
Momentum Provably Improves Error Feedback!

Ilyas Fatkhullin
ETH AI Center & ETH Zurich

Alexander Tyurin
KAUST*

Peter Richtárik
KAUST

Abstract

Due to the high communication overhead when training machine learning models
in a distributed environment, modern algorithms invariably rely on lossy communi-
cation compression. However, when untreated, the errors caused by compression
propagate, and can lead to severely unstable behavior, including exponential diver-
gence. Almost a decade ago, Seide et al. [2014] proposed an error feedback (EF)
mechanism, which we refer to as EF14, as an immensely effective heuristic for
mitigating this issue. However, despite steady algorithmic and theoretical advances
in the EF field in the last decade, our understanding is far from complete. In this
work we address one of the most pressing issues. In particular, in the canonical non-
convex setting, all known variants of EF rely on very large batch sizes to converge,
which can be prohibitive in practice. We propose a surprisingly simple fix which
removes this issue both theoretically, and in practice: the application of Polyak’s
momentum to the latest incarnation of EF due to Richtárik et al. [2021] known as
EF21. Our algorithm, for which we coin the name EF21-SGDM, improves the com-
munication and sample complexities of previous error feedback algorithms under
standard smoothness and bounded variance assumptions, and does not require any
further strong assumptions such as bounded gradient dissimilarity. Moreover, we
propose a double momentum version of our method that improves the complexities
even further. Our proof seems to be novel even when compression is removed from
the method, and as such, our proof technique is of independent interest in the study
of nonconvex stochastic optimization enriched with Polyak’s momentum.

1 Introduction

Since the practical utility of modern machine learning models crucially depends on our ability to
train them on large quantities of training data, it is imperative to perform the training in a distributed
storage and compute environment. In federated learning (FL) [Konečný et al., 2016, Kairouz, 2019],
for example, data is naturally stored in a distributed fashion across a large number of clients (who
capture and own the data in the first place), and the goal is to train a single machine learning model
from the wealth of all this distributed data, in a private fashion, directly on their devices.

1.1 Formalism. We consider the problem of collaborative training of a single model by several
clients in a data-parallel fashion. In particular, we aim to solve the distributed nonconvex stochastic
optimization problem

min
𝑥∈R𝑑

[︂
𝑓(𝑥) := 1

𝑛

𝑛∑︀
𝑖=1

𝑓𝑖(𝑥)

]︂
, 𝑓𝑖(𝑥) := E𝜉𝑖∼𝒟𝑖

[𝑓𝑖(𝑥, 𝜉𝑖)] , 𝑖 = 1, . . . , 𝑛, (1)

where 𝑛 is the number of clients, 𝑥 ∈ R𝑑 represents the parameters of the model we wish to train,
and 𝑓𝑖(𝑥) is the (typically nonconvex) loss of model parameterized by the vector 𝑥 on the data 𝒟𝑖

owned by client 𝑖. Unlike most works in federated learning, we do not assume the datasets to be
similar, i.e., we allow the distributions 𝒟1, . . . ,𝒟𝑛 to be arbitrarily different.

*King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

We are interested in the fundamental problem of finding an approximately stationary point of 𝑓 in
expectation, i.e., we wish to find a (possibly random) vector �̂� ∈ R𝑑 such that E [‖∇𝑓(�̂�)‖] ≤ 𝜀. In
order to solve this problem, we assume that the 𝑛 clients communicate via an orchestrating server.
Typically, the role of the server is to first perform aggregation of the messages obtained from the
workers, and to subsequently broadcast the aggregated information back to the workers. Following
an implicit assumption made in virtually all theoretically-focused papers on communication-efficient
training, we also assume that the speed of client-to-workers broadcast is so fast (compared to speed
of workers-to-client communication) that the cost associated with broadcast can be neglected2.

1.2 Aiming for communication and computation efficiency at the same time. In our work, we
pay attention to two key aspects of efficient distributed training—communication cost and computation
cost for finding an approximate stationary point �̂�. The former refers to the number of bits that need
to be communicated by the workers to the server, and the latter refers to the number of stochastic
gradients that need to be sampled by each client. The rest of the paper can be summarized as follows:
We pick one of the most popular communication-efficient gradient-type methods (the EF21 method of
Richtárik et al. [2021] – the latest variant of error feedback pioneered by Seide et al. [2014]) and
modify it in a way which provably preserves its communication complexity, but massively improves
its computation/sample complexity, both theoretically and in practice.

2 Communication Compression, Error Feedback, and Sample Complexity

Communication compression techniques such as quantization [Alistarh et al., 2017, Horváth et al.,
2019a] and sparsification [Seide et al., 2014, Beznosikov et al., 2020] are known to be immensely
powerful for reducing the communication footprint of gradient-type3 methods. Arguably the most
studied, versatile and practically useful class of compression mappings are contractive compressors.
Definition 1 (Contractive compressors). We say that a (possibly randomized) mapping 𝒞 : R𝑑 → R𝑑

is a contractive compression operator if there exists a constant 0 < 𝛼 ≤ 1 such that

E
[︀
‖𝒞(𝑥)− 𝑥‖2

]︀
≤ (1− 𝛼) ‖𝑥‖2, ∀𝑥 ∈ R𝑑. (2)

Inequality (2) is satisfied by a vast array of compressors considered in the literature, including
numerous variants of sparsification operators [Alistarh et al., 2018, Stich et al., 2018], quantization
operators [Alistarh et al., 2017, Horváth et al., 2019a], and low-rank approximation [Vogels et al.,
2019, Safaryan et al., 2022] and more [Beznosikov et al., 2020, Safaryan et al., 2021]. The canonical
examples are i) the Top𝐾 sparsifier, which preserves the 𝐾 largest components of 𝑥 in magnitude
and sets all remaining coordinates to zero [Stich et al., 2018], and ii) the (scaled) Rand𝐾 sparsifier,
which preserves a subset of 𝐾 components of 𝑥 chosen uniformly at random and sets all remaining
coordinates to zero [Beznosikov et al., 2020]. In both cases, (2) is satisfied with 𝛼 = 𝐾/𝑑.

2.1 Brief history of error-feedback

When greedy contractive compressors, such as Top𝐾, are used in a direct way to compress the
local gradients in distributed gradient descent (GD), the resulting method may diverge exponentially,
even on strongly convex quadratics [Beznosikov et al., 2020]. Empirically, instability caused by
such a naive application of greedy compressors was observed much earlier, and a fix was proposed
in the form of the error feedback (EF) mechanism by Seide et al. [2014], which we henceforth
call EF14 or EF14-SGD (in the stochastic case).4 To the best of our knowledge, the best sample
complexity of EF14-SGD for finding a stationary point in the distributed nonconvex setting is given
by Koloskova et al. [2020]: after 𝒪(𝐺𝛼−1𝜀−3 + 𝜎2𝑛−1𝜀−4) samples5, EF14-SGD finds a point 𝑥
such that E[‖∇𝑓(𝑥)‖] ≤ 𝜀, where 𝛼 is the contraction parameter (see Definition 1). However, such

2While this is a reasonable assumption in many practical situations [Mishchenko et al., 2019, Kairouz, 2019],
some works consider the regime when the server-to-workers broadcast cannot be neglected [Horváth et al., 2019a,
Tang et al., 2020, Philippenko and Dieuleveut, 2020, Kovalev et al., 2021, Fatkhullin et al., 2021, Gruntkowska
et al., 2022].

3For Newton-type methods, see [Islamov et al., 2022] and references therein.
4In Appendix A, we provide a more detailed discussion on theoretical develepments for this method.
5Here 𝜎2 is the bound on the variance of stochastic gradients at each node, see Assumption 2. When referring

the sample complexity we count the number of stochastic gradients used only at one of the 𝑛 nodes rather than
by all nodes in total. This is a meaningful notion because the computations are done in parallel.

2

0 2000 4000 6000 8000 10000
Iteration, t

0

1

2

3

4

5

Ob
je

ct
iv

e
va

lu
e

×10 2

EF21-SGD-ideal
EF21-SGD
EF21-SGDM

(a) Divergence for 𝑛 = 1.

0 2000 4000 6000 8000 10000
Iteration, t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ob
je

ct
iv

e
va

lu
e

×10 3

EF21-SGD (n = 50)
EF21-SGD (n = 500)
EF21-SGD (n = 5000)
EF21-SGD (n = 10000)

(b) No improvement with 𝑛.
Figure 1: Divergence of EF21-SGD on the quadratic function 𝑓(𝑥) = 1

2
‖𝑥‖2, 𝑥 ∈ R2, using the Top1

compressor. See the proof of Theorem 1 for details on the construction of the noise 𝜉; we use 𝜎 = 1, 𝐵 = 1. The
starting point is 𝑥0 = (0,− 0.01)⊤. Unlike EF21-SGD, our method EF21-SGDM does not suffer from divergence
and is stable near optimum. Figure 1b shows that when increasing the number of nodes 𝑛, EF21-SGD applied with
𝐵 = 1 does not improve, and, moreover, diverges from the optimum even faster. All experiments use constant
parameters 𝛾 = 𝜂 = 0.1/

√
𝑇 = 10−3; see Figure 4 for diminishing parameters. Each method is run 10 times and

the plot shows the median performance alongside the 25% and 75% quantiles.

an analysis has two important deficiencies. First, in the deterministic case (when exact gradients
are computable by each node), the analysis only gives the suboptimal 𝒪(𝜀−3) iteration complexity,
which is suboptimal compared to vanilla (i.e., non-compressed) gradient descent, whose iteration
complexity is 𝒪(𝜀−2). Second, their analysis relies heavily on additional strong assumptions, such
as the bounded gradient (BG) assumption, E[‖∇𝑓𝑖(𝑥, 𝜉𝑖)‖2] ≤ 𝐺2 for all 𝑥 ∈ R𝑑, 𝑖 ∈ [𝑛], 𝜉𝑖 ∼ 𝒟𝑖,
or the bounded gradient similarity (BGS) assumption, 1

𝑛

∑︀𝑛
𝑖=1 ‖∇𝑓𝑖(𝑥) −∇𝑓(𝑥)‖2 ≤ 𝐺2 for all

𝑥 ∈ R𝑑. Such assumptions are restrictive and sometimes even unrealistic. In particular, both BG
and BGS might not hold even in the case of convex quadratic functions.6 Moreover, it was recently
shown that nonconvex analysis of stochastic gradient methods using a BG assumption may hide an
exponential dependence on the smoothness constant in the complexity [Yang et al., 2023].

In 2021, these issues were partially resolved by Richtárik et al. [2021], who propose a modification
of the EF mechanism, which they call EF21. They address both deficiencies of the original EF14
method: i) they removed the BG/BGS assumptions, and improved the iteration complexity to 𝒪(𝜀−2)
in the full gradient regime. Subsequently, the EF21 method was modified in several directions,
e.g., extended to bidirectional compression, variance reduction and proximal setup [Fatkhullin
et al., 2021], generalized from contractive to three-point compressors [Richtárik et al., 2022] and
adaptive compressors [Makarenko et al., 2022], modified from dual (gradient) to primal (model)
compression [Gruntkowska et al., 2022] and from centralized to decentralized setting [Zhao et al.,
2022]. For further work, we refer to [Wang et al., 2022, Dorfman et al., 2023, Islamov et al., 2022].

2.2 Key issue: error feedback has an unhealthy appetite for samples!

Unfortunately, the current theory of EF21 with stochastic gradients has weak sample complexity
guarantees. In particular, Fatkhullin et al. [2021] extended the EF21-GD method, which is the basic
variant of EF21 using full gradient at the clients, to EF21-SGD, which uses a “large minibatch” of
stochastic gradients instead. They obtained 𝒪(1

𝛼𝜀2 + 𝜎2

𝛼3𝜀4) sample complexity for their method.
Later, Zhao et al. [2022] improved this result slightly7 to 𝒪(1

𝛼𝜀2 + 𝜎2

𝛼2𝜀4), shaving off one 𝛼 in the
stochastic term. However, it is easy to notice several issues in these results, which generally feature
the fundamental challenge of combining biased gradient methods with stochastic gradients.

∙ Mega-batches. These works require all clients to sample “mega-batches” of stochastic gradi-
ents/datapoints in each iteration, of order 𝒪(𝜀−2), in order to control the variance coming from
stochastic gradients. In Figure 1, we find that, in fact, a batch-free (i.e., with mini-batch size 𝐵 = 1)

6For example, one can consider 𝑓𝑖(𝑥) = 𝑥⊤𝐴𝑖𝑥 with 𝐴𝑖 ∈ R𝑑×𝑑, for which BG or BGS assumptions hold
only in the trivial cases: matrices 𝐴𝑖 are all zero or all equal to each other (homogeneous data regime).

7The result was obtained under a more general setting of decentralized optimization over a network.

3

version of EF21-SGD diverges even on a very simple quadratic function. We also observe a similar
behavior when a small batch 𝐵 > 1 is applied. This implies that there is a fundamental flaw in
the EF21-SGD method itself, rather “just” a problem of the theoretical analysis. While mega-batch
methods are common in optimization literature, smaller batches are often preferred whenever they
“work”. For example, the time/cost required to obtain such a large number of samples at each iteration
might be unreasonably large compared to the communication time, which is already reduced using
compression. Moreover, when dealing with medical data, large batches might simply be unavail-
able [Rieke et al., 2020]. In certain applications, such as federated reinforcement learning (RL) or
multi-agent RL, it is often intractable to sample more than one trajectory of the environment in order
to form a gradient estimator [Mitra et al., 2023, Doan et al., 2019, Jin et al., 2022, Khodadadian
et al., 2022]. Further, a method using a mega-batch at each iteration effectively follows the gradient
descent (GD) dynamics instead of the dynamics of (mini-batch) SGD, which may hinder the training
and generalization performance of such algorithms since it is both empirically [Keskar et al., 2017,
Kleinberg et al., 2018] and theoretically [Kale et al., 2021] observed that mini-batch SGD is superior
to mega-batch SGD or GD in a number of machine learning tasks.

∙ Dependence on 𝛼. The total sample complexity results derived by Fatkhullin et al. [2021], Zhao
et al. [2022] suffer from poor dependence on the contraction parameter 𝛼. Typically, EF methods are
used with the Top𝐾 sparsifier, which only communicates 𝐾 largest entries in magnitude. In this case,
𝛼 = 𝐾/𝑑, and the stochastic part of sample complexity scales quadratically with dimension.

∙ No improvement with 𝑛. The stochastic term in the sample complexity of EF21-SGD does not
improve when increasing the number of nodes. However, the opposite behavior is typically desired,
and is present in several latest non-EF methods based on unbiased compressors, such as MARINA
[Gorbunov et al., 2021] and DASHA [Tyurin and Richtárik, 2022]. We are not aware of any distributed
algorithms utilizing the Top𝐾 compressor achieving linear speedup in 𝑛 in the stochastic term without
relying on restrictive BG or BGS assumptions.

These observations motivate our work with the following central questions:

Can we design a batch-free distributed SGD method utilizing contractive
communication compression (such as Top𝐾) without relying on restrictive
BG/BGS assumptions? Is it possible to improve over the current state-of-the-
art 𝒪

(︀
𝛼−1𝜀−2 + 𝜎2𝛼−2𝜀−4

)︀
sample complexity under the standard smoothness

and bounded variance assumptions?

We answer both questions in the affirmative by incorporating a momentum update into EF21-SGD.

2.3 Mysterious effectiveness of momentum in nonconvex optimization

An immensely popular modification of SGD (and its distributed variants) is the use of momentum.
This technique, initially inspired by the developments in convex optimization [Polyak, 1964], is often
applied in machine learning for stabilizing convergence and speeding up the training. In particular,
momentum is an important part of an immensely popular and empirically successful line of adaptive
methods for deep learning, including ADAM [Kingma and Ba, 2015] and a plethora of variants. The
classical SGD method with Polyak (i.e., heavy ball) momentum (SGDM) reads:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑣𝑡, 𝑣𝑡+1 = (1− 𝜂)𝑣𝑡 + 𝜂∇𝑓(𝑥𝑡+1, 𝜉𝑡+1), (3)

where 𝛾 > 0 is a learning rate and 𝜂 > 0 is the momentum parameter.

We provide a concise walk through the key theoretical developments in the analysis of SGDM in
stochastic nonconvex optimization in Appendix A; and only mention the most relevant works here.
The most closely related works to ours are [Mishchenko et al., 2019], [Xie et al., 2020], and [Fatkhullin
et al., 2021], which analyze momentum together with communication compression. The analysis in
[Mishchenko et al., 2019, Xie et al., 2020] requires BG/BGS assumption, and does not provide any
theoretical improvement over the variants without momentum. Finally, the analysis of Fatkhullin et al.
[2021] is only established for deterministic case, and it is unclear if its extension to stochastic case can
bring any convergence improvement over EF21-SGD. Recently, several other works attempt to explain
the benefit of momentum [Plattner, 2022]; some consider structured nonconvex problems [Wang and
Abernethy, 2021], and others focus on generalization [Jelassi and Li, 2022].

4

Method Communication complexity Asymptotic
sample complexity Batch-free? No extra assumptions?

EF14-SGD
[Koloskova et al., 2020]

𝐾𝐺
𝛼𝜀3

𝜎2

𝑛𝜀4
✔ ✗ (a)

NEOLITHIC
[Huang et al., 2022]

𝐾
𝛼𝜀2

log
(︀
𝐺
𝜀

)︀
(b) 𝜎2

𝑛𝜀4
✗ ✗ (c)

EF21-SGD
[Fatkhullin et al., 2021]

𝐾
𝛼𝜀2

𝜎2

𝛼3𝜀4
(d) ✗ ✔

BEER
[Zhao et al., 2022]

𝐾
𝛼𝜀2

𝜎2

𝛼2𝜀4
(d) ✗ ✔

EF21-SGDM
Corollary 2

𝐾
𝛼𝜀2

𝜎2

𝑛𝜀4
✔ ✔

(a) Analysis requires a bound of the second moment of the stochastic gradients, i.e., E
[︀
‖∇𝑓𝑖(𝑥, 𝜉𝑖)‖2

]︀
≤ 𝐺2 for all 𝑥 ∈ R𝑑.

(b) This complexity is achieved by using a large mini-batch and communicating ⌈𝐾/𝛼⌉ coordinates per iteration, see Appendix A.
(c) Analysis requires a bounded gradient disimilarity assumption, i.e., 1

𝑛

∑︀𝑛
𝑖=1 ‖∇𝑓𝑖(𝑥) − ∇𝑓(𝑥)‖2 ≤ 𝐺2 for all 𝑥 ∈ R𝑑.

(d) Analysis requires a batch-size at least 𝐵 ≥ 𝜎2

𝛼2𝜀2
for EF21-SGD and 𝐵 ≥ 𝜎2

𝛼𝜀2
for BEER.

Table 1: Summary of related works on distributed error compensated SGD methods using a Top𝐾 compressor
under Assumptions 1 and 2. The goal is to find an 𝜀-stationary point of a smooth nonconvex function of the form
(1), i.e., a point 𝑥 such that E [‖∇𝑓(𝑥)‖] ≤ 𝜀. "Communication complexity": the total # of communicated
bits if the method is applied with sufficiently large batch-size; see Table 2 for batch-size. "Asymptotic sample
complexity": the total # of samples required at each node to find an 𝜀-stationary point for batch-size 𝐵 = 1 in
the regime 𝜀 → 0. "No extra assumptions": ✔means that no additional assumption is required.

Summary of contributions. Despite the vast amount of work trying to explain the benefits of
momentum, there is no work obtaining any theoretical improvement over vanilla SGD in the smooth
nonconvex setting under the standard assumptions of smoothness and bounded variance.

∙ First, we establish a negative result for a simplified/idealized version of EF21-SGD, which
shows that this algorithm does not converge with constant batch-size, and that a mega-batch of
order Ω(𝜎2𝜀−2) is required. This provides a strong indication that EF21-SGD method is inherently
sensitive to stochastic gradients, which is also confirmed by our numerical simulations.

∙ We propose a simple fix for this problem by incorporating momentum step into EF21-SGD, which
leads to our one-batch EF21-SGDM algorithm. By leveraging our new Lyapunov function construction
and new analysis, we establish 𝒪

(︀
𝛼−1𝜀−2 + 𝜎2𝜀−4

)︀
sample complexity in the single node case.

∙ We extend our algorithm to the distributed setting and derive an improved sample complexity
result compared to other methods using the Top𝐾 compressor without resorting to the BG/BGS
assumptions. In particular, EF21-SGDM achieves asymptotically optimal 𝒪

(︀
𝜎2𝑛−1𝜀−4

)︀
sample

complexity. Moreover, when EF21-SGDM is applied with large enough batch size, we prove that it
reaches the optimal communication complexity 𝒪

(︀
𝐾𝛼−1𝜀−2

)︀
; see Tables 1 & 2 for more details.

∙ Finally, we propose a double momentum variant of EF21-SGDM, and find that it further improves
the sample complexity of EF21-SGDM in the non-asymptotic regime.

We highlight that, interestingly, we prove that momentum helps: EF21-SGDM is theoretically better
compared to its non-momentum variant – large-batch EF21-SGD. We believe that our new technique
can be extended in many ways, e.g., to dealing with other biased compressors and other (biased) com-
munication saving techniques such as lazy aggregation of gradients, model compression, bidirectional
compression, partial participation, decentralized training, adaptive compression; other important
optimization techniques involving biased updates such as proximal SGD with momentum, gradient
clipping and adaptive step-size schedules. We also hope that our proof techniques can be useful
to establish linear speedup for other classes of distributed methods, e.g, algorithms based on local
training ProxSkip/Scaffnew [Mishchenko et al., 2022].

Additionally, we extend our results to the class of absolute compressors in Appendix H and study the
variance reduced variant of error feedback in Appendix I.

3 Main Results

Throughout the paper we work under the following standard assumptions.

Assumption 1 (Smoothness and lower boundedness). We assume that 𝑓 has 𝐿-Lipschitz gradient,
i.e., ‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿 ‖𝑥− 𝑦‖ for all 𝑥, 𝑦 ∈ R𝑑, and each 𝑓𝑖 has 𝐿𝑖-Lipschitz gradient,

5

i.e., ‖∇𝑓𝑖(𝑥)−∇𝑓𝑖(𝑦)‖ ≤ 𝐿𝑖 ‖𝑥− 𝑦‖ for all 𝑖 ∈ [𝑛], 𝑥, 𝑦 ∈ R𝑑. We denote ̃︀𝐿2 := 1
𝑛

∑︀𝑛
𝑖=1 𝐿

2
𝑖 .

Moreover, we assume that 𝑓 is lower bounded, i.e., 𝑓* := inf𝑥∈R𝑑 𝑓(𝑥) > −∞.

Assumption 2 (Bounded variance (BV)). There exists 𝜎 > 0 such that

E
[︁
‖∇𝑓𝑖(𝑥, 𝜉𝑖)−∇𝑓𝑖(𝑥)‖2

]︁
≤ 𝜎2, ∀𝑥 ∈ R𝑑, ∀𝑖 ∈ [𝑛], (4)

where 𝜉𝑖 ∼ 𝒟𝑖 are i.i.d. random samples for each 𝑖 ∈ [𝑛].

3.1 A deeper dive into the issues EF21 has with stochastic gradients

As remarked before, the current analysis of EF21 in the stochastic setting requires each client to
sample a mega-batch in each iteration, and it is not clear how to avoid this. In order to understand
this phenomenon, we propose to step back and examine an “idealized” version of EF21-SGD, which
we call EF21-SGD-ideal, defined by the update rules (5a) + (5aa):

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡, 𝑔𝑡 = 1
𝑛

𝑛∑︀
𝑖=1

𝑔𝑡𝑖 (5a)

EF21-SGD-ideal: 𝑔𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1) + 𝒞
(︀
∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖)−∇𝑓𝑖(𝑥

𝑡+1)
)︀
, (5aa)

EF21-SGD: 𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝒞

(︀
∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖)− 𝑔𝑡𝑖

)︀
. (5ab)

Compared to EF21-SGD, given by (5a) + (5ab), we replace the previous state 𝑔𝑡𝑖 by the exact gradient
at the current iteration. Since EF21-SGD heavily relies on the approximation 𝑔𝑡𝑖 ≈ ∇𝑓𝑖(𝑥

𝑡+1), and
according to the proof of convergence of EF21-SGD, such discrepancy tends to zero as 𝑡 → ∞, this
change can only improve the method. While we admit this is a conceptual algorithm only (it does not
lead to any communication or sample complexity reduction in practice)8, it serves us well to illustrate
the drawbacks of EF21-SGD. We now establish the following negative result for EF21-SGD-ideal.
Theorem 1. Let 𝐿, 𝜎 > 0, 0 < 𝛾 ≤ 1/𝐿 and 𝑛 = 1. There exists a convex, 𝐿-smooth function
𝑓 : R2 → R, a contractive compressor 𝒞(·) satisfying Definition 1, and an unbiased stochastic
gradient with bounded variance 𝜎2 such that if the method EF21-SGD-ideal ((5a) + (5aa)) is run with
step-size 𝛾, then for all 𝑇 ≥ 0 and for all 𝑥0 ∈ {(0, 𝑥0

(2))
⊤ ∈ R2 |𝑥0

(2) < 0}, we have

E
[︁⃦⃦

∇𝑓(𝑥𝑇)
⃦⃦2]︁ ≥ 1

60 min
{︁
𝜎2,
⃦⃦
∇𝑓(𝑥0)

⃦⃦2}︁
.

