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Abstract

The propensity of abstractive summarization001
models to make factual errors has been the sub-002
ject of significant study, including work on met-003
rics to detect factual errors and annotation of er-004
rors in current systems’ outputs. However, the005
ever-evolving nature of summarization systems,006
metrics, and annotated benchmarks makes fac-007
tuality evaluation a moving target, and draw-008
ing clear comparisons among metrics has be-009
come increasingly difficult. In this work, we010
aggregate summary factuality error annotations011
from across nine existing datasets and stratify012
them according to the underlying summariza-013
tion model annotated to understand metric per-014
formance in scoring state-of-the-art and prior015
models. To support finer-grained analysis, we016
unify error types into a single taxonomy based017
on the function of error word(s) and automat-018
ically project each of the datasets’ errors into019
this shared labeled space. We then contrast five020
state-of-the-art factuality metrics on this bench-021
mark. Our findings show that metric results on022
datasets built on pretrained model outputs show023
significantly different results than on datasets024
with pre-Transformer models. Furthermore, no025
one metric is superior in all settings or for all026
error types, and we provide recommendations027
for best practices given these insights.1028

1 Introduction029

Although abstractive summarization systems (Liu030

and Lapata, 2019; Lewis et al., 2020; Raffel et al.,031

2020; Zhang et al., 2020) have improved dra-032

matically in recent years, these models still of-033

ten include factual errors in generated summaries034

(Kryscinski et al., 2020; Maynez et al., 2020). A035

number of metrics have emerged to detect factuality036

errors, including methods based on sentence entail-037

ment (Kryscinski et al., 2020), finer-grained entail-038

ment (Goyal and Durrett, 2020; Zhao et al., 2020),039

question generation and answering (Wang et al.,040

1Data and code is attached to the submission.

2020; Durmus et al., 2020; Scialom et al., 2021), 041

and discrimination of synthetically-constructed er- 042

ror instances (Cao and Wang, 2021). Despite recent 043

analyses (Pagnoni et al., 2021; Laban et al., 2022), 044

reliably comparing these metrics remains difficult. 045

To facilitate a careful comparison of factuality 046

metrics, we mainly answer two questions in this pa- 047

per. First, while current state-of-the-art (SOTA) fac- 048

tuality metrics have made progress in detecting fac- 049

tual inconsistency from summaries, can these met- 050

rics perform well in identifying errors from state- 051

of-the-art summarization models (Section 3)? To 052

answer this question, we create a new benchmark 053

AGGREFACT that consists of nine existing anno- 054

tated summarization datasets with output from di- 055

verse base summarization models ranging from less 056

recent to SOTA ones. We divide our benchmark 057

into three categories SOTA, XFORMER, and OLD 058

based on when the summarization models were de- 059

veloped (Section 2) and compare the performance 060

of factuality metrics across these three categories. 061

We show that current factuality metrics achieve bet- 062

ter performance at identifying errors generated by 063

older summarization models. On summaries gen- 064

erated by SOTA models, there is no single metric 065

that is superior in evaluating summaries from both 066

the CNN/DM (Hermann et al., 2015) and XSum 067

(Narayan et al., 2018) datasets. 068

Second, what error types are factuality met- 069

rics capable of identifying (Section 4)? We an- 070

swer this question by leveraging several datasets 071

from our benchmark that have fine-grained anno- 072

tations. Specifically, we unify error types of these 073

datasets into a single taxonomy for a cross-dataset 074

analysis. We find that the error type distribution 075

changes over time and even differs between annota- 076

tions of the same summarization models across fac- 077

tuality datasets. Analysis of the factuality metrics 078

shows that metrics claiming SOTA performance 079

can identify each error type better in general, but all 080

metrics differ significantly in how they perform on 081
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the same error types across CNN/DM and XSum.082

We conclude with recommendations for best083

practices in this area:084

1. Prefer evaluating factuality metrics on sum-085

maries generated by the state-of-the-art sum-086

marization models.087

2. Choose an appropriate factuality metric for088

evaluation at any downstream task at hand.089

No one metric is superior across all settings.090

3. Annotate error types consistently with prior091

work for better comparability. We found that092

error type boundaries from existing works are093

not clear and are not easy to leverage for cross-094

dataset metric comparisons.095

4. In the future, include diverse summarization096

domains such as dialogue (Tang et al., 2021;097

Fabbri et al., 2021a) and email summarization098

(Zhang et al., 2021), which could potentially099

have different error types, for a more com-100

prehensive comparison and domain-invariant101

design of factuality metrics.102

We hope that our analysis can shed light on what103

comparisons practitioners should focus on, how to104

understand the pros and cons of different metrics,105

and where metrics should go next.106

2 Benchmark107

2.1 Benchmark Standardization108

Current factuality metrics are evaluated without109

considering the types of summarization models110

used to generate the annotated summaries. In these111

annotated datasets, a large proportion of summaries112

are generated by older models. Summaries gen-113

erated by an obsolete model such as a pointer-114

generator network (See et al., 2017) may contain115

obvious errors that recent models do not make. We116

hypothesize that current factuality systems pri-117

marily make progress in identifying factuality118

inconsistencies from summaries generated by119

out-of-date summarization models. If this hy-120

pothesis is correct, comparing factuality systems121

on annotated datasets that contain relatively poor122

summaries gives us less useful information.123

Summarization datasets splits We introduce a124

new benchmark AGGREFACT built on top of La-125

ban et al. (2022). The benchmark Aggregates nine126

publicly available datasets D that consist of hu-127

man evaluations of Factual consistency on model128

AGGREFACT
-CNN -XSUM

OLD
val 2297 500
test 2166 430

XFORMER
val 275 500
test 375 423

SOTA
val 459 777
test 559 558

Table 1: Statistics of AGGREFACT-CNN and
AGGREFACT-XSUM. Details of individual annotated
datasets can be found in Appendix Table 5 and 6.

