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Abstract

The propensity of abstractive summarization
models to make factual errors has been the sub-
ject of significant study, including work on met-
rics to detect factual errors and annotation of er-
rors in current systems’ outputs. However, the
ever-evolving nature of summarization systems,
metrics, and annotated benchmarks makes fac-
tuality evaluation a moving target, and draw-
ing clear comparisons among metrics has be-
come increasingly difficult. In this work, we
aggregate summary factuality error annotations
from across nine existing datasets and stratify
them according to the underlying summariza-
tion model annotated to understand metric per-
formance in scoring state-of-the-art and prior
models. To support finer-grained analysis, we
unify error types into a single taxonomy based
on the function of error word(s) and automat-
ically project each of the datasets’ errors into
this shared labeled space. We then contrast five
state-of-the-art factuality metrics on this bench-
mark. Our findings show that metric results on
datasets built on pretrained model outputs show
significantly different results than on datasets
with pre-Transformer models. Furthermore, no
one metric is superior in all settings or for all
error types, and we provide recommendations
for best practices given these insights.!

1 Introduction

Although abstractive summarization systems (Liu
and Lapata, 2019; Lewis et al., 2020; Raffel et al.,
2020; Zhang et al., 2020) have improved dra-
matically in recent years, these models still of-
ten include factual errors in generated summaries
(Kryscinski et al., 2020; Maynez et al., 2020). A
number of metrics have emerged to detect factuality
errors, including methods based on sentence entail-
ment (Kryscinski et al., 2020), finer-grained entail-
ment (Goyal and Durrett, 2020; Zhao et al., 2020),
question generation and answering (Wang et al.,

"Data and code is attached to the submission.

2020; Durmus et al., 2020; Scialom et al., 2021),
and discrimination of synthetically-constructed er-
ror instances (Cao and Wang, 2021). Despite recent
analyses (Pagnoni et al., 2021; Laban et al., 2022),
reliably comparing these metrics remains difficult.

To facilitate a careful comparison of factuality
metrics, we mainly answer two questions in this pa-
per. First, while current state-of-the-art (SOTA) fac-
tuality metrics have made progress in detecting fac-
tual inconsistency from summaries, can these met-
rics perform well in identifying errors from state-
of-the-art summarization models (Section 3)? To
answer this question, we create a new benchmark
AGGREFACT that consists of nine existing anno-
tated summarization datasets with output from di-
verse base summarization models ranging from less
recent to SOTA ones. We divide our benchmark
into three categories SOTA, XFORMER, and OLD
based on when the summarization models were de-
veloped (Section 2) and compare the performance
of factuality metrics across these three categories.
We show that current factuality metrics achieve bet-
ter performance at identifying errors generated by
older summarization models. On summaries gen-
erated by SOTA models, there is no single metric
that is superior in evaluating summaries from both
the CNN/DM (Hermann et al., 2015) and XSum
(Narayan et al., 2018) datasets.

Second, what error types are factuality met-
rics capable of identifying (Section 4)? We an-
swer this question by leveraging several datasets
from our benchmark that have fine-grained anno-
tations. Specifically, we unify error types of these
datasets into a single taxonomy for a cross-dataset
analysis. We find that the error type distribution
changes over time and even differs between annota-
tions of the same summarization models across fac-
tuality datasets. Analysis of the factuality metrics
shows that metrics claiming SOTA performance
can identify each error type better in general, but all
metrics differ significantly in how they perform on



the same error types across CNN/DM and XSum.
We conclude with recommendations for best
practices in this area:

1. Prefer evaluating factuality metrics on sum-
maries generated by the state-of-the-art sum-
marization models.

2. Choose an appropriate factuality metric for
evaluation at any downstream task at hand.
No one metric is superior across all settings.

3. Annotate error types consistently with prior
work for better comparability. We found that
error type boundaries from existing works are
not clear and are not easy to leverage for cross-
dataset metric comparisons.

4. In the future, include diverse summarization
domains such as dialogue (Tang et al., 2021;
Fabbri et al., 2021a) and email summarization
(Zhang et al., 2021), which could potentially
have different error types, for a more com-
prehensive comparison and domain-invariant
design of factuality metrics.

‘We hope that our analysis can shed light on what
comparisons practitioners should focus on, how to
understand the pros and cons of different metrics,
and where metrics should go next.

2 Benchmark

2.1 Benchmark Standardization

Current factuality metrics are evaluated without
considering the types of summarization models
used to generate the annotated summaries. In these
annotated datasets, a large proportion of summaries
are generated by older models. Summaries gen-
erated by an obsolete model such as a pointer-
generator network (See et al., 2017) may contain
obvious errors that recent models do not make. We
hypothesize that current factuality systems pri-
marily make progress in identifying factuality
inconsistencies from summaries generated by
out-of-date summarization models. If this hy-
pothesis is correct, comparing factuality systems
on annotated datasets that contain relatively poor
summaries gives us less useful information.

Summarization datasets splits We introduce a
new benchmark AGGREFACT built on top of La-
ban et al. (2022). The benchmark Aggregates nine
publicly available datasets D that consist of hu-
man evaluations of Factual consistency on model
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Table 1:  Statistics of AGGREFACT-CNN and

AGGREFACT-XSUM. Details of individual annotated
datasets can be found in Appendix Table 5 and 6.

generated summaries. We focus particularly on
incorporating recent datasets annotated on top of
state-of-the-art pre-trained Transformer models.