Fix 0 < 𝜀 ≤ 𝐿/
√
60 and 𝑥0 = (0,−1)⊤. Additionally assume that 𝑛 ≥ 1 and the variance of

unbiased stochastic gradient is controlled by 𝜎2
/𝐵 for some 𝐵 ≥ 1. If 𝐵 < 𝜎2

60𝜀2 , then we have
E
[︀⃦⃦
∇𝑓(𝑥𝑇)

⃦⃦]︀
> 𝜀 for all 𝑇 ≥ 0.

The above theorem implies that the method (5a), (5aa), does not converge with small batch-size
(e.g., equal to one) for any fixed step-size choice.9 Moreover, in distributed setting with 𝑛 nodes,
a mini-batch of order 𝐵 = Ω

(︀
𝜎2
/𝜀2
)︀

is required for convergence. Notice that this batch-size is
independent of 𝑛, which further implies that a linear speedup in the number of nodes 𝑛 cannot be
achieved for this method. While we only prove these negative results for an "idealized" version
of EF21-SGD rather than for the method itself, in Figures 1a and 4a, we empirically verify that
EF21-SGD also suffers from a similar divergence on the same problem instance provided in the proof
of Theorem 1. Additionally, Figures 1b and 4b illustrate that the situation does not improve for
EF21-SGD when increasing 𝑛.

3.2 Momentum for avoiding mega-batches

Let us now focus on the single node setting10 and try to fix the divergence issue shown above. As
we can learn from Theorem 1, the key reason for non-convergence of EF21-SGD is that even if the
state vector 𝑔𝑡 sufficiently approximates the current gradient, i.e., 𝑔𝑡 ≈ ∇𝑓(𝑥𝑡+1), the design of

8This is because full gradients would need to be computed and communicated for its implementation. Notice
also that if 𝜎 = 0, this method becomes the exact distributed gradient descent.

9In fact, the example can be easily extended to the case of polynomially decaying step-size.
10In this case, we can drop index 𝑖 everywhere and write 𝑔𝑡𝑖 = 𝑔𝑡, 𝜉𝑡𝑖 = 𝜉𝑡 for all 𝑡 ≥ 0.

6

this method cannot guarantee that the quantity ‖𝑔𝑡 −∇𝑓(𝑥𝑡)‖2 ≈ ‖𝒞 (∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡))‖2 is
small enough. Indeed, the last term above can be bounded by 2(2 − 𝛼)𝜎2 in expectation, but it is
not sufficient as formally illustrated in Theorem 1. To fix this problem, we propose to modify our
“idealized” EF21-SGD-ideal method so that the compressed difference can be controlled and made
arbitrarily small, which leads us to another (more advanced) conceptual algorithm,

EF21-SGDM-ideal:
𝑣𝑡+1 = ∇𝑓(𝑥𝑡+1) + 𝜂(∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)−∇𝑓(𝑥𝑡+1)),

𝑔𝑡+1 = ∇𝑓(𝑥𝑡+1) + 𝒞
(︀
𝑣𝑡+1 −∇𝑓(𝑥𝑡+1)

)︀
.

(6)

In this method, instead of using 𝑣𝑡+1 = ∇𝑓(𝑥𝑡+1, 𝜉𝑡+1) as in EF21-SGD-ideal, we introduce a
correction, which allows to control variance of the difference ∇𝑓(𝑥𝑡+1, 𝜉𝑡+1) − ∇𝑓(𝑥𝑡+1). This
allows us to derive the following convergence result. Let 𝛿0 := 𝑓(𝑥0)− 𝑓*.
Proposition 1. Let Assumptions 1, 2 hold, and let 𝒞 satisfy Definition 1. Let 𝑔0 = 0 and the step-size
in method (5a), (6) be set as 𝛾 ≤ 1/𝐿. Let �̂�𝑇 be sampled uniformly at random from the iterates of

the method. Then for any 𝜂 > 0 after 𝑇 iterations, we have E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 2𝛿0

𝛾𝑇 + 4𝜂2𝜎2.

Notice that if 𝜂 = 1, then algorithm EF21-SGDM-ideal (5a), (6) reduces to EF21-SGD-ideal method
(5a), (5aa), and this result shows that the lower bound for the batch-size established in Theorem 1 is
tight, i.e., 𝐵 = Θ(𝜎

2
/𝜀2) is necessary and sufficient11 for convergence. For 𝜂 < 1, the above theorem

suggests that using a small enough parameter 𝜂, the variance term can be completely eliminated. This
observation motivates us to design a practical variant of this method. Similarly to the design of EF21
mechanism (from EF21-SGD-ideal), we propose to do this by replacing the exact gradients ∇𝑓(𝑥𝑡+1)
by state vectors 𝑣𝑡 and 𝑔𝑡 as follows:

EF21-SGDM:
𝑣𝑡+1 = 𝑣𝑡 + 𝜂(∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)− 𝑣𝑡),

𝑔𝑡+1 = 𝑔𝑡 + 𝒞
(︀
𝑣𝑡+1 − 𝑔𝑡

)︀ (7)

Theorem 2. Let Assumptions 1, 2 hold, and let 𝒞 satisfy Definition 1. Let method (5a), (7) be run
with 𝑔0 = 𝑣0 = ∇𝑓(𝑥0), and �̂�𝑇 be sampled uniformly at random from the iterates of the method.

Then for all 𝜂 ∈ (0, 1] with 𝛾 ≤ 𝛾0 = min
{︀

𝛼
20𝐿 ,

𝜂
7𝐿

}︀
, we have E

[︁⃦⃦
∇𝑓(�̂�𝑇)

⃦⃦2]︁ ≤ 𝒪(𝛿0
𝛾𝑇 + 𝜂𝜎2).

The choice 𝜂 = min
{︁
1,
(︀
𝐿𝛿0
𝜎2𝑇

)︀1/2}︁
, 𝛾 = 𝛾0 results in E

[︁⃦⃦
∇𝑓(�̂�𝑇)

⃦⃦2]︁ ≤ 𝒪
(︀
𝐿𝛿0
𝛼𝑇 +

(︀
𝐿𝛿0𝜎

2

𝑇

)︀1/2)︀
.

Compared to Proposition 1, where 𝜂 can be made arbitrarily small, Theorem 2 suggests that there is a
trade-off for the choice of 𝜂 ∈ (0, 1] in algorithm (5a), (7). The above theorem implies that in single
node setting EF21-SGDM has 𝒪(𝐿

𝛼𝜀2 + 𝐿𝜎2

𝜀4) sample complexity. For 𝛼 = 1, this result matches with
the sample complexity of SGD and is known to be unimprovable under Assumptions 1 and 2 [Arjevani
et al., 2019]. Moreover, when 𝛼 = 1, our sample complexity matches with previous analysis of
momentum methods in [Liu et al., 2020] and [Defazio, 2021]. However, even in this single node
(𝑛 = 1), uncompressed (𝛼 = 1) setting our analysis is different from the previous work, in particular,
our choice of momentum parameter and the Lyapunov function are different, see Appendix A and J.
For 𝛼 < 1, the above result matches with sample complexity of EF14-SGD (single node setting)
[Stich and Karimireddy, 2019], which was recently shown to be optimal [Huang et al., 2022] for
biased compressors satisfying Definition 1. However, notice that the extension of the analysis by Stich
and Karimireddy [2019] for EF14-SGD to distributed setting meets additional challenges and it is
unclear whether it is possible without imposing additional BG or BGS assumptions as in [Koloskova
et al., 2020]. We revisit this analysis in Appendix K to showcase the difficulty of removing BG/BGS.
In the following we will demonstrate the benefit of our EF21-SGDM method by extending it to
distributed setting without imposing any additional assumptions.

3.3 Distributed stochastic error feedback with momentum

Now we are ready to present a distributed variant of EF21-SGDM , see Algorithm 1. Letting
𝛿𝑡 := 𝑓(𝑥𝑡)−𝑓*, our convergence analysis of this method relies on the monotonicity of the following
Lyapunov function:

Λ𝑡 := 𝛿𝑡 +
𝛾
𝛼𝑛

𝑛∑︀
𝑖=1

‖𝑔𝑡𝑖 − 𝑣𝑡𝑖‖
2
+ 𝛾𝜂

𝛼2𝑛

𝑛∑︀
𝑖=1

‖𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)‖2 + 𝛾

𝜂

⃦⃦⃦⃦
𝑛∑︀

𝑖=1

(𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡))

⃦⃦⃦⃦2
. (8)

11This follows by replacing 𝜎2 in the batch free algorithm by 𝜎2
/𝐵 if the batch-size of size 𝐵 > 1 is used.

7

Algorithm 1 EF21-SGDM (Error Feedback 2021 Enhanced with Polyak Momentum)

1: Input: starting point 𝑥0, step-size 𝛾 > 0, momentum 𝜂 ∈ (0, 1], initial batch size 𝐵init

2: Initialize 𝑣0𝑖 = 𝑔0𝑖 = 1
𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for 𝑖 = 1, . . . , 𝑛; 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖

3: for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
4: Master computes 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 and broadcasts 𝑥𝑡+1 to all nodes
5: for all nodes 𝑖 = 1, . . . , 𝑛 in parallel do
6: Compute momentum estimator 𝑣𝑡+1

𝑖 = (1− 𝜂)𝑣𝑡𝑖 + 𝜂∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖)

7: Compress 𝑐𝑡+1
𝑖 = 𝒞(𝑣𝑡+1

𝑖 − 𝑔𝑡𝑖) and send 𝑐𝑡+1
𝑖 to the master

8: Update local state 𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝑐𝑡+1

𝑖
9: end for

10: Master computes 𝑔𝑡+1 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 via 𝑔𝑡+1 = 𝑔𝑡 + 1

𝑛

∑︀𝑛
𝑖=1 𝑐

𝑡+1
𝑖

11: end for

∙ Convergence of EF21-SGDM with contractive compressors. We obtain the following result:
Theorem 3. Let Assumptions 1 and 2 hold. Let �̂�𝑇 be sampled uniformly at random from the 𝑇
iterates of the method. Let EF21-SGDM (Algorithm 1) be run with a contractive compressor. For all
𝜂 ∈ (0, 1] and 𝐵init ≥ 1, with 𝛾 ≤ min

{︁
𝛼

20̃︀𝐿 , 𝜂
7𝐿

}︁
, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

(︁
Λ0

𝛾𝑇 + 𝜂3𝜎2

𝛼2 + 𝜂2𝜎2

𝛼 + 𝜂𝜎2

𝑛

)︁
, (9)

where Λ0 is given by (8). Choosing the batch size 𝐵init =
⌈︁

𝜎2

𝐿𝛿0

⌉︁
, and stepsize 𝛾 = min

{︁
𝛼

20̃︀𝐿 , 𝜂
7𝐿

}︁
,

and momentum 𝜂 = min

{︂
1,
(︁

𝐿𝛿0𝛼
2

𝜎2𝑇

)︁1/4

,
(︀
𝐿𝛿0𝛼
𝜎2𝑇

)︀1/3
,
(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2
, 𝛼

√
𝐿𝛿0𝐵init
𝜎

}︂
, 12 we get

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

(︂ ̃︀𝐿𝛿0
𝛼𝑇 +

(︁
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︁3/4

+
(︁

𝐿𝛿0𝜎√
𝛼𝑇

)︁2/3

+
(︁

𝐿𝛿0𝜎
2

𝑛𝑇

)︁1/2
)︂
.

Remark 1. Note that using large initial batch size 𝐵init > 1 is not necessary for convergence of
EF21-SGDM. If we set 𝐵init = 1, the above theorem still holds by replacing 𝛿0 with Λ0.
Remark 2. In the single node setting (𝑛 = 1), the above result recovers the statement of

Theorem 2 (with the same choice of parameters) since by Young’s inequality
(︁

𝐿𝛿0𝜎
2/3

𝛼2/3𝑇

)︁3/4

≤

1
2
𝐿𝛿0
𝛼𝑇 + 1

2

(︁
𝐿𝛿0𝜎

2

𝑇

)︁1/2

,
(︁

𝐿𝛿0𝜎√
𝛼𝑇

)︁2/3

≤ 1
3
𝐿𝛿0
𝛼𝑇 + 2

3

(︁
𝐿𝛿0𝜎

2

𝑇

)︁1/2

, and ̃︀𝐿 = 𝐿.

∙ Recovering previous rates in case of full gradients. Compared to the iteration complexity
𝒪(𝐿max𝐺

𝛼𝜀3) of EF14 [Koloskova et al., 2020], our result, summarized in

Corollary 1. If 𝜎 = 0, then E
[︀⃦⃦
∇𝑓(�̂�𝑇)

⃦⃦]︀
≤ 𝜀 after 𝑇 = 𝒪

(︁ ̃︀𝐿
𝛼𝜀2

)︁
iterations.

is better by an order of magnitude, and does not require the BG assumption. The result of Corollary 1
is the same as for EF21 method [Richtárik et al., 2021], and EF21-HB method [Fatkhullin et al., 2021].
Notice, however, that even in this deterministic setting (𝜎 = 0) EF21-SGDM method is different from
EF21 and EF21-HB: while the original EF21 does not use momentum, EF21-HB method incorporates
momentum on the server side to update 𝑥𝑡, which is different from our Algorithm 1, where momentum
is applied by each node. This iteration complexity 𝒪

(︀
1

𝛼𝜀2

)︀
is optimal in both 𝛼 and 𝜀. The matching

lower bound was recently established by Huang et al. [2022] for smooth nonconvex optimization in
the class of centralized, zero-respecting algorithms with contractive compressors.

∙ Comparison to previous work. Our sample complexity13 in

Corollary 2. E
[︀⃦⃦
∇𝑓(�̂�𝑇)

⃦⃦]︀
≤ 𝜀 after 𝑇 = 𝒪

(︁ ̃︀𝐿
𝛼𝜀2 + 𝐿𝜎2/3

𝛼2/3𝜀8/3
+ 𝐿𝜎

𝛼1/2𝜀3
+ 𝐿𝜎2

𝑛𝜀4

)︁
iterations.

12In Appendix J, we show how to deal with time varying 𝛾𝑡 and 𝜂𝑡.
13Note that the initial batch size contributes to the sample complexity only an additive constant independent

of 𝜀. Moreover, 𝐵init =
⌈︁

𝜎2

𝐿𝛿0

⌉︁
≤

⌈︁
2𝜎2

𝜀2

⌉︁
since, otherwise,

⃦⃦
∇𝑓(𝑥0)

⃦⃦2 ≤ 2𝐿𝛿0 ≤ 𝜀2, and 𝑥0 is a solution. In
the following, we ignore the dependece on 𝐵init for a fair comparison with other works.

8

strictly improves over the complexity 𝒪(𝐺𝐿max
𝛼𝜀3 + 𝐿max𝜎

2

𝑛𝜀4) of EF14-SGD by Koloskova et al. [2020],
even in case when 𝐺 < +∞. Notice that it always holds that 𝜎 ≤ 𝐺. If we assume that 𝐺 ≈ 𝜎,
our three first terms in the complexity improve the first term from Koloskova et al. [2020] by the
factor of 𝜀/𝜎, (𝜀𝛼/𝜎)1/3, or 𝛼1/2. Compared to the BEER algorithm of Zhao et al. [2022], with
sample complexity 𝒪(𝐿max

𝛼𝜀 + 𝐿max𝜎
2

𝛼2𝜀4), the result of Corollary 2 is strictly better in terms of 𝛼, 𝑛, and
the smoothness constants.14 In addition, we remove the large batch requirement for convergence
compared to [Fatkhullin et al., 2021, Zhao et al., 2022]. Moreover, notice that Corollary 2 implies
that EF21-SGDM achieves asymptotically optimal sample complexity 𝒪(𝐿𝜎2

𝑛𝜀4) in the regime 𝜀 → 0.

3.4 Further improvement using double momentum!

Unfortunately, in the non-asymptotic regime, our sample complexity does not match with the lower
bound in all problem parameters simultanuously due to the middle term 𝐿𝜎2/3

𝛼2/3𝜀8/3
+ 𝐿𝜎

𝛼1/2𝜀3
, which can

potentially dominate over 𝐿𝜎2

𝑛𝜀4 term for large enough 𝑛 and 𝜀, and small enough 𝛼 and 𝜎. We propose
a double-momentum method, which can further improve the middle term in the sample complexity
of EF21-SGDM. We replace the momentum estimator 𝑣𝑡𝑖 in line 6 of Algorithm 1 by the following
two-step momentum update

EF21-SGD2M: 𝑣𝑡+1
𝑖 = (1− 𝜂)𝑣𝑡𝑖 + 𝜂∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖), 𝑢𝑡+1

𝑖 = (1− 𝜂)𝑢𝑡
𝑖 + 𝜂𝑣𝑡+1

𝑖 . (10)

We formally present this method in Algorithm 3 in Appendix G. Compared to EF21-SGDM (Algo-
rithm 1), the only change is that instead of compressing 𝑣𝑡𝑖 − 𝑔𝑡𝑖 , in EF21-SGD2M, we compress
𝑢𝑡
𝑖 − 𝑔𝑡𝑖 , where 𝑢𝑖 is a two step (double) momentum estimator. The intuition behind this modification

is that a double momentum estimator 𝑢𝑡
𝑖 has richer "memory" of the past gradients compared to

𝑣𝑡𝑖 . Notice that for each node, EF21-SGD2M requires to save 3 vectors (𝑣𝑡𝑖 , 𝑢
𝑡
𝑖, 𝑔

𝑡
𝑖) instead of 2 in

EF21-SGDM (𝑣𝑡𝑖 , 𝑔
𝑡
𝑖) and EF14-SGD (𝑒𝑡𝑖, 𝑔

𝑡
𝑖).

15 When interacting with biased compression operator
𝒞(·), such effect becomes crucial in improving the sample complexity. For EF21-SGD2M, we derive

Corollary 3. Let 𝑣𝑡𝑖 in Algorithm 1 be replaced by 𝑢𝑡
𝑖 given by (10) (Algorithm 3 in Appendix G).

Then with appropriate choice of 𝛾 and 𝜂 (given in Theorem 5), we have E
[︀⃦⃦
∇𝑓(�̂�𝑇)

⃦⃦]︀
≤ 𝜀 after

𝑇 = 𝒪
(︁ ̃︀𝐿𝛿0

𝛼𝜀2 + 𝐿𝛿0𝜎
2/3

𝛼2/3𝜀8/3
+ 𝐿𝛿0𝜎

2

𝑛𝜀4

)︁
iterations.

4 Experiments

We consider a nonconvex logistic regression problem: 𝑓𝑖(𝑥1, . . . , 𝑥𝑐) =
− 1

𝑚

∑︀𝑚
𝑗=1 log(exp(𝑎

⊤
𝑖𝑗𝑥𝑦𝑖𝑗

)/
∑︀𝑐

𝑦=1 exp(𝑎
⊤
𝑖𝑗𝑥𝑦)) with a nonconvex regularizer ℎ(𝑥1, . . . , 𝑥𝑐) =

𝜆
∑︀𝑐

𝑦=1

∑︀𝑙
𝑘=1[𝑥𝑦]

2
𝑘/(1 + [𝑥𝑦]

2
𝑘) with 𝜆 = 10−3, where 𝑥1, . . . , 𝑥𝑐 ∈ R𝑙, [·]𝑘 is an indexing

operation of a vector, 𝑐 ≥ 2 is the number of classes, 𝑙 is the number of features, 𝑚 is the size of
a dataset, 𝑎𝑖𝑗 ∈ R𝑙 and 𝑦𝑖𝑗 ∈ {1, . . . , 𝑐} are features and labels. The datasets used are MNIST
(with 𝑙 = 784, 𝑚 = 60 000, 𝑐 = 10) and real-sim (with 𝑙 = 20 958, 𝑚 = 72 309, 𝑐 = 2) [LeCun
et al., 2010, Chang and Lin, 2011]. The dimension of the problem is 𝑑 = (𝑙 + 1)𝑐, i.e., 𝑑 = 7850
for MNIST and 𝑑 = 41 918 for real-sim. In each experiment, we show relations between the total
number of transmitted coordinates and gradient/function values. The stochastic gradients in each
algorithm are replaced by a mini-batch estimator 1

𝐵

∑︀𝐵
𝑗=1 ∇𝑓𝑖(𝑥, 𝜉𝑖𝑗) with the same 𝐵 ≥ 1 in each

plot. Notice that all methods (except for NEOLITHIC)16 calculate the same number of samples at each
communication round, thus the dependence on the number of samples used will be qualitatively the
same. In all algorithms, the step sizes are fine-tuned from a set {2𝑘 | 𝑘 ∈ [−20, 20]} and the Top𝐾
compressor is used to compress information from the nodes to the master. For EF21-SGDM , we fix
momentum parameter 𝜂 = 0.1 in all experiments. Prior to that, we tuned 𝜂 ∈ {0.01, 0.1} on the
independent dataset w8a (with 𝑙 = 300, 𝑚 = 49 749, 𝑐 = 2). We omit BEER method from the plots
since it showed worse performance than EF21-SGD in all runs.

14𝐿max := max𝑖∈[𝑛] 𝐿𝑖. Notice that 𝐿 ≤ ̃︀𝐿 ≤ 𝐿max and the inequalities are strict in heterogeneous setting.
15See Appendix K for details on EF14-SGD. In contrast, EF21-SGD needs to save only one vector (𝑔𝑡𝑖).
16For NEOLITHIC, we use the parameter 𝑅 = ⌈𝑑/𝐾⌉ following the requirement in their Theorem 3.

Experiments in Huang et al. [2022] use a heuristic choice 𝑅 = 4, and thus can show faster convergence.

9

4.1 Experiment 1: increasing batch-size

In this experiment, we use MNIST dataset and fix the number of transmitted coordinates to 𝐾 = 10
(thus 𝛼 ≥ 𝐾/𝑑 ≈ 10−3), and set 𝑛 = 10. Figure 2 shows convergence plots for 𝐵 ∈ {1,32,128}.
EF21-SGDM and its double momentum version EF21-SGD2M have fast convergence and show a
significant improvement when increasing batch-size compared to EF14-SGD. In contrast, EF21-SGD
suffers from poor performance for small 𝐵, which confirms our observations in previous sections.
NEOLITHIC has order times slower convergence rate due to the fact that it sends ⌈𝑑/𝐾⌉ compressed
vectors in each iteration, while other methods send only one.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e6

10 2

10 1

100

||
f(x

t)|
|2

Neolithic: Step size: 0.125
EF14-SGD: Step size: 0.0625
EF21-SGD: Step size: 0.015625
EF21-SGD2M: Step size: 0.03125
EF21-SGDM: Step size: 0.0078125

(a) 𝐵 = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e6

10 3

10 2

10 1

100

||
f(x

t)|
|2

Neolithic: Step size: 1.0
EF14-SGD: Step size: 0.25
EF21-SGD: Step size: 0.0078125
EF21-SGD2M: Step size: 0.0625
EF21-SGDM: Step size: 0.0625

(b) 𝐵 = 32

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e6

10 4

10 3

10 2

10 1

100

||
f(x

t)|
|2

Neolithic: Step size: 1.0
EF14-SGD: Step size: 0.25
EF21-SGD: Step size: 0.015625
EF21-SGD2M: Step size: 0.0625
EF21-SGDM: Step size: 0.125

(c) 𝐵 = 128

Figure 2: Experiment on MNIST dataset with 𝑛 = 10, and Top10 compressor.

