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Abstract

Byte Pair Encoding (BPE) has become a widely
adopted subword tokenization method in mod-
ern pretrained language models due to its sim-
plicity and strong empirical performance across
downstream tasks. However, applying BPE
to unsegmented languages such as Chinese
presents significant challenges, as its frequency-
driven merge operations are agnostic to linguis-
tic boundaries. To address this, we propose
two entropy-informed pre-tokenization strategies
that guide BPE segmentation using unsupervised
information-theoretic cues. The first approach
uses pointwise mutual information and left/right
entropy to identify coherent character spans,
while the second leverages predictive entropy de-
rived from a pretrained GPT-2 model to detect
boundary uncertainty. We evaluate both meth-
ods on a subset of the PKU corpus (Emerson,
2005) and demonstrate substantial improvements
in segmentation precision, recall, and F1 score
compared to standard BPE. Our results suggest
that entropy-guided pre-tokenization not only en-
hances alignment with gold-standard linguistic
units but also offers a promising direction for im-
proving tokenization quality in low-resource and
multilingual settings.

1. Introduction
Modern pretrained language models often rely on BPE as a
core tokenization strategy because it is simple and effective,
leading to its widespread adoption. (Gage, 1994; Sennrich
et al., 2016). BPE iteratively merges frequent character pairs
to construct a compact vocabulary, which enables the model
to capture meaningful subword units and represent a wide
range of linguistic phenomena across different languages.
Its success in English and many Indo-European languages
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has made it the default tokenizer in many large-scale models
such as GPT (Radford et al., 2019a), BERT (Devlin et al.,
2019), and RoBERTa (Liu et al., 2019).

However, the application of BPE to Chinese presents unique
challenges. Unlike alphabetic languages, Chinese lacks ex-
plicit word boundaries (e.g., spaces), and each character can
serve as a standalone word or part of multi-character words
with varying syntactic or semantic roles (Sproat et al., 1994).
When BPE is applied naively – treating each character as a
base unit and relying solely on frequency-driven merging –
it often fails to capture the true internal structure of Chinese
words. As a result, the created token sequences may not
align with linguistically meaningful units, which can de-
grade downstream performance and interpretability. To this
end, we introduce and evaluate two distinct entropy-driven
pre-tokenization strategies for BPE:

• Statistical Methods: We compute pointwise mutual
information (PMI) and left/right entropy to identify
potential segmentation boundaries based on local co-
occurrence strength and contextual diversity.

• Auto-regressive LLM-based Methods: We use a pre-
trained GPT-2 model (Radford et al., 2019a) to esti-
mate token-level predictive entropy, leveraging model
uncertainty to guide boundary detection.

We examine each approach independently and analyze their
effect on BPE vocabulary learning and downstream segmen-
tation quality. We compare both entropy-informed BPE
variants to a standard frequency-driven BPE baseline, high-
lighting differences in tokenization granularity, compression
efficiency, and alignment with gold-standard Chinese word
segmentation. Our findings demonstrate that incorporat-
ing entropy-based pre-tokenization can reshape BPE token
structure, offering new insights into subword modeling in
unsegmented scripts.

2. Related Works
2.1. Subword Tokenization via BPE

Byte-Pair Encoding (BPE) was introduced in
data-compression research, then repurposed for
open-vocabulary neural translation by Sennrich et al.
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(2016). Its deterministic merge procedure yields com-
pact, variable-length subword units that now underpin
GPT-series models, RoBERTa, BART, among others. Sen-
tencePiece (Kudo & Richardson, 2018) generalized BPE to
language-independent, raw-text training, and popularized
the alternative unigram language model segmentation
that performs stochastic sampling for regularization.
Building on this foundation, subsequent work sought to
increase flexibility in tokenization approaches. For instance,
BPE-Dropout (Provilkov et al., 2021) injects controlled
noise during training to expose models to alternative
segmentations, while Charformer (Tay et al., 2021) learns
gradient-based block selection end-to-end, eliminating the
static pre-processing stage.

