

Input:

(Bob Dylan, great, Positive);
(rocker, great, Positive);
(CDs, broken, Negative).

Output:

brokengreat CDsBob Dylan

POS. POS. NEG.

is a rocker , despite the .

Aspect Term
Positive Opinion Term
Negative Opinion Term

Figure 1: An illustration for ASTE, given the sentence
"Bob Dylan is a great rocker, despite the broken CDs.",
there are three triplets to be extracted: (Bob Dylan,
great, positive), (rocker, great, positive),
(CDs, broken, negative).

As an emerging fine-grained sentiment analysis 042

initiative, ASTE offers a more detailed and nuanced 043

understanding of sentiments in text compared to 044

traditional methods that provide only an overall sen- 045

timent score (Peng et al., 2020). This aspect-level 046

structured approach is inherently more challenging. 047

Previous approaches to ASTE have generally fol- 048

lowed two paradigms: Pipeline methods and Joint 049

Tagging methods (Zhang et al., 2022a). Pipeline 050

methods decompose the ASTE task into multi- 051

ple sequential subtasks, often suffering from er- 052

ror propagation (Xu et al., 2020). Recent progress 053

in Machine Reading Comprehension (MRC) also 054

contributes to this paradigm (Zhai et al., 2022; 055

Mao et al., 2021; Zou et al., 2024; Chen et al., 056

2021b). Joint tagging methods adopt a unified tag- 057

ging scheme to extract all triplet elements in one 058

stage (Xu et al., 2020). The key idea is to design a 059

tagging scheme (Zheng et al., 2017) that simulta- 060

neously predicts aspect terms, opinion terms, and 061

sentiment polarities. Further developments have 062

introduced a Grid Tagging Scheme (GTS) to rep- 063

resent the triplets on a unique 2D table(Wu et al., 064

2020a; Zhang et al., 2022b; Chen et al., 2021b, 065

2022; Fei et al., 2022). 066

Recent advances in these approaches have been 067

focusing on the classification head design (Chen 068

et al., 2022; Zhang et al., 2022b) and external se- 069

mantic information enhancing (Chen et al., 2021b, 070
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2022; Fei et al., 2022; Jiang et al., 2023; Iswari071

et al., 2024). However, existing research has ne-072

glected the synergistic optimization within the joint073

tagging scheme and the integration of contextual074

word representations. In this research, we propose075

a method to effectively improve and utilize the rep-076

resentation capabilities of pretrained encoders in077

ABSA by integrating a minimalist tagging scheme078

and a novel token-level contrastive learning ap-079

proach.080

The proposed approach demonstrates compara-081

ble or superior performance in comparison to state-082

of-the-art techniques, while featuring a more com-083

pact design and reduced computational overhead.084

Notably, even in the era of Large Language Models085

(LLMs), our method exhibits superior effectiveness086

compared to GPT 3.5 and GPT 4 in both few-shot087

and Chain-of-Thought (Wei et al., 2022) learning088

scenarios. This study provides valuable insights for089

the advancement of ASTE techniques within the090

paradigm of LLMs. Overall, our contributions are091

summarized as follows:092

1. Minimalist Grid Tagging Scheme: We pro-093

pose a novel minimalist joint tagging scheme094

that uses the fewest label classes to date.095

2. Token-level Contrastive Learning Strategy:096

We introduce a token-level contrastive learn-097

ing framework that enhances the contextual098

embeddings produced by the pretrained model.099

This framework is seamlessly geared towards100

our minimalist Grid Tagging Scheme (GTS)101

to effectively address the ASTE task.102

3. Comprehensive Evaluation: We conduct ex-103

tensive experiments and evaluations on mul-104

tiple benchmark datasets, demonstrating the105

effectiveness and superiority of our proposed106

methods over existing approaches. Notably,107

we are the first to reveal GPT-4’s performance108

on this task, showcasing our method’s supe-109

rior efficiency and effectiveness in the era of110

large language models.111

2 Literature Review112

2.1 ASTE Paradigms113

Peng et al. (2020) proposed a pipeline method114

that divides ASTE tasks into two stages: initially115

extracting (Aspect, Opinion) pairs and subse-116

quently predicting sentiment polarity. However,117

pipeline methods typically suffer from error prop-118

agation issues (Xu et al., 2020). Recent pipeline119

methods treat ASTE as a Machine Reading Com- 120

prehension problem, and develops seq2seq meth- 121

ods such as machine reading comprehension (Zhai 122

et al., 2022; Mao et al., 2021; Zou et al., 2024; 123

Chen et al., 2021b). Joint Tagging strategies are 124

remarked by certain Unified Tagging Scheme de- 125

signs, where elements of a triplet can be extracted 126

simultaneously. ET (Xu et al., 2020) introduced a 127

position-aware tagging scheme with a conditional 128

random field module, effectively addressing span 129

overlapping issues. Recent joint paradigm methods 130

have refined the ASTE task with the development 131

of proficient Grid Tagging Schemes (GTS). 132

2.2 Grid Tagging Scheme 133

Wu et al. (2020a) pioneered the adoption of a 134

grid tagging scheme (GTS) for ASTE, yielding 135

substantial performance gains. Subsequent re- 136

search refined and enhanced GTS. BDTF (Zhang 137

et al., 2022b) designed a boundary-driven tagging 138

scheme, effectively reducing boundary prediction 139

errors. Alternative research augmented GTS by 140

integrating external semantic information as struc- 141

tured knowledge into their models. S3E2 (Chen 142

et al., 2021b) retained the GTS tagging scheme 143

while introducing novel semantic and syntactic 144

enhancement modules between word embedding 145

outputs and the tagging scheme. EMGCN (Chen 146

et al., 2022) incorporated external knowledge from 147

four areas—Part-of-Speech Combination, Syntac- 148

tic Dependency Type, Tree-based Distance, and 149

Relative Position Distance—through an exogenous 150

hard-encoding strategy. SyMux (Fei et al., 2022) 151

contributed a unified tagging scheme capable of 152

handling all ABSA subtasks by integrating insights 153

from GCN, syntax encoders, and representation 154

multiplexing. 155

2.3 Contrastive Learning 156

While contrastive learning has gained popularity 157

in diverse NLP domains (Wu et al., 2020b; Giorgi 158

et al., 2021; Gao et al., 2021; Zhang et al., 2021), 159

its application to ASTE remains relatively unex- 160

plored. Ye et al. (2021) adopts contrastive learning 161

into triplet extraction in a generative fashion. Wang 162

et al. (2022) takes contrastive learning as a data 163

augmentation approach. Yang et al. (2023) pro- 164

posed an enhancement approach in pairing with 165

two separate encoders. 166
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3 Method167

3.1 Overall Framework168

An overall description of the training process can169

be found in Figure 2. Basically our design can170

be break down into the Minimalist Grid Tagging171

Scheme (GTS) and the Token-level Contrastive172

Learning Strategy.173

Tokenize the input sequence S using the Tok-174

enizer Tk and pass the tokenized sequence through175

the Pretrained Language Model PLM (such as176

BERT) to obtain contextualized representations h:177

h = PLM(Tk (S)) . (1)178

Then, the inference phase involves with forming179

the Minimalist GTS and predicting the correspond-180

ing class for each cell. Once the GTS is predicted, it181

can be decoded by the GTS decoder into the triplets182

in natural language form. The training phase ad-183

ditionally introduces a novel contrastive learning184

strategy, where similar and dissimilar pairs of con-185

textual representations are distinguished. The con-186

trastive loss is then weighted and summed with187

the tagging loss, which is the classification loss188

between the predicted and ground truth tagging189

schemes.190

Our research benefits from the following two191

closely intertwined aspects: 1) The use of the Min-192

imalist GTS simplifies the learning process by re-193

ducing the number of labels, facilitating faster con-194

vergence and seamlessly gearing the contrastive195

learning. 2) The token-level contrastive learning196

enhances the model’s ability to distinguish between197

related and unrelated elements within the input se-198

quence, thereby improving the overall accuracy of199

the tagging system. For a more detailed description200

for our algorithm pipeline, see the pseudo code in201

Appendix A.1.202

3.2 Minimalist Grid Tagging Scheme203

3.2.1 Tagging Scheme Design204

As defined by Section 3.1, once an input sentence205

is encoded into a sequence of contextual represen-206

tations h = {h1, h2, ..., h|h|}, we form a |h| × |h|207

matrix, that is, our tagging scheme tag|h|×|h|. As208

shown in Figure 3, on the rows we mark Aspect209

tokens by yellow and the columns we mark Opin-210

ion tokens by green (positive) and blue (negative).211

Then the each intersection of these marked rows212

and columns can uniquely represent an identical213

sentiment triplet. Thus, each such triplet can be214

noted by a 2-D area (submatirx) in the matrix,215
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Input sentence:

Output triplets:Loss function:

Minimalist GTSCosine Similarity

Contrastive Mask

Figure 2: An overview of the proposed method, where
the “Encoder” denotes for the sequential combination of
a Tokenizer and a Pretrained Language Model (PLM).

where Sentiment Polarity is indicated with POS. 216

(positive), NEU. (neutral), or NEG. (negative) in the 217

top-left corner cell of the area, while CTD. indicates 218

the continuation of the pairing relationship within 219

the same region. MSK. (mask) on the diagonal rep- 220

resents masked cells that are not involved in the 221

computation. In Figure 3, an example sentence is 222

tokenized and tagged. 223

By defining our grid tagging scheme, we frame 224

the triplet extraction problem as a 5-class classi- 225

fication task, using the fewest number of labels 226

known to date. In Appendices A.3 - A.5, we pro- 227

vide rigorous proof and heuristic insights to justify 228

our design and ensure its rationality. 229

3.2.2 Tagging Loss 230

We adopt a tagging loss to guide the neural network 231

learning. 232

We concatenate the representation with its trans- 233

posed form to construct a matrix. Then, we ap- 234

ply the classification head Cls to the embeddings, 235

followed by the softmax function, to obtain the 236

predicted classification probabilities for each cell: 237

ˆtagi,j = softmax(Cls(hi;hT
j )), i, j = 1, ..., |h|.

(2) 238

The focal loss (Lin et al., 2017) is employed to 239

mitigate class imbalance by placing greater em- 240

phasis on examples that are difficult to classify 241

correctly. This is achieved by down-weighting the 242

loss for well-classified instances and focusing more 243

on misclassified instances. The formula for focal 244
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Bob Dylan is great rock #er but brok #en CD #s

Bob MSK. POS.

Dylan MSK. CTD.

is MSK.

great MSK.

rock POS. MSK.

#er CTD MSK.

but MSK.

brok MSK.

#en MSK.

CD NEG. CTD MSK.

#s CTD CTD MSK.

Figure 3: The grid tagging scheme employs the fewest
classes of labels while completely handle all the triplet
cases without conflict, overlap or omission. Each area
circled in red dashed lines corresponds to a triplets. For
example, intersection area between columns of "broken"
and rows of "CDs" is marked as negative, with NEG. on
its top-left cell and CTD. for others. It is worth mention-
ing that the blank cells in the matrix are labeled as an
additional class but are omitted for visual simplicity.

loss L is as follows:245

Ltag = − 1

|h|2

|h|∑
i,j=1

αtagi,j (1− tagt)
γ log(tagt),

(3)246

where α is a weighting factor for balancing the247

importance of tags, γ is a focusing parameter that248

increases the weight of hard-to-predict tags, and249

tagi,j and tagt represent the ground truth label and250

the predicted probability for the true label at posi-251

tion (i, j), respectively:252

tagt = ˆtagi,j;tagi,j (4)253

3.3 Contrstive Learning Strategy254

3.3.1 Contrastive Learning Label Matrix255

Contrastive learning is an unsupervised learning256

method that aims to learn effective feature embed-257

dings by pulling together similar pairs of samples258

and pushing apart dissimilar pairs. In our design,259

we construct a label matrix where each cell is an-260

notated by either PULL or PUSH, which means261

to make the representations closer among tokens262

within the same class and farther between that of263

different classes. See an illustration of this strategy264

in Figure 4.265

Bob Dylan is great rock #er but brok #en CD #s

Bob MSK. PULL PUSH PUSH PULL PULL PUSH PUSH PUSH PULL PULL

Dylan MSK. MSK. PUSH PUSH PULL PULL PUSH PUSH PUSH PULL PULL

is MSK. MSK. MSK. PUSH PUSH PUSH PULL PUSH PUSH PUSH PUSH

great MSK. MSK. MSK. MSK. PUSH PUSH PUSH PUSH PUSH PUSH PUSH

rock MSK. MSK. MSK. MSK. MSK. PULL PUSH PUSH PUSH PULL PULL

#er MSK. MSK. MSK. MSK. MSK. MSK. PUSH PUSH PUSH PULL PULL

but MSK. MSK. MSK. MSK. MSK. MSK. MSK. PUSH PUSH PUSH PUSH

brok MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. PULL PUSH PUSH

#en MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. PUSH PUSH

CD MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. PULL

#s MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK.

Figure 4: An illustration for the “Contrastive Mask”.
Each token is paired with every other token, where PULL
denotes positive sample pairs, indicating that the tokens
belong to the same category and should be pulled closer
together, while PUSH denotes negative sample pairs, in-
dicating that the tokens belong to different categories
and should be pushed apart. The lower triangular part
of the matrix, marked by MSK. are masked cells that are
not involved in the computation. For example, "Bob"
and "Dylan" are marked as a positive sample pair with
PULL, indicating similarity, while "Bob" and "is" are
marked as a negative sample pair with PUSH, indicating
dissimilarity.

3.3.2 Objective Function 266

The commonly used InfoNCE (Information Noise- 267

Contrastive Estimation) loss function (van den 268

Oord et al., 2019) is employed: 269

Lcontrast 270

= −
N∑
i=1

log
exp(sim(hi,h+

i ))

exp(sim(hi,h+
i )) +

M∑
j=1

exp(sim(hi,h−
i ))

,

(5)

271

where h+
i / h−

j represents the positive / negative 272

sample embedding with the anchor respectively. 273

sim(·, ·) denotes the similarity function, which is 274

calculated by the cosine similarity: 275

sim(hi,hi) =
hi · hi

∥hi∥∥hi∥
(6) 276

3.4 Overall Loss Function 277

The overall loss L can be formulated as a weighted 278

sum of two individual loss functions: the tagging 279

loss Ltag and the contrastive loss Lcontrast: 280

L = Ltag + βLcontrast, (7) 281
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where β is a coefficient for balancing the differ-282