All datasets contain summaries generated from
articles in CNN/DM and XSum. Given the
unique characteristics of CNN/DM and XSum,
our proposed benchmark includes two subsets,
AGGREFACT-CNN and AGGREFACT-XSUM, that
evaluate the performance of factuality metrics on
these two datasets separately (Table 1; see also Ta-
ble 5 and 6 in the Appendix). This can provide
more fine-grained and rigorous analysis of the met-
ric performance.

Our benchmark provides factual consistency
evaluation via a binary classification task. The
binary factual consistency labels for the summaries
are determined by human evaluations on the anno-
tated datasets (see details in Section 2.2).

Summarization model splits To validate our hy-
pothesis and make a careful comparison of factu-
ality metrics, we further divide models that were
used to generated summaries in the benchmark into
three distinct categories: C' = { SOTA, XFORMER,
OLD }, as seen in Table 1. SOTA represents state-
of-the-art summarization models, including BART
(Lewis et al., 2020), PEGASUS (Zhang et al., 2020)
and T5 (Raffel et al., 2020). XFORMER is a col-
lection of early Transformer-based summarization
models. Typical models that fit into this category
include BERTSum (Liu and Lapata, 2019), and
GPT-2 (Radford et al., 2019). The remaining mod-
els, such as Pointer-Generator (See et al., 2017) and
BottomUp (Gehrmann et al., 2018), are instances
of OLD. A full description of the models in each
category is found in Appendix B.

2.2 Benchmark Datasets

In this section, we discuss all datasets that we in-
clude in our benchmark. A meta summary of the



datasets is shown in Appendix Table 7.

The SUMMAC benchmark (Laban et al., 2022)
includes six annotated datasets for factual con-
sistency evaluation. We directly include XSum-
Faith (Maynez et al., 2020), FactCC (Kryscinski
et al., 2020), SummEval (Fabbri et al., 2021b), and
FRANK (Pagnoni et al., 2021) from SUMMAC in
our benchmark. We do not include the CoGen-
Summ (Falke et al., 2019) dataset as the original
task is ranking pairs of generated summaries in-
stead of detecting factually consistent summaries,
and pairs of summaries can be both factually con-
sistent or inconsistent. We modify the Polytope
(Huang et al., 2020) dataset in SUMMAC where we
view summaries annotated with addition, omission
or duplication errors as factually consistent since
these three error types are not related to factual
consistency. We use the validation and test splits
from SUMMAC for the above mentioned datasets.

In addition to modifying SUMMAC, we further
include four annotated datasets. For Wang’20
(Wang et al., 2020), CLIFF (Cao and Wang, 2021)
and Goyal’21 (Goyal and Durrett, 2021), we create
data splits based on the parity of indices, following
SUMMAC. For Cao’22 (Cao et al., 2022), we use
the existing splits from the original work.

Deduplication and label disagreement correc-
tion Some examples may be labeled for errors
in multiple datasets. We removed all duplicates so
that each instance appears only once in our bench-
mark. During this deduplication process, we de-
tected 100 instances of the same summaries that
are annotated in different datasets with different
factual consistency labels. 98 of them are between
FRANK and XSumFaith, and 2 of them are be-
tween FRANK and SummEval. The authors of
this work manually corrected the labels for these
examples based on our judgment.

2.3 Benchmark Evaluation Metrics

We use balanced accuracy metric to evaluate the
performance of factuality metrics due to the im-
balance of factually consistent and inconsistent
summaries in the benchmark. We refer readers
to Laban et al. (2022) for further justification of
balanced accuracy as the evaluation metric. In each
dataset, a factuality metric selects a threshold for
SoTA, XFORMER and OLD, respectively, based on
the performance on the corresponding validation
set. The chosen thresholds convert raw scores from
metrics into binary labels for balanced accuracy
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Figure 1: Average threshold values on AGGREFACT-
CNN and AGGREFACT-XSUM.

evaluation. We provide a weighted average of per-
formance across all datasets in the benchmark (see
Table 2).

3 Comparison of Factuality Metrics

The first question we approach is how factuality
metrics perform across different datasets. We
re-evaluate several SOTA factual consistency met-
rics on our benchmark, namely DAE (Goyal and
Durrett, 2020), QuestEval (Scialom et al., 2021),
SummacC-ZS, SummaC-Conv (Laban et al., 2022)
and QAFactEval (Fabbri et al., 2021¢).2 The full
description of these metrics is in Appendix C.

Unifying these metrics We consider each metric
as a function f(d,s) — y, mapping each (doc-
ument, summary) pair to a score y € R. For
each method, we convert it into a binary classifier
f'(d,s) — {0,1} by picking a threshold ¢ such
that we predict 1 if f(d, s) > ¢ and O otherwise.
All thresholds are set separately for each met-
ric. We consider two ways of setting the threshold
for a metric: threshold-per-dataset and single-
threshold. The first setting has thresholds {t}',}
within each metric for every dataset we consider,
where d, c and m are any dataset in D, any model
category from C, and any factuality metric, respec-
tively. This allows one to choose the right metric

*We do not consider other common metrics such as
ROUGE (Lin, 2004), BLEU (Papineni et al., 2002), or
BERTScore (Zhang* et al., 2020) as prior work has shown that
they do not correlate as well with factual consistency (Fabbri
et al., 2021c).



