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Abstract

The task of Visual Object Navigation (VON) involves an agent’s ability to locate
a particular object within a given scene. To successfully accomplish the VON
task, two essential conditions must be fulfiled: 1) the user knows the name of
the desired object; and 2) the user-specified object actually is present within the
scene. To meet these conditions, a simulator can incorporate predefined object
names and positions into the metadata of the scene. However, in real-world
scenarios, it is often challenging to ensure that these conditions are always met.
Humans in an unfamiliar environment may not know which objects are present in
the scene, or they may mistakenly specify an object that is not actually present.
Nevertheless, despite these challenges, humans may still have a demand for an
object, which could potentially be fulfilled by other objects present within the scene
in an equivalent manner. Hence, this paper proposes Demand-driven Navigation
(DDN), which leverages the user’s demand as the task instruction and prompts
the agent to find an object which matches the specified demand. DDN aims to
relax the stringent conditions of VON by focusing on fulfilling the user’s demand
rather than relying solely on specified object names. This paper proposes a method
of acquiring textual attribute features of objects by extracting common sense
knowledge from a large language model (LLM). These textual attribute features
are subsequently aligned with visual attribute features using Contrastive Language-
Image Pre-training (CLIP). Incorporating the visual attribute features as prior
knowledge, enhances the navigation process. Experiments on AI2Thor with the
ProcThor dataset demonstrate that the visual attribute features improve the agent’s
navigation performance and outperform the baseline methods commonly used in
the VON and VLN task and methods with LLMs. The codes and demonstrations
can be viewed at https://sites.google.com/view/demand-driven-navigation.
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Figure 1: Demand-driven Navigation and Demand-conditioned Attribute Space. The left side
shows a many-to-many mapping between demands and objects, i.e., a demand can be satisfied by
more than one object, and an object can satisfy more than one demand; but in any case, objects
that can satisfy the same demand will have similar attributes. On the right side, a user at home
provides the agent with an instruction “I am so thirsty”. An agent determines what objects can satisfy
this user’s demand. Although the user does not indicate which specific object they want, the agent
interprets that the object he wants must have the attribute of being able to quench thirst.

1 Introduction

Visual Object Navigation (VON) [THI5]], which is considered fundamental for home service agents,
refers to the task in which an agent is required to find a user-specified object within a provided scene.
Previous VON studies can be broadly categorised into two groups. The first category, known as
closed-vocabulary navigation [1-4}, [6H10Q], involves a predetermined set of target object categories
so that the agent is restricted to selecting objects from this predefined set. On the other hand, open-
vocabulary navigation [} encompasses a more flexible approach where the target objects are
described in natural language, meaning the agent is not limited to specific predefined categories.

In real-world applications of VON, users are typically required to provide the name of the object they
want the agent to locate, regardless of whether it falls under the closed-vocabulary or open-vocabulary
group. This requirement introduces two conditions that must be fulfilled: 1) the user must possess
knowledge of the object’s name in the given environment; and 2) the specified object exists within
the environment. These conditions are necessary for successful object navigation tasks in practical
scenarios. In common simulators (such as AI2Thor [16] and Habitat [18]), these two conditions
can be easily satisfied. As direct access to the scene’s metadata is available in the simulators, the
existence of target objects can be checked using the metadata, or the object names in the metadata can
be directly used as target objects. However, in the real world, where the user may not be omniscient
of the environment (e.g., at a friend’s house), the two conditions described above may not be met,
which will result in failure to satisfy the user’s demand for an object. Additionally, it is possible
that when the user specifies an object to search for the agent is able to find an object with a similar
function within the scene, when the specified object does not exist. For example, an object such as
a bottle of water may be specified which has a related demand, to quench thirst. In the case where
a bottle of water is not present in the scene, this demand can be adequately met by a cup of tea or
apple juice found by the agent, however this would fail the VON task. This challenge illustrates a key
difficulty VON faces in real environments.