generated summaries. We focus particularly on 129

incorporating recent datasets annotated on top of 130

state-of-the-art pre-trained Transformer models. 131

All datasets contain summaries generated from 132

articles in CNN/DM and XSum. Given the 133

unique characteristics of CNN/DM and XSum, 134

our proposed benchmark includes two subsets, 135

AGGREFACT-CNN and AGGREFACT-XSUM, that 136

evaluate the performance of factuality metrics on 137

these two datasets separately (Table 1; see also Ta- 138

ble 5 and 6 in the Appendix). This can provide 139

more fine-grained and rigorous analysis of the met- 140

ric performance. 141

Our benchmark provides factual consistency 142

evaluation via a binary classification task. The 143

binary factual consistency labels for the summaries 144

are determined by human evaluations on the anno- 145

tated datasets (see details in Section 2.2). 146

Summarization model splits To validate our hy- 147

pothesis and make a careful comparison of factu- 148

ality metrics, we further divide models that were 149

used to generated summaries in the benchmark into 150

three distinct categories: C = { SOTA, XFORMER, 151

OLD }, as seen in Table 1. SOTA represents state- 152

of-the-art summarization models, including BART 153

(Lewis et al., 2020), PEGASUS (Zhang et al., 2020) 154

and T5 (Raffel et al., 2020). XFORMER is a col- 155

lection of early Transformer-based summarization 156

models. Typical models that fit into this category 157

include BERTSum (Liu and Lapata, 2019), and 158

GPT-2 (Radford et al., 2019). The remaining mod- 159

els, such as Pointer-Generator (See et al., 2017) and 160

BottomUp (Gehrmann et al., 2018), are instances 161

of OLD. A full description of the models in each 162

category is found in Appendix B. 163

2.2 Benchmark Datasets 164

In this section, we discuss all datasets that we in- 165

clude in our benchmark. A meta summary of the 166
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datasets is shown in Appendix Table 7.167

The SUMMAC benchmark (Laban et al., 2022)168

includes six annotated datasets for factual con-169

sistency evaluation. We directly include XSum-170

Faith (Maynez et al., 2020), FactCC (Kryscinski171

et al., 2020), SummEval (Fabbri et al., 2021b), and172

FRANK (Pagnoni et al., 2021) from SUMMAC in173

our benchmark. We do not include the CoGen-174

Summ (Falke et al., 2019) dataset as the original175

task is ranking pairs of generated summaries in-176

stead of detecting factually consistent summaries,177

and pairs of summaries can be both factually con-178

sistent or inconsistent. We modify the Polytope179

(Huang et al., 2020) dataset in SUMMAC where we180

view summaries annotated with addition, omission181

or duplication errors as factually consistent since182

these three error types are not related to factual183

consistency. We use the validation and test splits184

from SUMMAC for the above mentioned datasets.185

In addition to modifying SUMMAC, we further186

include four annotated datasets. For Wang’20187

(Wang et al., 2020), CLIFF (Cao and Wang, 2021)188

and Goyal’21 (Goyal and Durrett, 2021), we create189

data splits based on the parity of indices, following190

SUMMAC. For Cao’22 (Cao et al., 2022), we use191

the existing splits from the original work.192

Deduplication and label disagreement correc-193

tion Some examples may be labeled for errors194

in multiple datasets. We removed all duplicates so195

that each instance appears only once in our bench-196

mark. During this deduplication process, we de-197

tected 100 instances of the same summaries that198

are annotated in different datasets with different199

factual consistency labels. 98 of them are between200

FRANK and XSumFaith, and 2 of them are be-201

tween FRANK and SummEval. The authors of202

this work manually corrected the labels for these203

examples based on our judgment.204

2.3 Benchmark Evaluation Metrics205

We use balanced accuracy metric to evaluate the206

performance of factuality metrics due to the im-207

balance of factually consistent and inconsistent208

summaries in the benchmark. We refer readers209

to Laban et al. (2022) for further justification of210

balanced accuracy as the evaluation metric. In each211

dataset, a factuality metric selects a threshold for212

SOTA, XFORMER and OLD, respectively, based on213

the performance on the corresponding validation214

set. The chosen thresholds convert raw scores from215

metrics into binary labels for balanced accuracy216
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Figure 1: Average threshold values on AGGREFACT-
CNN and AGGREFACT-XSUM.

evaluation. We provide a weighted average of per- 217

formance across all datasets in the benchmark (see 218

Table 2). 219

3 Comparison of Factuality Metrics 220

The first question we approach is how factuality 221

metrics perform across different datasets. We 222

re-evaluate several SOTA factual consistency met- 223

rics on our benchmark, namely DAE (Goyal and 224

Durrett, 2020), QuestEval (Scialom et al., 2021), 225

SummaC-ZS, SummaC-Conv (Laban et al., 2022) 226

and QAFactEval (Fabbri et al., 2021c).2 The full 227

description of these metrics is in Appendix C. 228

Unifying these metrics We consider each metric 229

as a function f(d, s) → y, mapping each (doc- 230

ument, summary) pair to a score y ∈ R. For 231

each method, we convert it into a binary classifier 232

f ′(d, s) → {0, 1} by picking a threshold t such 233

that we predict 1 if f(d, s) > t and 0 otherwise. 234

All thresholds are set separately for each met- 235

ric. We consider two ways of setting the threshold 236

for a metric: threshold-per-dataset and single- 237

threshold. The first setting has thresholds {tmd,c} 238

within each metric for every dataset we consider, 239

where d, c and m are any dataset in D, any model 240

category from C, and any factuality metric, respec- 241

tively. This allows one to choose the right metric 242

2We do not consider other common metrics such as
ROUGE (Lin, 2004), BLEU (Papineni et al., 2002), or
BERTScore (Zhang* et al., 2020) as prior work has shown that
they do not correlate as well with factual consistency (Fabbri
et al., 2021c).
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AGGREFACT-CNN AGGREFACT-XSUM