AGGREFACT-CNN AGGREFACT-XSUM

SOTA XFORM OLD\SOTA XFORM OLD

Baseline 50.0  50.0 50.0‘ 50.0 50.0 50.0

DAE* 594 679 69.7| 73.1 - -

QuestEval 63.7 643 652|616 60.1 597
SummaC-ZS 633 765 763]| 56.1 514 533
SummaC-Cv 703 69.8 789]| 67.0 646 675
QAFactEval 616 69.1 803|659 59.6 60.5

Table 2: Weighted evaluation (balanced accuracy) on
AGGREFACT-CNN and AGGREFACT-XSUM across fac-
tuality metrics (threshold-per-dataset setting). Note that
a baseline that simply predict all examples as factually
(in)consistent can reach a balanced accuracy of 50%.
Since DAE was trained on the human-annotated XSum-
Faith data (Goyal and Durrett, 2021) that includes sum-
maries generated from XFORMER and OLD, we exclude
these summaries for a fair comparison.

for the task at hand. The single-threshold setting
defines one threshold {¢“} per metric.

Threshold Analysis We analyze scores from fac-
tuality metrics using chosen thresholds {¢/".} from
the validation sets. Specifically, for each féctuality
metric, we average the values of thresholds for each
of SOTA, XFORMER and OLD across all datasets
(Figure 1). For all facuality metrics, the average
threshold values for AGGREFACT-CNN is greater
than those for AGGREFACT-XSUM. The discrep-
ancy of threshold values shows that evaluating on
both datasets with a single model is a difficult bal-
ancing act and may lead to poor results.

We hypothesize that the higher scores from fac-
tuality metrics on CNN/DM are related to the ex-
tractiveness of the summaries. XSum summaries
are more abstractive and tend to contain a larger
number of errors, making it harder for the metrics
to verify the consistency of summaries with respect
to the source text and resulting in lower scores in
general. For CNN/DM, smaller deviations from
the source may indicate non-factuality.

A weighted average of performance in terms
of balanced accuracy for AGGREFACT-CNN and
AGGREFACT-XSUM is shown in Table 2.3 We
note that for AGGREFACT-CNN, factuality met-
rics achieve the best performance in evaluating the
summaries generated from models in OLD, with
the most recently-introduced metric QAFactEval
achieving the highest accuracy of 81.0%. Those
summaries contain obvious and obsolete errors that

SDataset-wise comparison between factuality metrics is
shown in Appendix Table 8.

AGGREFACT- AGGREFACT-

CNN-SOTA XSuMm-SoTta
DAE 654 +44 70.2 + 2.3
QuestEval 70.2 + 3.2 59.5+2.7
SummaC-ZS 64.0+3.8 564 +1.2
SummaC-Conv 61.0+3.9 65.0+22
QAFactEval 67.8 +4.1 639+24

Table 3: Balanced binary accuracy using a single thresh-
old on the SOTA subset (single-threshold setting). We
show 95% confidence intervals. Highest performance is
highlighted in bold.

can be more easily detected compared to errors in
summaries from more recent models. From Ta-
ble 1, the majority of annotated summaries are
generated by models from OLD, so overall perfor-
mance across datasets will weight these more heav-
ily. However, there is a significant performance
drop when instead evaluating the CNN/DM sum-
maries generated by models from XFORMER or
SOTA. Approximately a 10% balanced accuracy
decrease on average occurs from OLD to SOTA.
Since we mainly use SOTA models for text sum-
marization, evaluating the performance of factual-
ity metrics on entire datasets biased towards older
models gives us limited information of how these
factuality metrics perform on the SOTA-model gen-
erated summaries.

In AGGREFACT-XSUM, we do not observe a de-
crease from OLD to XFORMER and SOTA. Unlike
in AGGREFACT-CNN, we do not have summaries
from a rich set of summarization models from OLD
and XFORMER. As shown in Table 6, only Xsum-
Faith contains less recent model outputs. Since the
evaluation already focuses on SOTA, there is less of
a need for a change in standard empirical practice
in this domain.

To encourage future work to compare perfor-
mance of factuality metric on summaries generated
by SOTA, we provide a separate benchmark which
consists of two subsets AGGREFACT-CNN-SOTA
and AGGREFACT-XSUM-SOTA that only consider
summaries generated by SOTA models. The vali-
dation/test data of AGGREFACT-CNN-SOTA and
AGGREFACT-XSUM-SOTA consists of all valida-
tion/test SOTA data from AGGREFACT-CNN and
AGGREFACT-XSUM. This allows the comparisons
of factuality metrics using only one threshold.

We show metric comparisons on the SOTA sub-
set in Table 3. Notice that the ranking of factuality
metric here (single-threshold setting) is slightly
different from the ranking in Table 2 (threshold-



per-dataset setting). In AGGREFACT-CNN-SOTA,
QuestEval achieves the best performance with no
significant difference with most of our evaluated
factuality metrics, and DAE performs significantly
better on AGGREFACT-XSUM-SOTA. Thus while
SummaC-Conv and QAFactEval were in turn pro-
posed as improvements to SOTA on the SummaC
benchmark, we find that metrics which claim
improved performance on SUMMAC do not
achieve superior performance when evaluated
on SOTA summaries.

4 Finer-grained Error Analysis

Having established differences among factuality
metrics across underlying summarization models,
we now explore differences in metrics according to
factuality error types. To do this, we need a way to
unify errors across datasets in our benchmark and
map them into a shared taxonomy.