From a psychological point of view [19H22]], this paper considers the user’s motivation to make the
agent search for an object. In the VON task the user initially has a certain demand, then thinks of
an object to satisfy it, and finally asks the agent to search for that specific object. Then, would it
not be more consistent with the constraints of the real world environment to omit the second step
and directly use the demand as an instruction to ask the agent to find an object that satisfies the
demand? This paper argues that utilising user demands as instructions has the following benefits:
1) Users no longer need to consider the objects in the environment, but only their own demands.
This demand-driven description of the task is more in line with the psychological perspective of
human motivations. 2) The mapping between demands and objects is many-to-many (i.e., a demand
instruction can be satisfied by multiple objects, and an object can potentially satisfy multiple demand
instructions), which can theoretically increase the probability of an agent satisfying user demands in



comparison to VON. 3) The demands, when described in natural language have a wider descriptive
space than just specifying an object, and the tasks are thus described more naturally and in accordance
with the daily habits of humans.

Therefore, this paper proposes the task of Demand-Driven Navigation (DDN). In the DDN task,
the agent receives a demand instruction described in natural language (e.g., I am thirsty), and then
the agent must search for an object within the provided environment to satisfy this demand. Our
task dataset is generated semi-automatically: it is initially generated by GPT-3 [23]] (In the entire
paper, we use gpt-3.5-turbo version), and then manually filtered and supplemented. The DDN task
presents new challenges for embodied agents: 1) Different real-world environments contain different
objects and, even within a fixed environment, the categories of objects can change over time due to
human interaction with the environment, resulting in agents potentially looking for different objects
when attempting to satisfy the same demand. 2) The many-to-many mapping between instructions
and objects requires agents to reason depending on common sense knowledge, human preferences
and scene grounding information: to identify what objects potentially exist in the scene to satisfy
the user’s demand, and where these objects are most likely to be located. 3) The agent needs to
determine whether the current objects within the field of view satisfy the user’s demand from the
objects’ visual geometry. There exists the possibility that this reasoning is not only based on the
visual features, but stems from the functionality of the object, necessitating the agent having common
sense knowledge about the object. In summary, the core challenge of DDN is how to use common
sense knowledge, human preferences and scene grounding information to interpret demand
instructions and efficiently locate and identify objects that satisfy the user’s demands.

It is noted that the essence of an object satisfying a demand is that certain attributes of the object
fulfill the demand instructions. For example, for the demand of “T am thirsty,” the object to be sought
only needs to have attributes such as “potable” and “can quench thirst”. Both a bottle of water and a
cup of tea are objects that have these attributes. To address the challenge of mapping attributes and
demand instructions while considering their relevance to the current scene, this paper proposes a
novel method that extracts the common sense knowledge from LLMs to learn the demand-conditioned
textual attribute features of objects. Then the proposed method aligns these textual attribute features
with visual attribute features using the multi-modal model CLIP [24]. The learned visual attribute
features contain common sense knowledge and human preferences from LLMs, and also obtain scene
grounding information via CLIP. This paper also trains a demand-based visual grounding model
to output the bounding box of objects in the RGB input that match the demand when an episode
ends. Experiments are conducted on the AI2Thor simulator [[16] with the ProcThor dataset [25]]. The
proposed method is compared with closed-vocabulary object navigation, open-vocabulary object
navigation, and their variants. This paper also evaluates the performance of GPT-3 and multi-modal
large language model(MM-LLM), MiniGPT-4 [26], operated agents which accomplish this task via
prompt engineering. The experiments demonstrate that the demand-conditioned attribute features
extracted from the LLM and aligned with CLIP effectively assist in navigation and outperform
baselines. In summary, this paper’s contributions are listed as follows:

* This paper proposes the task of Demand-Driven Navigation (DDN), that requires the agent
to find an object to meet the user’s demand. The DDN task relies heavily on common sense
knowledge, human preferences, and scene grounding information.

* This paper evaluates two different categories of VON algorithms and their variants combined
with GPT-3, as well as the performance of large language models (e.g., GPT-3 and MiniGPT-
4) on the DDN task. The results demonstrate that existing algorithms have difficulty solving
the DDN task.

* This paper provides a novel method to tackle the DDN task and a benchmark for this. The
proposed method extracts the common sense knowledge from LLMs to learn textual attribute
features and uses CLIP to align the textual and visual attribute features. The experiments
demonstrate that the demand-conditioned attribute features extracted from the LLM and
aligned with CLIP effectively assist in navigation and outperform the baselines.