4.2 Experiment 2: improving convergence with 𝑛

This experiment uses real-sim dataset, 𝐾 = 100 (thus 𝛼 ≥ 𝐾/𝑑 ≈ 2 ·10−3), and with 𝐵 = 128 ≪ 𝑚.
We vary the number of nodes within 𝑛 ∈ {1, 10, 100}, see Figure 3. In this case, EF21-SGDM and
EF21-SGD2M have much faster convergence compared to other methods for all 𝑛. Moreover, the
proposed algorithms show a significant improvement when 𝑛 increases. We also observe that on this
task, EF21-SGD2M performs slightly worse than EF21-SGDM for 𝑛 = 10, 100 , but it is still much
faster than other other methods.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e7

10 2

10 1

f(x
t)

EF14-SGD: Step size: 64.0
EF21-SGD: Step size: 8.0
EF21-SGD2M: Step size: 32.0
EF21-SGDM: Step size: 64.0

(a) 𝑛 = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e7

10 2

10 1

f(x
t)

EF14-SGD: Step size: 128.0
EF21-SGD: Step size: 64.0
EF21-SGD2M: Step size: 512.0
EF21-SGDM: Step size: 512.0

(b) 𝑛 = 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e7

10 2

10 1

f(x
t)

EF14-SGD: Step size: 128.0
EF21-SGD: Step size: 128.0
EF21-SGD2M: Step size: 512.0
EF21-SGDM: Step size: 512.0

(c) 𝑛 = 100

Figure 3: Experiment on real-sim dataset with batch-size 𝐵 = 128, and Top100 compressor.

In Section C, we present extra simulations with different parameters for above experiments. Addi-
tionally, we inlclude experiemnts on simple quadratic problems and perform training of larger image
recognition models. In all cases, EF21-SGDM and EF21-SGD2M outperform other algorithms.

Acknowledgments and Disclosure of Funding

This work of I. Fatkhullin was supported by ETH AI Center doctoral fellowship. The work of
P. Richtárik and A. Tyurin was supported by the KAUST Baseline Research Scheme (KAUST
BRF) and the KAUST Extreme Computing Research Center (KAUST ECRC); P. Richtárik was also
supported by the SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence
(SDAIA-KAUST AI).

10

References
Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-

efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems, pages 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
Renggli. The convergence of sparsified gradient methods. In Advances in Neural Information
Processing Systems, 2018.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. arXiv preprint arXiv:2002.12410, 2020.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

Xin Chen, Niao He, Yifan Hu, and Zikun Ye. Efficient algorithms for minimizing compositions
of convex functions and random functions and its applications in network revenue management.
arXiv preprint arXiv:2205.01774, 2022.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized SGD. In International
Conference on Machine Learning, page 2260–2268. PMLR, 2020.

Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic optimization
with heavy tails. pages 4883–4895, 2021.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD.
In Advances in Neural Information Processing Systems, 2019.

Aaron Defazio. Momentum via primal averaging: Theoretical insights and learning rate schedules
for non-convex optimization. arXiv preprint arXiv:2010.00406, 2021.

Thinh Doan, Siva Maguluri, and Justin Romberg. Finite-time analysis of distributed TD(0) with
linear function approximation on multi-agent reinforcement learning. In International Conference
on Machine Learning, pages 1626–1635. PMLR, 2019.

Ron Dorfman, Shay Vargaftik, Yaniv Ben-Itzhak, and Kfir Y. Levy. DoCoFL: Downlink compression
for cross-device federated learning. arXiv preprint arXiv:2302.00543, 2023.

Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. EF21 with
bells & whistles: Practical algorithmic extensions of modern error feedback. arXiv preprint
arXiv:2110.03294, 2021.

Juan Gao, Xin-Wei Liu, Yu-Hong Dai, Yakui Huang, and Junhua Gu. Distributed stochastic gradient
tracking methods with momentum acceleration for non-convex optimization. Computational
Optimization and Applications, 84(2):531–572, 2023.

Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson. Global convergence of the
heavy-ball method for convex optimization. In 2015 European control conference (ECC), pages
310–315. IEEE, 2015.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated SGD. In 34th Conference on Neural Information Processing Systems, 2020.

Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
convex distributed learning with compression. In International Conference on Machine Learning,
pages 3788–3798. PMLR, 2021.

Kaja Gruntkowska, Alexander Tyurin, and Peter Richtárik. Ef21-p and friends: Improved theoretical
communication complexity for distributed optimization with bidirectional compression. arXiv
preprint arXiv:2209.15218, Sep 2022.

11

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International Conference on Machine Learning, page 1737–1746,
Feb 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

Samuel Horváth, Chen-Yu Ho, L’udovít Horváth, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. arXiv preprint arXiv:1905.10988,
2019a.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik.
Stochastic distributed learning with gradient quantization and variance reduction. arXiv preprint
arXiv:1904.05115, 2019b.

Xinmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and nearly optimal
algorithms in distributed learning with communication compression. In Advances in Neural
Information Processing Systems, 2022.

Rustem Islamov, Xun Qian, Slavomír Hanzely, Mher Safaryan, and Peter Richtárik. Distributed
newton-type methods with communication compression and bernoulli aggregation. arXiv preprint
arXiv:2206.03588, 2022.

Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization in
deep learning. In International Conference on Machine Learning, pages 9965–10040. PMLR,
2022.

Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Federated reinforcement
learning with environment heterogeneity. In International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 18–37. PMLR,
28–30 Mar 2022.

Peter et al Kairouz. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

Satyen Kale, Ayush Sekhari, and Karthik Sridharan. Sgd: The role of implicit regularization,
batch-size and multiple-epochs. arXiv preprint arXiv:2107.05074, 2021.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes SignSGD and other gradient compression schemes. In International Conference on Machine
Learning, 2019.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U.
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv preprint arXiv:2008.03606, 2021.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017.

Sajad Khodadadian, Pranay Sharma, Gauri Joshi, and Siva Theja Maguluri. Federated reinforcement
learning: Linear speedup under markovian sampling. In International Conference on Machine
Learning, page 10997–11057. PMLR, Jun 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
minima? In International Conference on Machine Learning, page 2698–2707. PMLR, 2018.

Anastasia Koloskova, Tao Lin, S. Stich, and Martin Jaggi. Decentralized deep learning with arbitrary
communication compression. In International Conference on Learning Representations, 2020.

12

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: strategies for improving communication efficiency. In NIPS Private
Multi-Party Machine Learning Workshop, 2016.

Dmitry Kovalev, Anastasia Koloskova, Martin Jaggi, Peter Richtárik, and Sebastian Stich. A linearly
convergent algorithm for decentralized optimization: Sending less bits for free! In The 24th
International Conference on Artificial Intelligence and Statistics (AISTATS 2021), 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, 2009.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive SGD with momentum.
arXiv preprint arXiv:2007.14294, 2020.

Xiaoyu Li, Mingrui Liu, and Francesco Orabona. On the last iterate convergence of momentum
methods. In International Conference on Algorithmic Learning Theory, pages 699–717. PMLR,
2022a.

Xiaoyun Li, Belhal Karimi, and Ping Li. On distributed adaptive optimization with gradient compres-
sion. In International Conference on Learning Representations, 2022b.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
descent in distributed and federated optimization. In International Conference on Machine
Learning, pages 5895–5904. PMLR, 2020.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In International Conference on
Machine Learning, pages 6286–6295. PMLR, 2021.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations, 2018.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
momentum. In Advances in Neural Information Processing Systems, 2020.

Maksim Makarenko, Elnur Gasanov, Rustem Islamov, Abdurakhmon Sadiev, and Peter Richtarik.
Adaptive compression for communication-efficient distributed training. arXiv preprint
arXiv:2211.00188, Oct 2022.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtarik. ProxSkip: Yes!
Local gradient steps provably lead to communication acceleration! Finally! In International
Conference on Machine Learning, pages 15750–15769. PMLR, 2022.

Aritra Mitra, George J. Pappas, and Hamed Hassani. Temporal difference learning with compressed
updates: Error-feedback meets reinforcement learning. arXiv preprint arXiv:2301.00944, 2023.

Constantin Philippenko and Aymeric Dieuleveut. Bidirectional compression in heterogeneous settings
for distributed or federated learning with partial participation: tight convergence guarantees. arXiv
preprint arXiv:2006.14591, 2020.

Maximilian Plattner. On SGD with momentum. Master’s Thesis, 2022.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

13

Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed SGD can be accelerated.
arXiv preprint arXiv:2010.00091, 2020.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better, and
practically faster error feedback. In Advances in Neural Information Processing Systems, 2021.

Peter Richtárik, Igor Sokolov, Ilyas Fatkhullin, Elnur Gasanov, Zhize Li, and Eduard Gorbunov. 3PC:
Three point compressors for communication-efficient distributed training and a better theory for
lazy aggregation. arXiv preprint arXiv:2202.00998, 2022.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon
Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin, Micah
Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, and M. Jorge
Cardoso. The future of digital health with federated learning. npj Digital Medicine, 3(11):1–7,
2020.

Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication compres-
sion in distributed and federated learning and the search for an optimal compressor. Information
and Inference: A Journal of the IMA, 2021.

Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtárik. FedNL: Making Newton-type
methods applicable to federated learning. In Internatioanl Conference on Machine Learning, 2022.

Atal Sahu, Aritra Dutta, Ahmed M. Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos
Kalnis. Rethinking gradient sparsification as total error minimization. In Advances in Neural
Information Processing Systems, page 8133–8146, 2021.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind
Krishnamurthy, and Masoud Moshref. Scaling distributed machine learning with in-network
aggregation. In 18th USENIX Symposium on Networked Systems Design and Implementation,
page 785–808, 2021.

Othmane Sebbouh, Charles Dossal, and Aude Rondepierre. Nesterov’s acceleration and Polyak’s
heavy ball method in continuous time: convergence rate analysis under geometric conditions and
perturbations. arXiv preprint arXiv:1907.02710, 2019.

Othmane Sebbouh, Robert M Gower, and Aaron Defazio. Almost sure convergence rates for stochastic
gradient descent and stochastic heavy ball. In Conference on Learning Theory, pages 3935–3971.
PMLR, 2021.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. Squarm-sgd: Communication-
efficient momentum sgd for decentralized optimization. IEEE Journal on Selected Areas in
Information Theory, 2(3):954–969, 2021.

Sebastian Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for SGD
with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

Sebastian U. Stich and Sai Praneeth Karimireddy. The Error-Feedback Framework: Better Rates for
SGD with Delayed Gradients and Compressed Communication. arXiv preprint arXiv:1909.05350,
2021.

Sebastian U. Stich, J.-B. Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In Advances
in Neural Information Processing Systems, 2018.

Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster
distributed nonconvex optimization. arXiv preprint arXiv:2110.03300, 2021.

14

Yuki Takezawa, Han Bao, Kenta Niwa, Ryoma Sato, and Makoto Yamada. Momentum tracking:
Momentum acceleration for decentralized deep learning on heterogeneous data. arXiv preprint
arXiv:2209.15505, 2022.

Hanlin Tang, Xiangru Lian, Chen Yu, Tong Zhang, and Ji Liu. DoubleSqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In International Conference
on Machine Learning, 2020.

Alexander Tyurin and Peter Richtárik. Dasha: Distributed nonconvex optimization with commu-
nication compression, optimal oracle complexity, and no client synchronization. arXiv preprint
arXiv:2202.01268, 2022.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems,
2019.

Jun-Kun Wang and Jacob Abernethy. Quickly finding a benign region via heavy ball momentum in
non-convex optimization. arXiv preprint arXiv:2010.01449, 2021.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-compressed adaptive gradient method for
distributed nonconvex optimization. In International Conference on Artificial Intelligence and
Statistics, pages 6292–6320. PMLR, 2022.

Tiannan Xiao and Guoguo Yang. A convergence study of sgd-type methods for stochastic optimization.
arXiv preprint arXiv:2211.06197, 2022.

Cong Xie, Shuai Zheng, Oluwasanmi Koyejo, Indranil Gupta, Mu Li, and Haibin Lin. CSER:
Communication-efficient SGD with error reset. In Advances in Neural Information Processing
Systems, pages 12593–12603, 2020.

An Xu and Heng Huang. Detached error feedback for distributed sgd with random sparsification. In
International Conference on Machine Learning, pages 24550–24575. PMLR, 2022.

Junchi Yang, Xiang Li, Ilyas Fatkhullin, and Niao He. Two sides of one coin: the limits of untuned
SGD and the power of adaptive methods. In Advances in Neural Information Processing Systems,
2023.

Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence analysis of stochastic momentum
methods for convex and non-convex optimization. arXiv preprint arXiv:1604.03257, 2016.

Chung-Yiu Yau and Hoi-To Wai. DoCoM-SGT: Doubly compressed momentum-assisted stochastic
gradient tracking algorithm for communication efficient decentralized learning. arXiv preprint
arXiv:2202.00255, 2022.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum sgd for distributed non-convex optimization. In International Conference on Machine
Learning, page 7184–7193. PMLR, 2019.

SK Zavriev and FV Kostyuk. Heavy-ball method in nonconvex optimization problems. Computational
Mathematics and Modeling, 4(4):336–341, 1993.

Haoyu Zhao, Boyue Li, Zhize Li, Peter Richtárik, and Yuejie Chi. BEER: Fast O(1/T) rate for
decentralized nonconvex optimization with communication compression. In Advances in Neural
Information Processing Systems, 2022.

Shuai Zheng, Ziyue Huang, and James Kwok. Communication-efficient distributed blockwise
momentum SGD with error-feedback. In Advances in Neural Information Processing Systems,
2019.

15

Contents

1 Introduction 1

2 Communication Compression, Error Feedback, and Sample Complexity 2

2.1 Brief history of error-feedback . 2

2.2 Key issue: error feedback has an unhealthy appetite for samples! 3

2.3 Mysterious effectiveness of momentum in nonconvex optimization 4

3 Main Results 5

3.1 A deeper dive into the issues EF21 has with stochastic gradients 6

3.2 Momentum for avoiding mega-batches . 6

3.3 Distributed stochastic error feedback with momentum 7

3.4 Further improvement using double momentum! 9

4 Experiments 9

4.1 Experiment 1: increasing batch-size . 10

4.2 Experiment 2: improving convergence with 𝑛 . 10

A More on Contractive Compressors, Error Feedback and Momentum 18

B Variance Reduction Effect of SGDM and Comparison to STORM 21

C Additional Experiments and Details of Experimental Setup 22

C.1 Extra plots for experiments 1 and 2 . 22

C.2 Experiment 3: stochastic quadratic optimization 22

C.3 Experiment 4: training neural network . 24

D Descent Lemma 25

E EF21-SGDM-ideal (Proof of Theorem 1 and Proposition 1) 25

F EF21-SGDM (Proof of Theorems 2 and 3) 28

F.1 Controlling the error of momentum estimator . 30

F.2 Controlling the error of contractive compression and momentum estimator 31

G Further Improvement Using Double Momentum (Proof of Corollary 3) 33

G.1 Controlling the error of second momentum estimator 36

G.2 Controlling the error of contractive compression and double momentum estimator . 38

H EF21-SGDM with Absolute Compressor 40

H.1 Controlling the error of absolute compression . 42

I EF21-STORM/MVR 43

16

I.1 Controlling the variance of STORM/MVR estimator 46

I.2 Controlling the variance of contractive compression and STORM/MVR estimator . 47

J Simplified Proof of SGDM: Time Varying Parameters and No Tuning for Momentum
Sequence 49

K Revisiting EF14-SGD Analysis under BG and BGS Assumptions 51

17

Method Comm.
compl.

Batch-size for
comm. compl.

Asymp.
sample
compl.

Batch
free?

No extra
assump.?

EF14-SGD
[Koloskova et al., 2020]

𝐾𝐺𝐿max
𝛼𝜀3

𝛼𝜎2

𝑛𝜀𝐺
(*) 𝐿max𝜎

2

𝑛𝜀4
✔ ✗ (a)

NEOLITHIC
[Huang et al., 2022]

𝐾𝐿max
𝛼𝜀2

log
(︀
𝐺
𝜀

)︀ (b) 𝜎2

𝑛𝜀2
∨ 1

𝛼
log

(︀
𝐺
𝜀

)︀(*) 𝐿max𝜎
2

𝑛𝜀4
✗ ✗ (c)

EF21-SGD
[Fatkhullin et al., 2021]

𝐾 ̃︀𝐿
𝛼𝜀2

𝜎2

𝛼2𝜀2

̃︀𝐿𝜎2

𝛼3𝜀4
(d) ✗ ✔

BEER
[Zhao et al., 2022]

𝐾𝐿max
𝛼𝜀2

𝜎2

𝛼𝜀2
𝐿max𝜎

2

𝛼2𝜀4
(d) ✗ ✔

EF21-SGDM
Corollary 2

𝐾 ̃︀𝐿
𝛼𝜀2

𝛼𝐿̃︀𝐿 𝜎2

𝑛𝜀2
∨ 𝛼𝐿2̃︀𝐿2

𝜎2

𝜀2
𝐿𝜎2

𝑛𝜀4
✔ ✔

EF21-SGD2M
Corollary 3

𝐾 ̃︀𝐿
𝛼𝜀2

𝛼𝐿̃︀𝐿 𝜎2

𝑛𝜀2
∨ 𝛼𝐿3̃︀𝐿3

𝜎2

𝜀2
𝐿𝜎2

𝑛𝜀4
✔ ✔

(a) Analysis requires a bound of the second moment of the stochastic gradients, i.e., E
[︀
‖∇𝑓𝑖(𝑥, 𝜉𝑖)‖2

]︀
≤ 𝐺2 for all 𝑥 ∈ R𝑑.

(b) This complexity is achieved by using a large mini-batch and communicating ⌈𝐾/𝛼⌉ ≈ 𝑑 coordinates per iteration.
(c) Analysis requires a bounded gradient disimilarity assumption, i.e., 1

𝑛

∑︀𝑛
𝑖=1 ‖∇𝑓𝑖(𝑥) − ∇𝑓(𝑥)‖2 ≤ 𝐺2 for all 𝑥 ∈ R𝑑.

(d) Analysis requires a batch-size at least 𝐵 ≥ 𝜎2

𝛼2𝜀2
for EF21-SGD and 𝐵 ≥ 𝜎2

𝛼𝜀2
for BEER.

(*) For a fair comparison, we take the (minimal) batch-size for these methods which guarantees the reported communication complexity.

Table 2: Extended summary of related works on distributed error compensated SGD methods using a Top𝐾
compressor under Assumptions 1 and 2. The goal is to find an 𝜀-stationary point of a smooth nonconvex function
of the form (1), i.e., a point 𝑥 such that E [‖∇𝑓(𝑥)‖] ≤ 𝜀. "Comm. compl." reports the total number of
communicated bits if the method is applied with batch-size equal to "Batch-size" at each node. When Top𝐾
compressor is applied, then 𝛼 ≥ 𝐾/𝑑, and the comm. compl. of error compensated methods can be reduced by
a factor of 𝛼𝑑/𝐾. "Batch-size for comm. compl." means the batch-size for achieving the reported "Comm.
compl.". "Asymp. sample compl." reports the asymptotic sample complexity of the algorithm with batch-size
𝐵 = 1 in the regime 𝜀 → 0, i.e., the total number of samples required at each node to achieve 𝜀-stationary point.
"Batch free" marks with ✔ if the analysis ensures convergence with batch-size equal to 1. "No extra assump."
marks with ✔ if no additional assumption beyond Assumptions 1 and 2 is required for analysis. We denote
𝐿max := max𝑖∈[𝑛] 𝐿𝑖. Notice that it always holds 𝐿 ≤ ̃︀𝐿 ≤ 𝐿max and these inequalities only become equalities
in the homogeneous case. It could be that 𝛼𝐿/̃︀𝐿 ≪ 1 making the batch-size of EF21-SGDM and EF21-SGD2M
much smaller than those of EF21-SGD and BEER. Symbol ∨ denotes the maximum of two scalars.

A More on Contractive Compressors, Error Feedback and Momentum

Greedy vs uniform. In our work, we specifically focus on the class of contractive compressors
satisfying Definition 1, which contains a greedy Top𝐾 compressor as a special case. Note that
Top𝐾 is greedy in that it minimizes the error ‖Top𝐾(𝑥) − 𝑥‖2 subject to the sparsity constraint
‖𝒞(𝑥)‖0 ≤ 𝐾, where ‖𝑢‖0 counts the number of nonzero entries in 𝑢. In practice, greediness
is almost always17 very useful, translating into excellent empirical performance, especially when
compared to the performance of the Rand𝐾 sparsifier. On the other hand, it appears to be very hard
to formalize these practical gains theoretically18. In fact, while greedy compressors such as Top𝐾
outperform their randomized cousins such as Rand𝐾 in practice, and often by huge margins [Lin
et al., 2018], the theoretical picture is exactly reversed, and the theoretical communication complexity
of gradient-type methods based on randomized compressors [Alistarh et al., 2017, Mishchenko et al.,
2019, Horváth et al., 2019b, Li et al., 2020, Gorbunov et al., 2021] is much better than of those
based on greedy compressors [Koloskova et al., 2020, Richtárik et al., 2021, Fatkhullin et al., 2021,
Richtárik et al., 2022]. The key reason behind this is the fact that popular randomized compressors
such as Rand𝐾 become unbiased mappings after appropriate scaling (e.g., E[𝑑𝐾Rand𝐾(𝑥)] ≡ 𝑥),
and that the inherent randomness is typically drawn independently by all clients. This leads to several
key simplifications in the analysis, and consequently, to theoretical gains over methods that do not
compress, and over methods that compress greedily. Further improvements are possible when the
randomness is correlated in an appropriate way [Szlendak et al., 2021].

Due to the superior empirical properties of greedy contractive compressors, and our desire to push
this very potent line of work further, in this paper we work with the general class of compressors

17Greediness is not useful, for example, when 𝒟𝑖 = 𝒟𝑗 for all 𝑖,𝑗 and when Top𝐾 is applied to the full-batch
gradient ∇𝑓𝑖(𝑥) by each client. However, situations of this type arise rarely in practice.

18No theoretical results of this type exist for 𝑛 > 1 .

18

satisfying Definition 1, and do not invoke any additional restrictive assumptions. For example, we do
not assume 𝒞 can be made unbiased after scaling.

Error Feedback. The first theoretical analysis of EF14 was presented in the works of Stich et al.
[2018], Alistarh et al. [2018] and further revisited in convex case in [Karimireddy et al., 2019,
Beznosikov et al., 2020, Gorbunov et al., 2020, Qian et al., 2020] and analysis was extended to
nonconvex setting in [Stich and Karimireddy, 2019]. Later, in nonconvex case, various extensions
and combinations of EF14 with other optimization techniques were considered and analyzed, which
include bidirectional compression [Tang et al., 2020], decentralized training [Koloskova et al., 2020,
Singh et al., 2021], server level momentum [Xie et al., 2020], client level momentum [Zheng
et al., 2019], combination with adaptive methods [Li et al., 2022b]. To our knowledge, the best
sample complexity for finding a stationary point for this method (including its momentum and
adaptive variants) in the distributed nonconvex setting is given by Koloskova et al. [2020], which is
𝒪(𝐺

𝛼𝜀3 + 𝜎2

𝑛𝜀4). More recently, Huang et al. [2022] propose a modification of EF14 method achieving

𝒪
(︁

1
𝛼𝜀2 log(

𝐺
𝜀) +

𝜎2

𝑛𝜀4

)︁
sample complexity by using the BGS assumption. When applied with Top𝐾

compressor, this method requires to communicate ̃︀𝒪 (𝐾/𝛼) coordinates at every iteration. This makes
it impractical since when the effective 𝛼 is unknown and is set to 𝛼 = 𝐾/𝑑, it means that their method
communicates all 𝑑 coordinates at every iteration, mimicking vanilla (S)GD method. Moreover, their
algorithm uses an additional subroutine and applies updates with a large batch-size of samples of
order 𝒪(1

𝛼 log
(︀
𝐺
𝜀

)︀
), making the algorithm less practical and difficult to implement. It is worth to

mention, that error feedback was also analyzed for other classes of compressors such as absolute (see
Definition 2) or additive compressors (i.e., 𝒞(𝑥+ 𝑦) = 𝒞(𝑥) + 𝒞(𝑦) for all 𝑥, 𝑦 ∈ R𝑑) [Tang et al.,
2020, Xu and Huang, 2022], which do not include Top𝐾 sparsifier.