2.2. Pre-tokenization Constraints

Most subword algorithms, including BPE, operate on preto-
kenized input sequences, where initial boundaries, typically
defined by whitespace, act as hard constraints on the merge
process. In fact, only very recently has research investi-
gated removing these constraints, (Schmidt et al., 2025; Liu
et al., 2025). The merge space produced by BPE is thus
bounded by this pre-tokenization constraint. While whites-
pace provides reliable word boundaries in alphabetic scripts
(Manning & Schütze, 1999), Chinese lacks such delimiters.
Traditional Chinese NLP pipelines often rely on heuristic
rules to segment text, compensating for the absence of ex-
plicit word boundaries in written Chinese. These heuristics
commonly involve dictionary-based matching, statistical
modeling, or rule-based systems to determine segmentation
points (Huang & Liu, 1997; Xue, 2003). While such ap-
proaches have achieved reasonable success, they struggle
with ambiguities and out-of-vocabulary words, often result-
ing in inconsistent or fragmented tokenization. Dictionary-
based methods are particularly sensitive to lexicon coverage,
failing on novel terms, while statistical methods require
extensively annotated corpora and may lack domain adapt-
ability. Rule-based systems, although deterministic, often
lack the flexibility to accommodate linguistic variability.

2.3. Information-Theoretic Cues

Information theory offers language-agnostic cues for identi-
fying word boundaries. Early work suggested that statistical
irregularities, such as peaks in mutual information and en-
tropy, correlate with morphological structure (Harris, 1968).
This insight was later formalized through models based on
branching entropy, which measures the uncertainty of char-
acter sequences in left and right contexts to identify likely
segmentation points (Tanaka-Ishii, 2005). Such entropy-
based methods have enabled effective unsupervised word
segmentation, particularly in languages like Chinese (Jin &
Tanaka-Ishii, 2006). To the best of our knowledge, however,
these techniques have not been widely adopted in modern

tokenizers for large language models.

2.4. Morphological and Sub-character Tokenization

Beyond word-level segmentation, recent studies exploit the
internal structure of logographic scripts. Sub-character to-
kenization decomposes characters into glyph components
or phonetic codes, allowing parameter sharing across rad-
icals and improving generalization on rare forms (Chen &
Deng, 2020). Mega-tokenization extends the opposite axis,
merging highly frequent multi-character expressions into
mega units that preserve semantics over longer spans. Such
approaches demand additional symbol inventories or exter-
nal alignment, yet they alleviate the granularity mismatch
between BPE vocabularies and Chinese morphology.

2.5. Byte-Level Tokenization Alternatives

An emerging line of research in language modeling seeks to
eliminate reliance on fixed subword vocabularies by operat-
ing directly on raw byte sequences. Byte Latent Transformer
(BLT) (Pagnoni et al., 2024) exemplifies this approach by
dynamically segmenting input into variable-length byte
patches, with boundaries guided by next-byte entropy from
a lightweight language model. This enables adaptive compu-
tation and has shown performance comparable to BPE-based
models at the 8B scale.

Other notable byte-level models include ByT5 (Xue et al.,
2022), which processes UTF-8 byte sequences directly, re-
moving the need for explicit tokenization. It shows strong
multilingual performance and robustness to noise, particu-
larly in low-resource settings and languages under-served
by subword vocabularies. Similarly, CANINE (Clark et al.,
2021) operates at the character level and introduces a down-
sampling mechanism to manage sequence length while pre-
serving linguistic detail. Both models perform competitively
with subword-based approaches, underscoring the potential
of tokenization-free pipelines for language-agnostic appli-
cations.

2.6. Byte Pair Encoding and Pre-tokenization

BPE is a widely used tokenization algorithm designed to
construct a compact subword vocabulary from unlabeled
text (Sennrich et al., 2016). Given a corpus and a target vo-
cabulary size T , BPE applies a deterministic, greedy merg-
ing procedure that identifies and merges the most frequent
adjacent symbol pairs until the vocabulary size is met.

Traditional BPE pre-tokenization relies on spaces, reflecting
assumptions typical of Indo-European languages. However,
in unsegmented languages like Chinese, this approach often
leads to suboptimal merges, as BPE operates on units that
misalign with meaningful linguistic spans.
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2.7. Entropy-Driven Pre-tokenization

To address this mismatch, we introduce an entropy-based
pre-tokenization step prior to standard BPE. Rather than
assuming fixed boundaries, we first segment the raw Chi-
nese corpus using unsupervised entropy signals—either via
statistical co-occurrence (e.g., PMI and left/right entropy)
or neural predictive entropy from an auto-regressive lan-
guage model. These signals produce segmentation points
based on information-theoretic cues, yielding boundary can-
didates that reflect distributional irregularities in character
sequences.