SOTA XFORM OLD SOTA XFORM OLD

Baseline 50.0 50.0 50.0 50.0 50.0 50.0

DAE∗ 59.4 67.9 69.7 73.1 - -
QuestEval 63.7 64.3 65.2 61.6 60.1 59.7
SummaC-ZS 63.3 76.5 76.3 56.1 51.4 53.3
SummaC-Cv 70.3 69.8 78.9 67.0 64.6 67.5
QAFactEval 61.6 69.1 80.3 65.9 59.6 60.5

Table 2: Weighted evaluation (balanced accuracy) on
AGGREFACT-CNN and AGGREFACT-XSUM across fac-
tuality metrics (threshold-per-dataset setting). Note that
a baseline that simply predict all examples as factually
(in)consistent can reach a balanced accuracy of 50%.
Since DAE was trained on the human-annotated XSum-
Faith data (Goyal and Durrett, 2021) that includes sum-
maries generated from XFORMER and OLD, we exclude
these summaries for a fair comparison.

for the task at hand. The single-threshold setting243

defines one threshold {tc} per metric.244

Threshold Analysis We analyze scores from fac-245

tuality metrics using chosen thresholds {tmd,c} from246

the validation sets. Specifically, for each factuality247

metric, we average the values of thresholds for each248

of SOTA, XFORMER and OLD across all datasets249

(Figure 1). For all facuality metrics, the average250

threshold values for AGGREFACT-CNN is greater251

than those for AGGREFACT-XSUM. The discrep-252

ancy of threshold values shows that evaluating on253

both datasets with a single model is a difficult bal-254

ancing act and may lead to poor results.255

We hypothesize that the higher scores from fac-256

tuality metrics on CNN/DM are related to the ex-257

tractiveness of the summaries. XSum summaries258

are more abstractive and tend to contain a larger259

number of errors, making it harder for the metrics260

to verify the consistency of summaries with respect261

to the source text and resulting in lower scores in262

general. For CNN/DM, smaller deviations from263

the source may indicate non-factuality.264

A weighted average of performance in terms265

of balanced accuracy for AGGREFACT-CNN and266

AGGREFACT-XSUM is shown in Table 2.3 We267

note that for AGGREFACT-CNN, factuality met-268

rics achieve the best performance in evaluating the269

summaries generated from models in OLD, with270

the most recently-introduced metric QAFactEval271

achieving the highest accuracy of 81.0%. Those272

summaries contain obvious and obsolete errors that273

3Dataset-wise comparison between factuality metrics is
shown in Appendix Table 8.

AGGREFACT-
CNN-SOTA

AGGREFACT-
XSUM-SOTA

DAE 65.4 ± 4.4 70.2 ± 2.3
QuestEval 70.2 ± 3.2 59.5 ± 2.7
SummaC-ZS 64.0 ± 3.8 56.4 ± 1.2
SummaC-Conv 61.0 ± 3.9 65.0 ± 2.2
QAFactEval 67.8 ± 4.1 63.9 ± 2.4

Table 3: Balanced binary accuracy using a single thresh-
old on the SOTA subset (single-threshold setting). We
show 95% confidence intervals. Highest performance is
highlighted in bold.

can be more easily detected compared to errors in 274

summaries from more recent models. From Ta- 275

ble 1, the majority of annotated summaries are 276

generated by models from OLD, so overall perfor- 277

mance across datasets will weight these more heav- 278

ily. However, there is a significant performance 279

drop when instead evaluating the CNN/DM sum- 280

maries generated by models from XFORMER or 281

SOTA. Approximately a 10% balanced accuracy 282

decrease on average occurs from OLD to SOTA. 283

Since we mainly use SOTA models for text sum- 284

marization, evaluating the performance of factual- 285

ity metrics on entire datasets biased towards older 286

models gives us limited information of how these 287

factuality metrics perform on the SOTA-model gen- 288

erated summaries. 289

In AGGREFACT-XSUM, we do not observe a de- 290

crease from OLD to XFORMER and SOTA. Unlike 291

in AGGREFACT-CNN, we do not have summaries 292

from a rich set of summarization models from OLD 293

and XFORMER. As shown in Table 6, only Xsum- 294

Faith contains less recent model outputs. Since the 295

evaluation already focuses on SOTA, there is less of 296

a need for a change in standard empirical practice 297

in this domain. 298

To encourage future work to compare perfor- 299

mance of factuality metric on summaries generated 300

by SOTA, we provide a separate benchmark which 301

consists of two subsets AGGREFACT-CNN-SOTA 302

and AGGREFACT-XSUM-SOTA that only consider 303

summaries generated by SOTA models. The vali- 304

dation/test data of AGGREFACT-CNN-SOTA and 305

AGGREFACT-XSUM-SOTA consists of all valida- 306

tion/test SOTA data from AGGREFACT-CNN and 307

AGGREFACT-XSUM. This allows the comparisons 308

of factuality metrics using only one threshold. 309

We show metric comparisons on the SOTA sub- 310

set in Table 3. Notice that the ranking of factuality 311

metric here (single-threshold setting) is slightly 312

different from the ranking in Table 2 (threshold- 313
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per-dataset setting). In AGGREFACT-CNN-SOTA,314