2 Related Work

2.1 Visual Navigation

The task of visual navigation requires the agent to use visual information [27, 28]] to reach a target
location, such as visual object navigation (VON) [1H15}29]], visual language navigation (VLN) [30-
38, and visual audio navigation (VAN) [39-44]. The proposed DDN task can be considered as a
combination of VON and VLN in terms of describing the target: the demand is described using natural
language and the agent is asked to find objects that match the demand. The VLN task requires the
agent to follow step-by-step instructions to navigate in a previously unseen environment. In contrast
to the VLN task, the proposed DDN task provides high-level demand instructions and requires the
agent to infer which objects satisfy the demand instructions within the current scene. The VON task
can be broadly classified into two groups: closed-vocabulary object navigation and open-vocabulary
(zero-shot) object navigation. In closed-vocabulary object navigation, the target object categories are
pre-determined. For example, in the 2023 Habitat ObjectNav Challenge [43]], there are 6 target object
categories. These categories are usually represented as one-hot vectors. Therefore, many studies
establish semantic maps [3} [10]] or scene graphs [13] to solve the closed-vocabulary VON task. In
open-vocabulary object navigation, the range of object categories is unknown and is usually given in
the form of word vectors [L1} 5, [12]. Many studies [[11} 5] use pre-trained language models to obtain
word embedding vectors to achieve generalisation in navigating unknown objects. Additionally,
CLIP on Wheels [S] uses the CLIP model for object recognition. Different from the VON task, our
proposed DDN task does not focus on the category of objects, but chooses “human demand” as the
task context.

2.2 Large Language Models in Robotics

Recently, large language models (LLMs) [46}123|147-49] have attracted attention for their performance
on various language tasks (e.g., text classification and commonsense reasoning). LLMs can exhibit
a human level of common sense knowledge and can even be on par with human performance in
some specialised domains. There is an increasing amount of research [37, 50H54] seeking to use
the knowledge in LLMs to control or assist robots in performing a range of tasks. LM-Nav [37]
accomplishes outdoor navigation without any training by combining multiple large pre-trained models
(GPT-3 [23]], CLIP [24] and ViNG [55])). In SayCan [51], the authors use a LLM to interpret high-
level human instructions to obtain detailed low-level instructions, and then use pre-trained low-level
instruction skills to enable the robot to complete tasks. However, SayCan assumes that the agent can
access the object positions in navigation and only conduct experiments on one scene. PaALM-E [52]
goes a step further by projecting visual images into the same semantic space as language, enabling the
robot to perceive the world visually, but PALM-E exhibits control that is either limited to table-level
tasks or scene-level tasks with a map. Different from these approaches, the proposed method does not
use LLMs for providing reasoning about instructions directly, but instead uses LLMs to learn attribute
features about the objects. Such attribute features can help the agent learn an effective navigation
policy in mapless scenes. This paper also uses LLMs to generate the required dataset.

3 Problem Statement

In the DDN task, an agent is randomly initialised at a starting position and orientation in a mapless and
unseen environment. The agent is required to find an object that meets a demand instruction described
in natural language (e.g., “I am thirsty”). Formally, let D denote a set of demand instructions,
S denote a set of navigable scenes, and O denote a set of object categories that exist in the real
world. To determine whether a found object satisfies the demand, let G : D x O — {0, 1} denote a
discriminator, outputting 1 if the input object satisfies the demand, or 0 if it does not. In the real world,
G is effectuated by the user, but to quantitatively evaluate the proposed method and the baselines, G
is effectuated by the DDN dataset collected in Sec. ]

At the beginning of each episode, the agent is initialised at a scene s € S with a initial pose pg (i.e.,
position and orientation), and provided a natural language demand instructiond =< dy,dz - - - dp, >€
D, where L is the length of the instruction and d; is a single word token. In the demand instruction d,
the task is made more challenging by not providing specific object names. This is to ensure the agent
learns to reason in scenarios where these objects are not specified by the user. Then the agent is re-



quired to find an object 0 € O to satisfy the demand instruction d and only take RGB images as sensor
inputs. The agent’s action space is MoveAhead, RotateRight, RotateLeft, LookUp, LookDown,
and Done. When the agent selects the action Done, the agent is also required to output a bounding
box b to indicate the object that satisfies the demand within the current field of view RGB image.
Then it is determined whether the success criteria have been satisfied. The success criteria for the
DDN task include two conditions. 1) The navigation success criterion: this requires there is an object
in the field of view that satisfies the demand instruction and the horizontal distance between the agent
and the object is less than a threshold ¢,,4,;. 2) The selection success criterion: this requires that
given that the navigation is successful, the intersection over union (IoU) [56] between the output
bounding box b and the ground truth bounding box of an object that satisfies the demand instruction
is greater than a threshold c4¢;.. There is a 100 step limit to succeed during the episode.