Once segmented, we apply standard whitespace-delimited
BPE on this preprocessed corpus. This preserves the effi-
ciency and scalability of BPE while biasing token construc-
tion toward linguistically meaningful units. In contrast to
conventional BPE, our approach explicitly inserts structure
into the initial token stream, guiding merge operations with
signals grounded in either local statistics or model uncer-
tainty.

3. Methods
Motivated by information-theoretic signals and the struc-
tural challenges of unsegmented scripts like Chinese, we
investigate two pre-tokenization strategies for Chinese BPE
based on entropy signals. Both aim to identify linguistically
plausible token boundaries prior to subword vocabulary
construction. The first method uses symbolic statistical
measures, while the second leverages uncertainty estimates
from an auto-regressive language model. In both cases, the
resulting pre-segmented corpus is passed to a standard BPE
tokenizer with whitespace-based pre-tokenization, thereby
constraining merges to occur only within identified spans.

3.1. Statistical-based Pre-tokenization

The statistical method draws inspiration from unsupervised
word-segmentation literature (Jiang et al., 2022). We enu-
merate every possible n-gram (2≤ n≤ nmax) in the corpus
and we assign a utility score to each individual n-gram
(multi-character span) occurrence. Specifically, every n-
gram occurrence is treated as a candidate w, and its utility
score is based on a combination of internal cohesion and
contextual separability:

Ustat(w) = min
(ci,ci+1)⊂w

PMI(ci, ci+1)

+ λ min
(
Hleft(w), Hright(w)

)
(1)

Internal cohesion: Pointwise Mutual Information (PMI)
measures the associative strength between two adjacent char-
acters:

PMI(ci, ci+1) = log
f(cici+1)T

f(ci) f(ci+1)
, (2)

Figure 1. Overview of the statistical method. The algorithm applies
greedy maximal matching based on scores from Left Entropy, PMI,
and Right Entropy to select meaningful n-grams, producing the
final segmentation.

where f(·) denotes corpus frequency and T is the total
number of character tokens. A large PMI indicates that the
pair co-occurs far more often than chance, suggesting that
they should remain in the same token. We take the minimum
PMI among all adjacent pairs inside w so that a single weak
link can lower the overall cohesion score, preventing loosely
connected parts from being merged.

Contextual separability: Left and right entropy quanti-
fies how diversely a span appears with its immediate context:

Hleft(w) = −
∑
l

P (l | w) logP (l | w), (3)

Hright(w) = −
∑
r

P (r | w) logP (r | w), (4)

with P (l | w) = f(lw)∑
l′ f(l

′w) and P (r | w) = f(wr)∑
r′ f(wr′) .

A large entropy means the span occurs with many differ-
ent neighbors, signaling a plausible word boundary. We
again take the minimum of ljeft and right entropies so that
a single side with low diversity keeps w from being split
prematurely.

Balancing the two terms: As illustrated in Figure 2, the
ranges of PMI and entropy differ significantly, often by sev-
eral orders of magnitude. This disparity can cause one score
to dominate the utility score if left unadjusted. To address
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this imbalance, we introduce a scaling hyperparameter, λ,
which serves to modulate the relative contributions of both
terms. By tuning λ, we can control the extent to which each
term influences the overall optimization process, ensuring
neither overwhelms the other.

Figure 2. Distributions of statistical features from the PKU dataset.
Top: PMI distribution showing a peak in the range of 9–12. Bot-
tom: Left and Right entropy distributions, shown on a log scale,
are heavily skewed toward zero, indicating that many characters
consistently occur within fixed contexts.

Greedy conflict-free selection: After assigning utility
scores to candidate spans, the sentence is processed in a
left-to-right traversal. At each character position, the span
with the highest score that begins at that location is selected.
Once a span is chosen, all characters it encompasses are
marked as fixed, thereby preventing subsequent spans from
overlapping with it. This single-pass procedure produces a
non-overlapping segmentation that optimizes local utility
without requiring backtracking. Characters not included in
any multi-character span are treated as singleton segments,
thereby avoiding any out-of-vocabulary (OOV) tokens at
inference time. The resulting segmented corpus is sub-
sequently provided as input to a standard BPE tokenizer,
which performs token merges exclusively within segments
delineated by spaces.