QuestEval achieves the best performance with no315

significant difference with most of our evaluated316

factuality metrics, and DAE performs significantly317

better on AGGREFACT-XSUM-SOTA. Thus while318

SummaC-Conv and QAFactEval were in turn pro-319

posed as improvements to SOTA on the SummaC320

benchmark, we find that metrics which claim321

improved performance on SUMMAC do not322

achieve superior performance when evaluated323

on SOTA summaries.324

4 Finer-grained Error Analysis325

Having established differences among factuality326

metrics across underlying summarization models,327

we now explore differences in metrics according to328

factuality error types. To do this, we need a way to329

unify errors across datasets in our benchmark and330

map them into a shared taxonomy.331

4.1 A Taxonomy of Error Types332

We surveyed existing error type taxonomies in prior333

work and unified the types of factual errors among334

them into a hierarchical taxonomy in Figure 2. Ar-335

rows relate more specific error types to more gen-336

eral “parent” errors. The prior works that make337

use of each error type can be found in Appendix D.338

As shown in the figure, most error types related to339

factual consistency fall under the subset {intrinsic,340

extrinsic} × {noun phrase, predicate} if we con-341

sider the coarsest level of the hierarchy. We discard342

discourse errors as these are uncommon and not343

available in most of our datasets. Therefore, we344

unify unique error type taxonomies from all four345

datasets we consider here into this error type subset346

(shown in the gray box in Figure 2). Descriptions347

and examples for these error types are in Table 9.348

Further, we introduce two additional error cate-349

gories {intrinsic-entire sent., extrinsic-entire sent.}350

if the entire summaries are annotated as having351

hallucinations.352

We are able to map four of the datasets in AG-353

GREFACT that contain fine-grained annotations to354

our unified taxonomy. For all four datasets, if there355

are multiple annotators, we assign an error type to356

a summary if the error is annotated by more than357

one annotator, and we allow one summary to have358

multiple error types. We call the annotated subset359

related to CNN/DM and XSum as AGGREFACT-360

CNN-UNIFIED and AGGREFACT-XSUM-UNIFIED,361

respectively.362

Noun Phrase Event/Predicate

Relation 
Pronoun 

Entity Attribute

Named Entity

Quantity

Extrinsic Intrinsic

Adjective Negation

Commonsense  

Coreference

Discourse

Temporal Number 

Circumstance 

Handled in 
this work

Figure 2: Taxonomy of factual consistency errors. We
use unique colors to represent entity - and predicate -
related errors, as well as the mix of two . See Ap-
pendix D for citations of papers that use each error
type.

4.2 Error Mapping 363

XSumFaith XSumFaith consists of 500 sum- 364

maries each from human reference, two models 365

in OLD, and two models in XFORMER. All sum- 366

maries are annotated with intrinsic and extrinsic 367

errors, but no finer categories are distinguished. To 368

perform error type mapping, we detect predicates in 369

a summary and assign each hallucinated text span 370

intrinsic- or extrinsic-predicate error if it contains 371

a predicate. We map the remaining hallucinated 372

spans to intrinsic- or extrinsic-noun phrase error. 373

FRANK The CNN/DM subset of FRANK con- 374

sists of three models in OLD, and one model each 375

in both XFORMER and SOTA. The XSum por- 376

tion of FRANK has two models each in OLD and 377

XFORMER. Each model contains 250 summaries in 378

the dataset. We mapped Entity error and Out of Ar- 379

ticle error to extrinsic-noun phrase error; Predicate 380

error and Grammatical error to extrinsic-predicate 381

error; Circumstance error and Coreference error 382

to intrinsic-noun phrase error; and other errors to 383

intrinsic-predicate error. 384

Goyal’21 Authors of the original dataset manu- 385

ally identified all hallucinated text spans for each 386

summary and classified hallucination types into 387

{intrinsic, extrinsic} × {entity, event, noun phrase, 388

others}. The dataset consists of summaries for both 389

CNN/DM and XSum. For the CNN/DM susbset, 390

the authors directly annotated 50 summaries from 391

FactCC, where summaries were generated by OLD 392

models. The XSum subset consists of summaries 393

from SOTA models. We map entity-related and 394

noun phrase-related errors to noun phrase errors, 395

event errors to predicate errors and others to entire 396

sentence errors. 397
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Figure 3: Error types of summaries from AGGREFACT-CNN-UNIFIED and AGGREFACT-XSUM-UNIFIED. Ref.
is annotated reference summary from XSumFaith. Since Goyal’21 in AGGREFACT-CNN-UNIFIED annotated
summaries from FactCC, we use OLD∗ to denote summaries generated from OLD models.

CLIFF This dataset consists of 150 summaries398

each for both CNN/DM and XSum from two mod-399

els in SOTA. We use the same approach for error400

mapping as we do for XSumFaith by only consid-401

ering words labeled as extrinsic or intrinsic errors.402

We evaluate the accuracy of our error type map-403

ping via manual inspection. Specifically, the au-404

thors of this work inspect 30 factually inconsistent405

examples each for XSumFaith, FRANK and CLIFF.406

Those examples cover summaries generated by all407

models used in the datasets. Results of the manual408

inspection show that the accuracy of our error type409

mapping is over 90%.410

A common discrepancy noticed by annotators411

was that in several cases the examples were orig-412

inally annotated as intrinsic/extrinsic but we be-413

lieve those errors are extrinsic/intrinsic. These414

cases, however, are not a result of any error in our415

mapping, but instead disagreement or error in the416

original annotation itself. We found that our error417

mapping for FRANK is not as accurate as for the418

remaining three datasets. For example, we found419

that the entity error (EntE) can be either intrinsic420

or extrinsic even though the FRANK authors have421

defined “out of article” error, which could be noun422

phrase or predicate errors as well. Since the defini-423

tions of error types in Goyal’21 closely resemble424

our mapping and there are 150 examples in total,425

we correct any errors in the mapping on this dataset.426

Corrections mostly happens for the event-related427

error defined in Goyal’21 in that event-related er-428

ror can be either noun phrase-related or predicate-429

related.430

4.3 Distribution Shift of Error Types431

Next, we explore how the number of errors in spe-432

cific groups of models from SOTA, XFORMER, and433

OLD has changed with the progress in the field.434

Model Category

R
at

io

AGGREFACT-
XSUM-UNIFIED

AGGREFACT-
CNN-UNIFIED

0.0

0.5

1.0

Ext NP
Ext Pred
Ext Sent
Int NP
Int Pred
Int Sent
Sent

XFORMER

OLD
SOTA

XFORMER

OLD
SOTA

Ref.