4.1 A Taxonomy of Error Types

We surveyed existing error type taxonomies in prior
work and unified the types of factual errors among
them into a hierarchical taxonomy in Figure 2. Ar-
rows relate more specific error types to more gen-
eral “parent” errors. The prior works that make
use of each error type can be found in Appendix D.
As shown in the figure, most error types related to
factual consistency fall under the subset {intrinsic,
extrinsic} X {noun phrase, predicate} if we con-
sider the coarsest level of the hierarchy. We discard
discourse errors as these are uncommon and not
available in most of our datasets. Therefore, we
unify unique error type taxonomies from all four
datasets we consider here into this error type subset
(shown in the gray box in Figure 2). Descriptions
and examples for these error types are in Table 9.
Further, we introduce two additional error cate-
gories {intrinsic-entire sent., extrinsic-entire sent.}
if the entire summaries are annotated as having
hallucinations.

We are able to map four of the datasets in AG-
GREFACT that contain fine-grained annotations to
our unified taxonomy. For all four datasets, if there
are multiple annotators, we assign an error type to
a summary if the error is annotated by more than
one annotator, and we allow one summary to have
multiple error types. We call the annotated subset
related to CNN/DM and XSum as AGGREFACT-
CNN-UNIFIED and AGGREFACT-XSUM-UNIFIED,
respectively.

Handled in
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Figure 2: Taxonomy of factual consistency errors. We

use unique colors to represent [Eiag- and [JEATAE-
related errors, as well as the [ @ORLTY. See Ap-

pendix D for citations of papers that use each error
type.

4.2 Error Mapping

XSumFaith XSumFaith consists of 500 sum-
maries each from human reference, two models
in OLD, and two models in XFORMER. All sum-
maries are annotated with intrinsic and extrinsic
errors, but no finer categories are distinguished. To
perform error type mapping, we detect predicates in
a summary and assign each hallucinated text span
intrinsic- or extrinsic-predicate error if it contains
a predicate. We map the remaining hallucinated
spans to intrinsic- or extrinsic-noun phrase error.

FRANK The CNN/DM subset of FRANK con-
sists of three models in OLD, and one model each
in both XFORMER and SOTA. The XSum por-
tion of FRANK has two models each in OLD and
XFORMER. Each model contains 250 summaries in
the dataset. We mapped Entity error and Out of Ar-
ticle error to extrinsic-noun phrase error; Predicate
error and Grammatical error to extrinsic-predicate
error; Circumstance error and Coreference error
to intrinsic-noun phrase error; and other errors to
intrinsic-predicate error.

Goyal’21 Authors of the original dataset manu-
ally identified all hallucinated text spans for each
summary and classified hallucination types into
{intrinsic, extrinsic} x {entity, event, noun phrase,
others}. The dataset consists of summaries for both
CNN/DM and XSum. For the CNN/DM susbset,
the authors directly annotated 50 summaries from
FactCC, where summaries were generated by OLD
models. The XSum subset consists of summaries
from SOTA models. We map entity-related and
noun phrase-related errors to noun phrase errors,
event errors to predicate errors and others to entire
sentence errors.



AGGREFACT-CNN-UNIFIED

AGGREFACT-XSUM-UNIFIED

FRANK CLIFF Goyal’21 XSumPFaith FRANK CLIFF Goyal’21
EEE™ "=l .
. . B Int Sent
2 B IntPred
5 1 B IntNP
~ 1 T Ext Sent
Ext Pred
Bl ExtNP
& %0 2 &
%, T n WG O @, %, %\s,)%o‘ K 69/3, 474’»&@4 47'9/\
% " @d’ R R K %

Model

Figure 3: Error types of summaries from AGGREFACT-CNN-UNIFIED and AGGREFACT-XSUM-UNIFIED. Ref.
is annotated reference summary from XSumFaith. Since Goyal’21 in AGGREFACT-CNN-UNIFIED annotated
summaries from FactCC, we use OLD* to denote summaries generated from OLD models.

CLIFF This dataset consists of 150 summaries
each for both CNN/DM and XSum from two mod-
els in SOTA. We use the same approach for error
mapping as we do for XSumFaith by only consid-
ering words labeled as extrinsic or intrinsic errors.

We evaluate the accuracy of our error type map-
ping via manual inspection. Specifically, the au-
thors of this work inspect 30 factually inconsistent
examples each for XSumFaith, FRANK and CLIFF.
Those examples cover summaries generated by all
models used in the datasets. Results of the manual
inspection show that the accuracy of our error type
mapping is over 90%.

A common discrepancy noticed by annotators
was that in several cases the examples were orig-
inally annotated as intrinsic/extrinsic but we be-
lieve those errors are extrinsic/intrinsic. These
cases, however, are not a result of any error in our
mapping, but instead disagreement or error in the
original annotation itself. We found that our error
mapping for FRANK is not as accurate as for the
remaining three datasets. For example, we found
that the entity error (EntE) can be either intrinsic
or extrinsic even though the FRANK authors have
defined “out of article” error, which could be noun
phrase or predicate errors as well. Since the defini-
tions of error types in Goyal’21 closely resemble
our mapping and there are 150 examples in total,
we correct any errors in the mapping on this dataset.
Corrections mostly happens for the event-related
error defined in Goyal’21 in that event-related er-
ror can be either noun phrase-related or predicate-
related.

4.3 Distribution Shift of Error Types

Next, we explore how the number of errors in spe-
cific groups of models from SOTA, XFORMER, and
OLD has changed with the progress in the field.