ent parts of the loss. This combination allows for283

balancing the influence of each component in the284

training process.285

4 Experiments286

4.1 Implementation Details287

All experiments were conducted on a single RTX288

2080 Ti. The best model weight on the devel-289

opment set is saved and then evaluated on the290

test set. For the PLM encoder, the pretrained291

weights bert_base_uncased and roberta_base292

are downloaded from (Wolf et al., 2020). GPT 3.5-293

Turbo and GPT 4 are implemented using OpenAI294

API (OpenAI, 2024). The learning rate is 1× 10−5295

for the PLM encoder, and 1× 10−3 for the classifi-296

cation head.297

4.2 Datasets298

We evaluate our method on two canonical ASTE299

datasets derived from the SemEval Challenges300

(Pontiki et al., 2014, 2015, 2016). These datasets301

serve as benchmarks in the majority of Aspect-302

based Sentiment Analysis (ABSA) research. The303

first dataset, denoted as D1, is the Aspect-oriented304

Fine-grained Opinion Extraction (AFOE) dataset305

introduced by (Wu et al., 2020a). The second306

dataset, denoted as D2, is a refined version by (Xu307

et al., 2020), building upon the work of (Peng et al.,308

2020). Further details are provided in Appendix309

A.2.310

4.3 Baselines311

We evaluate our method against various techniques312

including pipeline, sequence-labeling, seq2seq,313

table-filling and LLM-based approaches. Detailed314

descriptions for each method can be found in the315

Appendix A.6.316

4.4 ASTE Performance317

4.4.1 Comparison to Existing Methods318

We evaluate ASTE performance using the widely319

accepted (Precision, Recall, F1) metrics. Re-320

sults of the dataset D2 are shown in Table 1, while321

the results of D1 are presented in Appendix Table322

8. The best results are highlighted in bold, and the323

second-best results are underscored. Our proposed324

method consistently achieves state-of-the-art per-325

formance or ranks second in most evaluated cases.326

Notably, on dataset D1, the proposed method327

achieves a substantial 3.08% improvement in F1328

score on the 14Lap subset. This improvement is 329

particularly significant given that the highest score 330

on this subset is the lowest among all datasets, 331

showcasing our method’s effectiveness in handling 332

challenging instances. Moreover, on the 14Res sub- 333

set, our F1 score exceeds 76.00, which, to the best 334

of our knowledge, is the highest reported perfor- 335

mance. For dataset D2, our method outperforms 336

all state-of-the-art approaches by over 1 percent- 337

age point on the 14Res, 14Lap, and 16Res subsets. 338

Only on the 16Res subset does the BDTF method 339

(Zhang et al., 2022b) achieve a slightly better per- 340

formance. 341

4.4.2 Comparison to GPT 342

Our proposed method is based on the Pretrain- 343

Finetuning paradigm, which is increasingly chal- 344

lenged by large language models (LLMs) (Kojima 345

et al., 2022; Wei et al., 2021). It is concerned about 346

how the advancing capabilities of LLMs might im- 347

pact the ASTE task. 348

When compared to advanced LLMs, the perfor- 349

mance and computational efficiency of our method 350

stand out. As shown in Tables 8, 1, and 9, even the 351

state-of-the-art LLM, GPT-4, with its staggering 352

number of parameters, does not achieve satisfac- 353

tory results for ASTE, even with few-shot learning 354

and Chain-of-Thought (CoT) (Wei et al., 2022) en- 355

hancement. Additionally, using LLMs introduces 356

significant computational overhead. For more in- 357

formation on experiment setting see Appendix A.9. 358

For detailed results see Table 1, 12, Appendix A.8 359

and Appendix A.10. Note that, fine-tuning LLMs 360

may offer some improvements, but it also risks 361

catastrophic forgetting (Shi et al., 2024) and is left 362

for future work. 363

To our knowledge, this is the first formal study 364

to evaluate GPT-4’s performance on these ASTE 365

datasets, providing valuable insights for future re- 366

search. 367

4.5 Performance on Other ABSA Tasks 368

Our method can also effectively handle other 369

ABSA subtasks, including Aspect Extraction (AE), 370

Opinion Extraction (OE), and Aspect Opinion 371

Pair Extraction (AOPE). AE aims to extract all 372

the (Aspect) terms, OE aims to extract all the 373

Opinion terms, and AOPE aims to extract all the 374

(Aspect, Opinion) pairs from raw text. The re- 375

sults for these tasks are presented in Appendix A.7, 376

where our method consistently achieves best F1- 377

scores across nearly all tasks. 378
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Methods
14Res 14Lap 15Res 16Res

P R F1 P R F1 P R F1 P R F1

Pipeline
Two-stage♮ (Peng et al., 2020) 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21

Li-unified-R+PD♯ (Peng et al., 2020) 40.56 44.28 42.34 41.04 67.35 51.00 44.72 51.39 47.82 37.33 54.51 44.31

Sequence-tagging
Span-BART (Yan et al., 2021) 65.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.60 68.68 67.62

JET (Xu et al., 2020) 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83

Seq2seq
Dual-MRC (Mao et al., 2021) 71.55 69.14 70.32 57.39 53.88 55.58 63.78 51.87 57.21 68.60 66.24 67.40
BMRC† (Chen et al., 2021a) 72.17 65.43 68.64 65.91 52.15 58.18 62.48 55.55 58.79 69.87 65.68 67.35

COM-MRC (Zhai et al., 2022) 75.46 68.91 72.01 62.35 58.16 60.17 68.35 61.24 64.53 71.55 71.59 71.57
Triple-MRC (Zou et al., 2024) - - 72.45 - - 60.72 - - 62.86 - - 68.65

Table-filling
GTS (Wu et al., 2020a) 67.76 67.29 67.50 57.82 51.32 54.36 62.59 57.94 60.15 66.08 66.91 67.93

Double-encoder (Jing et al., 2021) 67.95 71.23 69.55 62.12 56.38 59.11 58.55 60.00 59.27 70.65 70.23 70.44
EMC-GCN (Chen et al., 2022) 71.21 72.39 71.78 61.70 56.26 58.81 61.54 62.47 61.93 65.62 71.30 68.33

BDTF (Zhang et al., 2022b) 75.53 73.24 74.35 68.94 55.97 61.74 68.76 63.71 66.12 71.44 73.13 72.27
STAGE-1D (Liang et al., 2023) 79.54 68.47 73.58 71.48 53.97 61.49 72.05 58.23 64.37 78.38 69.10 73.45
STAGE-2D (Liang et al., 2023) 78.51 69.3 73.61 70.56 55.16 61.88 72.33 58.93 64.94 77.67 68.44 72.75
STAGE-3D (Liang et al., 2023) 78.58 69.58 73.76 71.98 53.86 61.58 73.63 57.9 64.79 76.67 70.12 73.24

DGCNAP (Li et al., 2023) 72.90 68.69 70.72 62.02 53.79 57.57 62.23 60.21 61.19 69.75 69.44 69.58

LLM-based
GPT-3.5-turbo zero-shot 44.88 55.13 49.48 30.04 41.04 34.69 36.02 53.40 43.02 39.92 57.78 47.22
GPT-3.5-turbo few-shots 51.51 65.19 57.55 39.79 50.09 44.35 43.34 63.09 51.39 51.12 71.01 59.45

GPT-3.5-turbo CoT 48.47 59.05 53.24 30.48 40.30 34.71 39.51 56.70 46.57 44.03 63.81 52.10
GPT-3.5-turbo CoT+few-shots 49.41 59.15 53.85 33.78 42.33 37.57 39.02 56.08 46.02 46.49 66.93 54.86

GPT-4o zero-shot 32.99 38.13 35.37 17.81 22.55 19.90 27.85 37.73 32.05 32.17 43.00 36.80
GPT-4o few-shots 54.11 66.20 59.55 38.23 48.61 42.80 45.57 60.41 51.95 52.90 71.01 60.63

GPT-4o CoT 41.21 53.32 46.49 26.98 37.71 31.46 33.07 50.93 40.10 39.14 58.17 46.79
GPT-4o CoT+few-shots 46.81 59.86 52.54 29.71 40.85 34.40 35.08 53.81 42.47 41.53 61.09 49.45

Ours
MiniConGTS 76.1 75.08 75.59 66.82 60.68 63.61 66.50 63.86 65.15 75.52 74.14 74.83

Table 1: Experimental results on D2 (Xu et al., 2020). The best results are highlighted in bold, while the second
best results are underscored. The results with † are retrieved from (Yu Bai Jian et al., 2021). The results with ♮ are
retrieved from (Xu et al., 2020). The results with ♯ are retrieved from (Peng et al., 2020). The results with ‡ are
retrieved from (Mao et al., 2021).

Models
D1 D2

14Res 14Lap 15Res 16Res 14Res 14Lap 15Res 16Res

MiniConGTS 76.00 64.07 65.43 71.80 75.59 63.61 65.15 74.83

w/o. RoBERTa 74.12 63.18 62.95 69.41 72.66 62.15 63.25 70.71
∆F_1 -1.88 -0.89 -2.48 -2.39 -2.93 -1.46 -1.90 -4.12

w/o. contr 72.61 61.94 58.14 68.16 71.72 61.49 58.11 68.03
∆F_1 -3.39 -2.13 -7.29 -3.64 -3.87 -2.12 -7.04 -6.80

w/o. tag 67.78 54.98 60.75 62.62 65.83 54.98 58.73 67.63
∆F_1 -8.22 -9.09 -4.68 -9.18 -9.76 -8.63 -6.42 -7.20

Table 2: Ablation study on F1, where “w/o. RoBERTa”
denotes “Replace RoBERTa with bert-base-uncased”,
“w/o. contr” denotes without the contrastive learning
mechanism, and “w/o. tag” denotes “replace our tagging
scheme with a baseline”.