Figure 4: Distribution shift of error types on
AGGREFACT-CNN-UNIFIED and AGGREFACT-XSUM-
UNIFIED. Ref. is human reference from XSumFaith.

Specifically, for each of the FRANK, XSumFaith, 435

Goyal’21, and CLIFF datasets, we calculate the 436

ratio of error types from factually inconsistent sum- 437

maries generated by each model. We then study 438

any distribution shift of error types in AGGREFACT- 439

CNN-UNIFIED and AGGREFACT-XSUM-UNIFIED 440

under SOTA, XFORMER, and OLD. 441

Summaries generated by the same models con- 442

sist of different error distributions over differ- 443

ent datasets. As shown in AGGREFACT-XSUM- 444

UNIFIED (Figure 3), BART summaries are anno- 445

tated by both Goyal’21 and CLIFF. However, it is 446

interesting that BART summaries were annotated 447

as making more intrinsic-noun phrase and intrinsic- 448

predicate errors in Goyal’21 but more extrinsic- 449

noun phrase errors in CLIFF. Similar observa- 450

tions can be found in AGGREFACT-CNN-UNIFIED, 451

where BART summaries have a higher proportion 452

of extrinsic-predicate error in FRANK and more 453

intrinsic-noun phrase error in CLIFF. 454

In addition, although XSumFaith and FRANK 455

annotate the same set of model generated sum- 456

maries in AGGREFACT-XSUM-UNIFIED, the dis- 457

tribution of error types looks dramatically differ- 458
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AGGREFACT-CNN-ERROR AGGREFACT-XSUM-ERROR

Intrinsic Extrinsic Intrinsic Extrinsic

NP
(183)

Pred.
(60)

NP
(220)

Pred.
(129)

NP
(196)

Pred.
(113)

Sent
(17)

NP
(434)

Pred.
(181)

Sent
(197)

DAE∗ 59.6 53.3 67.7 62.8 - - - - - -
QuestEval 62.8 50.0 72.3 68.2 33.2 44.2 64.7 40.6 50.3 69.0
SummacZS 66.1 71.7 81.8 72.1 50.0 57.5 76.5 48.6 47.5 36.0
SummacConv 62.8 65.0 76.4 59.7 54.1 62.8 29.4 64.5 60.8 70.6
QAFactEval 56.3 51.7 79.1 63.6 66.8 75.2 88.2 55.1 70.2 79.2

Table 4: Recall of identified hallucinated summaries that contain certain error types across datasets (XSumFaith,
FRANK, Goyal’21 and CLIFF) and factuality metrics. Binary labels are directly obtained from AGGREFACT-CNN
and AGGREFACT-XSUM. Numbers of summaries that have certain error types are shown in the parentheses. We
obtain 95% confidence intervals and numbers in bold indicates that models have significantly higher recall of
identifing certain error types compared to the rest of of the metrics. Since DAE is trained with human annotated
data from XSumFaith, we remove DAE for a fair comparison in XSum error types.

ent. The main discrepancy lies in the proportion of459

extrinsic-noun phrase and intrinsic-predicate errors.460

There are two possible reasons for such discrepancy.461

First, FRANK does not have “entire sent.” errors462

as it only contains sentence-level annotations. Sec-463

ond, and more important, it is not easy to map error464

types from FRANK directly to our unified error465

types in spite of our validation. For example, the466

“out of article error” in FRANK is defined as an467

error where some statements in the summary do468

not show up in the source text. We found this error469

can be mapped to either an extrinsic-noun phrase470

error or extrinsic-predicate error. These observa-471

tions indicate that previous work disagrees about472

where the individual error class boundaries are,473

even when aligned with our taxonomy.474

A combined meta-analysis shows shifts in error475

distributions. Figure 3 show that in each anno-476

tated dataset the error type distribution may vary477

among models from the same category. For exam-478

ple, summaries from BART contain a higher ra-479

tio of intrinsic-noun phrase errors than summaries480

from PEGASUS in AGGREFACT-CNN-UNIFIED.481

We now combine all datasets together from482

AGGREFACT-CNN-UNIFIED and AGGREFACT-483

XSUM-UNIFIED and show the unified error dis-484

tributions over three model categories.4 As shown485

in Figure 4, models make approximately 50%486

extrinsic errors in CNN/DM, with a slightly de-487

crease from OLD to more recent models. For488

XSum, the proportion of extrinsic errors remains489

unchanged and are at 70%. SOTA models gen-490

4For AGGREFACT-XSUM-UNIFIED, since XSumFaith and
FRANK annotated the same set of summaries, we only use the
annotation results from XSumFaith since our error mapping is
more accurate on the span-level annotations.