Momentum. The first convergence analysis of gradient descent with momentum was proposed
by B.T. Polyak in his seminal work [Polyak, 1964] studying the benefit of multi-step methods. The
proof technique proposed in this work is based on the analysis of the spectral norm of a certain
matrix arising from the dynamics of a multi-step process on a quadratic function. Unfortunately,
such technique is restricted to the case of strongly convex quadratic objective and the setting of full
gradients. Later Zavriev and Kostyuk [1993] prove an asymptotic convergence of this method in
nonconvex deterministic case without specifying the rate of convergence.

To our knowledge, the first non-asymptotic analysis of SGDM in the smooth nonconvex setting is due
to Yu et al. [2019]. Their analysis, however, heavily relies on BG assumption. Later, Liu et al. [2020]
provide a refined analysis of SGDM, removing the BG assumption and improving the dependence on
the momentum parameter 𝜂. Notice that the analysis of Liu et al. [2020] and the majority of other
works relies on some variant of the following Lyapunov function:

Λ𝑡 := 𝑓(𝑧𝑡)− 𝑓* +

𝑡∑︁
𝜏=0

𝑐𝜏
⃦⃦
𝑥𝑡−𝜏 − 𝑥𝑡−1−𝜏

⃦⃦2
, (11)

where {𝑧𝑡}𝑡≥0 is some auxiliary sequence (often) different from the iterates {𝑥𝑡}𝑡≥0, and {𝑐𝜏}𝜏≥0 is
a diminishing non-negative sequence. This approach is motivated by the dynamical system point of
view at Polyak’s heavy ball momentum, where the two terms in (11) are interpreted as the potential
and kinetic energy of the system [Sebbouh et al., 2019]. In contrast, the Lyapunov function used in
this work is conceptually different even in the single node (𝑛 = 1), uncompressed (𝛼 = 1) setting.
Later, Defazio [2021] revisit the analysis in [Liu et al., 2020] through the lens of primal averaging
and provide insights on why momentum helps in practice. The momentum is also used for stabilizing
adaptive algorithms such as normalized SGD [Cutkosky and Mehta, 2020]. In particular, it was
shown that by using momentum, one can ensure convergence without large batches for normalized
SGD (while keeping the same sample complexity as a large batch normalized SGD). However, their
analysis is specific to the normalized method, which allows using the function value as a Lyapunov
function. High probability analysis of momentum methods was investigated in [Cutkosky and Mehta,
2021, Li and Orabona, 2020]. In the distributed setting, [Yu et al., 2019, Karimireddy et al., 2021]
extend the analysis of SGDM under BGS assumption. Later [Takezawa et al., 2022, Gao et al., 2023]
remove this assumption providing a refined analysis based on the techniques developed in [Liu et al.,
2020]. However, the algorithms in these works do not apply any bandwidth reduction technique such
as communication compression.

19

We would like to mention that understanding the behavior of SGDM in convex case also remains an
active area of research [Ghadimi et al., 2015, Yang et al., 2016, Sebbouh et al., 2021, Li et al., 2022a,
Xiao and Yang, 2022] .

20

B Variance Reduction Effect of SGDM and Comparison to STORM

Notice that the choice of our Lyapunov function Λ𝑡 (8), which is used in the analysis of EF21-SGDM
implies that the gradient estimators 𝑔𝑡𝑖 and 𝑣𝑡𝑖 improve over the iterations, i.e.,

𝑔𝑡𝑖 → ∇𝑓𝑖(𝑥
𝑡), 𝑣𝑡𝑖 → ∇𝑓𝑖(𝑥

𝑡) for 𝑡 → ∞.

This comes in contrast with the behavior of SGD, for which the gradient estimator 𝑣𝑡𝑖 = ∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)

does not necessarily tend to zero over iterations. Such effect of asymptotic improvement of the
estimation error of the gradient estimator is reminiscent to the analogous effect known in the literature
on variance reduction (VR) methods. In particular, the classical momentum step 6 of Algorithm 1
may be contrasted with a STORM variance reduced estimator proposed by Cutkosky and Orabona
[2019], which updates the gradient estimator via

𝑤𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖) + (1− 𝜂)(𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖)), 𝑤0
𝑖 = ∇𝑓𝑖(𝑥

0, 𝜉0𝑖) (12)

It is known that the class of VR methods (and STORM, in particular) can show faster asymptotic
convergence in terms of 𝑇 (or 𝜀) compared to SGD and SGDM under some additional assump-
tions. However, we would like to point out the important differences (and limitations) of (12)
compared to the classical Polyak’s momentum used on line 6 of Algorithm 1. First, the estimator
𝑤𝑡+1

𝑖 is different from the momentum update rule 𝑣𝑡+1
𝑖 in that it is unbiased for any 𝑡 ≥ 0, i.e.,

E
[︀
𝑤𝑡+1

𝑖 −∇𝑓𝑖(𝑥
𝑡+1)

]︀
= 0,19 which greatly facilitates the analysis of this method. Notice that,

in particular, in the deterministic case (𝜎 = 0, 𝛼 = 1), the method with estimator (12) reduces to
vanilla gradient descent with 𝑤𝑡+1

𝑖 = ∇𝑓𝑖(𝑥
𝑡+1). Second, the computation of 𝑤𝑡+1

𝑖 requires access
to two stochastic gradients ∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖) and ∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡+1
𝑖) under the same realization of noise

𝜉𝑡+1
𝑖 at each iteration, and requires the additional storage of control variate 𝑥𝑡. This is a serious

limitation, which can make the method impractical or even not implementable for certain applications
such as federated RL [Mitra et al., 2023], multi-agent RL [Doan et al., 2019] or operations research
problems [Chen et al., 2022]. Third, the analysis of variance reduced methods such as STORM
requires an additional assumptions such as individual smoothness of stochastic functions (or its
averaged variants) (Assumption 3), i.e., ‖∇𝑓𝑖(𝑥,𝜉𝑖)−∇𝑓𝑖(𝑦, 𝜉𝑖)‖ ≤ ℓ𝑖 ‖𝑥− 𝑦‖ for all 𝑥,𝑦 ∈ R𝑑,
𝜉𝑖 ∼ 𝒟𝑖, 𝑖 ∈ [𝑛], while our EF21-SGDM only needs smoothness of (deterministic) local functions
𝑓𝑖(𝑥). While this assumption is satisfied for some loss functions in supervised learning, it can also be
very limiting. Even if Assumption 3 is satisfied, the constant ̃︀ℓ (which always satisfies ̃︀ℓ ≥ ̃︀𝐿) can be
much larger than ̃︀𝐿 canceling the speed-up in terms of 𝑇 (or 𝜀). For completeness, we provide the
sample complexity analysis of our error compensated method combined with estimator (12), which is
deferred to Appendix I.

19Notice that E
[︀
𝑤0

𝑖 −∇𝑓𝑖(𝑥
0)
]︀
= 0. Let E

[︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
]︀
= 0 hold, then

E
[︀
𝑤𝑡+1

𝑖 −∇𝑓𝑖(𝑥
𝑡+1)

]︀
= (1− 𝜂)E

[︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖)
]︀
= 0.

21

0 2000 4000 6000 8000 10000
Iteration, t

0

1

2

3

4

5

6

7

Ob
je

ct
iv

e
va

lu
e

×10 2

EF21-SGD-ideal
EF21-SGD
EF21-SGDM

(a) Divergence in single node setting, 𝑛 = 1.

0 2000 4000 6000 8000 10000
Iteration, t

1.0

1.5

2.0

2.5

3.0

3.5

Ob
je

ct
iv

e
va

lu
e

×10 3

EF21-SGD (n = 50)
EF21-SGD (n = 500)
EF21-SGD (n = 5000)
EF21-SGD (n = 10000)

(b) No improvement with 𝑛.

Figure 4: Divergence of EF21-SGD on a quadratic function 1
2 ‖𝑥‖

2 with Top1 compressor. See the
proof of Therem 1 for details on the construction of noise 𝜉, we use 𝜎 = 1, 𝐵 = 1. The starting point
for all methods is 𝑥0 = (0,− 0.01)⊤. Unlike Figure 1, these experiments use time varying step-sizes
and momentum parameters 𝛾𝑡 = 𝜂𝑡 =

0.1√
𝑡+1

. Each method is run 10 times and the plot shows the
median performance alongside the 25% and 75% quantiles.

C Additional Experiments and Details of Experimental Setup

Divergence of EF21-SGD with time-varying step-sizes. We complement our Figure 1 in the main
part of the paper, which shows divergence of EF21-SGD [Fatkhullin et al., 2021] with small (constant)
step-size. Here, in Figure 4, we see that the similar divergence is observed when using time varying
step-sizes 𝛾𝑡 = 0.1√

𝑡+1
. Also, EF21-SGD with time-varying step-size does not improve convergence

when 𝑛 is increased.

Implementation Details. The experiments were implemented in Python 3.7.9. The distributed
environment was emulated on machines with Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz. In all
experiments with MNIST, we split the dataset across nodes by labels to simulate the heterogeneous
setting.

C.1 Extra plots for experiments 1 and 2

In Figures 5 and 6, we provide extra experiments for the setup from Section 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e6

10 2

10 1

100

||
f(x

t)|
|2

EF14-SGD: Step size: 0.5
EF21-SGD: Step size: 0.03125
EF21-SGDM: Step size: 0.03125

(a) 𝐵 = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e6

10 3

10 2

10 1

100

||
f(x

t)|
|2

EF14-SGD: Step size: 1.0
EF21-SGD: Step size: 0.015625
EF21-SGDM: Step size: 0.125

(b) 𝐵 = 32

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e6

10 4

10 3

10 2

10 1

100

||
f(x

t)|
|2

EF14-SGD: Step size: 1.0
EF21-SGD: Step size: 0.015625
EF21-SGDM: Step size: 0.25

(c) 𝐵 = 128

Figure 5: Performance of algorithms on MNIST dataset with 𝑛 = 100, and Top10 compressor.

C.2 Experiment 3: stochastic quadratic optimization

We now consider a synthetic 𝜆–strongly convex quadratic function problem 𝑓(𝑥) = 1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑥),

where the functions 𝑓𝑖(𝑥) = 1
2𝑥

⊤Q𝑖𝑥 − 𝑥⊤𝑏𝑖 are (not necessarily convex) quadratic functions
for all 𝑖 ∈ [𝑛] and 𝑥 ∈ R𝑑. The matrices Q1, · · · ,Q𝑛, vectors 𝑏1, · · · , 𝑏𝑛, and a starting point
𝑥0 are generated by Algorithm 2 with the number of nodes 𝑛 = 100, dimension 𝑑 = 1000,
regularizer 𝜆 = 0.01, and scale 𝑠 = 1. For all 𝑖 ∈ [𝑛] and 𝑥 ∈ R𝑑, we consider stochastic gradients
∇𝑓𝑖(𝑥, 𝜉) = ∇𝑓𝑖(𝑥) + 𝜉𝑖, where 𝜉𝑖 are i.i.d. samples from 𝒩 (0, 𝜎) with 𝜎 ∈ {0.001, 0.01}. In

22

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e7

10 2

10 1
f(x

t)

EF14-SGD: Step size: 1.0
EF21-SGD: Step size: 2.0
EF21-SGDM: Step size: 1.0

(a) 𝑛 = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e7

10 2

10 1

f(x
t)

EF14-SGD: Step size: 8.0
EF21-SGD: Step size: 8.0
EF21-SGDM: Step size: 8.0

(b) 𝑛 = 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#bits / n 1e7

10 2

10 1

f(x
t)

EF14-SGD: Step size: 64.0
EF21-SGD: Step size: 64.0
EF21-SGDM: Step size: 128.0

(c) 𝑛 = 100

Figure 6: Performance of algorithms on real-sim dataset with batch-size 𝐵 = 1, and Top100
compressor.

Figure 7, we present the comparison of EF21-SGDM and EF14-SGD with three different step sizes.
The behavior of methods for other step sizes from the set {2𝑘 | 𝑘 ∈ [−20, 20]} follows a similar trend.
For every step size, we observe that at the beginning, the methods have almost the same linear rates,
but then EF14-SGD gets stuck at high accuracies, while EF21-SGDM continues converging to the
lower accuracies.

0 100000 200000 300000 400000 500000
#bits / n

10 8

10 6

10 4

10 2

f(x
t)

EF14-SGD: Step size: 0.0625
EF14-SGD: Step size: 0.125
EF14-SGD: Step size: 0.25
EF21-SGDM: Step size: 0.0625
EF21-SGDM: Step size: 0.125
EF21-SGDM: Step size: 0.25

0 100000 200000 300000 400000 500000
#bits / n

10 6

10 5

10 4

10 3

10 2

f(x
t)

EF14-SGD: Step size: 0.0625
EF14-SGD: Step size: 0.125
EF14-SGD: Step size: 0.25
EF21-SGDM: Step size: 0.0625
EF21-SGDM: Step size: 0.125
EF21-SGDM: Step size: 0.25

Figure 7: Stochastic Quadratic Optimization Problem with 𝜎 = 0.001 (left figure) and 𝜎 = 0.01
(right figure)

Algorithm 2 Quadratic Optimization Task Generation Procedure

1: Parameters: number nodes 𝑛, dimension 𝑑, regularizer 𝜆, and scale 𝑠.
2: for 𝑖 = 1, . . . , 𝑛 do
3: Calculate Guassian noises 𝜇𝑠

𝑖 = 1 + 𝑠𝜉𝑠𝑖 and 𝜇𝑏
𝑖 = 𝑠𝜉𝑏𝑖 , i.i.d. 𝜉𝑠𝑖 , 𝜉

𝑏
𝑖 ∼ 𝒩 (0, 1)

4: 𝑏𝑖 =
𝜇𝑠
𝑖

4 (−1 + 𝜇𝑏
𝑖 , 0, · · · , 0) ∈ R𝑑

5: Scale the predefined tridiagonal matrix

Q𝑖 =
𝜇𝑠
𝑖

4

⎛⎜⎜⎜⎝
2 −1 0

−1
.
. −1

0 −1 2

⎞⎟⎟⎟⎠ ∈ R𝑑×𝑑

6: end for
7: Find the mean of matrices Q = 1

𝑛

∑︀𝑛
𝑖=1 Q𝑖

8: Find the minimum eigenvalue 𝜆min(Q)
9: for 𝑖 = 1, . . . , 𝑛 do

10: Normalize matrix Q𝑖 = Q𝑖 + (𝜆− 𝜆min(Q))I
11: end for
12: Find a starting point 𝑥0 = (

√
𝑑, 0, · · · , 0)

13: Output a new problem: matrices Q1, · · · ,Q𝑛, vectors 𝑏1, · · · , 𝑏𝑛, starting point 𝑥0

A procedure to generate stochastic quadratic optimization problems. In this section, we present
an algorithm that generates quadratic optimization tasks. The formal description is provided in
Algorithm 2. The idea is to take a predefined tridiagonal matrix and add noises to simulate the
heterogeneous setting. Algorithm 2 returns matrices Q1, · · · ,Q𝑛, vectors 𝑏1, · · · , 𝑏𝑛, and a starting

23

0.0 0.5 1.0 1.5 2.0
#bits / n 1e12

10 2

10 1

100

f(x
k)

f(x
*)

Nu
m

be
r o

f n
od

es
: 5

Vanilla SGD (no compression): Step size: 0.05
EF21-SGDM: Step size: 0.05
EF21-SGD: Step size: 0.05
EF14-SGD: Step size: 0.05

(a) 𝐵 = 8

0.0 0.5 1.0 1.5 2.0 2.5
#bits / n 1e12

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

Nu
m

be
r o

f n
od

es
: 5

Vanilla SGD (no compression): Step size: 0.05
EF21-SGDM: Step size: 0.05
EF21-SGD: Step size: 0.05
EF14-SGD: Step size: 0.05

(b) 𝐵 = 25

Figure 8: ResNet-18 on CIFAR10 dataset with 𝑛 = 5.

Algorithm Test Accuracy
SGD 81.5 %

EF21-SGD 82.5 %
EF14-SGD 83.1 %

EF21-SGDM 83.3 %
Figure 9: Accuracy on the CIFAR10 test split.

point 𝑥0 such that the matrix Q = 1
𝑛

∑︀𝑛
𝑖=1 Q𝑖 has the minimum eigenvalue 𝜆min(Q) = 𝜆, where

𝜆 ≥ 0 is a parameter. Next, we define the functions 𝑓𝑖 and stochastic gradients in the following way:

𝑓𝑖(𝑥) :=
1

2
𝑥⊤Q𝑖𝑥− 𝑥⊤𝑏𝑖

and

∇𝑓𝑖(𝑥, 𝜉) := ∇𝑓𝑖(𝑥) + 𝜉𝑖,

for all 𝑥 ∈ R𝑑 and 𝑖 ∈ [𝑛]. The noises 𝜉𝑖 are i.i.d. samples from 𝒩 (0, 𝜎), where 𝜎 is a parameter.

C.3 Experiment 4: training neural network

We test algorithms on an image recognition task, CIFAR10 [Krizhevsky et al., 2009], with the ResNet-
18 [He et al., 2016] deep neural network (the number of parameters 𝑑 ≈ 107). We split CIFAR10
among 5 nodes, and take 𝐾 = 2× 106 in Top𝐾. In all methods we finetune the step sizes. One can
see that our findings in the low-scale experiments translate into large-scale experiments in Figure 8.
With different batch sizes, EF21-SGD converges slower than EF21-SGDM and EF14-SGD, and our
new method EF21-SGDM improves over EF14-SGD in Figure 8b. We checked the accuracies on the
test dataset (see Table 9) and observed the same relations between algorithms (note that accuracies
are far from the real SOTA because we turned off all augmentations and regularizations in training).

24

D Descent Lemma

Let us state the following lemma that is used in the analysis of nonconvex optimization methods.
Lemma 1 ([Li et al., 2021]). Let the function 𝑓(·) be 𝐿-smooth and let 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 for some
vector 𝑔𝑡 ∈ R𝑑 and a step-size 𝛾 > 0. Then we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − (︂ 1

2𝛾
− 𝐿

2

)︂ ⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
. (13)

E EF21-SGDM-ideal (Proof of Theorem 1 and Proposition 1)

We now state a slighly more general result than Theorem 1, which holds for EF21-SGDM-ideal
method with any 𝜂 ∈ (0, 1]. The statement of Theorem 1 follows by setting 𝜂 = 1, since in that
case EF21-SGDM-ideal coincides with EF21-SGD-ideal (5a), (5aa). Recall that EF21-SGDM-ideal
(distributed variant) has the following update rule:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡, 𝑔𝑡 =
1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡𝑖 , (14)

EF21-SGDM-ideal:
𝑣𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1) + 𝜂(∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖)−∇𝑓𝑖(𝑥
𝑡+1)),

𝑔𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1) + 𝒞
(︀
𝑣𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
)︀
.

(15)

Theorem 4. Let 𝐿, 𝜎 > 0, 0 < 𝛾 ≤ 1/𝐿, 0 < 𝜂 ≤ 1 and 𝑛 = 1. There exists a convex, 𝐿-smooth
function 𝑓(·), a contractive compressor 𝒞(·) satisfying Definition 1, and an unbiased stochastic
gradient with bounded variance 𝜎2 such that if the method (14), (15) is run with a step-size 𝛾, then
for all 𝑇 ≥ 0 and for all 𝑥0 ∈ {(0, 𝑥0

(2))
⊤ ∈ R2 |𝑥0

(2) < 0}, we have

E
[︁⃦⃦

∇𝑓(𝑥𝑇)
⃦⃦2]︁ ≥ 1

60
min

{︁
𝜂2𝜎2,

⃦⃦
∇𝑓(𝑥0)

⃦⃦2}︁
.

Fix 0 < 𝜀 ≤ 𝐿/
√
60 and 𝑥0 = (0,−1)⊤. Additionally assume that 𝑛 ≥ 1 and the variance of

unbiased stochastic gradient is controlled by 𝜎2
/𝐵 for some 𝐵 ≥ 1. If 𝐵 < 𝜂2𝜎2

60𝜀2 , then we have
E
[︀⃦⃦
∇𝑓(𝑥𝑇)

⃦⃦]︀
> 𝜀 for all 𝑇 ≥ 0.

Proof of Theorem 1. Part I. Consider 𝑓(𝑥) = 𝐿
2 ‖𝑥‖2, 𝑥 ∈ R2. For each iteration 𝑡 ≥ 0, let the

random vector 𝜉𝑡+1 be sampled uniformly at random from the set of vectors:

𝑧1 =

(︂
2
0

)︂√︂
3𝜎2

10
, 𝑧2 =

(︂
0
1

)︂√︂
3𝜎2

10
, 𝑧3 =

(︂
−2
−1

)︂√︂
3𝜎2

10
.

Define the stochastic gradient as ∇𝑓(𝑥𝑡, 𝜉𝑡) := ∇𝑓(𝑥𝑡) + 𝜉𝑡 = 𝐿𝑥𝑡 + 𝜉𝑡. Notice that
E [∇𝑓(𝑥𝑡, 𝜉𝑡)] = ∇𝑓(𝑥𝑡), and E

[︁
‖∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)‖2

]︁
= 𝜎2. The update rule of method

(14), (15) with such estimator is

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 = 𝑥𝑡 − 𝐿𝛾𝑥𝑡 − 𝛾𝒞
(︀
𝜂 𝜉𝑡
)︀
,

where we choose 𝒞(·) as a Top1 compressor. Notice that E [𝜉𝑡] = (0, 0)⊤, but

E
[︀
𝒞(𝜉𝑡)

]︀
= 𝜂

√︂
3𝜎2

10
(0, 1/3)⊤ ̸= (0, 0)⊤.

By setting the initial iterate to 𝑥0 = (0, 𝑥0
(2))

⊤ for any 𝑥0
(2) < 0, we can derive

E
[︀
𝑥𝑇
]︀

= (1− 𝐿𝛾)𝑇𝑥0 − 𝜂

√︂
3𝜎2

10

(︂
0
1
3

)︂
𝛾

𝑇−1∑︁
𝑡=0

(1− 𝐿𝛾)𝑡

= (1− 𝐿𝛾)𝑇
(︂

0
𝑥0
(2)

)︂
+

𝜂

𝐿

√︂
𝜎2

30

(︂
0
−1

)︂
(1− (1− 𝐿𝛾)𝑇) ̸=

(︂
0
0

)︂
(16)

25

for any 0 ≤ 𝛾 ≤ 1/𝐿 and any 𝑥0
(2) < 0. The inequality in (16) is because the first vector has strictly

negative component 𝑥0
(2), and the second vector has non-positive second component when 𝛾 > 0 and

𝜎2 > 0. Therefore, since ‖∇𝑓(𝑥)‖2 = ‖𝐿𝑥‖2, we have

E
[︁⃦⃦

∇𝑓(𝑥𝑇)
⃦⃦2]︁

= E
[︁⃦⃦

𝐿𝑥𝑇
⃦⃦2]︁

=
⃦⃦
E
[︀
𝐿𝑥𝑇

]︀⃦⃦2
+ E

[︁⃦⃦
𝐿𝑥𝑇 − E

[︀
𝐿𝑥𝑇

]︀⃦⃦2]︁
≥

⃦⃦
E
[︀
𝐿𝑥𝑇

]︀⃦⃦2
(𝑖)
=

(︃
(1− 𝐿𝛾)𝑇

⃦⃦
𝐿𝑥0

⃦⃦
+ 𝜂

√︂
𝜎2

30
(1− (1− 𝐿𝛾)𝑇)

)︃2

(𝑖𝑖)

≥ (1− 𝐿𝛾)2𝑇
⃦⃦
∇𝑓(𝑥0)

⃦⃦2
+

𝜂2𝜎2

30
(1− (1− 𝐿𝛾)𝑇)2

≥
⃦⃦
∇𝑓(𝑥0)

⃦⃦2
𝜂2𝜎2

30 ‖∇𝑓(𝑥0)‖2 + 𝜂2𝜎2

for all 𝑇 ≥ 1, where in (𝑖) we used the form of vector E
[︀
𝑥𝑇
]︀

in (16), in (𝑖𝑖) we drop a non-
negative cross term, and use ∇𝑓(𝑥0) = 𝐿𝑥0. The last inequality follows by lower bounding a
univariate quadratic function with respect to 𝑧 := (1− 𝐿𝛾)𝑇 for 0 ≤ 𝑧 ≤ 1, where optimal choice is
𝑧 = 𝜂2𝜎2/(30

⃦⃦
∇𝑓(𝑥0)

⃦⃦2
+ 𝜂2𝜎2). It is left to note that 𝑥𝑦

𝑥+𝑦 ≥ 1
2 min{𝑥, 𝑦} for all 𝑥, 𝑦 > 0.