Method Num Tags Features Enhancing

GTS (Wu et al., 2020a) 6 None
Double-encoder (Jing et al., 2021) 9 None

EMC-GCN (Chen et al., 2022) 10 4 Groups
BDTF (Zhang et al., 2022b) 2× 2× 3 None
STAGE (Liang et al., 2023) 2× 2× 4 None
DGCNAP (Li et al., 2023) 6 POS-tagging

Ours 5 None

Table 3: Tagging Scheme Comparison.

5 Analysis 379

5.1 Ablation Study 380

In this section, we conduct a series of ablation 381

experiments to demonstrate the superiority of our 382

method and eliminate potential confounding fac- 383

tors. Experiments were conducted on the D1 and 384

D2 datasets, using F1 scores as the comparison 385

metric. 386

Encoder. We replaced the RoBERTa encoder with 387

BERT, resulting in a slight decrease in F1 scores 388

on both datasets, although our method still outper- 389

formed most other approaches. 390

Contrastive Learning. We deactivated the con- 391

trastive mechanism in our method (denoted as “w/o. 392

contr”) by setting the coefficient of the contrastive 393

loss to 0. The results in Table 2 illustrate a signif- 394

icant F1-score decrease of 2.12 ∼ 7.29% in both 395

datasets. 396

Tagging Scheme. We substituted our proposed 397

scheme with the conventional GTS tagging scheme 398
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(Wu et al., 2020a), resulting in a substantial perfor-399

mance decline (Table 2) of 4.68 ∼ 9.18%. This400

indicates that the contrastive learning methods,401

within our framework, is of strong reliance on an402

appropriate tagging scheme. This reinforces the403

effectiveness of our compact yet impactful tagging404

scheme.405

5.2 Effect of Contrastive Learning406

In Figure 5, an example is shown illustrating407

how contrastive learning improves representation.408

The right upper-row subplots show the represen-409

tation outputs with contrastive learning, while the410

lower row subplots display that without contrastive411

learning. Principal Component Analysis (PCA)412

(Maćkiewicz and Ratajczak, 1993) is used to re-413

duce the vector dimensions to three for visualiza-414

tion purposes. The distributions indicate that con-415

trastive learning significantly enhances the repre-416

sentations, with similar classes of hidden word rep-417

resentations becoming more tightly clustered and418

dissimilar classes more distinct.419

5.3 Efficiency Comparison420

We compared the computational efficiency of Mini-421

ConGTS with other approaches, including baseline422

ASTE methods and LLMs, on an ASTE task. Eval-423

uation metrics such as memory usage, number of424

parameters, epoch/inference time, and F1 scores425

are recorded in Table 4. Our approach not only re-426

quires less memory usage for higher performance427

compared to traditional ASTE methods but also428

offers much faster runtime even using a relatively429

lower-cost GPU.430

Table 3 provides another comparative analysis431

of tagging schemes. Our method has a compact432

design with the fewest classes of labels. What’s433

more, compared with other SOTA baselines, our434

method does not rely on any additional linguistic435

information enhancement.436

5.4 Case Study437

A case analysis is presented in Table 12, where the438

proposed method demonstrates solid performance.439

Despite minor faults in missing the full terms, it440

exhibits a profound understanding of the case.441

It is quite interesting to investigate the GPT’s er-442

ror cases. The findings reveal that the performance443

of the GPT model is mixed - while it is able to444

identify more aspect-opinion (A-O) pairs than the445

ground truth annotations in some cases, this comes446

at the cost of a decreased precision. This suggests447

that the GPT model may be “over-interpreting” the 448

input, making inferences that go beyond what is 449

strictly supported by the text. Furthermore, the 450

GPT model appears to be overly sensitive to the 451

presence of adverbs (such as “very”, “a bit”, etc.) 452

in the input. This sensitivity manifests in the model 453

frequently adding or removing adverbs when ex- 454

tracting the Opinion components, which further 455

contributes to a decrease in the overall accuracy of 456

the ABSA task. 457

These findings highlight the importance of de- 458

veloping ABSA models that can strike the right bal- 459

ance between extracting all relevant aspect-opinion 460

pairs, while still maintaining a high degree of pre- 461

cision. The effective use of encoding appears to 462

be a promising direction for achieving this balance 463

and advancing the state-of-the-art in Aspect-Based 464

Sentiment Analysis. 465

6 Conclusion 466

In this work, we have introduced an elegant and 467

efficient framework for ASTE, achieving SOTA 468

performance. Our approach is built upon two ef- 469

fective components: a new tagging scheme and a 470

novel token-level contrastive learning implementa- 471

tion. The ablation study demonstrates the synergy 472

between these components, reducing the need for 473

complex model designs and external information 474

enhancements. 475

7 Limitations 476

Our method is based on a 2D-matrix tagging 477

scheme, where the time complexity for decod- 478

ing, given the input corpus length N , is O(N2). 479

This may be unacceptable when N is too large. 480

Additionally, although we have demonstrated our 481

method on commonly used classic English datasets, 482

it should be tested on more natural corpora and for 483

its cross-language capability. 484

8 Ethics & Potential Risks Statement 485

In our experiments, we used widely accepted 486

datasets focused on e-commerce reviews, which 487

have a lower risk of offensive content. We scruti- 488

nized the data for biases against gender, race, and 489

marginalized groups. Despite these precautions, 490

our model might still generate potentially offen- 491

sive sentiment assessments if used inappropriately, 492

such as evaluating ethical or moral statements. We 493

reserve the right to limit or modify the use of our 494

technology to prevent misuse. 495
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Pretrained Ft. + cl epoch 50 Ft. + cl epoch 100 Ft. + cl epoch 200

Ft. w/o. cl epoch 50 Ft. w/o. cl epoch 100 Ft. w/o. cl epoch 200

Notation

“Ft.” = Finetune

“+” = with

“w/o.” = without

“cl” = contrastive learning

Figure 5: A plot of the hidden word representation based on the D1 14Res dataset, where the dimension is reduced
to 3. “Pretrained” refers to the representation output by official released model. We finetune the pretrained model
with and without contrastive learning strategy respectively.

Model Memory Num Params Epoch Time♯ Inf Time F1(%) Device

Span-ASTE (Xu et al., 2021) 3.173 GB♭ - 108s - 71.62 Tesla v100 32GB
BDTF (Zhang et al., 2022b) 8.103 GB♭ >0.18B♭ 135s - 74.73 Tesla v100 32GB

GPT 3.5-Turbo (OpenAI, 2024) >80 GB♮ 175B† - 0.83s 49.48 OpenAI API
GPT 4 (OpenAI, 2024) >80 GB♮ 1760B‡ - 1.56s 35.37 OpenAI API

Ours 7.11GB 0.12B 10s 0.01s 76.00 2080 Ti 11GB

Table 4: An efficiency comparison, where † is evaluated by (Gao, 2021) and later confirmed by OpenAI (Wikipedia,
2024), ‡ is estimated by (Schreiner, 2023), ♭ is cited from (Zhang et al., 2022b), and ♮ is reported by (Wikipedia,
2024). ♯ Epoch Time refers to the training time per epoch on the training set.
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A Appendix 730

A.1 Pseudo-code for the training process. 731

See Algorithm 1. 732

A.2 Descriptive Statistics of The Datasets 733

See Table 5. 734

A.3 Rethinking the GTS 735

Rethinking the 2D tagging scheme: 736

Lemma 1. Specific to the ASTE task, when we 737

take it as a 2D-labeling problem, we are to 1) find 738

a set of tagging strategies to establish a 1-1 map 739

between each triplet and its corresponding tagging 740

matrix. See the proof in Appendix Proof 1. 741

Lemma 2. In a 2D-tagging for ASTE, at least three 742

basic goals must be met: 1) correctly identifying 743
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Algorithm 1 .
Modules:
Input:

Raw sentences: S|S|;
Ground truth triplets: T gt

|T | , where
Tk = (Ak, Ok, Sk), k ∈ {1, 2, ..., |T |};

classes of contrasted labels: C.
Output:

Predicted Triplets: T pred
|T | ;