AGGREFACT-
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CNN-UNIFIED
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Figure 4: Distribution shift of error types on
AGGREFACT-CNN-UNIFIED and AGGREFACT-XSUM-
UNIFIED. Ref. is human reference from XSumPFaith.

Specifically, for each of the FRANK, XSumFaith,
Goyal’21, and CLIFF datasets, we calculate the
ratio of error types from factually inconsistent sum-
maries generated by each model. We then study
any distribution shift of error types in AGGREFACT-
CNN-UNIFIED and AGGREFACT-XSUM-UNIFIED
under SOTA, XFORMER, and OLD.

Summaries generated by the same models con-
sist of different error distributions over differ-
ent datasets. As shown in AGGREFACT-XSUM-
UNIFIED (Figure 3), BART summaries are anno-
tated by both Goyal’21 and CLIFF. However, it is
interesting that BART summaries were annotated
as making more intrinsic-noun phrase and intrinsic-
predicate errors in Goyal’21 but more extrinsic-
noun phrase errors in CLIFF. Similar observa-
tions can be found in AGGREFACT-CNN-UNIFIED,
where BART summaries have a higher proportion
of extrinsic-predicate error in FRANK and more
intrinsic-noun phrase error in CLIFF.

In addition, although XSumFaith and FRANK
annotate the same set of model generated sum-
maries in AGGREFACT-XSUM-UNIFIED, the dis-
tribution of error types looks dramatically differ-



AGGREFACT-CNN-ERROR

AGGREFACT-XSUM-ERROR

Intrinsic Extrinsic Intrinsic Extrinsic

NP Pred. NP Pred. NP Pred. Sent NP Pred. Sent
(183) (60) (220) (129) (196) (113) (17) (434) (181) (197

DAE* 59.6 53.3 67.7 62.8 - - - - - -
QuestEval 62.8 50.0 72.3 68.2 332 442 6477 40.6 50.3 69.0
SummacZS 66.1 71.7 81.8 72.1 50.0 575 765 48.6 47.5 36.0
SummacConv ~ 62.8 65.0 76.4 59.7 54.1 62.8 294 645 60.8 70.6
QAFactEval 56.3 51.7 79.1 63.6 66.8 75.2 88.2 55.1 70.2 79.2

Table 4: Recall of identified hallucinated summaries that contain certain error types across datasets (XSumPFaith,
FRANK, Goyal’21 and CLIFF) and factuality metrics. Binary labels are directly obtained from AGGREFACT-CNN
and AGGREFACT-XSUM. Numbers of summaries that have certain error types are shown in the parentheses. We
obtain 95% confidence intervals and numbers in bold indicates that models have significantly higher recall of
identifing certain error types compared to the rest of of the metrics. Since DAE is trained with human annotated
data from XSumPFaith, we remove DAE for a fair comparison in XSum error types.

ent. The main discrepancy lies in the proportion of
extrinsic-noun phrase and intrinsic-predicate errors.
There are two possible reasons for such discrepancy.
First, FRANK does not have “entire sent.” errors
as it only contains sentence-level annotations. Sec-
ond, and more important, it is not easy to map error
types from FRANK directly to our unified error
types in spite of our validation. For example, the
“out of article error” in FRANK is defined as an
error where some statements in the summary do
not show up in the source text. We found this error
can be mapped to either an extrinsic-noun phrase
error or extrinsic-predicate error. These observa-
tions indicate that previous work disagrees about
where the individual error class boundaries are,
even when aligned with our taxonomy.

A combined meta-analysis shows shifts in error
distributions. Figure 3 show that in each anno-
tated dataset the error type distribution may vary
among models from the same category. For exam-
ple, summaries from BART contain a higher ra-
tio of intrinsic-noun phrase errors than summaries
from PEGASUS in AGGREFACT-CNN-UNIFIED.
We now combine all datasets together from
AGGREFACT-CNN-UNIFIED and AGGREFACT-
XSUM-UNIFIED and show the unified error dis-
tributions over three model categories.* As shown
in Figure 4, models make approximately 50%
extrinsic errors in CNN/DM, with a slightly de-
crease from OLD to more recent models. For
XSum, the proportion of extrinsic errors remains
unchanged and are at 70%. SOTA models gen-

“For AGGREFACT-XSUM-UNIFIED, since XSumFaith and
FRANK annotated the same set of summaries, we only use the

annotation results from XSumFaith since our error mapping is
more accurate on the span-level annotations.

erate a higher proportion of intrinsic errors for
CNN/DM and a higher proportion of extrinsic er-
rors for XSum. This observation aligns with our in-
tuition as CNN/DM is more extractive, and XSum
is highly abstrative and contains large amount of
hallucinated human reference summaries. Within
extrinsic errors in XSum, more recent models gen-
erate less completely wrong summaries.