erate a higher proportion of intrinsic errors for 491

CNN/DM and a higher proportion of extrinsic er- 492

rors for XSum. This observation aligns with our in- 493

tuition as CNN/DM is more extractive, and XSum 494

is highly abstrative and contains large amount of 495

hallucinated human reference summaries. Within 496

extrinsic errors in XSum, more recent models gen- 497

erate less completely wrong summaries. 498

4.4 Error Type Detection by metrics 499

In this section, we analyze how factuality metrics 500

perform on summaries that contain certain error 501

types. Specifically, we collect subsets of exam- 502

ples from four annotated datasets and group them 503

into AGGREFACT-CNN-ERROR and AGGREFACT- 504

XSUM-ERROR.5 Every subset contains summaries 505

that include one error type defined in Section 4.1. 506

Each factuality metric assigns a binary label to an 507

instance obtained directly from AGGREFACT-CNN 508

and AGGREFACT-XSUM. Note that each subset 509

only consists of test set examples from our bench- 510

mark since examples from the validation set were 511

used to choose the optimal thresholds (Section 3). 512

Since there are limited annotations for each model 513

category after only considering examples from the 514

test set of the benchmark, we decide not to split 515

data by model categories in this part of the analysis. 516

We calculate the recall of identifying error types 517

from those subsets and show the results in Table 4. 518

Note that the performance of DAE is excluded for 519

AGGREFACT-XSUM-ERROR since DAE is trained 520

with human annotations from XSumFaith. 521

Summaries from AGGREFACT-CNN-ERROR 522

and AGGREFACT-XSUM-ERROR primarily come 523

5We exclude FRANK for this analysis for the same reason
as in Section 4.3.
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from non-SOTA models (89.6% and 92.1%, re-524

spectively). On AGGREFACT-CNN-ERROR, where525

79.0% of summaries were generated from OLD,526

there are more extrinsic errors (349) than intrinsic527

errors (243). This follows our above analysis as528

errors from more than 50% of summaries generated529

by less recent models are extrinsic (Figure 4).530

Across AGGREFACT-CNN-ERROR and531

AGGREFACT-XSUM-ERROR, we found that532

SummaC-Conv and QAFactEval achieve higher533

recall for most error types. This indicates that534

more recent factuality metrics are better at535

capturing obsolete errors generated from less536

recent models. This observation aligns with537

our finding in Table 2 (column EARLY-TRANS538

and OLD) in general. Interestingly, we find that539

summarization datasets (CNN/DM and XSum)540

have a non-negligible effect on the metrics’541

capabilities of detecting certain error types,542

even in the cases of out-of-date errors. For543

example, the recall of identifying extrinsic-noun544

phrase error drops 10-30% across all factuality545

metrics when evaluated on AGGREFACT-XSUM-546

ERROR, and multiple models perform worse in547

general on identifying errors from AGGREFACT-548

XSUM-ERROR. Another observation is that549

although DAE is trained using annotations from550

XSumFaith, it does not identify errors as well551

in AGGREFACT-CNN-ERROR. These findings552

indicate that summarization models make553

fundamentally different errors for each error554

type, and current factuality metrics cannot555

be uniformly good at identifying certain error556

types across datasets. We believe this conclusion557

still holds when evaluating metrics on summaries558

generated from SOTA models since they generate559

less obvious errors.560

5 Recommendations561

Evaluate factuality models on modern systems562

We have seen that SOTA yields significantly differ-563

ent results than XFORMER or OLD. Because of564

the prevalence of these systems, we believe that565

any new work should prefer evaluating on these566

SOTA datasets. Particularly for factuality meth-567

ods that use pre-trained models, evaluating on pre-568

trained summarizers is needed to see if these met-569

rics are improving from the current state-of-the-art570

or merely patching errors in outdated systems that571

have already been fixed by other advances.572

Choose the right metric for the job We note 573

that there is no one clear winner among the met- 574

rics evaluated here (Section 3). Depending on the 575

downstream application, different methods may be 576

more or less appropriate, as our analysis shows. An 577

ensembling of different methods or a metric that 578

combines the merits of existing metrics may bring 579

additional performance boost. Moreover, none of 580

current factuality metrics can identify certain er- 581

ror types across datasets equally well. As QG/QA 582

and NLI models get better, we expect all of these 583

methods to improve further. 584

Use more consistent error types With our tax- 585

onomy, we have mapped error types annotated in 586

previous work. It is relatively easier and more accu- 587

rate to map errors from XSumFaith, Goyal’21, and 588

CLIFF to our unified error types as they have anno- 589

tation granularity finer than sentence-level. We en- 590

courage future work to follow this taxonomy where 591

possible and leverage definitions in prior work to 592

improve the potential to make cross-dataset com- 593

parisons. To evaluate which error type a factuality 594

metric is good at identifying, we encourage future 595

work to annotate and evaluate specifically on SOTA 596

model generated summaries. 597

Annotate and evaluate on non-news datasets 598

Most of current annotated datasets are within the 599

news domain and factuality metrics are evaluated 600

on news summaries accordingly. As there is a ris- 601

ing interest in other domains such as dialogue sum- 602

marization (Tang et al., 2021; Fabbri et al., 2021a) 603

and email summarization (Zhang et al., 2021), fu- 604

ture work could annotate and analyze errors made 605

by SOTA models there. We encourage future work 606

to develop factuality metrics that have superior per- 607

formance over cross-domain evaluation. 608

6 Conclusion 609

In this work, we analyzed several factuality metrics 610

across a large meta-benchmark assembled from 611

existing datasets. We find that state-of-the-art sum- 612

marization models still present challenges for de- 613

tecting factual errors, and the performance of error 614

detectors is often overestimated due to the reliance 615

on older datasets. Furthermore, we unify existing 616

datasets into a common taxonomy and use this to 617

highlight differences between datasets and sum- 618

marization models, as well as the complexity of 619

unifying concepts in this problem space. 620
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summarization domains such as dialogue summa-963