Metric: Precision,Recall ,F1 .
Algorithm:
Repeat for N epochs:
1: Hidden word representation:

H|H| = PLMsEncoder(S|S|);
2: Tensor Operations:

H|H|×|H| = expand(H|H|),
HT

|H|×|H| = H|H|×|H|.transpose();
3: Similarity matrix:

Sim|H|×|H| = −(H|H|×|H|−HT
|H|×|H|)◦(H|H|×|H|−HT

|H|×|H|)

where
Simi,j = −∥Hi −Hj∥2

and ◦ denotes the Hadamard product.
4: Contrastive Mask matrix: M|H|×|H|, where Mi,j = 1

if Hi,mathcalHj ∈ Cp, p ∈ 1, 2, 3 else −1;
5: Contrastive loss:

Lcontrastive =∑|H|
i=1

∑|H|
j=1

(
Sim|H|×|H| ◦M|H|×|H|

)
i,j
;

6: Predicted tagging matrix:
Tagpred

|H|×|H| = ClsHead(H|H|×|H|,HT
|H|×|H|);

7: Focal loss:
Lfocal = FocalLoss(Tagpred

|H|×|H|,Tag
gt
|H|×|H|);

8: Weighted Loss: L = Lfocal + αLcontrastive.
9: Backward propagation.

Predicted triplets:
T pred
|T | = TaggingDecoder(Tagpred

|H|×|H|)

Metric:
Precision,Recall ,F1 = Metric(T pred

|T | , T gt
|T |)

the (Aspect, Opinion) pairs, 2) correctly classi-744

fying the sentiment polarity of the pair based on745

the context, and 3) avoiding boundary errors, such746

as overlapping1, confusion2, and conflict3. See the747

proof in Appendix Proof 2.748

Theorem 1. From insight of the above lemmas, it749

can be concluded that using enough (that is, follow-750

ing the 1-1 map properties in Lemma 1, as well as751

avoiding the issues in Lemma 2) labels will make752

it a theoretically ensured tagging scheme.753

Assumption 1. Ceteris paribus, for a specific clas-754

1It occurs when one single word belongs to multiple
classes in different triplets.

2It occurs when there is a lack of location restrictions
so that multiple neighbored candidates can not be uniquely
distinguished.

3It occurs when one single word is composed of multiple
tokens, and the predict gives predictions that are not aligned
with the word span.

Datasets #S #A #O #S1 #S2 #S3 #T

14Res

D1

Train 1259 1008 849 1456 164 446 2066
Dev 315 358 321 352 44 93 489
Test 493 591 433 651 59 141 851

D2

Train 1266 986 844 1692 166 480 2338
Dev 310 396 307 404 54 119 577
Test 492 579 437 773 66 155 994

14Lap

D1

Train 899 731 693 691 107 466 1264
Dev 225 303 237 173 42 118 333
Test 332 411 330 305 62 101 468

D2

Train 906 733 695 817 126 517 1460
Dev 219 268 237 169 36 141 346
Test 328 400 329 364 63 116 543

15Res

D1

Train 603 585 485 668 24 179 871
Dev 151 182 161 156 8 41 205
Test 325 353 307 293 19 124 436

D2

Train 605 582 462 783 25 205 1013
Dev 148 191 183 185 11 53 249
Test 322 347 310 317 25 143 485

16Res

D1

Train 863 775 602 890 43 280 1213
Dev 216 270 237 224 8 66 298
Test 328 342 282 360 25 72 457

D2

Train 857 759 623 1015 50 329 1394
Dev 210 251 221 252 11 76 339
Test 326 338 282 407 29 78 514

Table 5: Statistic information of our two experiment
datasets: “#S”, “#T”, “#A”, and “#O” denote the num-
bers of “Sentences”, “Triplets”, “Aspects”, and “Opin-
ions”; “#S1”, “#S2”, #S3” denote the numbers of sen-
timents “Positive”, “Neutral” and “Negative”, respec-
tively.

sification neural network, the fewer the number of 755

target categories, the easier it is for the network to 756

learn. This is a empirical and heuristic assumption, 757

for the reasonable consideration of Simplification 758

of Decision Boundaries (Hinton and Salakhutdinov, 759

2006) and Enhancement of Training Efficiency (less 760

parameters). 761

Combining Theorem 1 and Assumption 1, fewer 762

yet enough labels can be heuristically better solu- 763

tion with theoretical guarantee. 764

With the above knowledge, our tagging scheme 765

employs a full matrix (illustrated as Figure 6) so 766

that rectangular occupations in its cells indicate 767

respective triplets, where each of the rectangles’ 768

row indices correspond to the relative Aspect term 769

and the column indices correspond to the Opinion. 770

Hereafter, this kind of labels can be taken as a set 771

of “place holder”, which is obviously a 1-1 map 772

meeting Lemma 1. 773

To further satisfy Lemma 2, we introduce an- 774

other kind of labels, “sentiment & beginning tag”. 775

This set of labels specializes in recognizing the 776

top-left corner of a “shadowed” area. Meanwhile, 777

it takes a value from the sentiment polarity, i.e. 778

Positive, Neutral, Negative. This tagging is 779
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crucial to both identify the beginning of an triplet780

and label the sentiment polarity.781

Figure 6 shows a comprehensive case of our tag-782

ging scheme, in which the left matrix is an appear-783

ance of our tagging scheme, and it can be decom-784

posed into two separate components. The middle785

matrix is the first component, which takes only786

one tag to locate the up-left beginning of an area,787

and the second component simply predicts a binary788

classification to figure out the full area.789

Note that, this design benefits the tagging790

scheme’s decode process. By scanning across the791

matrix, we only start an examination function when792

triggered by a beginning label like this, and then793

search by row and column until it meets any la-794

bel except a “continued” (“CTD”), which satisfies795

Lemma 2.796

A.4 Proof 1:797

Let:798

• S be a sentence with n tokens.799

• M be an n×n tagging matrix for S, where800

each entry M [i][j] can hold a label.801

• Tk = (Ak, Ok, Sk) be a sentiment triplet802

consisting of an aspect term Ak, an opinion803

term Ok, and a sentiment Sk.804

Tagging Strategy If Ak starts at position i and805

Ok starts at position j, then M [i][j] is tagged806

with a unique label Lk that encodes Sk. This la-807

bel Lk uniquely identifies the triplet Tk, ensuring808

that no other entry M [i′][j′] with (i′, j′) ̸= (i, j)809

carries the same label unless it refers to the same810

sentiment context.811

Define Lk = "start of triplet"Tk with sentiment Sk812

Proof of One-to-One Mapping813

• Injectivity: Each Lk uniquely identifies a814

triplet Tk. If M [i][j] = M [i′][j′] = Lk,815

then by definition, (i, j) = (i′, j′) and Tk is816

the same.817

• Surjectivity: Each triplet Tk can be818

uniquely located and identified by its la-819

bel Lk in matrix M , where no two distinct820

triplets have the same label at the same ma-821

trix position.822

Conclusion The tagging scheme ensures that823

each sentiment triplet Tk is uniquely mapped to824

a specific label in the matrix M , and each label825

in M uniquely refers back to a specific triplet Tk. 826

This guarantees a one-to-one correspondence be- 827

tween the triplets and their tagging matrix repre- 828

sentations, fulfilling the conditions required by 829

Lemma 1 for an effective and efficient ASTE 830

process. 831

A.5 Proof 2: 832

For the ASTE task, considered as a 2D-labeling 833

problem, it is necessary to ensure three funda- 834

mental goals are met: 835

Definitions 836

• S be a sentence with n tokens. 837

• M be an n×n tagging matrix for S, where 838

each entry M [i][j] can hold a label indicat- 839

ing a component of a sentiment triplet. 840

• Tk = (Ak, Ok, Sk) be a sentiment triplet 841

consisting of an aspect term Ak, an opinion 842

term Ok, and a sentiment Sk. 843

Goals 844

1. Correct Identification of Pairs: Ensure 845

that each (Aspect, Opinion) pair is correctly 846

identified in the tagging matrix M . 847

2. Classification of Sentiment Polarity: Ac- 848

curately classify the sentiment polarity Sk 849

for each (Aspect, Opinion) pair. 850

3. Avoidance of Boundary Errors: Prevent 851

boundary errors such as overlapping and 852

confusion in the tagging matrix M . 853

Proof Using Contraposition 854

1. Assuming Incorrect Identification: As- 855

sume that some (Aspect, Opinion) pairs are 856

incorrectly identified in M . This would 857

mean that there exists at least one pair (i, j) 858

where M [i][j] does not represent the actual 859

(Aspect, Opinion) relationship in S. This 860

misrepresentation leads to incorrect senti- 861

ment analysis results, which contradicts the 862

requirement of the task to provide accurate 863

sentiment analysis, thereby proving that our 864

identification must be correct. 865

2. Assuming Incorrect Classification: As- 866

sume the sentiment polarity Sk is incor- 867

rectly classified in M . This would imply 868

that the sentiment associated with an (As- 869

pect, Opinion) pair is wrong, leading to a 870

sentiment analysis that does not reflect the 871

true sentiment of the text. Given that the 872
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Legend