3.2. Auto-regressive LLM-based Pre-tokenization

The second approach estimates token boundaries using pre-
dictive uncertainty derived from a pretrained auto-regressive
transformer model. At each character position t, we com-
pute the conditional entropy of the next token given the left
context:

H(xt | x<t) = −
∑
x∈V

P (xt = x | x<t) logP (xt = x | x<t)

(5)

The conditional entropy measures the model’s uncertainty
about the next character: when the value is low, the up-
coming symbol is highly predictable from its left context,
implying that the sequence is continuing a cohesive lexical
unit; conversely, sharp spikes in entropy indicate a sudden
drop in predictability, signaling a likely semantic shift and
the onset of a new word. To obtain robust estimates, the raw
entropy sequence is smoothed using a small moving window,
and local maxima are identified as candidate segmentation
points.

For this method, we use a GPT-2 model trained specifically
for Chinese language modeling (Radford et al., 2019b; Zhao
et al., 2019). While we explored larger and more recent
architectures, we found that this GPT-2 model offers a good
balance between model capacity and computational effi-
ciency. Its moderate size and widespread availability make
it a practical choice for analyzing the statistical properties
of text. The model consists of 24 transformer decoder lay-
ers with a hidden size of 1024, yielding approximately 325
million parameters in total. During inference, we tokenize
input sentences at the character level, compute the per-token
entropy based on the model’s output distribution, and insert
segmentation boundaries at entropy peaks.

Figure 3. Next-character entropy scores for two randomly selected
Chinese sentences evaluated by GPT-2. Each plot illustrates the
entropy of the model’s next-character prediction at each token
position. Blue dashed lines denote local peaks, which serve as
span boundaries. These examples are provided to illustrate how
the model’s uncertainty varies across different parts of a sentence.
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4. Experiments
4.1. Datasets

This study uses a subset of the PKU dataset from the
SIGHAN 2005 bake-off task. The PKU corpus is a widely
used benchmark in segmentation research, consisting of
manually annotated sentences drawn from formal written
sources such as news articles and academic texts. It pro-
vides a reliable reference for evaluating the alignment of
predicted segmentation boundaries with linguistically vali-
dated ground truth.

To reduce computational demands associated with entropy-
based methods, particularly predictive entropy calculation,
we limit our experiments to 10% of the full PKU training
corpus. This subset contains 2,255 sentences, approximately
90,000 Chinese characters. It was selected to balance ex-
perimental feasibility with computational cost, particularly
given that the reduced subset required approximately two
days to process using the auto-regressive method. Gold-
standard word boundaries are retained for evaluation. All
characters are simplified Chinese. Each sentence is tok-
enized at the character level to create the input sequence.

While the dataset size is limited, the controlled experimental
setup facilitates direct comparison between methods under
consistent conditions. This design supports fine-grained
qualitative and quantitative analysis of segmentation behav-
ior, tokenization structure, and alignment with annotated
word boundaries.

4.2. Baselines and Configurations

We evaluate three tokenization strategies, each based on
Byte Pair Encoding (BPE). Prior work suggests that smaller
vocabularies are more suitable for unsegmented languages
like Chinese. For example, the GPT-2 model used in Sec-
tion 3.2 has a vocabulary size of 21,128 tokens. Given the
limited size of our dataset, we choose a reduced vocabulary
of 12,000 tokens to balance representational efficiency and
data sparsity. All methods operate on the same character-
level input sequences derived from the preprocessed PKU
corpus described in Section 4.1.

• Standard BPE: A baseline implementation of
frequency-based BPE applied directly to character se-
quences, without any pre-tokenization. This mirrors
the standard application of BPE in contexts like Chi-
nese, where whitespace-based tokenization is not ap-
plicable. Merges are selected purely based on adja-
cent symbol pair frequency, without any linguistic con-
straints.

• Statistically-based Entropy + BPE: Our method that
introduces a pre-tokenization step based on statistical
signals. Character sequences are first segmented using

a score that combines pointwise mutual information
and left/right entropy (as described in Section 3.1). The
resulting boundaries constrain BPE merges to occur
only within identified spans.

• Auto-regressive LLM-based Entropy + BPE: Our
method that applies pre-tokenization using next-
character predictive entropy estimated from a pre-
trained autoregressive language model. Entropy peaks
are treated as boundary candidates. These boundaries
are inserted into the sequence prior to BPE training.

All tokenizers are trained from scratch using the same seg-
mented or unsegmented input, and each is restricted to
operate over a vocabulary of 12,000 subword units. This
fixed capacity allows for a direct comparison of token ef-
ficiency, segmentation quality, and vocabulary utilization
across methods.

4.3. Qualitative Analysis of Segmentation Behavior

In both methods, entropy acts as an information-theoretic
prior for segmentation, with no modification to the down-
stream BPE algorithm. This modularity ensures that com-
parisons with the standard BPE baseline remain valid and
interpretable.