4.4 Error Type Detection by metrics

In this section, we analyze how factuality metrics
perform on summaries that contain certain error
types. Specifically, we collect subsets of exam-
ples from four annotated datasets and group them
into AGGREFACT-CNN-ERROR and AGGREFACT-
XSUM-ERROR.? Every subset contains summaries
that include one error type defined in Section 4.1.
Each factuality metric assigns a binary label to an
instance obtained directly from AGGREFACT-CNN
and AGGREFACT-XSUM. Note that each subset
only consists of test set examples from our bench-
mark since examples from the validation set were
used to choose the optimal thresholds (Section 3).
Since there are limited annotations for each model
category after only considering examples from the
test set of the benchmark, we decide not to split
data by model categories in this part of the analysis.
We calculate the recall of identifying error types
from those subsets and show the results in Table 4.
Note that the performance of DAE is excluded for
AGGREFACT-XSUM-ERROR since DAE is trained
with human annotations from XSumPFaith.
Summaries from AGGREFACT-CNN-ERROR
and AGGREFACT-XSUM-ERROR primarily come

SWe exclude FRANK for this analysis for the same reason
as in Section 4.3.



from non-SOTA models (89.6% and 92.1%, re-
spectively). On AGGREFACT-CNN-ERROR, where
79.0% of summaries were generated from OLD,
there are more extrinsic errors (349) than intrinsic
errors (243). This follows our above analysis as
errors from more than 50% of summaries generated
by less recent models are extrinsic (Figure 4).

Across ~ AGGREFACT-CNN-ERROR  and
AGGREFACT-XSUM-ERROR, we found that
SummaC-Conv and QAFactEval achieve higher
recall for most error types. This indicates that
more recent factuality metrics are better at
capturing obsolete errors generated from less
recent models. This observation aligns with
our finding in Table 2 (column EARLY-TRANS
and OLD) in general. Interestingly, we find that
summarization datasets (CNN/DM and XSum)
have a non-negligible effect on the metrics’
capabilities of detecting certain error types,
even in the cases of out-of-date errors. For
example, the recall of identifying extrinsic-noun
phrase error drops 10-30% across all factuality
metrics when evaluated on AGGREFACT-XSUM-
ERROR, and multiple models perform worse in
general on identifying errors from AGGREFACT-
XSUM-ERROR.  Another observation is that
although DAE is trained using annotations from
XSumPFaith, it does not identify errors as well
in AGGREFACT-CNN-ERROR. These findings
indicate that summarization models make
fundamentally different errors for each error
type, and current factuality metrics cannot
be uniformly good at identifying certain error
types across datasets. We believe this conclusion
still holds when evaluating metrics on summaries
generated from SOTA models since they generate
less obvious errors.

5 Recommendations

Evaluate factuality models on modern systems
We have seen that SOTA yields significantly differ-
ent results than XFORMER or OLD. Because of
the prevalence of these systems, we believe that
any new work should prefer evaluating on these
SOTA datasets. Particularly for factuality meth-
ods that use pre-trained models, evaluating on pre-
trained summarizers is needed to see if these met-
rics are improving from the current state-of-the-art
or merely patching errors in outdated systems that
have already been fixed by other advances.

Choose the right metric for the job We note
that there is no one clear winner among the met-
rics evaluated here (Section 3). Depending on the
downstream application, different methods may be
more or less appropriate, as our analysis shows. An
ensembling of different methods or a metric that
combines the merits of existing metrics may bring
additional performance boost. Moreover, none of
current factuality metrics can identify certain er-
ror types across datasets equally well. As QG/QA
and NLI models get better, we expect all of these
methods to improve further.

Use more consistent error types With our tax-
onomy, we have mapped error types annotated in
previous work. It is relatively easier and more accu-
rate to map errors from XSumPFaith, Goyal’21, and
CLIFF to our unified error types as they have anno-
tation granularity finer than sentence-level. We en-
courage future work to follow this taxonomy where
possible and leverage definitions in prior work to
improve the potential to make cross-dataset com-
parisons. To evaluate which error type a factuality
metric is good at identifying, we encourage future
work to annotate and evaluate specifically on SOTA
model generated summaries.

Annotate and evaluate on non-news datasets
Most of current annotated datasets are within the
news domain and factuality metrics are evaluated
on news summaries accordingly. As there is a ris-
ing interest in other domains such as dialogue sum-
marization (Tang et al., 2021; Fabbri et al., 2021a)
and email summarization (Zhang et al., 2021), fu-
ture work could annotate and analyze errors made
by SOTA models there. We encourage future work
to develop factuality metrics that have superior per-
formance over cross-domain evaluation.

6 Conclusion

In this work, we analyzed several factuality metrics
across a large meta-benchmark assembled from
existing datasets. We find that state-of-the-art sum-
marization models still present challenges for de-
tecting factual errors, and the performance of error
detectors is often overestimated due to the reliance
on older datasets. Furthermore, we unify existing
datasets into a common taxonomy and use this to
highlight differences between datasets and sum-
marization models, as well as the complexity of
unifying concepts in this problem space.
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A Limitations

There are a few limitations of our work. First, we
focus on evaluating state-of-the-art factuality met-
rics on English newswire datasets. This setting
restricts us to English-language data, a formal style
of text, and topics consisting of what is discussed in
US and UK-centric news sources. Moreover, other
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summarization domains such as dialogue summa-
rization have different common error types such as
wrong reference error (Tang et al., 2021), which
are not fully evaluated under current metrics. As
settings like this are studied in future work, we be-
lieve that the kinds of analysis we do here can be
extended to these settings as well.

Second, since our work is built on top of pre-
vious work, some analysis such as the error type
mapping is limited by the quality and annotation
agreement from previous work. We chose not to
undertake large-scale reannotation to avoid causing
confusion in the literature with multiple versions
of datasets reflecting divergent annotator opinions.
In spite of these limitations, we believe that our re-
evaluation of these metrics and the analysis of error
types under newswire data can bring insights for
future works in choosing, designing and evaluating
factuality metrics.