Part II. Fix 𝑛 ≥ 1 and 𝐵 ≥ 1. Let at each node 𝑖 = 1, . . . , 𝑛, the random vectors 𝜉𝑡𝑖 be sampled
independently and uniformly form the set of vectors:

𝑧1 =

(︂
2
0

)︂√︂
3𝜎2

10𝐵
, 𝑧2 =

(︂
0
1

)︂√︂
3𝜎2

10𝐵
, 𝑧3 =

(︂
−2
−1

)︂√︂
3𝜎2

10𝐵
.

Define a random matrix 𝜉𝑡 := (𝜉𝑡1, . . . , 𝜉
𝑡
𝑛)

⊤. Then E
[︁
‖∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)‖2

]︁
= 𝜎2

𝐵 . The update
of the method (14), (15) on the same function instance will take the form

𝑥𝑡+1 = 𝑥𝑡 − 𝛾
1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡𝑖 = 𝑥𝑡 − 𝐿𝛾𝑥𝑡 − 𝛾
1

𝑛

𝑛∑︁
𝑖=1

𝒞
(︀
𝜂 𝜉𝑡𝑖
)︀
.

Notice that in this case, we still have

E

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝒞(𝜂 𝜉𝑡𝑖)

]︃
=

1

𝑛

𝑛∑︁
𝑖=1

E
[︀
𝒞(𝜂 𝜉𝑡𝑖)

]︀
= 𝜂

√︂
3𝜎2

10
(0, 1/3)⊤ ̸= (0, 0)⊤,

which is independent (!) of 𝑛. Therefore, by similar derivations, we can conclude that

E
[︁⃦⃦

∇𝑓(𝑥𝑇)
⃦⃦2]︁ ≥ 1

60
min

{︂
𝜂2𝜎2

𝐵
,
⃦⃦
∇𝑓(𝑥0)

⃦⃦2}︂
> 𝜀2,

where we use that 𝐵 < 𝜂2𝜎2

60𝜀2 , 𝜀 ≤ 𝐿/
√
60, and 𝑥0 = (0,−1)⊤.

Proof of Proposition 1. By smoothness (Assumption 1) of 𝑓(·) it follows from Lemma 1 that for
𝛾 ≤ 1/𝐿 we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
. (17)

Now it remains to control the last term, which is due to the error introduced by a contractive
compressor and stochastic gradients. We have

E
[︁⃦⃦

𝑔𝑡 −∇𝑓(𝑥𝑡)
⃦⃦2]︁ (𝑖)

= E
[︁⃦⃦

𝒞
(︀
𝑣𝑡 −∇𝑓(𝑥𝑡)

)︀⃦⃦2]︁ (𝑖𝑖)
= E

[︁⃦⃦
𝒞
(︀
𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)

)︀)︀⃦⃦2]︁
(𝑖𝑖𝑖)

≤ 2E
[︁⃦⃦

𝒞
(︀
𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)

)︀)︀
− 𝜂(∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡))

⃦⃦2]︁
26

+2𝜂2E
[︁⃦⃦

∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 2(2− 𝛼)𝜂2E
[︁⃦⃦

∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 4𝜂2𝜎2,

where (𝑖) and (𝑖𝑖) use the update rule (6), (𝑖𝑖𝑖) holds by Young’s inequality, and the last two steps
hold by Definition 1 and Assumption 2.

Subtracting 𝑓* from both sides of (17), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we
derive

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 2𝛿0

𝛾𝑇
+ 4𝜂2𝜎2.

27

F EF21-SGDM (Proof of Theorems 2 and 3)

The statement of Theorem 2 follows directly from Theorem 3 and Remark 2. Let us prove Theorem 3.

Proof of Theorem 3. In order to control the error between 𝑔𝑡 and ∇𝑓(𝑥𝑡), we decompose it into two
terms⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
⃦⃦
𝑔𝑡 − 𝑣𝑡

⃦⃦2
+2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑣𝑡𝑖

⃦⃦2
+2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
,

and develop a recursion for each term above separately.

Part I (a). Controlling the error of momentum estimator for each 𝑣𝑡𝑖 . Recall that by Lemma 2-(24),
we have for each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑣𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑣𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+
3𝐿2

𝑖

𝜂
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 𝜂2𝜎2. (18)

Averaging inequalities (18) over 𝑖 = 1, . . . ,𝑛 and denoting ̃︀𝑃𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑣𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)‖2
]︁
,

𝑅𝑡 := E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

we have

̃︀𝑃𝑡+1 ≤ (1− 𝜂) ̃︀𝑃𝑡 +
3̃︀𝐿2

𝜂
𝑅𝑡 + 𝜂2𝜎2.

Summing up the above inequality for 𝑡 = 0, . . . , 𝑇 − 1, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 ≤
3̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑃0. (19)

Part I (b). Controlling the error of momentum estimator for 𝑣𝑡 (on average). Similarly by
Lemma 2-(25), we have for any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑣𝑡+1 −∇𝑓(𝑥𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+

3𝐿2

𝜂
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+
𝜂2𝜎2

𝑛
,

where 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 is an auxiliary sequence.

Summing up the above inequality for 𝑡 = 0, . . . , 𝑇 − 1, and denoting 𝑃𝑡 := E
[︁
‖𝑣𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
,

we derive

1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 ≤
3𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0. (20)

Part II. Controlling the error of contractive compressor and momentum estimator. By Lemma 3
we have for each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑣𝑡+1

𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑣𝑡𝑖
⃦⃦2]︁

+
4𝜂2

𝛼
E
[︁⃦⃦

𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+
4𝐿2

𝑖 𝜂
2

𝛼
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 𝜂2𝜎2. (21)

Averaging inequalities (21) over 𝑖 = 1, . . . ,𝑛, denoting ̃︀𝑉𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑔𝑡𝑖 − 𝑣𝑡𝑖‖

2
]︁
, and summing

up the resulting inequality for 𝑡 = 0, . . . , 𝑇 − 1, we obtain

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 ≤ 8𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 +
8̃︀𝐿2𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂2𝜎2

𝛼
+

2

𝛼𝑇
̃︀𝑉0. (22)

28

Part III. Combining steps I and II with descent lemma. By smoothness (Assumption 1) of 𝑓(·) it
follows from Lemma 1 that for any 𝛾 ≤ 1/(2𝐿) we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(23)

≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+ 𝛾

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑣𝑡𝑖

⃦⃦2
+ 𝛾

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.

Subtracting 𝑓* from both sides of (23), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we
derive

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 2𝛿0
𝛾𝑇

+ 2
1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖)

≤ 2𝛿0
𝛾𝑇

+
16𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 +
4𝜂2𝜎2

𝛼

−
1
2 − 16𝛾2̃︀𝐿2𝜂2

𝛼2

𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖𝑖)

≤ 2𝛿0
𝛾𝑇

+
16𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

2𝜂𝜎2

𝑛
+

4

𝛼𝑇
̃︀𝑉0

−
1
2 − 16𝛾2̃︀𝐿2𝜂2

𝛼2 − 6𝛾2𝐿2

𝜂2 − 48𝛾2̃︀𝐿2

𝛼2

𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2

𝜂𝑇
𝑃0 +

16𝜂

𝛼2𝑇
̃︀𝑃0

(𝑖𝑖𝑖)

≤ 2𝛿0
𝛾𝑇

+
16𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

2𝜂𝜎2

𝑛
−

1
2 − 6𝛾2𝐿2

𝜂2 − 64𝛾2̃︀𝐿2

𝛼2

𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
2

𝜂𝑇
𝑃0 +

16𝜂

𝛼2𝑇
̃︀𝑃0 +

4

𝛼𝑇
̃︀𝑉0

≤ 2𝛿0
𝛾𝑇

+
16𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

2𝜂𝜎2

𝑛
+

2

𝜂𝑇
𝑃0 +

16𝜂

𝛼2𝑇
̃︀𝑃0 +

4

𝛼𝑇
̃︀𝑉0.

where (𝑖) holds due to (22), (𝑖𝑖) utilizes (20), and (𝑖𝑖𝑖) follows by 𝜂 ≤ 1, and the last step holds due
to the assumption on the step-size. We proved (9).

We now find the particular values of parameters. Since 𝑔𝑖 = 𝑣𝑖 for all 𝑖 ∈ [𝑛], we have ̃︀𝑉0 = 0. Using
𝑣0𝑖 = 1

𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for all 𝑖 = 1, . . . , 𝑛, we have

𝑃0 = E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁ ≤ 𝜎2

𝑛𝐵init
and ̃︀𝑃0 =

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑣0𝑖 −∇𝑓𝑖(𝑥
0)
⃦⃦2]︁ ≤ 𝜎2

𝐵init
.

We can substitute the choice of 𝛾 and obtain

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+
𝐿𝛿0
𝜂𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜎2

𝜂𝑛𝐵init𝑇
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︃
.

Since 𝐵init ≥ 𝜎2

𝐿𝛿0𝑛
, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+
𝐿𝛿0
𝜂𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︃
.

Notice that the choice of the momentum parameter such that 𝜂 ≤
(︁

𝐿𝛿0𝛼
2

𝜎2𝑇

)︁1/4

, 𝜂 ≤
(︀
𝐿𝛿0𝛼
𝜎2𝑇

)︀1/3
,

𝜂 ≤
(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2
and 𝜂 ≤ 𝛼

√
𝐿𝛿0𝐵init
𝜎 ensures that 𝜂3𝜎2

𝛼2 ≤ 𝐿𝛿0
𝜂𝑇 , 𝜂2𝜎2

𝛼 ≤ 𝐿𝛿0
𝜂𝑇 , 𝜂𝜎2

𝑛 ≤ 𝐿𝛿0
𝜂𝑇 , and

29

𝜂𝜎2

𝛼2𝐵init𝑇
≤ 𝐿𝛿0

𝜂𝑇 . Therefore, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︂3/4

+

(︂
𝐿𝛿0𝜎√
𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2

+
𝜎
√
𝐿𝛿0

𝛼
√
𝐵init𝑇

)︃
.

Using 𝐵init ≥ min
{︁

𝜎2𝐿̃︀𝐿2𝛿0
, 𝜎
𝛼
√
𝐿𝛿0𝑇

, 𝜎2/3

𝛼4/3𝑇 2/3(𝐿𝛿0)1/3
, 𝑛
𝛼2𝑇

}︁
, we obtain

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︂3/4

+

(︂
𝐿𝛿0𝜎√
𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2
)︃
.

It remains to notice that
⌈︁
max

{︁
min

{︁
𝜎2𝐿̃︀𝐿2𝛿0

, 𝜎
𝛼
√
𝐿𝛿0𝑇

, 𝜎2/3

𝛼4/3𝑇 2/3(𝐿𝛿0)1/3
, 𝑛
𝛼2𝑇

}︁
, 𝜎2

𝐿𝛿0𝑛

}︁⌉︁
≤
⌈︁

𝜎2

𝐿𝛿0

⌉︁
.

F.1 Controlling the error of momentum estimator

Lemma 2. Let Assumption 1 be satisfied, and suppose 0 < 𝜂 ≤ 1. For every 𝑖 = 1, . . . , 𝑛, let the
sequence {𝑣𝑡𝑖}𝑡≥0 be updated via

𝑣𝑡𝑖 = 𝑣𝑡−1
𝑖 + 𝜂

(︀
∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1
𝑖

)︀
,

Define the sequence 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 . Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+
3𝐿2

𝑖

𝜂
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂2𝜎2, (24)

E
[︁⃦⃦

𝑣𝑡 −∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)

⃦⃦2]︁
+

3𝐿2

𝜂
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+
𝜂2𝜎2

𝑛
. (25)

Proof. By the update rule of 𝑣𝑡𝑖 , we have

E
[︁⃦⃦

𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

= E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡) + 𝜂(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1

𝑖)
⃦⃦2]︁

= E
[︁
E𝜉𝑡𝑖

[︁⃦⃦
(1− 𝜂)(𝑣𝑡−1

𝑖 −∇𝑓𝑖(𝑥
𝑡)) + 𝜂(∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥
𝑡))
⃦⃦2]︁]︁

= (1− 𝜂)2E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 𝜂2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

≤ (1− 𝜂)2
(︁
1 +

𝜂

2

)︁
E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+

(︂
1 +

2

𝜂

)︂
E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡−1)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜂)E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+
3𝐿2

𝑖

𝜂
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+ 𝜂2𝜎2,

where the first inequality holds by Young’s inequality, and the last step uses smoothness of 𝑓𝑖(·)
(Assumption 1), which concludes the proof of (24).

For each 𝑡 = 0, . . . , 𝑇 − 1, define a random vector 𝜉𝑡 := (𝜉𝑡1, . . . , 𝜉
𝑡
𝑛) and denote by

∇𝑓(𝑥𝑡, 𝜉𝑡) := 1
𝑛

∑︀𝑛
𝑖=1 ∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖). Note that the entries of the random vector 𝜉𝑡 are indepen-
dent and E𝜉𝑡 [∇𝑓(𝑥𝑡, 𝜉𝑡)] = ∇𝑓(𝑥𝑡), then we have

𝑣𝑡 = 𝑣𝑡−1 + 𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)− 𝑣𝑡−1

)︀
,

where 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 is an auxiliary sequence. Therefore, we can similarly derive

E
[︁⃦⃦

𝑣𝑡 −∇𝑓(𝑥𝑡)
⃦⃦2]︁

= E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡) + 𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)− 𝑣𝑡−1

)︀⃦⃦2]︁
= E

[︁
E𝜉𝑡

[︁⃦⃦
(1− 𝜂)(𝑣𝑡−1 −∇𝑓(𝑥𝑡)) + 𝜂

(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)

)︀⃦⃦2]︁]︁
30

= (1− 𝜂)2E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡)
⃦⃦2]︁

+ 𝜂2E
[︁⃦⃦

∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ (1− 𝜂)2
(︁
1 +

𝜂

2

)︁
E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+

(︂
1 +

2

𝜂

)︂
E
[︁⃦⃦

∇𝑓(𝑥𝑡−1)−∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
𝜂2𝜎2

𝑛

≤ (1− 𝜂)E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+
3𝐿2

𝜂
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+
𝜂2𝜎2

𝑛
,

where the last step uses smoothness of 𝑓(·) (Assumption 1), which concludes the proof of (25).

F.2 Controlling the error of contractive compression and momentum estimator

Lemma 3. Let Assumption 1 be satisfied, and suppose 𝒞 is a contractive compressor with 𝛼 ≤ 1
2 .

For every 𝑖 = 1, . . . , 𝑛, let the sequences {𝑣𝑡𝑖}𝑡≥0 and {𝑔𝑡𝑖}𝑡≥0 be updated via

𝑣𝑡𝑖 = 𝑣𝑡−1
𝑖 + 𝜂

(︀
∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1
𝑖

)︀
,

𝑔𝑡𝑖 = 𝑔𝑡−1
𝑖 + 𝒞

(︀
𝑣𝑡𝑖 − 𝑔𝑡−1

𝑖

)︀
,

Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑣𝑡𝑖
⃦⃦2]︁ ≤

(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+

4𝜂2

𝛼
E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+
4𝐿2

𝑖 𝜂
2

𝛼
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂2𝜎2. (26)

Proof. By the update rules of 𝑔𝑡𝑖 and 𝑣𝑡𝑖 , we derive

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑣𝑡𝑖
⃦⃦2]︁

= E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑣𝑡𝑖 + 𝒞(𝑣𝑡𝑖 − 𝑔𝑡−1

𝑖)
⃦⃦2]︁

= E
[︁
E𝒞

[︁⃦⃦
𝒞(𝑣𝑡𝑖 − 𝑔𝑡−1

𝑖)− (𝑣𝑡𝑖 − 𝑔𝑡−1
𝑖)

⃦⃦2]︁]︁
(𝑖)

≤ (1− 𝛼)E
[︁⃦⃦

𝑣𝑡𝑖 − 𝑔𝑡−1
𝑖

⃦⃦2]︁
(𝑖𝑖)
= (1− 𝛼)E

[︁⃦⃦
𝑣𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1

𝑖)
⃦⃦2]︁

= (1− 𝛼)E
[︁
E𝜉𝑡𝑖

[︁⃦⃦
𝑣𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1

𝑖)
⃦⃦2]︁]︁

= (1− 𝛼)E
[︁⃦⃦

𝑣𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(∇𝑓𝑖(𝑥
𝑡)− 𝑣𝑡−1

𝑖)
⃦⃦2]︁

+(1− 𝛼)𝜂2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

(𝑖𝑖𝑖)

≤ (1− 𝛼) (1 + 𝜌)E
[︁⃦⃦

𝑣𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+ (1− 𝛼) (1 + 𝜌−1)𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+(1− 𝛼)𝜂2𝜎2

(𝑖𝑣)
= (1− 𝜃)E

[︁⃦⃦
𝑔𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ (1− 𝛼)𝜂2𝜎2

(𝑣)

≤ (1− 𝜃)E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 2𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+2𝛽𝜂2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡)−∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜃)E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 2𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+2𝛽𝐿2
𝑖 𝜂

2E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂2𝜎2,

where (𝑖) is due to the definition of a contractive compressor (Definition 1), (𝑖𝑖) follows by the update
rule of 𝑣𝑡𝑖 , (𝑖𝑖𝑖) and (𝑣) hold by Young’s inequality for any 𝜌 > 0. In (𝑖𝑣), we introduced the notation

31

𝜃 := 1− (1− 𝛼)(1 + 𝜌), and 𝛽 := (1− 𝛼)(1 + 𝜌−1). The last step follows by smoothness of 𝑓𝑖(·)
(Assumption 1). The proof is complete by the choice 𝜌 = 𝛼/2, which guarantees 1− 𝜃 ≤ 1− 𝛼/2,
and 2𝛽 ≤ 4/𝛼 .

32

G Further Improvement Using Double Momentum (Proof of Corollary 3)

Algorithm 3 EF21-SGD2M (Error Feedback 2021 Enhanced with Double Momentum)

1: Input: starting point 𝑥0, step-size 𝛾 > 0, parameter 𝜂 ∈ (0, 1], initial batch size 𝐵init

2: Initialize 𝑢0
𝑖 = 𝑣0𝑖 = 𝑔0𝑖 = 1

𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for 𝑖 = 1, . . . , 𝑛; 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖

3: for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
4: Master computes 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 and broadcasts 𝑥𝑡+1 to all nodes
5: for all nodes 𝑖 = 1, . . . , 𝑛 in parallel do
6: Compute the first momentum estimator 𝑣𝑡+1

𝑖 = (1− 𝜂)𝑣𝑡𝑖 + 𝜂∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖)

7: Compute the second momentum estimator 𝑢𝑡+1
𝑖 = (1− 𝜂)𝑢𝑡

𝑖 + 𝜂𝑣𝑡+1
𝑖

8: Compress 𝑐𝑡+1
𝑖 = 𝒞(𝑢𝑡+1

𝑖 − 𝑔𝑡𝑖) and send 𝑐𝑡+1
𝑖 to the master

9: Update local state 𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝑐𝑡+1

𝑖
10: end for
11: Master computes 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 via 𝑔𝑡+1 = 𝑔𝑡 + 1

𝑛

∑︀𝑛
𝑖=1 𝑐

𝑡+1
𝑖

12: end for

In this section, we state the detailed version of Corollary 3 in Theorem 5, followed by its formal proof.
Notice that the key reason for the sample complexity improvement of the double momentum variant
compared to EF21-SGDM (Theorem 3) is that in (27), one of the terms has better dependence on 𝜂
compared to (9) in Theorem 3, i.e., 𝜂4𝜎2/𝛼 instead of 𝜂2𝜎2/𝛼. As a result, this term is dominated
by other terms and vanishes in Corollary 3.
Theorem 5. Let Assumptions 1 and 2 hold. Let �̂�𝑇 be sampled uniformly at random from the iterates
of the method. Let Algorithm 3 run with a contractive compressor. For all 𝜂 ∈ (0, 1] and 𝐵init ≥ 1,

with 𝛾 ≤ min
{︁

𝛼

60̃︀𝐿 , 𝜂
16𝐿

}︁
, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

(︂
Ψ0

𝛾𝑇
+

𝜂3𝜎2

𝛼2
+

𝜂4𝜎2

𝛼
+

𝜂𝜎2

𝑛

)︂
, (27)

where Ψ0 := 𝛿0+
𝛾
𝜂E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁

+ 𝛾𝜂4

𝛼2
1
𝑛

∑︀𝑛
𝑖=1 E

[︁⃦⃦
𝑣0𝑖 −∇𝑓𝑖(𝑥

0)
⃦⃦2]︁

. Setting initial batch

size 𝐵init =
⌈︁

𝜎2

𝐿𝛿0

⌉︁
, step-size and momentum parameters

𝛾 = min

{︂
𝛼

60̃︀𝐿,
𝜂

16𝐿

}︂
, 𝜂 = min

{︃
1,

(︂
𝐿𝛿0𝛼

2

𝜎2𝑇

)︂1/4

,

(︂
𝐿𝛿0𝑛

𝜎2𝑇

)︂1/2

,
𝛼
√
𝐿𝛿0𝐵init

𝜎

}︃
, (28)

we get

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︂3/4

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2
)︃
.

Proof. In order to control the error between 𝑔𝑡 and ∇𝑓(𝑥𝑡), we decompose it into three terms⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 3
⃦⃦
𝑔𝑡 − 𝑢𝑡

⃦⃦2
+ 3

⃦⃦
𝑢𝑡 − 𝑣𝑡

⃦⃦2
+ 3

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
≤ 3

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑢𝑡

𝑖

⃦⃦2
+ 3

⃦⃦
𝑢𝑡 − 𝑣𝑡

⃦⃦2
+ 3

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
,

where we define the sequences 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 and 𝑢𝑡 := 1

𝑛

∑︀𝑛
𝑖=1 𝑢

𝑡
𝑖. In the following, we develop

a recursion for each term above separately.

Part I. Controlling the error of momentum estimator for each 𝑣𝑡𝑖 and on average for 𝑣𝑡. De-

note 𝑃𝑡 := E
[︁
‖𝑣𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
, ̃︀𝑃𝑡 := 1

𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑣𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)‖2
]︁
, 𝑅𝑡 := E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡+1

⃦⃦2]︁
.

Similarly to Part I of the proof of Theorem 3, we have

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 ≤
3̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑃0, (29)

33

1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 ≤
3𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0. (30)

Part II (a). Controlling the error of the second momentum estimator for each 𝑢𝑡
𝑖. Recall that by

Lemma 4-(37), we have for each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑢𝑡+1
𝑖 − 𝑣𝑡+1

𝑖

⃦⃦2]︁ ≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑣𝑡𝑖

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+6𝐿2
𝑖 𝜂E

[︁⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2]︁
+ 𝜂2𝜎2, (31)

Averaging inequalities (31) over 𝑖 = 1, . . . ,𝑛 and denoting ̃︀𝑄𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑢𝑡

𝑖 − 𝑣𝑡𝑖‖
2
]︁
, we havẽ︀𝑄𝑡+1 ≤ (1− 𝜂) ̃︀𝑄𝑡 + 6𝜂 ̃︀𝑃𝑡 + 6̃︀𝐿2𝜂𝑅𝑡 + 𝜂2𝜎2.

Summing up the above inequalities for 𝑡 = 0, . . . , 𝑇 − 1, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑄𝑡 ≤ 6

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 + 6̃︀𝐿2 1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑄0

≤

(︃
6 · 3̃︀𝐿2

𝜂2
+ 6̃︀𝐿2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 7𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑄0 +

6

𝜂𝑇
̃︀𝑃0

≤ 19̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 7𝜂𝜎2 +
6

𝜂𝑇
̃︀𝑃0, (32)

where we used (29), the bound 𝜂 ≤ 1, and 𝑢0
𝑖 = 𝑣0𝑖 for 𝑖 = 1, . . . , 𝑛.