To further understand the behavior of entropy-guided pre-
tokenization, we present a qualitative visualization of token
boundary selection under different methods. This analysis
provides insight into how statistical and model-based en-
tropy signals influence segmentation decisions prior to BPE
application.

Figure 4 illustrates the token boundaries selected by multi-
ple pre-tokenization strategies for a representative Chinese
sentence. Each row corresponds to a different method: the
gold-standard segmentation from the PKU dataset, segmen-
tation based solely on predictive entropy from GPT-2, seg-
mentation using left/right entropy alone (entropy-only), and
the statistical method with varying values of the weighting
parameter λ. We explored λ values using a standard grid
search. Vertical lines denote the identified segmentation
boundaries.

This visualization highlights several key trends. First, the
predictive entropy method identifies boundaries that align
closely with semantic units, often matching human annota-
tions. Second, the statistical method demonstrates flexible
boundary control via the λ parameter; smaller values re-
sult in shorter, more fragmented tokens, while larger values
emphasize contextual diversity, yielding longer and more
coherent spans. Notably, the entropy-only method achieves
reasonable alignment with the gold standard, suggesting
that information-theoretic signals alone carry substantial lin-
guistic relevance even without subsequent BPE processing.
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These observations support the hypothesis that entropy-
informed pre-tokenization can act as a lightweight yet effec-
tive proxy for unsupervised word segmentation, offering a
principled mechanism to introduce structure into the BPE
pipeline for unsegmented scripts.

Figure 4. Comparison of pre-tokenization methods on a sample
Chinese sentence. Observing the vertical lines from top to bottom,
the method with λ = 4 yields token boundaries that align most
closely with the gold standard in the top row. It segments nearly
perfectly compared to the ground truth in the top row, with only
one extra boundary inserted after the 10th character.

4.4. Intrinsic Evaluation

We assess segmentation quality using precision, recall, and
F1 score by comparing predicted subword boundaries to
gold-standard word segmentation in the PKU corpus. Pre-
cision reflects the proportion of predicted boundaries that
align with true word boundaries, while recall measures the
proportion of true boundaries that are correctly predicted.
The F1 score is computed following the official SIGHAN
Bakeoff evaluation script, which defines a word-level match
as a segment whose start and end positions exactly align
with a gold-standard word. We split our corpus into 70%
training and 30% testing for model development and evalu-
ation.

Our experimental procedure consists of four main steps:

1. Pre-tokenization: We apply various pre-tokenization
strategies to the training data. These include entropy-
based methods, GPT-2 uncertainty, and a no-pre-
tokenization baseline.

2. BPE Training: A Byte-Pair Encoding (BPE) tokenizer
is trained on the pre-tokenized training set. All meth-
ods use the same algorithm and trainer configuration
to ensure consistency.

3. Segmentation: The trained tokenizer is then used to
segment the test set at inference time. The resulting
tokens are treated as predicted word boundaries.

4. Evaluation: We compute precision, recall, and F1
score by comparing the predicted word boundaries to
the PKU gold-standard segmentation. Character-level
boundary matching is used for evaluation.

Our results demonstrate that entropy-based pre-tokenization
methods substantially outperform the baseline BPE ap-
proach. The best performance is achieved when using an
entropy-regularized approach with λ = 4, which yields the
highest F1 score of 58.73, significantly surpassing the base-
line’s 49.30 by 9.43 percentage points. This setting also
achieves the best precision (54.21) and the second-highest
recall (64.06), indicating its effectiveness in correctly iden-
tifying subword boundaries with fewer false positives.

Method Precision Recall F1
Baseline 46.89 51.96 49.30
GPT-2 52.07 64.69 57.70
λ = 0 28.69 42.92 34.39
λ = 1 41.24 55.91 47.47
λ = 4 54.21 64.06 58.73
λ = 15 52.83 62.17 57.12
Entropy Only 51.28 60.98 55.71

Table 1. Segmentation results on the PKU dataset. All scores are
computed on the unseen 30% of 2,255 sentences using character-
level boundary comparison.

The GPT-2 method, which leverages language model un-
certainty for boundary detection, performs competitively,
achieving an F1 score of 57.70 and the highest recall (64.69),
though its precision (52.07) is slightly below that of λ = 4.
These results highlight the strong predictive signal of token-
level entropy derived from pretrained LLMs, even without
additional regularization.