4 Demand-Driven Navigation Dataset

Although mappings between objects and instructions will vary with the environment, a fixed mapping
between demand instructions and objects is required to check selection success for training the agent
in a specific environment, referred to as world-grounding mappings (WG mappings). The modifier
“world-grounding” emphasises the connection to the specific environment of the real world and will
vary with the environment. For example, the ProcThor dataset [25] and the Replica dataset [S7] will
have different WG mappings. To simulate real-world scenarios, it is assumed, unless otherwise stated,
that the agent does not have access to the metadata of the object categories in the environment or the
WG mappings that are used to determine selection success during training, validation and testing.
The set of world-grounding mappings constructed in this paper form the demand-driven navigation
dataset.

To construct the WG mappings, the metadata regarding object categories in the environment is
obtained and GPT-3 is used to establish a fixed set of WG mappings between demand instruc-
tions and objects F : D — Oy, where Oy is a subset of O. For example, F(“I am thirsty”) =
{Water, Tea, AppleJuice}. Concretely, prompt engineering is used to inform GPT-3 of the object
categories that may be present in the experimental environment. Then GPT-3 is used to determine
which demands these objects can satisfy and returns this information in the form of a demand in-
struction and a statement of which objects present satisfy this demand instruction. It has been found
that the WG mappings generated by GPT-3 are not absolutely accurate. Due to the presence of some
errors in the generation, manual filtering and supplementation is then used to correct and enhance
the dataset. These WG mappings F are used during training and testing, only to discriminate the
selection success (i.e., to effectuate discriminator G). In total, approximately 2600 WG mappings are
generated. Please see supplementary material for details of the generation process, the prompts, and
the statistical features of the dataset.

5 Demand-Driven Navigation Method

It is important to note that if an object can fulfill a demand, it is because one of its functions or
attributes can satisfy that demand. In other words, if multiple objects can fulfill the same demand, the
objects should have similar attributes. For example, if your demand is to heat food, the corresponding
objects that can satisfy the demand are a stove, an oven or a microwave, which all have similar
attributes such as heating and temperature control. The relationship between attributes and instructions
is not specific to a particular environment, but instead is universal common sense knowledge. Thus,
this common sense knowledge can be extracted from LLMs. This universality turns the multi-
object-target search into single-attribute-target search: the similarity between attributes reduces the
complexity of policy learning. Therefore, we expect to extract the attribute features of the objects
conditioned on the given demand from the LLM, i.e.,, demand-conditioned textual attribute features.

In this section, how the textual attribute features are learned from LLM:s (Sec. [5.1), how they are
aligned from text to vision (Sec.[5.2), and how to train the model (Sec.[5.3).

5.1 Textual Attribute Feature Learning

Knowledge Extraction Given that the relationship between attributes and demand instructions is
common sense knowledge, many mappings between demand instructions and objects are established
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Figure 3: Policy Learning with Visual Attribute Features. This diagram illustrates the process
for policy learning using visual attribute features, where BERT and CLIP features are combined via
concatenation. The demand-conditioned attribute features obtained from the Attribute Module are
fed into a transformer model together with BERT features and global image features. Models in
represent the use of pre-trained models with frozen parameters.

with GPT-3, for learning demand-conditioned textual attribute features, referred to as language-
grounding mappings (LG mappings). The modifier “language-grounding” emphasises that these
mappings can be obtained from LLMs without the need for any connection to real-world situations.
As LG mappings are independent of the real world and the experimental environment, they are
suitable to be used in training the model. Concretely, as shown in Fig.[2} GPT-3 is used to generate a
multitude of demand instructions in advance, called language-grounding demands (LG demands),
and then GPT-3 is queried as to which objects can satisfy these demands. GPT-3 generates the
resulting objects called language-grounding objects (LG objects). The LG demands and the LG
objects compose the LG mappings. The BERT model is used to encode the LG demand instructions
and obtain demand BERT features. The CLIP-Text-Encoder is used to encode LG objects and obtain
CLIP-textual features. Then the demand BERT features and CLIP-textual features are concatenated
together to obtain demand-object features (these features are named DO{X}-{Y}, with X representing
the demand label and Y representing the object label).