rization have different common error types such as964

wrong reference error (Tang et al., 2021), which965

are not fully evaluated under current metrics. As966

settings like this are studied in future work, we be-967

lieve that the kinds of analysis we do here can be968

extended to these settings as well.969

Second, since our work is built on top of pre-970

vious work, some analysis such as the error type971

mapping is limited by the quality and annotation972

agreement from previous work. We chose not to973

undertake large-scale reannotation to avoid causing974

confusion in the literature with multiple versions975

of datasets reflecting divergent annotator opinions.976

In spite of these limitations, we believe that our re-977

evaluation of these metrics and the analysis of error978

types under newswire data can bring insights for979

future works in choosing, designing and evaluating980

factuality metrics.981

B Model Categories982

In this section, we briefly describe the summariza-983

tion models we use in this paper.984

For SOTA, we include Transformer-based pre-985

trained models like BART (Lewis et al., 2020), T5986

(Raffel et al., 2020), and PEGASUS (Zhang et al.,987

2020). They are pre-trained on massive text corpus988

and further fine-tuned on summarization datasets.989

For XFORMER, we use BERTSumExt and BERT-990

SumAbs from Liu and Lapata (2019), GPT-2 (Rad-991

ford et al., 2019), TransS2S (Vaswani et al., 2017),992

and BERTS2S (Devlin et al., 2019).993

For OLD, we include models FastAbsRl (Chen994

and Bansal, 2018), TConvS2S (Narayan et al.,995

2018), BottomUp (Gehrmann et al., 2018), PGNet996

(See et al., 2017), NeuSUM (Zhou et al., 2018),997

BanditSum (Dong et al., 2018), SummaRuNNer998

(Nallapati et al., 2017), TextRank (Mihalcea and999

Tarau, 2004), CBDec (Jiang and Bansal, 2018),1000

RNES (Wu and Hu, 2018), ROUGESal (Pasunuru1001

and Bansal, 2018), ImproveAbs (Kryściński et al.,1002

2018), MultiTask (Guo et al., 2018), and Uni-1003

fiedExtAbs (Hsu et al., 2018).1004

C Factuality Metrics1005

We show the descriptions of consistency metrics1006

we considered in our benchmark.1007

DAE Goyal and Durrett (2020) propose an arc1008

entailment approach that evaluates the factual-1009

ity Fa(a, x) = P (entailment | a, x) of each1010

dependency arc a ∈ Arc(s) of the generated 1011

summary s independently with respect to the 1012

input article x. It then uses their aggregation 1013
1

|Arc(s)|
∑

a∈Arc(s) Fa(a, x) as the overall score. 1014

We use the default model and hyperparameters pro- 1015

vided by the authors,6 described in Goyal and Dur- 1016

rett (2021), which is trained on data from XSum- 1017

Faith, which we account for later in our compar- 1018

isons. 1019

QuestEval Scialom et al. (2021) propose a QA- 1020

based metric that aggregates answer overlap scores 1021

from selected spans r and questions qi ∈ QG(x) 1022

that derived from the input article x and answered 1023

QA(s, qi) using the summary s (recall-based); and 1024

those derived from the summary qi ∈ QG(s) 1025

and answered QA(x, qi) using the input article x 1026

(precision-based). QG and QA denote question 1027

generation and question answering components, re- 1028

spectively. We use the implementation provided by 1029

the authors7 and apply the unweighted version of 1030

the metric as in Laban et al. (2022). 1031

SummaC-ZS Laban et al. (2022) is a zero-shot 1032

entailment metric that computes a sentence-level 1033

entailment score F (si, xj) between each summary 1034

sentence si and input sentence xj using an NLI 1035

model F . It first find the maximum entailment 1036

score score(si) = maxj F (si, xj) for each sum- 1037

mary sentence si, and averaging over all summary 1038

sentences for the final score 1
|s|

∑
i score(si). We 1039

use the default model and hyperparameters pro- 1040

vided by the authors, which may return a negative 1041

score. 1042

SummaC-Conv Laban et al. (2022) extends 1043

SummaC-ZS by replacing the max operation with 1044

a binning of the entailment scores between each 1045

summary sentence si and all input sentences xj 1046

to create a histogram hist(si, x). The histogram 1047

is then passed through a learned 1-D convolution 1048

layer Conv to produce the summary sentence score 1049

score(si) = Conv(hist(si, x)). Parameters for 1050

the convolution layer are learned on synthetic data 1051

from FactCC (Kryscinski et al., 2020). 1052

QAFactEval Fabbri et al. (2021c) is a QA-based 1053

metric analogous to the precision-based compo- 1054

nent of QuestEval and includes optimized question 1055

answering, generation, and answer-overlap com- 1056

ponents. We do not make use of the variation of 1057

6https://github.com/tagoyal/
factuality-datasets

7https://github.com/ThomasScialom/QuestEval
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QAFactEval which combines QA and entailment-1058

based scores into a single metric.1059

D Surveyed Error Types1060

Here are our surveyed error types that are related1061

to factual inconsistency.1062

Negation Error (Zhang et al., 2020; Kryscinski1063

et al., 2020; Huang et al., 2020; Zeng et al., 2021)1064

Adjective Error (Zhang et al., 2020)1065

Coreference Error (Zhang et al., 2020; Kryscin-1066

ski et al., 2020; Pagnoni et al., 2021; Nan et al.,1067

2021b)1068

Number error (Kryscinski et al., 2020; Nan1069

et al., 2021b; Chen et al., 2021; Cao et al., 2020)1070

Entity error (Kryscinski et al., 2020; Pagnoni1071

et al., 2021; Zeng et al., 2021; Wang et al., 2020;1072

Nan et al., 2021b,a; Chen et al., 2021; Cao et al.,1073

2020)1074

Attribute error (Pagnoni et al., 2021; Huang1075

et al., 2020)1076

Pronoun error (Kryscinski et al., 2020; Zeng1077

et al., 2021; Cao et al., 2020)1078

Commonsense error (Kryscinski et al., 2020)1079

Temporal error (Kryscinski et al., 2020; Cao1080

et al., 2020)1081

Predicate error (Pagnoni et al., 2021)1082

Discourse link Error (Pagnoni et al., 2021)1083

Relation error (Nan et al., 2021a,b)1084

Quantity error (Zhao et al., 2020)1085

Event error (Goyal and Durrett, 2021),1086

Noun phrase error (Wang et al., 2020; Goyal1087

and Durrett, 2021),1088

Circumstance error (Pagnoni et al., 2021)1089
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Polytope FactCC SummEval FRANK Wang’20 CLIFF Goyal’21 Total

OLD
val 450 931 550 223 118 - 25 2297
test 450 503 548 523 117 - 25 2166

XFORMER
val 150 - 50 75 - - - 275
test 150 - 50 175 - - - 375

SOTA
val 34 - 200 75 - 150 - 459
test 34 - 200 175 - 150 - 559

Table 5: Statistics of AGGREFACT-CNN. Each dataset is stratified into three categories OLD, XFORMER, and SOTA.