The entropy-only method also shows strong performance
(F1 = 55.71), suggesting that raw entropy is a useful heuris-
tic for segmentation. However, it is outperformed by the
regularized variants, indicating that combining entropy with
structural constraints improves segmentation accuracy.

Varying the regularization strength λ provides insight into
the trade-off between precision and recall. A low value
like λ = 0 yields poor overall performance (F1 = 34.39),
primarily due to low precision (28.69). In contrast, moderate
values such as λ = 1 and λ = 15 show solid gains (F1 =
47.47 and 57.12, respectively), with λ = 15 emphasizing
recall (62.17) more than precision.

Overall, these results show that entropy-based pre-
tokenization with tuned parameters provides the most ac-
curate and balanced subword boundary predictions, outper-
forming both frequency-based baselines and auto-regressive
language models.

5. Discussion
The findings of our intrinsic evaluation underscore the effec-
tiveness of entropy-informed pre-tokenization in aligning
subword units with linguistically meaningful boundaries in
Chinese, an unsegmented language where traditional BPE
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tokenization methods often fail to capture semantic structure.
These improvements in tokenization fidelity suggest poten-
tial downstream benefits across a range of natural language
processing tasks.

5.1. Extrinsic Evaluation

While this work focuses on intrinsic segmentation accu-
racy, a critical direction for future research involves evalu-
ating the impact of entropy-guided tokenization on extrin-
sic benchmarks. Tasks such as named entity recognition
(NER), machine translation, and question answering are par-
ticularly sensitive to token boundary precision. Our work
shows promising signs that it could be beneficial to inte-
grate our proposed pre-tokenization strategies into standard
transformer-based LLM training, primarily when modeling
low-resource or unsegmented languages (due to computa-
tional limitations, we did not include such in our research).
In such settings, where linguistic resources are limited or
unavailable, the ability to induce meaningful segmentation
from unsupervised entropy signals may offer significant
improvements in generalization and cross-lingual transfer.

5.2. Toward Byte-Level Robustness

Another promising direction is adapting entropy-driven
methods like ours to byte-level tokenization schemes. Byte-
level BPE has gained traction in multilingual settings due to
its robustness and language independence. Unlike character-
or word-level tokenizers, byte-level approaches operate di-
rectly on raw input streams, avoiding assumptions about
orthography or script boundaries.

However, this flexibility often comes at the cost of inter-
pretability and token efficiency. We propose to investi-
gate whether entropy signals—derived from character-level
statistics or model-based predictive distributions—can serve
as segmentation priors in byte-level frameworks. By embed-
ding structural cues into the byte-level token stream, it may
be possible to preserve the generality of byte-level models
while recovering aspects of morphological awareness.

Such an approach could enhance multilingual performance
in real-world conditions involving code-switching, noisy
user-generated text, or non-standard encodings. Moreover,
entropy-regularized byte-level tokenization could serve as
a bridge between data-driven robustness and linguistically
informed structure in foundation model pretraining.

6. Conclusion
This paper introduces two entropy-driven pre-tokenization
methods to address the limitations of Byte Pair Encoding
in unsegmented languages such as Chinese. By incorpo-
rating information-theoretic signals, specifically statistical
co-occurrence metrics and predictive entropy from a pre-

trained autoregressive language model, we effectively bias
BPE toward more linguistically coherent token boundaries.
Experimental results on the PKU segmentation benchmark
confirm that both approaches significantly outperform stan-
dard frequency-based BPE, with the statistical method ca-
pable of yielding the highest F1 score with proper hyper-
parameter tuning. Our methods preserve the modularity
and efficiency of existing BPE frameworks while improving
token granularity and interpretability. We demonstrate the
potential of entropy-based priors in bridging the gap be-
tween statistical tokenization and linguistic structure across
diverse scripts and resource conditions. Finally, we encour-
age incorporating our work into LLM training, particularly
for unsegmented languages like Chinese, with the aim of
improving performance on downstream tasks.

Impact Statement
This paper presents work aimed at advancing the field of
Natural Language Processing (NLP) by improving models’
ability to understand unsegmented text, thereby contributing
to more equitable language technologies that extend beyond
English. Given that all tokenization decisions directly in-
fluence model behavior and downstream task performance,
our proposed methods should be critically evaluated in ap-
plied contexts before deployment. While our work seeks
to enhance the performance of NLP systems across diverse
languages, we are not aware of any immediate societal con-
cerns that necessitate specific discussion.
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