Figure 6: Decomposition of the tagging scheme into two components: 1) a beginning mark matrix with sentiment
labels; and 2) a placeholder matrix denoting regions of triplets with “1”s and default regions with “0”s. Remember
that each row is taken as candidates for an Aspect and each column is taken as candidates for an Opinion. Naturally,
each cell in the square matrix can be seen as an ordered pair for a unique candidate of <Aspect, Opinion>. When
we simply sum the two components up, we have the left-hand tagging scheme in Figure 6, where the “Sentiment &
Beginning Tag” is like a trigger (just like you click your mouse), and the “Place Holder” is like a “continued shift”
(continue to hold and drag the mouse to the downright).

primary goal of ASTE is to accurately iden-873

tify sentiments, this assumption leads to a874

contradiction, thereby establishing that our875

classification must be accurate.876

3. Assuming Existence of Boundary Errors:877

Assume boundary errors such as overlaps or878

confusion occur in M . Such errors would879

prevent the clear identification and classi-880

fication of sentiment triplets, leading to in-881

correct or ambiguous extraction outcomes.882

This would undermine the integrity and us-883

ability of the ASTE process, contradicting884

the task’s need for precise extraction mech-885

anisms. Hence, we prove that boundary886

errors must be effectively managed.887

Conclusion The contraposition approach so-888

lidifies that the tagging strategy for ASTE in a889

2D labeling framework successfully achieves the890

correct identification of pairs, accurate classifi-891

cation of sentiment, and effective management892

of boundary errors, as any failure in these as-893

pects leads to contradictions with the task re-894

quirements.895

A.6 Baselines896

See Table 6.897

A.7 Performance on Other ABSA Tasks898

See Table 7.899

A.8 ASTE Performance on (D1)900

See Table 8.901

A.9 Details Settings of GPT Experients 902

See Table 9. 903

A.10 Detailed Results of GPT Experiments 904

See Table 11. 905

A.11 Case Study 906
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Methods Brief Introduction

Pipeline
OTE-MTL (Zhang et al., 2020) It proposes a multi-task learning framework including two parts: aspect and opinion tagging, along

with word-level sentiment dependency parsing. This approach simultaneously extracts aspect and
opinion terms while parsing sentiment dependencies using a biaffine scorer. Additionally, it employs
triplet decoding based on the aforementioned outputs during inference to facilitate triplet extraction.

Li-unified-R+PD (Peng et al., 2020) It proposes an unified tagging scheme, Li-unified-R, to assist target boundary detection. Two stacked
LSTMs are employed to complete aspect-based sentiment prediction and the sequence labeling.

CMLA+C-GCN (Wang et al., 2017) It facilitates triplet extraction by modelling the interaction between the aspects and opinions.
Two-satge (Peng et al., 2020) It decomposes triplet extraction to two stages: 1) predicting unified aspect-sentiment and opinion tags;

and 2) pairing the two results from stage one.
RI-NANTE+ (Dai and Song, 2019) It adopts the same sentiment triplets extracting method as that of CMLA+, but it incorporates a novel

LSTM-CRF mechanism and fusion rules to capture word dependencies within sentences.

Sequence-tagging
Span-BART (Yan et al., 2021) It redefines triplet extraction within an end-to-end framework by utilizing a sequence composed

of pointer and sentiment class indexes. This is achieved by leveraging the pretrained sequence-to-
sequence model BART to address ASTE.

JET (Xu et al., 2020) It extracts triplets jointly by designing a position-aware sequence-tagging scheme to extract the triplets
and capturing the rich interactions among the elements.

Seq2seq
Dual-MRC (Mao et al., 2021) It proposes a solution for ASTE by jointly training two BERT-MRC models with parameters sharing.
BMRC (Chen et al., 2021a) It introduces a bidirectional MRC (BMRC) framework for ASTE, employing three query types:

non-restrictive extraction queries, restrictive extraction queries, and sentiment classification queries.
The framework synergistically leverages two directions, one for sequential recognition of aspect-
opinion-sentiment and the other for sequential recognition of opinion-aspects-sentiment expressions.

Table-filling
GTS (Wu et al., 2020a) It proposes a novel 2D tagging scheme to address ASTE in an end-to-end fashion only with one

unified grid tagging task. It also devises an effective inference strategy on GTS that utilizes mutual
indication between different opinion factors to achieve more accurate extraction.

Double-encoder (Jing et al., 2021) It proposes a dual-encoder model that capitalizes on encoder sharing while emphasizing differences to
enhance effectiveness. One of the encoders, referred to as the pair encoder, specifically concentrates
on candidate aspect-opinion pair classification, while the original encoder retains its focus on sequence
labeling.

S3E2 (Chen et al., 2021b) It represents the semantic and syntactic relationships between word pairs, employs GNNs for encoding,
and applies a more efficient inference strategy.

EMC-GCN (Chen et al., 2022) It employs a biaffine attention module to embed ten types of relations within sentences, transforming
the sentence into a multi-channel graph while incorporating various enhanced linguistic features to
enhance performance. Additionally, the method introduces an effective strategy for refining word-pair
representations, aiding in the determination of whether word pairs are a match or not.

LLM-based
zero-shot Performing aspect-based sentiment analysis using an LLM. The specific method involves inputting a

prompted sentence and directly outputting the corresponding [A, O, S] triplets. An example of the text
given to the LLM, with the prompt added, is as follows: "Perform aspect-based sentiment analysis on
the provided text and return triplets as [Aspect, Opinion, Sentiment]. You only need to provide the
triplets, no additional explanations are required. The provided text: {sentence}"

few-shots Building upon the zero-shot method, a small number of examples from the training set are added to the
prompted sentence: "Perform aspect-based sentiment analysis on the provided text and return triplets
as [Aspect, Opinion, Sentiment]. For example: input: {train sentence} output: {train triplets}, ...
(some other examples). You only need to provide the triplets, no additional explanations are required.
The provided text: {sentence}"

Table 6: Baseline methods with brief introduction.