Part II (b). Controlling the error of the second momentum estimator 𝑢𝑡 (on average). Similarly
by Lemma 4-(38), we have for any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑢𝑡+1 − 𝑣𝑡+1
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑢𝑡 − 𝑣𝑡

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+6𝐿2𝜂E

[︁⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2]︁
+

𝜂2𝜎2

𝑛
,

Summing up the above inequalities for 𝑡 = 0, . . . , 𝑇 − 1, and denoting 𝑄𝑡 := E
[︁
‖𝑢𝑡 − 𝑣𝑡‖2

]︁
, we

derive

1

𝑇

𝑇−1∑︁
𝑡=0

𝑄𝑡 ≤ 6

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 + 6𝐿2 1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2 +
1

𝜂𝑇
𝑄0

≤
(︂
6 · 3𝐿2

𝜂2
+ 6𝐿2

)︂
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
7𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑄0 +

6

𝜂𝑇
𝑃0

≤ 19𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
7𝜂𝜎2

𝑛
+

6

𝜂𝑇
𝑃0, (33)

where we used (30), the bound 𝜂 ≤ 1, and 𝑢0 = 𝑣0.

Part III. Controlling the error of contractive compressor and the double momentum estimator.
By Lemma 5 we have for each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑢𝑡+1

𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑢𝑡
𝑖

⃦⃦2]︁
+

6𝜂2

𝛼
E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑣𝑡𝑖

⃦⃦2]︁
(34)

+
6𝜂4

𝛼
E
[︁⃦⃦

𝑣𝑡𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)

⃦⃦2]︁
+

6𝐿2
𝑖 𝜂

4

𝛼
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+ 𝜂4𝜎2.

Averaging inequalities (34) over 𝑖 = 1, . . . ,𝑛, denoting ̃︀𝑉𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑔𝑡𝑖 − 𝑢𝑡

𝑖‖
2
]︁
, and summing

up the resulting inequality for 𝑡 = 0, . . . , 𝑇 − 1, we obtain

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 ≤ 12𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑄𝑡 +
12𝜂4

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 +
12̃︀𝐿2𝜂4

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂4𝜎2

𝛼

34

≤ 12𝜂2

𝛼2

(︃
19̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 7𝜂𝜎2

)︃
+

12𝜂4

𝛼2

(︃
3̃︀𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 𝜂𝜎2

)︃

+
12̃︀𝐿2𝜂4

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂4𝜎2

𝛼
+

12𝜂4

𝛼2𝑇
̃︀𝑃0

≤ 12 · 19̃︀𝐿2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
12 · 7𝜂3𝜎2

𝛼2
+

12 · 3̃︀𝐿2𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
12𝜂5𝜎2

𝛼2

+
12̃︀𝐿2𝜂4

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂4𝜎2

𝛼
+

12𝜂4

𝛼2𝑇
̃︀𝑃0

≤ 276̃︀𝐿2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
84𝜂3𝜎2

𝛼2
+

12𝜂5𝜎2

𝛼2
+

2𝜂4𝜎2

𝛼
+

12𝜂4

𝛼2𝑇
̃︀𝑃0

(35)

Part IV. Combining steps I, II and III with descent lemma. By smoothness (Assumption 1) of
𝑓(·) it follows from Lemma 1 that for any 𝛾 ≤ 1/(2𝐿) we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(36)

≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+
3𝛾

2

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑢𝑡

𝑖

⃦⃦2
+

3𝛾

2

⃦⃦
𝑢𝑡 − 𝑣𝑡

⃦⃦2
+

3𝛾

2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.

Subtracting 𝑓* from both sides of (36), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we
derive

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 2𝛿0
𝛾𝑇

+ 3
1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 + 3
1

𝑇

𝑇−1∑︁
𝑡=0

𝑄𝑡 + 3
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖)

≤ 2𝛿0
𝛾𝑇

+
3 · 276̃︀𝐿2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
3 · 84𝜂3𝜎2

𝛼2
+

3 · 12𝜂5𝜎2

𝛼2
+

3 · 2𝜂4𝜎2

𝛼

+
3 · 19𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
3 · 7𝜂𝜎2

𝑛

+
3𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
𝜂𝜎2

𝑛
− 1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
36𝜂4

𝛼2𝑇
̃︀𝑃0 +

18

𝜂𝑇
𝑃0 +

3

𝜂𝑇
𝑃0

=
2𝛿0
𝛾𝑇

+
3 · 84𝜂3𝜎2

𝛼2
+

3 · 12𝜂5𝜎2

𝛼2
+

3 · 2𝜂4𝜎2

𝛼
+

22𝜂𝜎2

𝑛

+

(︃
60𝐿2

𝜂2
+

3 · 276̃︀𝐿2

𝛼2
− 1

2𝛾2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
36𝜂4

𝛼2𝑇
̃︀𝑃0 +

21

𝜂𝑇
𝑃0

=
2𝛿0
𝛾𝑇

+
288𝜂3𝜎2

𝛼2
+

6𝜂4𝜎2

𝛼
+

22𝜂𝜎2

𝑛
+

36𝜂4

𝛼2𝑇
̃︀𝑃0 +

21

𝜂𝑇
𝑃0.

35

where (𝑖) holds due to (30), (35) and (33), the last two steps hold because of the assumption on the
step-size, and 𝜂 ≤ 1, which completes the proof of the first part of Theorem.

Notice that it suffices to take the same initial batch-size as in the proof of the Theorem 3 in order
to "remove" ̃︀𝑃0 and 𝑃0 terms, since the power of 𝜂 in front of ̃︀𝑃0 is larger here compared to

the proof of Theorem 3. The choice of the momentum parameter such that 𝜂 ≤
(︁

𝐿𝛿0𝛼
2

𝜎2𝑇

)︁1/4

,

𝜂 ≤
(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2
ensures that 𝜂3𝜎2

𝛼2 ≤ 𝐿𝛿0
𝜂𝑇 , and 𝜂𝜎2

𝑛 ≤ 𝐿𝛿0
𝜂𝑇 . Therefore, we can guarantee that the

choice 𝜂 = min

{︂
𝛼
√
𝐿𝛿0𝐵init
𝜎 ,

(︁
𝐿𝛿0𝛼

2

𝜎2𝑇

)︁1/4

,
(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2}︂
ensures that

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝜎

2/3

𝛼2/3𝑇

)︂3/4

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2
)︃
.

G.1 Controlling the error of second momentum estimator

Lemma 4. Let Assumption 1 be satisfied, and suppose 0 < 𝜂 ≤ 1. For every 𝑖 = 1, . . . , 𝑛, let the
sequences {𝑣𝑡𝑖}𝑡≥0 and {𝑢𝑡

𝑖}𝑡≥0 be updated via

𝑣𝑡𝑖 = 𝑣𝑡−1
𝑖 + 𝜂

(︀
∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1
𝑖

)︀
,

𝑢𝑡
𝑖 = 𝑢𝑡−1

𝑖 + 𝜂
(︀
𝑣𝑡𝑖 − 𝑢𝑡−1

𝑖

)︀
.

Define the sequences 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 and 𝑢𝑡 := 1

𝑛

∑︀𝑛
𝑖=1 𝑢

𝑡
𝑖. Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0

it holds

E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑣𝑡𝑖

⃦⃦2]︁ ≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+6𝐿2
𝑖 𝜂E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦2]︁
+ 𝜂2𝜎2, (37)

E
[︁⃦⃦

𝑢𝑡 − 𝑣𝑡
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑢𝑡−1 − 𝑣𝑡−1

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)

⃦⃦2]︁
+6𝐿2𝜂E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦2]︁
+

𝜂2𝜎2

𝑛
. (38)

Proof. By the update rule of 𝑣𝑡𝑖 , we have

E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑣𝑡𝑖

⃦⃦2]︁
= E

[︁⃦⃦
𝑢𝑡−1
𝑖 − 𝑣𝑡𝑖 + 𝜂(𝑣𝑡𝑖 − 𝑢𝑡−1

𝑖)
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

𝑣𝑡𝑖 − 𝑢𝑡−1
𝑖

⃦⃦2]︁
= (1− 𝜂)2E

[︁⃦⃦
(1− 𝜂)𝑣𝑡−1

𝑖 + 𝜂∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑢𝑡−1

𝑖

⃦⃦2]︁
= (1− 𝜂)2E

[︁⃦⃦
(𝑢𝑡−1

𝑖 − 𝑣𝑡−1
𝑖) + 𝜂(𝑣𝑡−1

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖))

⃦⃦2]︁
= (1− 𝜂)2E

[︁⃦⃦
(𝑢𝑡−1

𝑖 − 𝑣𝑡−1
𝑖) + 𝜂(𝑣𝑡−1

𝑖 −∇𝑓𝑖(𝑥
𝑡)) + 𝜂(∇𝑓𝑖(𝑥

𝑡)−∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖))

⃦⃦2]︁
= (1− 𝜂)2E

[︁
E𝜉𝑡𝑖

[︁⃦⃦
(𝑢𝑡−1

𝑖 − 𝑣𝑡−1
𝑖) + 𝜂(𝑣𝑡−1

𝑖 −∇𝑓𝑖(𝑥
𝑡)) + 𝜂(∇𝑓𝑖(𝑥

𝑡)−∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖))

⃦⃦2]︁]︁
= (1− 𝜂)2

(︁
E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖 + 𝜂(𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡))
⃦⃦2]︁

+ 𝜂2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁)︁

≤ (1− 𝜂)2E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖 + 𝜂(𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡))
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜂)2
(︁
1 +

𝜂

2

)︁
E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+

(︂
1 +

2

𝜂

)︂
𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 𝜂2𝜎2

36

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 3𝜂E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+6𝜂E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡)−∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+ 𝜂2𝜎2

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
+ 6𝜂E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+6𝐿2
𝑖 𝜂E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡−1

⃦⃦2]︁
+ 𝜂2𝜎2,

where the first inequality holds Assumption 2, the second inequality holds by Young’s inequality, and
the last step uses smoothness of 𝑓𝑖(·) (Assumption 1), which concludes the proof of (37).

For each 𝑡 = 0, . . . , 𝑇 − 1, define a random vector 𝜉𝑡 := (𝜉𝑡1, . . . , 𝜉
𝑡
𝑛) and denote by

∇𝑓(𝑥𝑡, 𝜉𝑡+1) := 1
𝑛

∑︀𝑛
𝑖=1 ∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖). Note that the entries of the random vector 𝜉𝑡 are independent
and E𝜉𝑡 [∇𝑓(𝑥𝑡, 𝜉𝑡)] = ∇𝑓(𝑥𝑡), then we have

𝑣𝑡 = 𝑣𝑡−1 + 𝜂
(︀
∇𝑓(𝑥𝑡, 𝜉𝑡)− 𝑣𝑡−1

)︀
,

𝑢𝑡
𝑖 = 𝑢𝑡−1

𝑖 + 𝜂
(︀
𝑣𝑡𝑖 − 𝑢𝑡−1

𝑖

)︀
,

where 𝑣𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑣

𝑡
𝑖 , 𝑢

𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑢

𝑡
𝑖 are auxiliary sequences. Therefore, we can similarly

derive

E
[︁⃦⃦

𝑢𝑡 − 𝑣𝑡
⃦⃦2]︁

= E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡 + 𝜂(𝑣𝑡 − 𝑢𝑡−1)
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

𝑣𝑡 − 𝑢𝑡−1
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

(1− 𝜂)𝑣𝑡−1 + 𝜂∇𝑓(𝑥𝑡, 𝜉𝑡)− 𝑢𝑡−1
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

(𝑢𝑡−1 − 𝑣𝑡−1) + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡, 𝜉𝑡))
⃦⃦2]︁

= (1− 𝜂)2E
[︁⃦⃦

(𝑢𝑡−1 − 𝑣𝑡−1) + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡)) + 𝜂(∇𝑓(𝑥𝑡)−∇𝑓(𝑥𝑡, 𝜉𝑡))
⃦⃦2]︁

= (1− 𝜂)2E
[︁
E𝜉𝑡

[︁⃦⃦
(𝑢𝑡−1 − 𝑣𝑡−1) + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡)) + 𝜂(∇𝑓(𝑥𝑡)−∇𝑓(𝑥𝑡, 𝜉𝑡))

⃦⃦2]︁]︁
= (1− 𝜂)2

(︁
E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1 + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡))
⃦⃦2]︁

+ 𝜂2E
[︁⃦⃦

∇𝑓(𝑥𝑡, 𝜉𝑡)−∇𝑓(𝑥𝑡)
⃦⃦2]︁)︁

≤ (1− 𝜂)2E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1 + 𝜂(𝑣𝑡−1 −∇𝑓(𝑥𝑡))
⃦⃦2]︁

+
𝜂2𝜎2

𝑛

≤ (1− 𝜂)2
(︁
1 +

𝜂

2

)︁
E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1
⃦⃦2]︁

+

(︂
1 +

2

𝜂

)︂
𝜂2E

[︁⃦⃦
𝑣𝑡−1 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+

𝜂2𝜎2

𝑛

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1
⃦⃦2]︁

+ 3𝜂E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
𝜂2𝜎2

𝑛

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1
⃦⃦2]︁

+ 6𝜂E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+6𝜂E
[︁⃦⃦

∇𝑓(𝑥𝑡)−∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+
𝜂2𝜎2

𝑛

≤ (1− 𝜂)E
[︁⃦⃦

𝑢𝑡−1 − 𝑣𝑡−1
⃦⃦2]︁

+ 6𝜂E
[︁⃦⃦

𝑣𝑡−1 −∇𝑓(𝑥𝑡−1)
⃦⃦2]︁

+6𝐿2𝜂E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+
𝜂2𝜎2

𝑛
,

where the first inequality holds Assumption 2, the second inequality holds by Young’s inequality, and
the last step uses smoothness of 𝑓(·) (Assumption 1), which concludes the proof of (38).

37

G.2 Controlling the error of contractive compression and double momentum estimator

Lemma 5. Let Assumption 1 be satisfied, and suppose 𝒞 is a contractive compressor. For every
𝑖 = 1, . . . , 𝑛, let the sequences {𝑣𝑡𝑖}𝑡≥0, {𝑢𝑡

𝑖}𝑡≥0, and {𝑔𝑡𝑖}𝑡≥0 be updated via

𝑣𝑡𝑖 = 𝑣𝑡−1
𝑖 + 𝜂

(︀
∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1
𝑖

)︀
,

𝑢𝑡
𝑖 = 𝑢𝑡−1

𝑖 + 𝜂
(︀
𝑣𝑡𝑖 − 𝑢𝑡−1

𝑖

)︀
,

𝑔𝑡𝑖 = 𝑔𝑡−1
𝑖 + 𝒞

(︀
𝑢𝑡
𝑖 − 𝑔𝑡−1

𝑖

)︀
.

Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑢𝑡
𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡−1
𝑖 − 𝑢𝑡−1

𝑖

⃦⃦2]︁
+

6𝜂2

𝛼
E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑣𝑡−1

𝑖

⃦⃦2]︁
(39)

+
6𝜂4

𝛼
E
[︁⃦⃦

𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1, 𝜉𝑡−1
𝑖)

⃦⃦2]︁
+

6𝐿2
𝑖 𝜂

4

𝛼
E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂4𝜎2.

Proof. By the update rules of 𝑔𝑡𝑖 , 𝑢
𝑡
𝑖 and 𝑣𝑡𝑖 , we derive

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑢𝑡
𝑖

⃦⃦2]︁
= E

[︁⃦⃦
𝑔𝑡−1
𝑖 − 𝑢𝑡

𝑖 + 𝒞(𝑢𝑡
𝑖 − 𝑔𝑡−1

𝑖)
⃦⃦2]︁

(𝑖)

≤ (1− 𝛼)E
[︁⃦⃦

𝑢𝑡
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
(𝑖𝑖)
= (1− 𝛼)E

[︁⃦⃦
𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖) + 𝜂2(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)− 𝑣𝑡−1

𝑖)
⃦⃦2]︁

= (1− 𝛼)E
[︀
‖𝑢𝑡−1

𝑖 − 𝑔𝑡−1
𝑖 + 𝜂(𝑣𝑡−1

𝑖 − 𝑢𝑡−1
𝑖) + 𝜂2(∇𝑓𝑖(𝑥

𝑡)− 𝑣𝑡−1
𝑖)

+𝜂2(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡))‖2
]︀

= (1− 𝛼)E
[︀
‖E𝜉𝑡𝑖

[︀
‖𝑢𝑡−1

𝑖 − 𝑔𝑡−1
𝑖 + 𝜂(𝑣𝑡−1

𝑖 − 𝑢𝑡−1
𝑖) + 𝜂2(∇𝑓𝑖(𝑥

𝑡)− 𝑣𝑡−1
𝑖)

+𝜂2(∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡))‖2
]︀]︀

= (1− 𝛼)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖 + 𝜂(𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖) + 𝜂2(∇𝑓𝑖(𝑥
𝑡)− 𝑣𝑡−1

𝑖)
⃦⃦2]︁

+(1− 𝛼)𝜂4E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

(𝑖𝑖𝑖)

≤ (1− 𝛼)(1 + 𝜌)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+(1− 𝛼)(1 + 𝜌−1)E

[︁⃦⃦
𝜂(𝑣𝑡−1

𝑖 − 𝑢𝑡−1
𝑖) + 𝜂2(∇𝑓𝑖(𝑥

𝑡)− 𝑣𝑡−1
𝑖)

⃦⃦2]︁
+𝜂4𝜎2

(𝑖𝑣)
= (1− 𝜃)E

[︁⃦⃦
𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+ 𝜂4𝜎2

+𝛽E
[︁⃦⃦

𝜂(𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖) + 𝜂2(∇𝑓𝑖(𝑥
𝑡−1)− 𝑣𝑡−1

𝑖) + 𝜂2(∇𝑓𝑖(𝑥
𝑡)−∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

(𝑣)

≤ (1− 𝜃)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+ 3𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖

⃦⃦2]︁
+3𝛽𝜂4E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+3𝛽𝜂4E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡)−∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+ 𝜂4𝜎2

≤ (1− 𝜃)E
[︁⃦⃦

𝑢𝑡−1
𝑖 − 𝑔𝑡−1

𝑖

⃦⃦2]︁
+ 3𝛽𝜂2E

[︁⃦⃦
𝑣𝑡−1
𝑖 − 𝑢𝑡−1

𝑖

⃦⃦2]︁
+3𝛽𝜂4E

[︁⃦⃦
𝑣𝑡−1
𝑖 −∇𝑓𝑖(𝑥

𝑡−1)
⃦⃦2]︁

+3𝛽𝐿2
𝑖 𝜂

4E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡−1
⃦⃦2]︁

+ 𝜂4𝜎2

where (𝑖) is due to definition of a contractive compressor (Definition 1), (𝑖𝑖) follows by the update
rule of 𝑣𝑡𝑖 and 𝑢𝑡

𝑖, (𝑖𝑖𝑖) and (𝑣) hold by Young’s inequality for any 𝜌 > 0. In (𝑖𝑣), we introduced

38

the notation 𝜃 := 1 − (1 − 𝛼)(1 + 𝜌), and 𝛽 := (1 − 𝛼)(1 + 𝜌−1). The last step follows by
smoothness of 𝑓𝑖(·) (Assumption 1). The proof is complete by the choice 𝜌 = 𝛼/2, which guarantees
1− 𝜃 ≤ 1− 𝛼/2, and 3𝛽 ≤ 6/𝛼 .

39

H EF21-SGDM with Absolute Compressor

In this section, we complement our theory by analyzing EF21-SGDM under a different class of widely
used biased compressors, namely, absolute compressors, which are defined as follows.
Definition 2 (Absolute compressors). We say that a (possibly randomized) map 𝒞 : R𝑑 → R𝑑 is an
absolute compression operator if there exists a constant ∆ > 0 such that

E
[︀
‖𝒞(𝑥)− 𝑥‖2

]︀
≤ ∆2, ∀𝑥 ∈ R𝑑. (40)

This class includes important examples of compressors such as hard-threshold sparsifier [Sahu et al.,
2021], (stochatsic) rounding schemes with bounded error [Gupta et al., 2015] and scaled integer
rounding [Sapio et al., 2021].

Algorithm 4 EF21-SGDM (abs)

1: Input: starting point 𝑥0, step-size 𝛾 > 0, momentum 𝜂 ∈ (0, 1], initial batch size 𝐵init

2: Initialize 𝑣0𝑖 = 𝑔0𝑖 = 1
𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for 𝑖 = 1, . . . , 𝑛; 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖

3: for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
4: Master computes 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 and broadcasts 𝑥𝑡+1 to all nodes
5: for all nodes 𝑖 = 1, . . . , 𝑛 in parallel do
6: Compute momentum estimator 𝑣𝑡+1

𝑖 = (1− 𝜂)𝑣𝑡𝑖 + 𝜂∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖)

7: Compress 𝑐𝑡+1
𝑖 = 𝒞

(︁
𝑣𝑡+1
𝑖 −𝑔𝑡

𝑖

𝛾

)︁
and send 𝑐𝑡+1

𝑖 to the master

8: Update local state 𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝛾𝑐𝑡+1

𝑖
9: end for

10: Master computes 𝑔𝑡+1 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 via 𝑔𝑡+1 = 𝑔𝑡 + 1

𝑛

∑︀𝑛
𝑖=1 𝛾𝑐

𝑡+1
𝑖

11: end for

To accomodate absolute compressors into our EF21-SGDM method, we need to make a slight
modification to our algorithm, see Algorithm 4. At each iteration, before compressing the difference
𝑣𝑡+1
𝑖 − 𝑔𝑡𝑖 , we divide it by the step-size 𝛾. Later, we multiply the compressed vector 𝑐𝑡+1

𝑖 by 𝛾, i.e.,
have

𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝛾 𝒞

(︂
𝑣𝑡+1
𝑖 − 𝑔𝑡𝑖

𝛾

)︂
.

Such modification is necessary for absolute compressors because by Definition 2 the compression
error is not proportional to ‖𝑥‖2, but merely an absolute constant ∆2. In fact, Algorithm 4 is
somewhat more universal in the sense that it can be also applied for contractive compressors.20 We
derive the following result for EF21-SGDM (abs).
Theorem 6. Let Assumptions 1 and 2 hold. Let �̂�𝑇 be sampled uniformly at random from the iterates
of the method. Let Algorithm 4 run with an absolute compressor (Definition 2). For all 𝜂 ∈ (0, 1] and
𝐵init ≥ 1, with 𝛾 ≤ 𝜂

4𝐿 , we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

(︂
Ψ0

𝛾𝑇
+ 𝛾2∆2 +

𝜂𝜎2

𝑛

)︂
, (41)

where Ψ0 := 𝛿0 + 𝛾
𝜂E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁

is a Lyapunov function. With the following step-size,
momentum parameter, and initial batch size

𝛾 =
𝜂

4𝐿
, 𝜂 = min

{︃
1,

(︂
𝐿3𝛿0
∆2𝑇

)︂1/3

,

(︂
𝐿𝛿0𝑛

𝜎2𝑇

)︂1/2
}︃
, 𝐵𝑖𝑛𝑖𝑡 =

𝜎2

𝐿𝛿0𝑛
(42)

we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

(︃
𝐿𝛿0
𝑇

+

(︂
𝛿0∆

𝑇

)︂2/3

+

(︂
𝐿𝛿0𝜎

2

𝑛𝑇

)︂1/2
)︃
.

20It is straightforward to modify the proof of our Theorem 3 for the case when Algorithm 4 is applied with a
contractive compressor.

40

Corollary 4. Under the setting of Theorem 6, we have E
[︀⃦⃦
∇𝑓(�̂�𝑇)

⃦⃦]︀
≤ 𝜀 after 𝑇 =

𝒪
(︁

𝐿𝛿0
𝜀2 + Δ𝛿0

𝜀3 + 𝜎2𝐿𝛿0
𝑛𝜀4

)︁
iterations.

Remark 3. The sample complexity result in Corollary 4 matches the one derived for DoubleSqueeze
algorithm [Tang et al., 2020], which is different from Algorithm 4.

Proof. Similarly to the proof of Theorem 3, we control the error between 𝑔𝑡 and ∇𝑓(𝑥𝑡) by decom-
posing it into two terms⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
⃦⃦
𝑔𝑡 − 𝑣𝑡

⃦⃦2
+2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑣𝑡𝑖

⃦⃦2
+2

⃦⃦
𝑣𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.

Again, for the second term above we can use the recursion developed for momentum estimator
Lemma 2. However, since we use a different compressor here, we need to bound ‖𝑔𝑡𝑖 − 𝑣𝑡𝑖‖

2 term
differently, thus we invoke Lemma 6 for absolute compressor.