Demand-conditioned Contrastive Learning Due to the fact that objects which satisfy the same
demand show similar attributes and vice versa, contrastive learning is suitable to be used to train the
Attribute Module. The way positive and negative samples in contrast learning are defined is next
illustrated using the object and demand satisfaction relationships in Fig.[2} object a, b and c satisfy
demand D1, object d, e and f satisfy demand D2, and object g, h and i satisfy demand D3. If two
objects can satisfy the same demand, then the two demand-object features corresponding to these



two objects and the demand are positive sample pairs. For example, DO1-a and DO1-b is a positive
sample pair. There are three categories of negative sample pairs. 1) For the same demand, if one
object can satisfy it and the other cannot, the corresponding Dem-Obj features are negative sample
pairs. For example, DO1-a and DO1-d is a negative sample pair. 2) For the same object, if it satisfies
one demand but not the other, then the corresponding demand-object features are also negative sample
pairs. For example, DO1-a and DO2-a is a negative sample pair. 3) The demand-object features with
different objects and demands are also negative samples pairs. For example, DO1-a and DO2-c is a
negative sample pair. Then demand-object features are used as the input to the Attribute Module to
obtain the demand-conditioned attribute features (named A{X}-{Y}, with X representing the demand
label and Y representing the object label). The demand-conditioned attribute features corresponding
to positive sample pairs should be as close as possible in the demand-conditioned attribute feature
space, and negative sample pairs should be as far away as possible. Therefore InfoNCE Loss [58]]
is used to train the Attribute Module. We use a 6-layer Transformer Encoder [59]] to implement the
Attribute Module.

5.2 Textual-Visual Alignment via CLIP

In Sec. the demand-conditioned textual attribute features are learned using language-grounding
mappings. However, the demand-conditioned textual attribute features are still at the language-level.
To address this problem, the CLIP-Semantic-Space is used as a shared space for vision and text to
allow the Attribute Module to obtain scene grounding information. The DETR [60] model is first used
to segment object patches (referred to as world-grounding objects, WG object) in the field of view
during navigation, and then the CLIP-Image-Encoder is used to project these object patches into the
CLIP-Semantic-Space to obtain CLIP-Visual features. Both CLIP-visual features and CLIP-textual
features are projected to the same CLIP-Semantic-Space, and thus they are aligned. The Demand
BERT feature and CLIP-Visual features are concatenated (i.e., demand-object features) and used as
inputs to the Attribute Module trained in Sec[5.1] Note that the CLIP-Visual features come from the
scene-grounding visual input. Therefore, the demand-conditioned attribute features obtained during
navigation involve scene grounding information.

To summarise, in Sec.[5.1] contrast learning and language-grounding mappings generated by GPT-3
are used to allow the Attribute Module to learn to extract demand-conditioned attribute features of ob-
jects, which contain common sense knowledge and human preferences; in Sec. CLIP’s shared
visual-textual semantic space is used to enable the Attribute Module to receive scene-grounding
information during navigation.

5.3 Policy Learning and Visual Grounding Model

The features that are fed to a Transformer [S9]] are processed in a similar way to VIN [6]]. Demand-
conditioned features are concatenated with a bounding box and logits and input into a Transformer
Encoder, then passed into a Transformer Decoder with Demand BERT features and global visual
features (encoded by a pre-trained Vision Transformer [61}162]). Imitation learning is used to train the
proposed model. Approximately 27,000 trajectories generated by the A* algorithm [63] are collected
and used for training.

The Visual Grounding Model (VG model) is essentially a classifier built with a Transformer Encoder.
The DETR model is used to segment the object instances on the current image, and then the features
of the last layer of DETR for the highest k patches of DETR logits, the global image features encoded
by RESNET-18 [64], the Demand BERT features and a CLS token, are combined and fed to the VG
model, and then the output features corresponding to the CLS token are used for classification. The
VG model is used for all the baselines that perform DDN and the proposed method.

For more details about policy learning, the fine-tuning of the image encoder and DETR, the pipeline
and training procedure of the demand-based visual-grounding model, and hyperparameters, please
see the supplementary material.



Table 1: Quantitative comparision over baselines and ablations. NSR: navigation success rate.
NSPL: navigation success rate weighted by the path length. SSR: selection success rate. * indicates
that the algorithm leverages scene metadata. The parentheses show the sample standard deviation.