Methods
14Res 14Lap 15Res 16Res

AE OE AOPE AE OE AOPE AE OE AOPE AE OE AOPE

CMLA 81.22 83.07 48.95 78.68 77.95 44.10 76.03 74.67 44.60 74.20 72.20 50.00
RINANTE 81.34 83.33 46.29 77.13 75.34 29.70 73.38 75.40 35.40 72.82 70.45 30.70
Li-unified 81.62 85.26 55.34 78.54 77.55 52.56 74.65 74.25 56.85 73.36 73.87 53.75

GTS 83.82 85.04 75.53 79.52 78.61 65.67 78.22 79.31 67.53 75.80 76.38 74.62
Dual-MRC 86.60 86.22 77.68 80.44 79.90 63.37 75.08 77.52 64.97 76.87 77.90 75.71

MiniConGTS (Ours) 86.55 87.04 79.60 82.62 83.41 73.23 86.53 83.05 73.87 85.48 87.06 76.29
∆F1 -0.05 0.82 1.92 2.18 3.51 7.56 8.31 3.74 6.34 8.61 9.16 0.58

Table 7: F1-score performance on other ABSA tasks: AE, OE, and AOPE. The test is implemented on D1. Results
of other models are retrieved from (Fei et al., 2022).
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Methods
14Res 14Lap 15Res 16Res

P R F1 P R F1 P R F1 P R F1

Pipeline
OTE-MTL (Zhang et al., 2020) - - 45.05 - - 59.67 - - 48.97 - - 55.83

Li-unified-R+PD♯ (Peng et al., 2020) 41.44 68.79 51.68 42.25 42.78 42.47 43.34 50.73 46.69 38.19 53.47 44.51
RI-NANTE+ (Dai and Song, 2019) 31.42 39.38 34.95 21.71 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87

CMLA+C-GCN♭ (Wang et al., 2017) 72.22 56.35 63.17 60.69 47.25 53.03 64.31 49.41 55.76 66.61 59.23 62.70
Two-satge♮ (Peng et al., 2020) 58.89 60.41 59.64 48.62 45.52 47.02 51.7 46.04 48.71 59.25 58.09 59.67

Sequence-tagging
Span-BART (Yan et al., 2021) - - 72.46 - - 57.59 - - 60.10 - - 69.98

JET (Xu et al., 2020) 67.97 60.32 63.92 58.47 43.67 50.00 58.35 51.43 54.67 64.77 61.29 62.98

MRC based
BMRC† (Chen et al., 2021a) 71.32 70.09 70.69 65.12 54.41 59.27 63.71 58.63 61.05 67.74 68.56 68.13

COM-MRC (Zhai et al., 2022) 76.45 69.67 72.89 64.73 56.09 60.09 68.50 59.74 63.65 72.80 70.85 71.79

Table-filling
S3E2 (Chen et al., 2021b) 69.08 64.55 66.74 59.43 46.23 52.01 61.06 56.44 58.66 71.08 63.13 66.87
GTS (Wu et al., 2020a) 70.92 69.49 70.20 57.52 51.92 54.58 59.29 58.07 58.67 68.58 66.60 67.58

EMC-GCN (Chen et al., 2022) 71.85 72.12 71.78 61.46 55.56 58.32 59.89 61.05 60.38 65.08 71.66 68.18
BDTF (Zhang et al., 2022b) 76.71 74.01 75.33 68.30 55.10 60.99 66.95 65.05 65.97 73.43 73.64 73.51
DGCNAP (Li et al., 2023) 71.83 68.77 70.26 66.46 54.34 58.74 62.03 57.18 59.49 69.39 72.20 70.77

LLM-based
GPT-3.5-turbo zero-shot 39.21 56.17 46.18 26.21 40.69 31.88 31.21 52.75 39.21 35.28 59.64 44.34
GPT-3.5-turbo few-shots 50.32 64.75 56.63 29.67 43.90 35.41 36.94 61.01 46.02 44.80 69.96 54.62

GPT-3.5-turbo CoT 40.78 57.93 47.86 28.37 43.25 34.27 35.17 57.11 43.53 40.32 65.79 50.00
GPT-3.5-turbo CoT+few-shots 44.97 57.81 50.59 28.31 43.04 34.15 35.71 58.49 44.35 43.72 66.45 52.74

Ours
MiniConGTS 75.87 76.12 76.00 67.45 61.01 64.07 66.84 64.08 65.43 69.38 74.40 71.80

Table 8: Experimental results on D1 (Wu et al., 2020a). The best results are highlighted in bold, while the second
best results are underscored. The results with † are retrieved from (Yu Bai Jian et al., 2021). The results with ♮ are
retrieved from (Xu et al., 2020). The results with ♭ are retrieved from (Wu et al., 2020a). The results with ♯ are
retrieved from (Peng et al., 2020).
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Methods Prompts

zero-shot Suppose you are an expert of aspect-based sentiment analysis. Perform aspect-based sentiment
analysis on the provided text and return triplets as [Aspect, Opinion, Sentiment]. You only need to
provide the triplets, no additional explanations are required. The provided text: {sentence}

few-shots Suppose you are an expert of aspect-based sentiment analysis. Perform aspect-based sentiment
analysis on the provided text and return triplets as [Aspect, Opinion, Sentiment]. For example:
input: The food is uniformly exceptional , with a very capable kitchen which will proudly whip up
whatever you feel like eating , whether it ’s on the menu or not .
output: [’food’, ’exceptional’, ’positive’], [’kitchen’, ’capable’, ’positive’]
...
(generated from training set)
Now I will provide a new sentence, and you only need to provide the triplets [Aspect, Opinion,
Sentiment] without any additional explanations. The provided sentence: {sentence}

CoT Suppose you are an expert of aspect-based sentiment analysis. Please analyze the given text for
aspect-based sentiment analysis using the following steps:
Definitions:
- Aspect: An aspect is a specific part or feature of the entity being discussed. It is usually a noun or a
noun phrase.
- Opinion: An opinion is a descriptive term or phrase that expresses a sentiment towards the aspect. It
is usually an adjective or a descriptive phrase.
- Sentiment: The sentiment is the overall feeling expressed towards the aspect, categorized as positive,
negative, or neutral.
Instructions:
1. Read the text and identify all aspects mentioned.
2. For each identified aspect, determine the opinion expressed and the sentiment (positive, negative,
neutral).
3. Summarize the findings in the format [Aspect, Opinion, Sentiment]. Each triplet must contain an
aspect, an opinion, and a sentiment.
4. If there is a one-to-many relationship between aspects and opinions, list multiple triplets.
5. Use all words from the original text to answer without any changes.
Example: (automatically generated by ChatGPT-4o)
Text: "The restaurant has a great ambiance, but the service is poor and the food is average."
Steps:
1. Identify aspects: ambiance, service, food.
2. Evaluate opinions and sentiments:
- ambiance: Opinion - great, Sentiment - positive
- service: Opinion - poor, Sentiment - negative
- food: Opinion - average, Sentiment - neutral
3. Summarize:
- [ambiance, great, positive]
- [service, poor, negative]
- [food, average, neutral]
Please analyze the following text: {sentence}

CoT+few-shots Suppose you are an expert of aspect-based sentiment analysis. Please analyze the given text for
aspect-based sentiment analysis using the following steps:
Definitions:
- Aspect: An aspect is a specific part or feature of the entity being discussed. It is usually a noun or a
noun phrase.
- Opinion: An opinion is a descriptive term or phrase that expresses a sentiment towards the aspect. It
is usually an adjective or a descriptive phrase.
- Sentiment: The sentiment is the overall feeling expressed towards the aspect, categorized as positive,
negative, or neutral.
Instructions:
1. Read the text and identify all aspects mentioned.
2. For each identified aspect, determine the opinion expressed and the sentiment (positive, negative,
neutral).
3. Summarize the findings in the format [Aspect, Opinion, Sentiment]. Each triplet must contain an
aspect, an opinion, and a sentiment.
4. If there is a one-to-many relationship between aspects and opinions, list multiple triplets.
5. Use all words from the original text to answer without any changes.
Example: (generated from training set)
Text: ...
Steps:
1. Identify aspects: ...
2. Evaluate opinions and sentiments:
- ...
3. Summarize:
- [..., ..., ...]
...
Please analyze the following text: {sentence}

Table 10: LLM prompts in different methods.
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Method Combination
14Res 14Lap 15Res 16Res

P R F1 P R F1 P R F1 P R F1

A-O-S 0.5151 0.6519 0.5755 0.3979 0.5009 0.4435 0.4334 0.6309 0.5139 0.5112 0.7101 0.5945
A-O 0.5429 0.6871 0.6066 0.4479 0.5638 0.4992 0.4788 0.6969 0.5676 0.5420 0.7529 0.6303
A-S 0.6234 0.7983 0.7001 0.4955 0.7149 0.5853 0.5539 0.7731 0.6454 0.5853 0.8274 0.6856

GPT-3.5-turbo O-S 0.5790 0.7438 0.6512 0.5016 0.6653 0.5719 0.5228 0.7281 0.6086 0.6020 0.7851 0.6814
few-shots A 0.6758 0.8455 0.7512 0.5805 0.8337 0.6844 0.6220 0.838 0.7140 0.6361 0.8739 0.7363