Part I. Controlling the error of momentum estimator on average for 𝑣𝑡. Denote 𝑃𝑡 :=

E
[︁
‖𝑣𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
, 𝑅𝑡 := E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡+1

⃦⃦2]︁
. Similarly to Part I of the proof of Theorem 3,

we have by Lemma 2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 ≤
3𝐿2

𝜂2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0. (43)

Part II. Controlling the error of absolute compressor and momentum estimator. By Lemma 6
we have for any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

̃︀𝑉𝑡 :=
1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑣𝑡𝑖
⃦⃦2]︁ ≤ 𝛾2∆2. (44)

Part III. Combining steps I and II with descent lemma. By smoothness (Assumption 1) of 𝑓(·) it
follows from Lemma 1 that for any 𝛾 ≤ 1/(2𝐿) we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(45)

≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+ 𝛾 ̃︀𝑉𝑡 + 𝛾𝑃𝑡.

Subtracting 𝑓* from both sides of (45), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we
derive

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 2𝛿0
𝛾𝑇

+ 2
1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖)

≤ 2𝛿0
𝛾𝑇

+ 2𝛾2∆2 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖𝑖)

≤ 2𝛿0
𝛾𝑇

+ 2𝛾2∆2 +

(︂
6𝐿2

𝜂2
− 1

2𝛾2

)︂
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0

≤ 2𝛿0
𝛾𝑇

+ 2𝛾2∆2 +
2𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0

(46)

where in (𝑖) and (𝑖𝑖) we apply (43), (44), and in the last step we use the assumption on the step-size
𝛾 ≤ 𝜂/(4𝐿).

41

Setting 𝛾 = 𝜂
4𝐿 , and taking 𝜂 ≤

(︁
𝐿3𝛿0
Δ2𝑇

)︁1/3

we can ensure that 𝜂2Δ2

𝐿2 ≤ 𝐿𝛿0
𝜂𝑇 , since 𝜂 ≤

(︀
𝐿𝛿0𝑛
𝜎2𝑇

)︀1/2
we have 𝜂𝜎2

𝑛 ≤ 𝐿𝛿0
𝜂𝑇 . Finally, by setting the initial batch-size to 𝐵𝑖𝑛𝑖𝑡 =

𝜎2

𝐿𝛿0𝑛
, we have 1

𝜂𝑇 𝑃0 =
𝜎2

𝜂𝑇𝑛𝐵𝑖𝑛𝑖𝑡
≤ 𝐿𝛿0

𝜂𝑇 . Therefore, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 2𝛿0

𝛾𝑇
+ 2𝛾2∆2 +

2𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0

=
8𝐿𝛿0
𝜂𝑇

+
𝜂2∆2

8𝐿2
+

2𝜂𝜎2

𝑛
+

𝜎2

𝜂𝑇𝐵𝑖𝑛𝑖𝑡

= 𝒪

(︃
𝐿𝛿0
𝑇

+
𝛿
2/3
0 ∆2/3

𝑇 2/3
+

𝜎(𝐿𝛿0)
1/2

(𝑛𝑇)1/2

)︃
.

(47)

H.1 Controlling the error of absolute compression

Lemma 6. Let 𝒞 be an absolute compressor and 𝑔𝑡+1
𝑖 be updated according to Algorithm 4, then for

𝑡 ≥ 0, we have 1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑔𝑡𝑖 − 𝑣𝑡𝑖‖

2
]︁
≤ 𝛾2∆2.

Proof. By the update rule for 𝑔𝑡+1
𝑖 in Algorithm 4 and Definition 2, we can bound

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑣𝑡+1

𝑖

⃦⃦2]︁
= E

[︃⃦⃦⃦⃦
𝛾𝒞
(︂
𝑣𝑡+1
𝑖 − 𝑔𝑡𝑖

𝛾

)︂
− (𝑣𝑡+1

𝑖 − 𝑔𝑡𝑖)

⃦⃦⃦⃦2]︃

= 𝛾2E

[︃⃦⃦⃦⃦
𝒞
(︂
𝑣𝑡+1
𝑖 − 𝑔𝑡𝑖

𝛾

)︂
− 𝑣𝑡+1

𝑖 − 𝑔𝑡𝑖
𝛾

⃦⃦⃦⃦2]︃
≤ 𝛾2∆2.

42

I EF21-STORM/MVR

Algorithm 5 EF21-STORM/MVR

1: Input: 𝑥0, step-size 𝛾 > 0, parameter 𝜂 ∈ (0, 1], 𝐵init ≥ 1

2: Initialize 𝑤0
𝑖 = 𝑔0𝑖 = 1

𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for 𝑖 = 1, . . . , 𝑛; 𝑔0 = 1
𝑛

∑︀𝑛
𝑖=1 𝑔

0
𝑖

3: for 𝑡 = 0,1, 2, . . . , 𝑇 − 1 do
4: Master computes 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡 and broadcasts 𝑥𝑡+1 to all nodes
5: for all nodes 𝑖 = 1, . . . , 𝑛 in parallel do
6: Draw 𝜉𝑡+1

𝑖 and compute two (stochastic) gradients ∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖) and ∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖)
7: Compute variance reduced STORM/MVR estimator
8: 𝑤𝑡+1

𝑖 = ∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖) + (1− 𝜂)(𝑤𝑡
𝑖 −∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡+1
𝑖))

9: Compress 𝑐𝑡+1
𝑖 = 𝒞(𝑤𝑡+1

𝑖 − 𝑔𝑡𝑖) and send 𝑐𝑡+1
𝑖 to the master

10: Update local state 𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝑐𝑡+1

𝑖
11: end for
12: Master computes 𝑔𝑡+1 = 1

𝑛

∑︀𝑛
𝑖=1 𝑔

𝑡+1
𝑖 via 𝑔𝑡+1 = 𝑔𝑡 + 1

𝑛

∑︀𝑛
𝑖=1 𝑐

𝑡+1
𝑖

13: end for

Assumption 3 (Individual smoothness21). For each 𝑖 = 1, . . . , 𝑛, every realization of 𝜉𝑖 ∼ 𝒟𝑖, the
stochastic gradient ∇𝑓𝑖(𝑥,𝜉𝑖) is ℓ𝑖-Lipschitz, i.e., for all 𝑥, 𝑦 ∈ R𝑑

‖∇𝑓𝑖(𝑥,𝜉𝑖)−∇𝑓𝑖(𝑦, 𝜉𝑖)‖ ≤ ℓ𝑖 ‖𝑥− 𝑦‖ .

We denote ̃︀ℓ2 := 1
𝑛

∑︀𝑛
𝑖=1 ℓ

2
𝑖

Theorem 7. Let Assumptions 1, 2 and 3 hold. Let �̂�𝑇 be sampled uniformly at random from the
iterates of the method. Let Algorithm 5 run with a contractive compressor. For all 𝜂 ∈ (0, 1] and

𝐵init ≥ 1, with 𝛾 ≤ min
{︁

𝛼

8̃︀𝐿 ,
√
𝛼

6̃︀ℓ ,
√
𝑛𝜂

8̃︀ℓ
}︁
, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

(︂
Ψ0

𝛾𝑇
+

𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛

)︂
, (48)

where Ψ0 := 𝛿0 +
𝛾
𝜂E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁

+ 𝛾𝜂
𝛼2

1
𝑛

∑︀𝑛
𝑖=1 E

[︁⃦⃦
𝑣0𝑖 −∇𝑓𝑖(𝑥

0)
⃦⃦2]︁

. With the following
step-size, momentum parameter, and initial batch size

𝛾 = min

{︂
𝛼

8̃︀𝐿,

√
𝛼

6̃︀ℓ ,

√
𝑛𝜂

8̃︀ℓ
}︂
, 𝜂 = min

⎧⎨⎩𝛼,

(︃ ̃︀ℓ𝛿0𝛼2

𝜎2
√
𝑛𝑇

)︃2/7

,

(︃ ̃︀ℓ𝛿0𝛼
𝜎2

√
𝑛𝑇

)︃2/5

,

(︃̃︀ℓ𝛿0√𝑛

𝜎2𝑇

)︃2/3
⎫⎬⎭ ,

and 𝐵init = max
{︁

𝜎2

𝐿𝛿0𝑛
, 𝛼𝑛

𝑇

}︁
, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 𝒪

⎛⎝̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+

(︃ ̃︀ℓ𝛿0𝜎1/3

𝛼1/3
√
𝑛𝑇

)︃6/7

+

(︃ ̃︀ℓ𝛿0𝜎1/2

𝛼1/4
√
𝑛𝑇

)︃4/5

+

(︃̃︀ℓ𝛿0𝜎
𝑛𝑇

)︃2/3
⎞⎠ .

Corollary 5. Under the setting of Theorem 7. we have E
[︀⃦⃦
∇𝑓(�̂�𝑇)

⃦⃦]︀
≤ 𝜀 after 𝑇 =

𝒪
(︁ ̃︀ℓ𝛿0

𝛼𝜀2 +
̃︀ℓ𝛿0𝜎1/3

𝛼1/3
√
𝑛𝜀7/3

+
̃︀ℓ𝛿0𝜎1/2

𝛼1/4
√
𝑛𝜀5/2

+
̃︀ℓ𝛿0𝜎
𝑛𝜀3

)︁
iterations.

Recently, Yau and Wai [2022] propose and analyze a DoCoM-SGT algorithm for decentralized
optimization with contractive compressor under the above Assumption 3. When their method is
specialized to centralized setting (with mixing constant 𝜌 = 1), their total sample complexity becomes
𝒪
(︁ ̃︀ℓ

𝛼𝜀2 + 𝑛4/5𝜎3/2

𝛼9/4𝜀3/2
+ 𝜎3

𝑛𝜀3

)︁
(see Table 1 or Theorem 4.1 in [Yau and Wai, 2022]). In contrast, the

sample complexity given in our Corollary 5 improves the dependence on 𝜎 in the last term and,
moreover, achieves the linear speedup in terms of 𝑛 for all stochastic terms in the sample complexity.

21This assumption can be also relaxed to so-called expected smoothness.

43

Proof. Similarly to the proof of Theorem 3, we control the error between 𝑔𝑡 and ∇𝑓(𝑥𝑡) by decom-
posing it into two terms⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
⃦⃦
𝑔𝑡 − 𝑤𝑡

⃦⃦2
+2
⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2 ≤ 2
1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑤𝑡

𝑖

⃦⃦2
+2
⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.

In the following, we develop a recursive bound for each term above separately.

Part I. Controlling the variance of STORM/MVR estimator for each 𝑤𝑡
𝑖 and on average 𝑤𝑡.

Recall that by Lemma 7-(55), we have for each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑤𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 2ℓ2𝑖E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+ 2𝜂2𝜎2. (49)

Averaging inequalities (49) over 𝑖 = 1, . . . ,𝑛 and denoting ̃︀𝑃𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)‖2

]︁
,

𝑅𝑡 := E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

we have

̃︀𝑃𝑡+1 ≤ (1− 𝜂) ̃︀𝑃𝑡 + 2̃︀ℓ2𝑅𝑡 + 2𝜂2𝜎2.

Summing up the above inequality for 𝑡 = 0, . . . , 𝑇 − 1, we derive

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 ≤
2̃︀ℓ2
𝜂

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 2𝜂𝜎2 +
1

𝜂𝑇
̃︀𝑃0. (50)

Similarly by Lemma 7-(56) denoting 𝑃𝑡 := E
[︁
‖𝑤𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
, we have

1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 ≤
2̃︀ℓ2
𝜂𝑛

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂𝜎2

𝑛
+

1

𝜂𝑇
𝑃0. (51)

Part II. Controlling the variance of contractive compressor and STORM/MVR estimator. By
Lemma 8 we have for each 𝑖 = 1, . . . , 𝑛, and any 0 < 𝜂 ≤ 1 and 𝑡 ≥ 0

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑤𝑡+1

𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑤𝑡
𝑖

⃦⃦2]︁
+

4𝜂2

𝛼
E
[︁⃦⃦

𝑤𝑡
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+

(︂
4𝐿2

𝑖

𝛼
+ ℓ2𝑖

)︂
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 2𝜂2𝜎2. (52)

Averaging inequalities (52) over 𝑖 = 1, . . . ,𝑛, denoting ̃︀𝑉𝑡 :=
1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖𝑔𝑡𝑖 − 𝑤𝑡

𝑖‖
2
]︁
, and summing

up the resulting inequality for 𝑡 = 0, . . . , 𝑇 − 1, we obtain

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 ≤ 8𝜂2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑃𝑡 +

(︃
8̃︀𝐿2

𝛼2
+

2̃︀ℓ2
𝛼

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 +
2𝜂2𝜎2

𝛼

≤

(︃
8̃︀𝐿2

𝛼2
+

2̃︀ℓ2
𝛼

+
16𝜂̃︀ℓ2
𝛼2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
16𝜂3𝜎2

𝛼2
+

2𝜂2𝜎2

𝛼
+

8𝜂

𝛼2𝑇
̃︀𝑃0. (53)

Part III. Combining steps I and II with descent lemma. By smoothness (Assumption 1) of 𝑓(·) it
follows from Lemma 1 that for any 𝛾 ≤ 1/(2𝐿) we have

𝑓(𝑥𝑡+1) ≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(54)

≤ 𝑓(𝑥𝑡)− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − 1

4𝛾

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+ 𝛾

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑔𝑡𝑖 − 𝑤𝑡

𝑖

⃦⃦2
+ 𝛾

⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
.

44

Subtracting 𝑓* from both sides of (54), taking expectation and defining 𝛿𝑡 := E [𝑓(𝑥𝑡)− 𝑓*], we
derive

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

=
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤ 2𝛿0
𝛾𝑇

+ 2
1

𝑇

𝑇−1∑︁
𝑡=0

̃︀𝑉𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

(𝑖)

≤ 2𝛿0
𝛾𝑇

+

(︃
16̃︀𝐿2

𝛼2
+

4̃︀ℓ2
𝛼

+
32𝜂̃︀ℓ2
𝛼2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡 + 2
1

𝑇

𝑇−1∑︁
𝑡=0

𝑃𝑡 −
1

2𝛾2

1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
32𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

16𝜂

𝛼2𝑇
̃︀𝑃0

(𝑖𝑖)

≤ 2𝛿0
𝛾𝑇

+

(︃
16̃︀𝐿2

𝛼2
+

4̃︀ℓ2
𝛼

+
32𝜂̃︀ℓ2
𝛼2

+
4̃︀ℓ2
𝜂𝑛

− 1

2𝛾2

)︃
1

𝑇

𝑇−1∑︁
𝑡=0

𝑅𝑡

+
32𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

4𝜂𝜎2

𝑛
+

16𝜂

𝛼2𝑇
̃︀𝑃0 +

2

𝜂𝑇
𝑃0

≤ 2𝛿0
𝛾𝑇

+
32𝜂3𝜎2

𝛼2
+

4𝜂2𝜎2

𝛼
+

4𝜂𝜎2

𝑛
+

16𝜂

𝛼2𝑇
̃︀𝑃0 +

2

𝜂𝑇
𝑃0,

where in (𝑖) we apply (53), in (𝑖𝑖) we use (51), and the last step follows by assumption on the
step-size, which proves (48).

We now find the particular values of parameters. Using 𝑤0
𝑖 = 1

𝐵init

∑︀𝐵init
𝑗=1 ∇𝑓𝑖(𝑥

0, 𝜉0𝑖,𝑗) for all
𝑖 = 1, . . . , 𝑛, we have

𝑃0 = E
[︁⃦⃦

𝑤0 −∇𝑓(𝑥0)
⃦⃦2]︁ ≤ 𝜎2

𝑛𝐵init
and ̃︀𝑃0 =

1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑤0
𝑖 −∇𝑓𝑖(𝑥

0)
⃦⃦2]︁ ≤ 𝜎2

𝐵init
.

We can substitute the choice of 𝛾 and obtain

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= 𝒪
(︂

𝛿0
𝛾𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜎2

𝜂𝑛𝐵init𝑇
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︂
= 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+
̃︀ℓ𝛿0√
𝑛𝜂𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜎2

𝜂𝑛𝐵init𝑇
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︃
.

Since 𝐵init ≥ 𝜎2

𝐿𝛿0𝑛
, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= 𝒪

(︃ ̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+
̃︀ℓ𝛿0√
𝑛𝜂𝑇

+
𝜂3𝜎2

𝛼2
+

𝜂2𝜎2

𝛼
+

𝜂𝜎2

𝑛
+

𝜂𝜎2

𝛼2𝐵init𝑇

)︃
.

Notice that the choice of the momentum parameter such that 𝜂 ≤
(︁ ̃︀ℓ𝛿0𝛼2

𝜎2
√
𝑛𝑇

)︁2/7

, 𝜂 ≤
(︁ ̃︀ℓ𝛿0𝛼

𝜎2
√
𝑛𝑇

)︁2/5

,

𝜂 ≤
(︁ ̃︀ℓ𝛿0√𝑛

𝜎2𝑇

)︁2/3

, and 𝜂 ≤
(︁ ̃︀ℓ𝛿0𝛼2𝐵init

𝜎2
√
𝑛

)︁2/3

ensures that 𝜂3𝜎2

𝛼2 ≤ ̃︀ℓ𝛿0√
𝑛𝜂𝑇 , 𝜂2𝜎2

𝛼 ≤ ̃︀ℓ𝛿0√
𝑛𝜂𝑇 , 𝜂𝜎2

𝑛 ≤ ̃︀ℓ𝛿0√
𝑛𝜂𝑇 ,

and 𝜂𝜎2

𝛼2𝐵init𝑇
≤ ̃︀ℓ𝛿0√

𝑛𝜂𝑇 . Therefore, we have

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= 𝒪

⎛⎝̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+

(︃ ̃︀ℓ𝛿0𝜎1/3

𝛼1/3
√
𝑛𝑇

)︃6/7

+

(︃ ̃︀ℓ𝛿0𝜎1/2

𝛼1/4
√
𝑛𝑇

)︃4/5

+

(︃̃︀ℓ𝛿0𝜎
𝑛𝑇

)︃2/3

+

(︃̃︀ℓ𝛿0𝜎√
𝑛

)︃2/3
𝛼1/3

𝐵
1/3
init 𝑇

⎞⎠ .

Using 𝐵init ≥ 𝛼𝑛
𝑇 , we obtain

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= 𝒪

⎛⎝̃︀𝐿𝛿0
𝛼𝑇

+
̃︀ℓ𝛿0√
𝛼𝑇

+

(︃ ̃︀ℓ𝛿0𝜎1/3

𝛼1/3
√
𝑛𝑇

)︃6/7

+

(︃ ̃︀ℓ𝛿0𝜎1/2

𝛼1/4
√
𝑛𝑇

)︃4/5

+

(︃̃︀ℓ𝛿0𝜎
𝑛𝑇

)︃2/3
⎞⎠ .

45

I.1 Controlling the variance of STORM/MVR estimator

Lemma 7. Let Assumptions 2 and 3 be satisfied, and suppose 0 < 𝜂 ≤ 1. For every 𝑖 = 1, . . . , 𝑛,
let the sequence {𝑤𝑡

𝑖}𝑡≥0 be updated via 𝑤𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖) + (1− 𝜂)(𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖))

Define the sequence 𝑤𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑤

𝑡
𝑖 . Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑤𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 2ℓ2𝑖E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+ 2𝜂2𝜎2, (55)

E
[︁⃦⃦

𝑤𝑡+1 −∇𝑓(𝑥𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+

2̃︀ℓ2
𝑛

E
[︁⃦⃦

𝑥𝑡 − 𝑥𝑡+1
⃦⃦2]︁

+
2𝜂2𝜎2

𝑛
. (56)

Proof. For each 𝑡 = 0, . . . , 𝑇 − 1, define a random vector 𝜉𝑡 := (𝜉𝑡1, . . . , 𝜉
𝑡
𝑛) and denote by

∇𝑓(𝑥𝑡, 𝜉𝑡) := 1
𝑛

∑︀𝑛
𝑖=1 ∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖). Note that the entries of the random vector 𝜉𝑡 are independent
and E𝜉𝑡 [∇𝑓(𝑥𝑡, 𝜉𝑡)] = ∇𝑓(𝑥𝑡), then we have

𝑤𝑡+1 = ∇𝑓(𝑥𝑡+1, 𝜉𝑡+1) + (1− 𝜂)
(︀
𝑤𝑡 −∇𝑓(𝑥𝑡, 𝜉𝑡+1)

)︀
,

where 𝑤𝑡 = 1
𝑛

∑︀𝑛
𝑖=1 𝑤

𝑡
𝑖 is an auxiliary sequence.

We define

𝒱𝑡
𝑖 := ∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥
𝑡), 𝒱𝑡 :=

1

𝑛

𝑛∑︁
𝑖=1

𝒱𝑡
𝑖 ,

𝒲𝑡
𝑖 := ∇𝑓𝑖(𝑥

𝑡)−∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖) +∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖)−∇𝑓𝑖(𝑥
𝑡+1), 𝒲𝑡 :=

1

𝑛

𝑛∑︁
𝑖=1

𝒲𝑡
𝑖 .

Then by Assumptions 2, we have

E
[︀
𝒱𝑡
𝑖

]︀
= E

[︀
𝒲𝑡

𝑖

]︀
= E

[︀
𝒱𝑡
]︀
= E

[︀
𝒲𝑡
]︀
= 0, (57)

E
[︁⃦⃦

𝒱𝑡
𝑖

⃦⃦2]︁ ≤ 𝜎2, E
[︁⃦⃦

𝒱𝑡
⃦⃦2]︁ ≤ 𝜎2

𝑛
. (58)

Furthermore, we can derive

E
[︁⃦⃦

𝒲𝑡
⃦⃦2]︁

= E

⎡⎣⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁

𝑖=1

𝒲𝑡
𝑖

⃦⃦⃦⃦
⃦
2
⎤⎦

=
1

𝑛2
E

⎡⎣⃦⃦⃦⃦⃦
𝑛∑︁

𝑖=1

𝒲𝑡
𝑖

⃦⃦⃦⃦
⃦
2
⎤⎦

=
1

𝑛2

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝒲𝑡
𝑖

⃦⃦2]︁
+

1

𝑛2

∑︁
�̸�=𝑗

E
[︀
⟨𝒲𝑡

𝑖 ,𝒲𝑡
𝑗⟩
]︀

(𝑖)
=

1

𝑛2

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝒲𝑡
𝑖

⃦⃦2]︁
+

1

𝑛2

∑︁
�̸�=𝑗

⟨E
[︀
𝒲𝑡

𝑖

]︀
,E
[︀
𝒲𝑡

𝑗

]︀
⟩

=
1

𝑛2

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝒲𝑡
𝑖

⃦⃦2]︁
≤ 1

𝑛2

𝑛∑︁
𝑖=1

E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1, 𝜉𝑡+1

𝑖)−∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖)
⃦⃦2]︁

≤ 1

𝑛2

𝑛∑︁
𝑖=1

ℓ2𝑖E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

=
̃︀ℓ2
𝑛
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

,

46

where (𝑖) holds by the conditional independence of 𝒲𝑡
𝑖 and 𝒲𝑡

𝑗 , and the last inequality follows by
the individual smoothness of stochastic functions (Assumption 3). Therefore, we have

E
[︁⃦⃦

𝒲𝑡
𝑖

⃦⃦2]︁ ≤ ℓ2𝑖E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

, E
[︁⃦⃦

𝒲𝑡
⃦⃦2]︁ ≤ ̃︀ℓ2

𝑛
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

, (59)

where the first inequality is obtained by using a similar derivation.

By the update rule for 𝑤𝑡, we can also derive

𝑤𝑡+1 −∇𝑓(𝑥𝑡+1) = (1− 𝜂)
(︀
𝑤𝑡 −∇𝑓(𝑥𝑡, 𝜉𝑡+1)

)︀
+
(︀
∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)−∇𝑓(𝑥𝑡+1)

)︀
= (1− 𝜂)

(︀
𝑤𝑡 −∇𝑓(𝑥𝑡)

)︀
+ 𝜂

(︀
∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)−∇𝑓(𝑥𝑡+1)

)︀
+(1− 𝜂)

(︀(︀
∇𝑓(𝑥𝑡)−∇𝑓(𝑥𝑡, 𝜉𝑡+1) +∇𝑓(𝑥𝑡+1, 𝜉𝑡+1)−∇𝑓(𝑥𝑡+1)

)︀)︀
= (1− 𝜂)

(︀
𝑤𝑡 −∇𝑓(𝑥𝑡)

)︀
+ 𝜂𝒱𝑡+1 + (1− 𝜂)𝒲𝑡.