Seen Scene Unseen Scene
Seen Ins. Unseen Ins. Seen Ins. | Unseen Ins.

Method NSR [ NSPL [ SSR | NSR | NSPL SSR NSR [ NSPL | SSR | NSR [ NSPL | SSR
Random 5.2(0.72) | 2.6(0.66) | 3.0(0.93) | 3.7(0.76) | 2.6(0.24) | 2.3(0.63) | 4.8(0.48) | 3.3(0.41) | 2.8(0.8) | 3.5(0.18) | 1.9(0.15) | 1.4(0.7)
VTN-demand 6.3(1.7) 42(1.3) | 32(1.3) | 5.2(0.83) [ 3.1(0.75) [ 2.8(0.91) | 5.0(0.0) | 3.2(0.1) | 2.8(1.2) 6.6(0.9) 4.0(1.6) | 3.3(1.0)
VTN-CLIP-demand 12.03.0) | 5.1(1.5) | 57(23) | 10.7(43) | 3.5(0.5) | 5.0(1.0) [ 10.03.0) | 3.6(1.3) | 4.0(3.0) 9.3(5.3) 3.9(0.1) [ 4.03.0)
VTN-GPT* 1.6(1.1) [ 0.5(0.70) 0(0) 1.4(0.65) | 0.4(0.57) | 0.5(0.35) | 1.3(0.76) | 0.2(0.20) | 0.3(0.44) [ 0.9(0.20) | 0.4(0.34) | 0.5(0.35)
ZSON-demand 42(1.2) [2700.78) [ T9(I.1) | 4.6(2.0) | 3.1(1.3) | 2.000.6) | 41(0.6) | 29(0.2) | 1.2(0.4) 3.5(0.6) 2.4(0.7) | 1.1(0.6)
ZSON-GPT 20(25) | 1124 | 03027) | 3.6(2.6) | 1.92.6) | 03(027) | 2.5(1.2) | 0.7(004) | 02(027) | 3.2(1.2) | 0.9(0.1) | 0.2(0.27)
CLIP-Nav-MiniGPT-4 4.0 4.0 2.0 3.0 3.0 2.0 4.0 3.7 2.0 5.0 5.0 3.0
CLIP-Nav-GPT* 5.0 5.0 4.0 6.0 5.5 5.0 5.5 53 4.0 4.0 3.0 2.0
FBE-MiniGPT-4 35 3.0 22 35 32 2.0 3.5 35 2.0 4.0 4.0 35
FBE-GPT* 5 43 43 55 5.0 55 4.5 43 4.5 55 5.0 55
GPT-3-Prompt* 0.3 0.01 0 0.3 0.01 0 0.3 0.01 0 0.3 0.01 0
MiniGPT-4 29 20 2.5 29 2.0 2.5 29 2.0 2.5 2.9 2.0 2.5
Ours_w/o_attr_transformer | 15.6(10.3) | 6.9(1.9) | 6.0(1.0) | 15.1(3.6) | 8.92.2) | 7.22.3) | 12.3(0.3) | 4.5(2.3) | 4.7(23) | 11.7(7.3) | 5.4(6.8) | 2.7(0.3)
Ours_w/o_attr_pretrain 13.1(3.5) 5.6(1.6) 4.8(2.0) | 13.82.8) | 6.2(1.8) 53(23) | 12.7(1.5) [ 5.7(0.98) | 6.3(2.5) | 11.8(0.58) | 5.8(0.57) | 3.6(0.29)
Ours_w/o_BERT 12.2(122) | 42(35) | 58@8.7) | 84(9.3) | 2.8(2.3) | 40(3.5) [7.8(00.7) | 2.523) [ 2.6(0.8) | 8.4(143) | 2724 | 38(L.7)
Ours 21.53.0) | 9.8(1.1) | 7.5(1.3) | 19.3(3.3) | 9.4(1.8) | 45(1.8) | 142(2.7) | 6.4(1.0) | 57(1.8) | 16.I(1.5) | 8.4(1.1) | 6.0(1.2)

6 Experiments

6.1 Experimental Environment

The AI2Thor simulator and the ProcThor dataset [[25] are used to conduct the experiments. Through-
out the experiments, 200 scenes in each of ProcThor’s train/validation/test sets are selected for a total
of 600 scenes. There are 109 categories of objects that can be used in the environments to satisfy
the demand instructions. 200 WG mappings are selected for training and 300 for testing from our
collected DDN dataset. The WG mappings used for validation are the same as those used for training.
Our experiments can all be done on 2xA100 40G, 128-core CPU, 192G RAM. To complete training
for a main experiment takes 7 days.