B Model Categories

In this section, we briefly describe the summariza-
tion models we use in this paper.

For SoTA, we include Transformer-based pre-
trained models like BART (Lewis et al., 2020), TS
(Raffel et al., 2020), and PEGASUS (Zhang et al.,
2020). They are pre-trained on massive text corpus
and further fine-tuned on summarization datasets.

For XFORMER, we use BERTSumExt and BERT-
SumAbs from Liu and Lapata (2019), GPT-2 (Rad-
ford et al., 2019), TransS2S (Vaswani et al., 2017),
and BERTS2S (Devlin et al., 2019).

For OLD, we include models FastAbsRI1 (Chen
and Bansal, 2018), TConvS2S (Narayan et al.,
2018), BottomUp (Gehrmann et al., 2018), PGNet
(See et al., 2017), NeuSUM (Zhou et al., 2018),
BanditSum (Dong et al., 2018), SummaRuNNer
(Nallapati et al., 2017), TextRank (Mihalcea and
Tarau, 2004), CBDec (Jiang and Bansal, 2018),
RNES (Wu and Hu, 2018), ROUGESal (Pasunuru
and Bansal, 2018), ImproveAbs (KrySciniski et al.,
2018), MultiTask (Guo et al., 2018), and Uni-
fiedExtAbs (Hsu et al., 2018).

C Factuality Metrics

We show the descriptions of consistency metrics
we considered in our benchmark.

DAE Goyal and Durrett (2020) propose an arc
entailment approach that evaluates the factual-
ity Fy(a,z) = P(entailment | a,z) of each
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dependency arc a € Arc(s) of the generated
summary s independently with respect to the
input article z. It then uses their aggregation
\AT1(3)| > acArc(s) Fala, z) as the overall score.
We use the default model and hyperparameters pro-
vided by the authors,® described in Goyal and Dur-
rett (2021), which is trained on data from XSum-
Faith, which we account for later in our compar-
isons.

QuestEval Scialom et al. (2021) propose a QA-
based metric that aggregates answer overlap scores
from selected spans r and questions ¢; € Qg ()
that derived from the input article  and answered
Q (s, q;) using the summary s (recall-based); and
those derived from the summary ¢; € Qg(s)
and answered Q A(z, ¢;) using the input article x
(precision-based). Q)¢ and Q4 denote question
generation and question answering components, re-
spectively. We use the implementation provided by
the authors’ and apply the unweighted version of
the metric as in Laban et al. (2022).

SummaC-ZS Laban et al. (2022) is a zero-shot
entailment metric that computes a sentence-level
entailment score F'(s;, ;) between each summary
sentence s; and input sentence x; using an NLI
model F'. It first find the maximum entailment
score score(s;) = max; F'(s;, ;) for each sum-
mary sentence s;, and averaging over all summary
sentences for the final score ﬁ >, score(s;). We
use the default model and hyperparameters pro-
vided by the authors, which may return a negative
score.

SummaC-Conv Laban et al. (2022) extends
SummaC-ZS by replacing the max operation with
a binning of the entailment scores between each
summary sentence s; and all input sentences x;
to create a histogram hist(s;, ). The histogram
is then passed through a learned 1-D convolution
layer Conv to produce the summary sentence score
score(s;) = Conv(hist(s;,z)). Parameters for
the convolution layer are learned on synthetic data
from FactCC (Kryscinski et al., 2020).

QAFactEval Fabbri et al. (2021c¢) is a QA-based
metric analogous to the precision-based compo-
nent of QuestEval and includes optimized question
answering, generation, and answer-overlap com-
ponents. We do not make use of the variation of
6https://github.com/tagoyal/

factuality-datasets
7https://github.com/ThomasScialom/QuestEval
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QAFactEval which combines QA and entailment-
based scores into a single metric.

D Surveyed Error Types

Here are our surveyed error types that are related
to factual inconsistency.

Negation Error (Zhang et al., 2020; Kryscinski
et al., 2020; Huang et al., 2020; Zeng et al., 2021)

Adjective Error (Zhang et al., 2020)

Coreference Error (Zhang et al., 2020; Kryscin-
ski et al., 2020; Pagnoni et al., 2021; Nan et al.,
2021b)

Number error (Kryscinski et al., 2020; Nan
et al., 2021b; Chen et al., 2021; Cao et al., 2020)

Entity error (Kryscinski et al., 2020; Pagnoni
et al., 2021; Zeng et al., 2021; Wang et al., 2020;
Nan et al., 2021b,a; Chen et al., 2021; Cao et al.,
2020)

Attribute error (Pagnoni et al., 2021; Huang
et al., 2020)

Pronoun error (Kryscinski et al., 2020; Zeng
et al., 2021; Cao et al., 2020)

Commonsense error (Kryscinski et al., 2020)

Temporal error (Kryscinski et al., 2020; Cao
et al., 2020)

Predicate error (Pagnoni et al., 2021)
Discourse link Error (Pagnoni et al., 2021)
Relation error (Nan et al., 2021a,b)
Quantity error (Zhao et al., 2020)

Event error (Goyal and Durrett, 2021),

Noun phrase error (Wang et al., 2020; Goyal
and Durrett, 2021),

Circumstance error (Pagnoni et al., 2021)
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Polytope FactCC SummEval FRANK Wang’20 CLIFF Goyal’21 Total

oD val 450 931 550 223 118 - 25 2297
test 450 503 548 523 117 - 25 2166
val 150 i 50 75 - - - 275
XFORMER ot 150 ] 50 175 ] ] - 375
val 34 i 200 75 - 150 - 459
SotA test 34 - 200 175 - 150 - 559

Table 5: Statistics of AGGREFACT-CNN. Each dataset is stratified into three categories OLD, XFORMER, and SOTA.