Therefore, we have

E
[︁⃦⃦

𝑤𝑡+1 −∇𝑓(𝑥𝑡+1)
⃦⃦2]︁ ≤ E

[︁
E𝜉𝑡+1

[︁⃦⃦
(1− 𝜂)

(︀
𝑤𝑡 −∇𝑓(𝑥𝑡)

)︀
+ 𝜂𝒱𝑡+1 + (1− 𝜂)𝒲𝑡

⃦⃦2]︁]︁
= (1− 𝜂)2E

[︁⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2]︁
+ E

[︁⃦⃦
𝜂𝒱𝑡+1 + (1− 𝜂)𝒲𝑡

⃦⃦2]︁
≤ (1− 𝜂)

⃦⃦
𝑤𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
+ 2𝜂2E

[︁⃦⃦
𝒱𝑡+1

⃦⃦2]︁
+ 2E

[︁⃦⃦
𝒲𝑡
⃦⃦2]︁

≤ (1− 𝜂)E
[︁⃦⃦

𝑤𝑡 −∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
2𝜎2𝜂2

𝑛
+

2̃︀ℓ2
𝑛

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

,

where the last inequality holds by (58) and (59). Similarly for each 𝑖 = 1, . . . , 𝑛, we have

𝑤𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1) = (1− 𝜂)
(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀
+ 𝜂𝒱𝑡+1

𝑖 + (1− 𝜂)𝒲𝑡
𝑖 . (60)

Thus,

E
[︁⃦⃦

𝑤𝑡+1
𝑖 −∇𝑓𝑖(𝑥

𝑡+1)
⃦⃦2]︁ ≤ (1− 𝜂)E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 2𝜎2𝜂2 + 2ℓ2𝑖𝑅𝑡.

I.2 Controlling the variance of contractive compression and STORM/MVR estimator

Lemma 8. Let Assumptions 1, 2 and 3 be satisfied, and suppose 0 < 𝜂 ≤ 1. For every 𝑖 = 1, . . . , 𝑛,
let the sequences {𝑤𝑡

𝑖}𝑡≥0 and {𝑔𝑡𝑖}𝑡≥0 be updated via

𝑤𝑡+1
𝑖 = ∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖) + (1− 𝜂)(𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡+1

𝑖)),

𝑔𝑡+1
𝑖 = 𝑔𝑡𝑖 + 𝒞

(︀
𝑤𝑡+1

𝑖 − 𝑔𝑡𝑖
)︀
.

Then for every 𝑖 = 1, . . . , 𝑛 and 𝑡 ≥ 0 it holds

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑤𝑡+1

𝑖

⃦⃦2]︁ ≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑔𝑡𝑖 − 𝑤𝑡
𝑖

⃦⃦2]︁
+

4𝜂2

𝛼
E
[︁⃦⃦

𝑤𝑡
𝑖 −∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+

(︂
4𝐿2

𝑖

𝛼
+ ℓ2𝑖

)︂
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 2𝜂2𝜎2. (61)

Proof. By the update rule of 𝑤𝑡
𝑖 , 𝑔

𝑡
𝑖 , and definition of 𝒱𝑡

𝑖 , 𝒲𝑡
𝑖 given in the proof of Lemma 7, we can

derive

E
[︁⃦⃦

𝑔𝑡+1
𝑖 − 𝑤𝑡+1

𝑖

⃦⃦2]︁
= E

[︁⃦⃦
𝒞(𝑤𝑡+1

𝑖 − 𝑔𝑡𝑖)− (𝑤𝑡+1
𝑖 − 𝑔𝑡𝑖)

⃦⃦2]︁
(𝑖)

≤ (1− 𝛼)E
[︁⃦⃦

𝑤𝑡+1
𝑖 − 𝑔𝑡𝑖

⃦⃦2]︁
(𝑖𝑖)
= (1− 𝛼)E

[︁⃦⃦
(1− 𝜂)

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀
+ 𝜂𝒱𝑡+1

𝑖 + (1− 𝜂)𝒲𝑡
𝑖 +∇𝑓𝑖(𝑥

𝑡+1)− 𝑔𝑡𝑖
⃦⃦2]︁

= (1− 𝛼)E
[︁
E𝜉𝑡+1

𝑖

[︁⃦⃦
(1− 𝜂)

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀
+ 𝜂𝒱𝑡+1

𝑖 + (1− 𝜂)𝒲𝑡
𝑖 +∇𝑓𝑖(𝑥

𝑡+1)− 𝑔𝑡𝑖
⃦⃦2]︁]︁

47

(𝑖𝑖𝑖)
= (1− 𝛼)E

[︁⃦⃦
(1− 𝜂)

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀
+∇𝑓𝑖(𝑥

𝑡+1)− 𝑔𝑡𝑖
⃦⃦2]︁

+(1− 𝛼)E
[︁⃦⃦

𝜂𝒱𝑡+1
𝑖 + (1− 𝜂)𝒲𝑡

𝑖

⃦⃦2]︁
= (1− 𝛼)E

[︁⃦⃦(︀
𝑤𝑡

𝑖 − 𝑔𝑡𝑖
)︀
+
(︀
∇𝑓𝑖(𝑥

𝑡+1)−∇𝑓𝑖(𝑥
𝑡)
)︀
− 𝜂

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀⃦⃦2]︁

+(1− 𝛼)E
[︁⃦⃦

𝜂𝒱𝑡+1
𝑖 + (1− 𝜂)𝒲𝑡

𝑖

⃦⃦2]︁
(𝑖𝑣)

≤ (1− 𝛼) (1 + 𝜌)E
[︁⃦⃦

𝑤𝑡
𝑖 − 𝑔𝑡𝑖

⃦⃦2]︁
+(1− 𝛼)

(︀
1 + 𝜌−1

)︀
E
[︁⃦⃦(︀

∇𝑓𝑖(𝑥
𝑡+1)−∇𝑓𝑖(𝑥

𝑡)
)︀
− 𝜂

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀⃦⃦2]︁

+2(1− 𝛼)𝜂2E
[︁⃦⃦

𝒱𝑡+1
𝑖

⃦⃦2]︁
+ 2(1− 𝛼)(1− 𝜂)2E

[︁⃦⃦
𝒲𝑡

𝑖

⃦⃦2]︁
(𝑣)
= (1− 𝜃)E

[︁⃦⃦
𝑤𝑡

𝑖 − 𝑔𝑡𝑖
⃦⃦2]︁

+𝛽E
[︁⃦⃦(︀

∇𝑓𝑖(𝑥
𝑡+1)−∇𝑓𝑖(𝑥

𝑡)
)︀
− 𝜂

(︀
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
)︀⃦⃦2]︁

+2(1− 𝛼)𝜂2E
[︁⃦⃦

𝒱𝑡+1
𝑖

⃦⃦2]︁
+ 2(1− 𝛼)(1− 𝜂)2E

[︁⃦⃦
𝒲𝑡

𝑖

⃦⃦2]︁
(𝑣𝑖)

≤ (1− 𝜃)E
[︁⃦⃦

𝑤𝑡
𝑖 − 𝑔𝑡𝑖

⃦⃦2]︁
+ 2𝛽𝜂2E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+2𝛽E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡+1)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ 2ℓ2𝑖E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 2𝜂2𝜎2

≤ (1− 𝜃)E
[︁⃦⃦

𝑤𝑡
𝑖 − 𝑔𝑡𝑖

⃦⃦2]︁
+ 2𝛽𝜂2E

[︁⃦⃦
𝑤𝑡

𝑖 −∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+
(︀
2𝛽𝐿2

𝑖 + ℓ2𝑖
)︀
E
[︁⃦⃦

𝑥𝑡+1 − 𝑥𝑡
⃦⃦2]︁

+ 2𝜂2𝜎2,

where (𝑖) holds by Definition 1, (𝑖𝑖) follows from (60), (𝑖𝑖𝑖) holds by unbiasedness of 𝒱𝑡+1
𝑖 and 𝒲𝑡

𝑖
(57). In (𝑖𝑣) we use Young’s inequality twice, in (𝑣) we introduce the notation 𝜃 := 1−(1−𝛼)(1+𝜌)
and 𝛽 := (1− 𝛼)(1 + 𝜌−1), in (𝑣𝑖) we again use Young’s inequality and the bound (58) and (59).
The last step holds by smoothness of 𝑓𝑖(·) (Assumption 1). The proof is complete by the choice
𝜌 = 𝛼/2, which guarantees 1− 𝜃 ≤ 1− 𝛼/2, and 2𝛽 ≤ 4/𝛼 .

48

J Simplified Proof of SGDM: Time Varying Parameters and No Tuning for
Momentum Sequence

In this section, we give a simplified proof of SGDM in the single node setting (𝑛 = 1) without
compression (𝛼 = 1). The following theorem shows that the momentum parameter can be chosen
in a parameter agnostic22 way as 𝜂𝑡 = 1/

√
𝑡+ 1 (or 𝜂𝑡 = 1/

√
𝑇 + 1), instead of being a constant

depending on problem parameters as it is suggested in our main Theorem 3. In other words, using
SGDM with time varying momentum does not introduce any additional tuning of hyper-parameters.

Theorem 8. Let Assumptions 1, 2 hold. Let 𝑛 = 1 and Algorithm 1 run with identity compressor
𝒞, i.e., 𝛼 = 1, and (possibly) time varying momentum 𝜂𝑡 ∈ (0, 1] and step-size paramters 𝛾𝑡 = 𝛾𝜂𝑡
with 𝛾 ∈ (0, 1/(3𝐿)]. Let �̂�𝑇 be sampled from the iterates of the algorithm with probabilities
𝑝𝑡 = 𝜂𝑡/(

∑︀𝑇−1
𝑡=0 𝜂𝑡), then

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤

2Λ0𝛾
−1 + 2𝜎2

∑︀𝑇−1
𝑡=0 𝜂2𝑡∑︀𝑇−1

𝑡=0 𝜂𝑡
,

where Λ0 := 𝑓(𝑥0)− 𝑓* + 𝛾E
[︁⃦⃦

𝑣0 −∇𝑓(𝑥0)
⃦⃦2]︁

is the Lyapunov function.

Proof. By Lemma 2 denoting 𝑃𝑡 := E
[︁
‖𝑣𝑡 −∇𝑓(𝑥𝑡)‖2

]︁
, 𝑅𝑡 := E

[︁⃦⃦
𝑥𝑡 − 𝑥𝑡+1

⃦⃦2]︁
, we have

𝑃𝑡+1 ≤ 𝑃𝑡 − 𝜂𝑡𝑃𝑡 +
3𝐿2

𝜂𝑡
𝑅𝑡 + 𝜂2𝑡 𝜎

2. (62)

By descent Lemma 1, we have for any 𝛾𝑡 > 0

𝛿𝑡+1 ≤ 𝛿𝑡 −
𝛾𝑡
2
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁− 1

2𝛾𝑡
(1− 𝛾𝑡𝐿)𝑅𝑡 +

𝛾𝑡
2
𝑃𝑡, (63)

where 𝛿0 := E [𝑓(𝑥𝑡)− 𝑓*]. Define the Lyapunov function as Λ𝑡 = 𝛿0 + 𝛾𝑃𝑡. Then summing up
(63) with a 𝛾 multiple of (62) and noticing that 𝛾𝑡 ≤ 𝛾, we get

Λ𝑡+1 ≤ Λ𝑡 −
𝛾𝑡
2
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁− 1

2𝛾𝑡

(︀
1− 𝛾𝐿− 6𝛾2𝐿2

)︀
𝑅𝑡 + 𝛾𝜂2𝑡 𝜎

2.

Since 𝛾 ≤ 1/(3𝐿), we have 1− 𝛾𝐿− 6𝛾2𝐿2 ≤ 0, and, therefore, by telescoping we can derive

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

=

(︃
𝑇−1∑︁
𝑡=0

𝜂𝑡

)︃−1 𝑇−1∑︁
𝑡=0

𝜂𝑡E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

≤
2Λ0𝛾

−1 + 2𝜎2
∑︀𝑇−1

𝑡=0 𝜂2𝑡∑︀𝑇−1
𝑡=0 𝜂𝑡

.

The above theorem suggests that to ensure convergence, we can select any momentum sequence
such that 𝜎2

∑︀∞
𝑡=0 𝜂

2
𝑡 < ∞, and

∑︀∞
𝑡=0 𝜂

2
𝑡 → ∞ for 𝑡 → ∞. The parameter 𝛾, which determines the

step-size 𝛾𝑡 = 𝛾𝜂𝑡, should be set to 𝛾 = 1/(3𝐿) (to minimize the upper bound). Let us now consider
some special cases.

Deterministic case. If 𝜎 = 0, we can set it to be any constant 𝜂𝑡 = 𝜂 ∈ (0, 1] and derive

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁ ≤ 2𝛿0

𝛾𝜂𝑇
= 𝒪

(︂
𝐿𝛿0
𝜂𝑇

)︂
.

22That is, independently of the problem specific parameters

49

Stochastic case. For 𝜎2 > 0, we can select time-varying 𝜂𝑡 =
1√
𝑡+1

or constant 𝜂𝑡 = 1√
𝑇+1

, which

gives
∑︀𝑇−1

𝑡=0 𝜂2𝑡 = 𝒪 (log(𝑇)), and
∑︀𝑇−1

𝑡=0 𝜂𝑡 = Ω
(︁√

𝑇
)︁

. Thus

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= ̃︀𝒪(︂𝐿Λ0 + 𝜎2

√
𝑇

)︂
.

Notice that if we set 𝜂𝑡 as above, we do not need any tuning of momentum parameter. Only tuning
of paramter 𝛾 is required to ensure convergence with optimal dependence on 𝑇 , as in SGD without
momentum. Of course, this rate is not yet optimal in other parameters, e.g., 𝜎2 and 𝐿. To make it
optimal in all problem parameters, we can set 𝜂 = max

{︁
1,
(︀
𝐿Λ0

𝜎2𝑇

)︀1/2}︁
similarly to the statement of

Theorem 2.

50

K Revisiting EF14-SGD Analysis under BG and BGS Assumptions

In this section, we revisit the analysis of the original variant of error feedback (EF14-SGD) to
showcase the difficulty in avoiding BG/BGS assumptions commonly used in the nonconvex analysis
of this variant. In summary, the key reason for BG/BGS assumption is to bound the second term in
(67) or (68).

Recall that EF14-SGD has the update rule [Stich et al., 2018]

𝑥𝑡+1 = 𝑥𝑡 − 𝑔𝑡, 𝑔𝑡 =
1

𝑛

𝑛∑︁
𝑖=1

𝑔𝑡𝑖 , (64)

EF14-SGD:
𝑒𝑡+1
𝑖 = 𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)− 𝑔𝑡𝑖 ,

𝑔𝑡+1
𝑖 = 𝒞

(︀
𝑒𝑡+1
𝑖 + 𝛾∇𝑓𝑖(𝑥

𝑡+1, 𝜉𝑡+1
𝑖)

)︀
,

(65)

where {𝑒𝑡𝑖}𝑡≥0 are error/memory sequences with 𝑒0𝑖 = 0 for each 𝑖 = 1, . . . , 𝑛. Let 𝑒𝑡 := 1
𝑛

∑︀𝑛
𝑖=1 𝑒

𝑡
𝑖.

The proof of this method relies on so called perturbed iterate analysis, for which one defines a "virtual
sequence": �̃�𝑡 := 𝑥𝑡 − 𝑒𝑡. Then it is verified by direct substitution that for any 𝑡 ≥ 0

�̃�𝑡+1 = �̃�𝑡 − 𝛾
1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖).

If follows from Lemma 9 in [Stich and Karimireddy, 2021] that for any 𝛾 ≤ 1/2𝐿 and 𝑡 ≥ 0

E
[︀
𝑓(�̃�𝑡+1)

]︀
≤ E

[︀
𝑓(�̃�𝑡)

]︀
− 𝛾

4
E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
𝛾𝐿𝜎2

2𝑛
+

𝐿2

2
E
[︁⃦⃦

𝑒𝑡
⃦⃦2]︁

.

Telescoping the recursion above and setting 𝛿0 := 𝑓(𝑥0)− 𝑓*, we have

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 4𝛿0

𝛾𝑇
+

2𝛾𝐿𝜎2

𝑛
+ 2𝐿2 1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

𝑒𝑡
⃦⃦2]︁

. (66)

Now it remains to bound efficiently the average error term E
[︁
‖𝑒𝑡‖2

]︁
= E

[︁⃦⃦
1
𝑛

∑︀𝑛
𝑖=1 𝑒

𝑡
𝑖

⃦⃦2]︁
. By

Jensen’s inequality, we have

E

⎡⎣⃦⃦⃦⃦⃦ 1𝑛
𝑛∑︁

𝑖=1

𝑒𝑡𝑖

⃦⃦⃦⃦
⃦
2
⎤⎦ ≤ 1

𝑛

𝑛∑︁
𝑖=1

E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

,

and develop a bound for each E
[︁
‖𝑒𝑡𝑖‖

2
]︁

individually. Denote by 𝑧 := 𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖), then

E
[︁⃦⃦

𝑒𝑡+1
𝑖

⃦⃦2]︁ ≤ E
[︁
‖𝒞(𝑧)− 𝑧‖2

]︁
≤ (1− 𝛼)E

[︁⃦⃦
𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥

𝑡, 𝜉𝑡𝑖)
⃦⃦2]︁

≤ (1− 𝛼)
(︁
1 +

𝛼

2

)︁
E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

+

(︂
1 +

2

𝛼

)︂
E
[︁⃦⃦

𝛾∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)

⃦⃦2]︁
≤

(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

+
3𝛾2

𝛼
E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)

⃦⃦2]︁
, (67)

where we used Definition 1 and Young’s inequality.

BG asssumption. If we assume bounded (stochastic) gradients (BG), i.e., E
[︁
‖∇𝑓𝑖(𝑥, 𝜉𝑖)‖2

]︁
≤ 𝐺2

for all 𝑖 = 1, . . . , 𝑛, then using (67) we can derive

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

𝑒𝑡
⃦⃦2]︁ ≤ 6𝛾2𝐺2

𝛼2
.

51

Combining this bound with (66), we have

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 4𝛿0

𝛾𝑇
+

2𝛾𝐿𝜎2

𝑛
+

12𝐿2𝛾2𝐺2

𝛼2
.

The step-size choice 𝛾 = min

{︂
1
𝐿 ,
(︁

𝛿0𝛼
2

𝑇𝐿2𝜎2

)︁1/3

,
(︀

𝑛𝛿0
𝑇𝐿𝜎2

)︀1/2}︂
, allows us to bound the RHS by 12𝛿0

𝛾𝑇 ,

and guarantees

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= 𝒪

(︃
𝐿𝛿0
𝑇

+

(︂
𝐿𝛿0𝐺

𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0
𝑛𝑇

)︂1/2
)︃
,

or, equivalently, 𝑇 = 𝒪
(︀
𝐿𝛿0
𝜀2 + 𝐿𝛿0𝐺

𝛼𝜀3 + 𝐿𝛿0
𝑛𝜀4

)︀
sample complexity to find a stationary point. This

analysis using BG assumption and derived sample complexity is essentially a simplified version of
the one by Koloskova et al. [2020].23

BGS asssumption. If we assume bounded gradient similarity (BGS), i.e.,
1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖∇𝑓𝑖(𝑥)−∇𝑓(𝑥)‖2

]︁
≤ 𝐺2, we can slightly modify the derivation in (67) as

follows

E
[︁⃦⃦

𝑒𝑡+1
𝑖

⃦⃦2]︁ ≤ (1− 𝛼)E
[︁⃦⃦

𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)

⃦⃦2]︁
= (1− 𝛼)E

[︁⃦⃦
𝑒𝑡𝑖 + 𝛾∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

+ (1− 𝛼)𝛾2E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡, 𝜉𝑡𝑖)−∇𝑓𝑖(𝑥

𝑡)
⃦⃦2]︁

≤ (1− 𝛼)
(︁
1 +

𝛼

2

)︁
E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

+

(︂
1 +

2

𝛼

)︂
E
[︁⃦⃦

𝛾∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 𝛾2𝜎2

≤
(︁
1− 𝛼

2

)︁
E
[︁⃦⃦

𝑒𝑡𝑖
⃦⃦2]︁

+
3𝛾2

𝛼
E
[︁⃦⃦

∇𝑓𝑖(𝑥
𝑡)
⃦⃦2]︁

+ 𝛾2𝜎2. (68)

Averaging the above inequalities over 𝑖 = 1, . . . , 𝑛 and using BGS assumption, i.e.,
1
𝑛

∑︀𝑛
𝑖=1 E

[︁
‖∇𝑓𝑖(𝑥)‖2

]︁
≤ ‖∇𝑓(𝑥)‖2 +𝐺2 , we can derive via averaging over 𝑡 = 0, . . . , 𝑇 − 1

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

𝑒𝑡
⃦⃦2]︁ ≤ 6𝛾2

𝛼2

1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁

+
6𝛾2𝐺2

𝛼2
+

2𝛾2𝜎2

𝛼
,

Combining the above inequality with (66), we have(︂
1− 12𝐿2𝛾2

𝛼2

)︂
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︁⃦⃦

∇𝑓(𝑥𝑡)
⃦⃦2]︁ ≤ 4𝛿0

𝛾𝑇
+

2𝛾𝐿𝜎2

𝑛
+

12𝛾2𝐿2𝐺2

𝛼2
+

4𝛾2𝐿2𝜎2

𝛼
.

By setting 𝛾 = min

{︂
𝛼
4𝐿 ,
(︀

𝑛𝛿0
𝐿𝜎2𝑇

)︀1/2
,
(︁

𝛼2𝛿0
𝐿2𝐺2𝑇

)︁1/3

,
(︀

𝛼𝛿0
𝐿2𝜎2𝑇

)︀1/3}︂
, we have

(︁
1− 12𝐿2𝛾2

𝛼2

)︁
≥ 1

4 , and

the RHS is at most 16𝛿0
𝛾𝑇 . Therefore,

E
[︁⃦⃦

∇𝑓(�̂�𝑇)
⃦⃦2]︁

= 𝒪

(︃
𝐿𝛿0
𝛼𝑇

+

(︂
𝐿𝛿0𝐺

𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0𝜎√
𝛼𝑇

)︂2/3

+

(︂
𝐿𝛿0
𝑛𝑇

)︂1/2
)︃
,

or, equivalently, 𝑇 = 𝒪
(︁

𝐿𝛿0
𝛼𝜀2 + 𝐿𝛿0𝐺

𝛼𝜀3 + 𝐿𝛿0𝜎√
𝛼𝜀3

+ 𝐿𝛿0
𝑛𝜀4

)︁
sample complexity. Notice that in the single

node case (𝑛 = 1), we have 𝐺 = 0, and by Young’s inequality
(︁

𝐿𝛿0𝜎√
𝛼𝑇

)︁2/3

≤ 1
3
𝐿𝛿0
𝛼𝑇 + 2

3

(︁
𝐿𝛿0𝜎

2

𝑇

)︁1/2

.
Therefore, the above rate recovers the one by Stich and Karimireddy [2021] in the single node setting.

23Up to a smoothness constant and the fact that Koloskova et al. [2020] works in a more general decentralized
setting.

52

	Introduction
	Communication Compression, Error Feedback, and Sample Complexity
	Brief history of error-feedback
	Key issue: error feedback has an unhealthy appetite for samples!
	Mysterious effectiveness of momentum in nonconvex optimization

	Main Results
	A deeper dive into the issues darktealEF21 has with stochastic gradients
	Momentum for avoiding mega-batches
	Distributed stochastic error feedback with momentum
	Further improvement using double momentum!

	Experiments
	Experiment 1: increasing batch-size
	Experiment 2: improving convergence with n

	More on Contractive Compressors, Error Feedback and Momentum
	Variance Reduction Effect of SGDM and Comparison to STORM
	Additional Experiments and Details of Experimental Setup
	Extra plots for experiments 1 and 2
	Experiment 3: stochastic quadratic optimization
	Experiment 4: training neural network

	Descent Lemma
	EF21-SGDM-ideal (Proof of Theorem 1 and Proposition 1)
	EF21-SGDM (Proof of Theorems 2 and 3)
	Controlling the error of momentum estimator
	Controlling the error of contractive compression and momentum estimator

	Further Improvement Using Double Momentum (Proof of Corollary 3)
	Controlling the error of second momentum estimator
	Controlling the error of contractive compression and double momentum estimator

	EF21-SGDM with Absolute Compressor
	Controlling the error of absolute compression

	EF21-STORM/MVR
	Controlling the variance of STORM/MVR estimator
	Controlling the variance of contractive compression and STORM/MVR estimator

	Simplified Proof of SGDM: Time Varying Parameters and No Tuning for Momentum Sequence
	Revisiting EF14-SGD Analysis under BG and BGS Assumptions