O 0.6138 0.7938 0.6923 0.5587 0.7505 0.6406 0.5780 0.8048 0.6728 0.6444 0.8404 0.7295
S 0.8251 0.9222 0.8710 0.7907 0.8844 0.8349 0.8286 0.9337 0.878 0.8179 0.9466 0.8776

A-O-S 0.4847 0.5905 0.5324 0.3048 0.4030 0.3471 0.3951 0.5670 0.4657 0.4403 0.6381 0.5210
A-O 0.5178 0.6308 0.5687 0.3566 0.4713 0.4061 0.4368 0.6268 0.5148 0.4711 0.6829 0.5576
A-S 0.5991 0.7807 0.6779 0.4088 0.6199 0.4927 0.5123 0.7685 0.6148 0.5199 0.8075 0.6326

GPT-3.5-turbo O-S 0.5708 0.7143 0.6345 0.4288 0.5768 0.4919 0.4834 0.6711 0.5620 0.5481 0.7511 0.6338
CoT A 0.6594 0.8538 0.7441 0.5142 0.7797 0.6197 0.5901 0.8796 0.7063 0.5702 0.8805 0.6922

O 0.6119 0.7723 0.6828 0.4930 0.6716 0.5686 0.5403 0.7500 0.6281 0.5932 0.8128 0.6858
S 0.7942 0.9374 0.8599 0.7229 0.9046 0.8036 0.7477 0.9222 0.8258 0.7494 0.9585 0.8411

A-O-S 0.4941 0.5915 0.5385 0.3378 0.4233 0.3757 0.3902 0.5608 0.4602 0.4649 0.6693 0.5486
A-O 0.5294 0.6338 0.5769 0.3968 0.4972 0.4413 0.4333 0.6227 0.5110 0.4932 0.7101 0.5821
A-S 0.6257 0.7925 0.6993 0.4518 0.6479 0.5324 0.5306 0.7824 0.6324 0.5451 0.8296 0.6579

GPT-3.5-turbo O-S 0.5735 0.7048 0.6324 0.4681 0.6168 0.5322 0.4936 0.6776 0.5712 0.5769 0.7745 0.6612
CoT+few-shots A 0.6907 0.8691 0.7697 0.5572 0.7991 0.6566 0.6026 0.8704 0.7121 0.5873 0.8783 0.7039

O 0.6186 0.7676 0.6851 0.5319 0.7100 0.6082 0.5479 0.7522 0.6340 0.6149 0.8255 0.7048
S 0.8119 0.9336 0.8685 0.7470 0.8960 0.8147 0.7775 0.9366 0.8497 0.7923 0.9733 0.8735

A-O-S 0.5411 0.6620 0.5955 0.3823 0.4861 0.4280 0.4557 0.6041 0.5195 0.5290 0.7101 0.6063
A-O 0.5757 0.7042 0.6335 0.439 0.5582 0.4915 0.5023 0.6660 0.5727 0.5551 0.7451 0.6362
A-S 0.6777 0.8208 0.7424 0.4962 0.7084 0.5836 0.5872 0.7639 0.6640 0.6019 0.8296 0.6977

GPT-4o O-S 0.6047 0.7532 0.6709 0.4863 0.6337 0.5503 0.5613 0.7325 0.6356 0.6318 0.8106 0.7102
few-shots A 0.7367 0.8679 0.7970 0.5951 0.8445 0.6982 0.6611 0.8218 0.7327 0.6471 0.8761 0.7444

O 0.6389 0.8033 0.7117 0.5517 0.7271 0.6274 0.6185 0.8070 0.7003 0.6667 0.8553 0.7493
S 0.8353 0.9336 0.8817 0.7758 0.8699 0.8202 0.8376 0.9366 0.8844 0.8346 0.9585 0.8923

A-O-S 0.4121 0.5332 0.4649 0.2698 0.3771 0.3146 0.3307 0.5093 0.4010 0.3914 0.5817 0.4679
A-O 0.4331 0.5604 0.4886 0.3122 0.4362 0.3639 0.3614 0.5567 0.4383 0.4162 0.6187 0.4977
A-S 0.6163 0.8278 0.7066 0.4486 0.6976 0.5461 0.5200 0.8125 0.6341 0.5374 0.8429 0.6563

GPT-4o O-S 0.4711 0.6246 0.5371 0.3439 0.4779 0.4000 0.4093 0.5987 0.4862 0.4752 0.6532 0.5502
CoT A 0.6667 0.8703 0.7550 0.5280 0.8143 0.6406 0.5762 0.8750 0.6949 0.5799 0.8916 0.7027

O 0.5004 0.6687 0.5724 0.3951 0.5544 0.4614 0.4558 0.6667 0.5414 0.5077 0.6979 0.5878
S 0.7859 0.9545 0.8620 0.7651 0.9133 0.8327 0.7744 0.9597 0.8571 0.7725 0.9674 0.8590

A-O-S 0.4681 0.5986 0.5254 0.2971 0.4085 0.3440 0.3508 0.5381 0.4247 0.4153 0.6109 0.4945
A-O 0.4965 0.6348 0.5572 0.3454 0.4750 0.4000 0.3911 0.6000 0.4736 0.4437 0.6518 0.5280
A-S 0.6295 0.8314 0.7165 0.4718 0.7235 0.5712 0.5262 0.8125 0.6388 0.5458 0.8429 0.6626

GPT-4o O-S 0.5255 0.6824 0.5937 0.3890 0.5347 0.4504 0.4527 0.6513 0.5342 0.5102 0.6894 0.5864
CoT+few-shots A 0.6795 0.8774 0.7658 0.5467 0.8337 0.6604 0.5898 0.8819 0.7069 0.5858 0.8916 0.7070

O 0.5610 0.7342 0.6360 0.4395 0.6119 0.5116 0.5023 0.7215 0.5923 0.5465 0.7383 0.6281
S 0.7927 0.9431 0.8614 0.7705 0.9220 0.8395 0.7890 0.9481 0.8613 0.7976 0.9703 0.8755

Table 11: Performance of different types of element combinations in ABSA tasks using LLM.

Sentence Ground Truth GPT results Ours Precision Recall

Creamy appetizers–
taramasalata, eggplant
salad, and Greek yo-
gurt(with cuccumber,
dill, and garlic) taste
excellent when on warm
pitas.

[’creamy appetizers’, ’creamy’, ’positive’],
[’creamy appetizers’, ’excellent’, ’positive’],
[’warm pitas’, ’warm’, ’neutral’],
[’taramasalata’, ’creamy’, ’positive’],
[’eggplant salad’, ’excellent’, ’positive’],
[’greek yogurt ( with cuccumber , dill , and garlic
)’, ’excellent’,’positive’]

[’appetizers’, ’creamy’, ’neutral’],
[’taramasalata’, ’taste excellent’, ’positive’],
[’eggplant salad’, ’taste excellent’, ’positive’],
[’greek yogurt’, ’taste excellent’, ’positive’],
[’warm pitas’, ’warm’, ’neutral’]

[’creamy appetizers’, ’creamy’, ’positive’],
[’creamy appetizers’, ’excellent’, ’positive’],
[’warm pitas’, ’warm’, ’neutral’],
[’eggplant salad’, ’excellent’, ’positive’],
[’greek yogurt , ’excellent’,’positive’

GPT: 1/5
Ours: 4/5

GPT: 1/6
Ours: 4/6

We left without ever get-
ting service.

[’service’, ’without ever’, ’negative’] [’service’, ’without ever getting’, ’negative’] [’service’, ’without ever’, ’negative’] GPT: 0/1
Ours: 1/1

GPT: 0/1
Ours: 1/1

I go out to eat and like
my courses, servers are
patient and never rush
courses or force another
drink.’

[’servers’, ’patient’, ’positive’] [’courses’, ’like’, ’positive’],
[’servers’, ’patient’, ’positive’],
[’servers’, ’never rush courses’, ’positive’],
[’servers’, ’never force another drink’, ’posi-
tive’]

[’servers’, ’patient’, ’positive’], GPT: 1/5
Ours: 1/1

GPT: 1/1
Ours: 1/1

Table 12: Case study
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