XsumFaith  Wang’20 CLIFF Goyal’2l Cao’22 Total

val 500 - - - - 500
oLb test 430 - - - - 430
val 500 - - - - 500
XFORMER ot 423 - : : S a3
SoTA val - 120 150 50 457 777
test - 119 150 50 239 558
Table 6: Statistics of AGGREFACT-XSUM.
Dataset Annotators Kappa Gran Annotation Scheme
FactCC 2 authors - summ  binary consistency label
(Kryscinski et al., 2020) (consistent/inconsistent)
Wang’20 3 crowd-sourced an-  0.34/0.51 sent binary consistency label
(Wang et al., 2020) notators (consistent/inconsistent)
SummEval 5 crowd-sourced an-  0.70 summ  S-point Likert scale
(Fabbri et al., 2021b) notators and 3 au-
thors
Polytope 3 trained annotators - span {addition, ommision, inaccuracy intrinsic, inac-
(Huang et al., 2020) curacy extrinsic, positive-negative aspect}
Cao’22 2 authors and 3 grad-  0.81 entity  {Non-hallucinated, Non-factual Hallucination,
(Cao et al., 2022) uate students Intrinsic Hallucination, Factual Hallucination}
XSumPFaith 3 trained annotators  0.80 span {intrinsic, extrinsic }
(Maynez et al., 2020)
FRANK 3 crowd-sourced an- 0.53 sent {RelE, EntE, CircE, OutE, GramE, LinkE,
(Pagnoni et al., 2021) notators CorefE, OtherE, NoE}
Goyal’21 2 authors - span {intrinsic, extrinsic} X {entity, event, noun
(Goyal and Durrett, 2021) phrase, others}
CLIFF 2 experts 0.35/0.45 word {intrinsic, extrinsic, world knowledge, correct}

(Cao and Wang, 2021)

Table 7: Metadata of nine datasets in the benchmark. We report the source of annotators, inter-annotator aggrement,
annotation granularity, and annotation scheme for each dataset. Wang’20 and CLIFF reported kappa scores for
XSum/CNNDM seperately.
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Factuality Metric

DAE  QuestEval SummaC-ZS SummaC-Conv  QAFactEval

Dataset Category  Count
FactCC OLD 503 0.704 0.655 0.835 0.891 0.843
Wang’20 OLD 117 0.586 0.552 0.655 0.672 0.754
OLD 548 0.661 0.649 0.773 0.801 0.815
SummEval XFORMER 50 0.760 0.680 0.620 0.580 0.740
SoTA 200 0.452 0.649 0.622 0.827 0.652

CNN/DM

Polytope OLD 450 0.779 0.687 0.802 0.791 0.824
XFORMER 150 0.774 0.733 0.970 0.811 0.726
SOTA 34 0.294 0.176 0.971 0.735 0.324
FRANK OLD 523 0.704 0.669 0.692 0.728 0.773
XFORMER 175 0.574 0.556 0.631 0.634 0.646
SoTAa 175 0.699 0.626 0.570 0.601 0.547
Goyal’21 OLD 25 0.188 0.146 0.375 0.354 0.271
CLIFF SoTA 150 0.730 0.740 0.646 0.649 0.716
Wang’20 SoTA 119 0.756 0.560 0.698 0.721 0.756
Cao’22 SOoTA 239 0.723 0.601 0.490 0.668 0.613
XSum -y SumFaith  OLD 430 - 0.597 0.533 0.675 0.605
XFORMER 423 - 0.601 0.514 0.646 0.596
Goyal’21 SOTA 50 0.644 0.814 0.466 0.552 0.754
CLIFF SOoTA 150 0.754 0.619 0.596 0.668 0.613

Table 8: Dataset-wise comparsion between factuality metrics. Since DAE is trained with human annotated data
from XsumFaith, we remove DAE for a fair comparison.

Error Type Definition Example of Generated Summaries

Intrinsic-

Noun Phrase

A model misrepresents word(s) from the source text that
function(s) in a summary as subject, object, or preposi-
tional object.

The world’s first subsea power hub which uses
a lithium-based drive system to generate elec-
tricity is being tested off the west coast of
orkney.

Intrinsic- A model misrepresents word(s) from the source text that A conservative mp has resigned from his con-

Predicate function(s) in a summary as the main content verb or stituency as part of an investigation into a #
content like adverbs that closely relate to the verb. 10.25 m loan to a football club.

Extrinsic- A model introduces word(s) not from the source text that ~ Shale gas drilling in lancashire has been

Noun Phrase

function(s) in a summary as subject, object, or preposi-
tional object but cannot be verified from the source.

suspended after a magnitude-7.5 earthquake
struck.

Extrinsic-
Predicate

A model introduces word(s) not from the source text that
function(s) in a summary as the main content verb or
content like adverbs that closely relate to the verb, but
which cannot be verified from the source.

Folate - also known as folic acid - should be
added to flour in the uk, according to a new
study.

Table 9: Definition and examples of unified error types. Factually inconsistent spans are highlighted in red.
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