6.2 Evaluation Method and Metrics

A closed-vocabulary object navigation algorithm, VIN [6], and an open-vocabulary object navigation
algorithm, ZSON [L1], are chosen as the original VON baselines. To fit these baselines to the
proposed DDN task, several modifications are made to the algorithms as follows and the results
are shown in the form of a postfix shown in Tab.[5.3] The VIN-CLIP means that we replace the
DETR features used in VTN with CLIP features. The “demand” suffix means the original one-hot
vectors (closed-vocabulary) or word vectors (open-vocabulary) are replaced with the demand BERT
features. The “GPT” suffix means that the GPT-generated language-grounding objects are used as
the parsing of the demand instruction, and then the parsing results are used as the input for object
navigation. These VON baselines and their variants should demonstrate the difficulty of the DDN task
and the fact that DDN tasks are not easily solved by utilising language models for reasoning. Finally,
five variants of the VON algorithm are introduced: VIN-CLIP-demand, VIN-demand, VTN-GPT,
ZSON-demand, ZSON-GPT.

The popular large language model GPT-3 and the open source multi-modal large language model
MiniGPT-4 are also used for navigation policies and recognition policies, resulting in two baselines:
MiniGPT-4 and GPT-3-Prompt*. GPT-3 and MiniGPT-4’s test results, should provide insight into the
strengths and weaknesses of large language models for scene-level tasks. Random (i.e., randomly
select an action in the action space) is also used as a baseline for showing the difficulty of the
DDN task. We also employ a visual-language navigation algorithm, CLIP-Nav [65] and a heuristic
exploration algorithm, FBE [66] as navigation policies, with GPT-3 and MiniGPT-4 serving as
recognition policies, resulting in four baselines: CLIP-Nav-GPT, CLIP-Nav-MiniGPT-4, FBE-GPT,
and FBE-MiniGPT-4.

The VTN-CLIP-demand, VTN-GPT, and VTN-demand algorithms are trained using the same col-
lected trajectory as our method. * indicates that the algorithm leverages environmental metadata.
Navigation success rate, navigation SPL [67], and selection success rate are used as metrics for
comparison. For more details on metrics and baselines (about the metadata usage of the algorithms,
prompts used in GPT-3 and MiniGPT-4, etc), please see the supplementary materials.



6.3 Baseline Comparison

Detailed and thorough experiments are conducted to demonstrate the difficulty of the DDN task for
the baselines and the superiority of the proposed method, shown in Tab.[5.3]

The results of VIN-demand are slightly better than Random, indicating that VI'N-demand has learned
to some extent the ability to infer multiple potential target objects simultaneously. However, ZSON-
demand has lower performance than Random. Considering that ZSON-demand uses CLIP for visual
and text alignment, this lower result indicates that CLIP does not perform well on alignment between
instructions and objects. VIN-GPT and ZSON-GPT demonstrate very poor performance. This is
likely to be due to the fact that the language-grounding objects given by GPT-3 have a high likelihood
not to be present in the current environment, which leads to a meaningless search by the agent.
VIN-GPT and ZSON-GPT also show that converting DDN to VON through a pre-defined mapping
between instructions to objects is not effective. The superior performance of VIN-CLIP-demand
compared to VIN-demand underscores the contribution of CLIP in effectively extracting features
of objects. The two variants about CLIP-Nav do not perform well, and we argue that this may be
attributed to a significant disparity in content between the step-by-step instructions in VLN and the
demand instructions in DDN. Since ProcThor is a large scene consisting of multiple rooms, the results
show that heuristic search FBE is not efficient.