XsumFaith Wang’20 CLIFF Goyal’21 Cao’22 Total

OLD
val 500 - - - - 500
test 430 - - - - 430

XFORMER
val 500 - - - - 500
test 423 - - - - 423

SOTA
val - 120 150 50 457 777
test - 119 150 50 239 558

Table 6: Statistics of AGGREFACT-XSUM.

Dataset Annotators Kappa Gran Annotation Scheme

FactCC
(Kryscinski et al., 2020)

2 authors - summ binary consistency label
(consistent/inconsistent)

Wang’20
(Wang et al., 2020)

3 crowd-sourced an-
notators

0.34/0.51 sent binary consistency label
(consistent/inconsistent)

SummEval
(Fabbri et al., 2021b)

5 crowd-sourced an-
notators and 3 au-
thors

0.70 summ 5-point Likert scale

Polytope
(Huang et al., 2020)

3 trained annotators - span {addition, ommision, inaccuracy intrinsic, inac-
curacy extrinsic, positive-negative aspect}

Cao’22
(Cao et al., 2022)

2 authors and 3 grad-
uate students

0.81 entity {Non-hallucinated, Non-factual Hallucination,
Intrinsic Hallucination, Factual Hallucination}

XSumFaith
(Maynez et al., 2020)

3 trained annotators 0.80 span {intrinsic, extrinsic}

FRANK
(Pagnoni et al., 2021)

3 crowd-sourced an-
notators

0.53 sent {RelE, EntE, CircE, OutE, GramE, LinkE,
CorefE, OtherE, NoE}

Goyal’21
(Goyal and Durrett, 2021)

2 authors - span {intrinsic, extrinsic} × {entity, event, noun
phrase, others}

CLIFF
(Cao and Wang, 2021)

2 experts 0.35/0.45 word {intrinsic, extrinsic, world knowledge, correct}

Table 7: Metadata of nine datasets in the benchmark. We report the source of annotators, inter-annotator aggrement,
annotation granularity, and annotation scheme for each dataset. Wang’20 and CLIFF reported kappa scores for
XSum/CNNDM seperately.
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Factuality Metric

DAE QuestEval SummaC-ZS SummaC-Conv QAFactEval
Dataset Category Count

CNN/DM

FactCC OLD 503 0.704 0.655 0.835 0.891 0.843

Wang’20 OLD 117 0.586 0.552 0.655 0.672 0.754

SummEval
OLD 548 0.661 0.649 0.773 0.801 0.815

XFORMER 50 0.760 0.680 0.620 0.580 0.740
SOTA 200 0.452 0.649 0.622 0.827 0.652

Polytope OLD 450 0.779 0.687 0.802 0.791 0.824
XFORMER 150 0.774 0.733 0.970 0.811 0.726

SOTA 34 0.294 0.176 0.971 0.735 0.324

FRANK OLD 523 0.704 0.669 0.692 0.728 0.773
XFORMER 175 0.574 0.556 0.631 0.634 0.646

SOTA 175 0.699 0.626 0.570 0.601 0.547

Goyal’21 OLD 25 0.188 0.146 0.375 0.354 0.271

CLIFF SOTA 150 0.730 0.740 0.646 0.649 0.716

XSum

Wang’20 SOTA 119 0.756 0.560 0.698 0.721 0.756

Cao’22 SOTA 239 0.723 0.601 0.490 0.668 0.613

XSumFaith OLD 430 - 0.597 0.533 0.675 0.605
XFORMER 423 - 0.601 0.514 0.646 0.596

Goyal’21 SOTA 50 0.644 0.814 0.466 0.552 0.754

CLIFF SOTA 150 0.754 0.619 0.596 0.668 0.613

Table 8: Dataset-wise comparsion between factuality metrics. Since DAE is trained with human annotated data
from XsumFaith, we remove DAE for a fair comparison.

Error Type Definition Example of Generated Summaries

Intrinsic-
Noun Phrase

A model misrepresents word(s) from the source text that
function(s) in a summary as subject, object, or preposi-
tional object.

The world’s first subsea power hub which uses
a lithium-based drive system to generate elec-
tricity is being tested off the west coast of
orkney.

Intrinsic-
Predicate

A model misrepresents word(s) from the source text that
function(s) in a summary as the main content verb or
content like adverbs that closely relate to the verb.

A conservative mp has resigned from his con-
stituency as part of an investigation into a #
10.25 m loan to a football club.

Extrinsic-
Noun Phrase

A model introduces word(s) not from the source text that
function(s) in a summary as subject, object, or preposi-
tional object but cannot be verified from the source.

Shale gas drilling in lancashire has been
suspended after a magnitude-7.5 earthquake
struck.

Extrinsic-
Predicate

A model introduces word(s) not from the source text that
function(s) in a summary as the main content verb or
content like adverbs that closely relate to the verb, but
which cannot be verified from the source.

Folate - also known as folic acid - should be
added to flour in the uk, according to a new
study.

Table 9: Definition and examples of unified error types. Factually inconsistent spans are highlighted in red.
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