The performance of GPT-3+Prompt is significantly lower than Random. This lack of performance
is due to the lack of visual input to the GPT-3+Prompt method and relying only on manual image
descriptions resulting in insufficient perception of the scene. Moreover, during the experiment, it
is observed that GPT-3+Prompt rarely performs the Done action, and approximately 80% of the
failures are due to exceeding the step limit, suggesting that GP7-3+Prompt lacks the ability to
explore the environment which leads to its inability to discover objects that can satisfy the given
demand. With visual inputs, MiniGPT-4 outperforms GPT-3+Prompt despite its relatively small
model size, indicating that visual perception (i.e., scene grounding information) is of high significance
in scene-level tasks. MiniGPT-4 still does not perform as well as Random. By observing MiniGPT-4’s
trajectories, two characteristics are noticed: 1) the agent tends to turn its body left and right in the
original place and turn the camera up and down, and does not often move; 2) the selection success
rate is very close to the navigation success rate. It is therefore considered that MiniGPT-4’s task
strategy is as follows: observe the scene in place and then choose to perform the Done action if the
agent identifies objects in sight that can satisfy the demand, and output the selected object. By the
fact that the selection success and navigation success rates are close, it can be found that MiniGPT-4
satisfactorily recognises the semantics of objects and infers whether they meet the user’s demand.
However, the low navigation success rate implies that MiniGPT-4 cannot determine whether the
distance between it and the object is less than the threshold value ¢, 4.

6.4 Ablation Study
We conduct three ablation experiments, with specific details as follows:

* Ours w/o attr pretrain: we use the transformer network in the Attribute Module without
demand-conditioned contrastive learning to pretain it.

* Ours w/o attr transformer: we replace the transformer network with a MLP layer in the
Attribute Module.

* Ours w/o BERT: we replace the BERT endocer with a MLP layer.

Ours surpasses all baselines. The Attribute Module turns multi-object-target goal search into single-
attribute-target search, which makes the agent no longer need to find potentially different objects
in the face of the same demand instruction, but consistent attribute goals. The consistency between
demands and attributes reduces the policy learning difficulty. In Ours w/o BERT, we observe a
significant performance drop, especially in the setting with unseen instructions. This finding indicates
that the features extracted by BERT are highly beneficial for generalisation on instructions. Ours
w/o attr pretrain shows that our proposed demand-conditioned contrastive learning has a significant
improvement to performance. After demand-conditioned contrastive learning, the Attribute Module
extracts generalised attribute features from LLMs and LLMs provide sufficient common sense
knowledge and interpretation of human preferences for the Attribute Module to learn. Once the
common sense knowledge extracted from the LLMs is lost, the Attribute Module can only learn



the association between attributes and instructions from the sparse navigation signals of imitation
learning. However, Ours w/o attr pretrain still surpasses all baselines (including VTN with a similar
model structure), which is probably due to the fact that the object semantic information [68]] contained
in the CLIP-visual features helps the Attribute Module to understand the demand instructions and
learn the relationship between objects and instructions to some extent through imitation learning.
The performance decrease observed in Ours w/o attr transformer compared to Ours suggests that the
transformer network is more effective than MLP in capturing the attribute features of objects.

7 Conclusion and Discussion

This paper proposes Demand-driven Navigation which requires an agent to locate an object within the
current environment to satisfy a user’s demand. The DDN task presents new challenges for embodied
agents, which rely heavily on reasoning with common sense knowledge, human preferences and
scene grounding information. The existing VON methods are modified to fit to the proposed DDN
task and they have not been found to have satisfactory performance on the DDN task. The LLM
GPT-3 and the open source MM-LLM, MiniGPT-4 also show some drawbacks on the DDN task,
such as being unable to determine the distance between the object and the agent from visual inputs.
This paper proposes to learn demand-conditioned object attribute features from LLMs and align them
to visual navigation via CLIP. Such attribute features not only contain common sense knowledge
and human preferences from LLMSs, but also obtain the scene grounding information obtained from
CLIP. Moreover, the attribute features are consistent across objects (as long as they satisfy the same
demand), reducing the complexity of policy learning. Experimental results on Al2thor with the
ProcThor dataset demonstrate that the proposed method is effective and outperforms the baselines.

Limitations and Broader Societal Impacts As we do not have access to GPT-4 with visual
inputs and PaLM-E, we can only use the open source MM-LLM (i.e., MiniGPT-4) to test on the
proposed DDN task, so we only have the possibility to conjecture the strengths and weaknesses of
MM-LLM:s on our task from the performance of MiniGPT-4. We expect that our work will advance
the performance of MM-LLMs on scenario-level tasks. The proposed DDN task is in the field of
visual navigation for finding objects that satisfy human demands. To the best of our knowledge, there
are no observable adverse effects on society.
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