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ABSTRACT

Simulating turbulent flows is crucial for a wide range of applications, and machine
learning-based solvers are gaining increasing relevance. However, achieving stabil-
ity when generalizing to longer rollout horizons remains a persistent challenge for
learned PDE solvers. We address this challenge by demonstrating the performance
of a fully data-driven fluid solver that utilizes an autoregressive rollout based on
conditional diffusion models. We show that this approach offers advantages in
terms of rollout stability compared to common learned baselines, and is on par
with state-of-the-art stabilization techniques. Remarkably, this stability is achieved
without compromising the quality of generated samples, and our model success-
fully generalizes to flow parameters beyond the training regime. Additionally, the
probabilistic nature of the diffusion approach allows for inferring predictions that
align with the statistics of the underlying physics. We quantitatively and qualita-
tively evaluate the performance of our method on a range of challenging scenarios,
including incompressible and transonic flows, as well as isotropic turbulence.

1 INTRODUCTION

Simulations based on partial differential equations (PDEs), particularly those involving turbulent
fluid flows, constitute a crucial research area with applications ranging from medicine (Olufsen
et al., 2000) to climate research (Wyngaard, 1992), as well as numerous engineering fields (Moin
& Mahesh, 1998; Verma et al., 2018). Historically, such flows have been simulated via iterative
numerical solvers for the Navier-Stokes equations. Recently, there has been a growing interest in
combining or replacing traditional solvers with deep learning methods. These approaches have shown
considerable promise in terms of enhancing the accuracy and efficiency of fluid simulations (Wiewel
et al., 2019; Han et al., 2021; Geneva & Zabaras, 2022; Stachenfeld et al., 2022).

However, despite the significant progress made in this field, a major remaining challenge is the
ability to predict rollouts that maintain both stability and accuracy over longer temporal horizons
(Um et al., 2020; Kochkov et al., 2021). Fluid simulations are inherently complex and dynamic, and
therefore, it is highly challenging to accurately capture the intricate physical phenomena that occur
over extended periods of time. Additionally, due to their chaotic nature, even small ambiguities of the
spatially averaged states used for simulations can lead to fundamentally different solutions over time
(Pope, 2000). However, most learned methods and traditional numerical solvers process simulation
trajectories deterministically, and thus only provide a single answer.

We address these issues by exploring the usefulness of the recently emerging conditional diffusion
models (Ho et al., 2020; Song et al., 2021b) for turbulent flows, which serve as representatives for
more general PDE-based simulations. Specifically, we are interested in the probabilistic prediction
of fluid flow trajectories from an initial condition. We aim for answering the question: Does the
increased inference cost of autoregressive diffusion models pay off in terms of posterior sampling,
rollout stability, and accuracy for fluid simulations? Our focus on fluid flows makes it possible to
analyze the generated posterior samples with the statistical temporal metrics established by turbulence
research (Dryden, 1943). Unlike application areas like imaging or speech, where the exact distribution
of possible solutions is typically unknown, these turbulence metrics make it possible to reliably
evaluate the quality of different samples generated by a probabilistic model. To summarize, the central
contributions of our work are as follows: (i) We propose to use a conditional diffusion approach with
an autoregressive rollout to produce a probabilistic surrogate simulator. This approach is robust, can
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be flexibly conditioned on flow parameters, and generalizes to parameters outside the training domain.
(ii) Most notably, we show that using a diffusion-based approach provides significant benefits over
common learned autoregressive flow simulation methods, especially in terms of accuracy and stability
over time. (iii) We additionally demonstrate that this simulator can generate physically plausible
posterior samples, the statistics of which match those of the underlying ground truth physics.

2 RELATED WORK

Fluid Solvers utilizing Machine Learning A variety of works have used machine learning as
means to improve numerical solvers. Several approaches focus on learning computational stencils
(Bar-Sinai et al., 2019; Kochkov et al., 2021) or additive corrections (de Avila Belbute-Peres et al.,
2020; Um et al., 2020; List et al., 2022) to increase simulation accuracy. In addition, differentiable
solvers have been applied to solve inverse problems such as fluid control (Holl et al., 2020). An
overview can be found, e.g., in Thuerey et al. (2021). When the solver is not integrated into
the computational graph, typically a data-driven surrogate model is trained to replace the solver.
Convolutional neural networks (CNNs) for such flow prediction problems are very popular, and
often employ an encoder-processor-decoder architecture. For the latent space processor, multilayer
perceptrons (Kim et al., 2019; Wu et al., 2022) as well as LSTMs (Wiewel et al., 2019) were proposed.
As particularly successful latent architectures, transformers (Vaswani et al., 2017) have also been
combined with CNN-based encoders as a reduced-order model (Hemmasian & Farimani, 2023), for
example to simulate incompressible flows via Koopman-based latent dynamics (Geneva & Zabaras,
2022). Alternatives do not rely on an autoregressive latent model, e.g., by using spatio-temporal
3D convolutions (Deo et al., 2023), dilated convolutions (Stachenfeld et al., 2022), Bayesian neural
networks for uncertainty quantification (Geneva & Zabaras, 2019), or problem-specific multi-scale
architectures (Wang et al., 2020). Furthermore, various works utilize message passing architectures
(Pfaff et al., 2021; Brandstetter et al., 2022), and adding noise to training inputs was likewise proposed
to improve temporal prediction stability for graph networks (Sanchez-Gonzalez et al., 2020). Han
et al. (2021) combine a transformer-based latent model with a graph network encoder and decoder.

Diffusion Models Diffusion models (Hyvärinen, 2005; Sohl-Dickstein et al., 2015) became popular
after diffusion probabilistic models and denoising score matching were combined for high-quality
unconditional image generation (Ho et al., 2020). This approach has since been improved in many
aspects, e.g., with meaningful latent representations (Song et al., 2021a) or better sampling (Nichol &
Dhariwal, 2021). In addition, generative hybrid approaches were proposed, for instance diffusion
autoencoders (Preechakul et al., 2022) or score-based latent models (Vahdat et al., 2021). Diffusion
models for image generation are typically conditioned on simple class labels (Dhariwal & Nichol,
2021) or textual inputs (Saharia et al., 2022). Pre-trained diffusion models are also employed for
inverse image problems (Kawar et al., 2022), and different conditioning approaches were compared
for score-based models on similar tasks (Batzolis et al., 2021). Song et al. (2022) combine an
unconditional diffusion model with inverse problem solving for medical applications. For an in-depth
review of diffusion approaches we refer to Yang et al. (2022).

Diffusion Models for Fluids and Temporal Prediction Selected works have applied diffusion
models to temporal prediction tasks like unconditional or text-based video generation, as well as video
prediction (e.g. Ho et al., 2022; Höppe et al., 2022; Harvey et al., 2022). These methods typically
directly include time as a third dimension or re-use the batch dimension (Blattmann et al., 2023). As a
result, autoregressive rollouts are only used to create longer output sequences compared to the training
domain, with the drawback that predictions quickly accumulate errors or lose temporal coherence.
Very few works exist that apply diffusion methods to transient physical processes. Holzschuh et al.
(2023) utilize score matching to solve inverse problems, while Shu et al. (2023) employ a physics-
informed diffusion model for a frame-by-frame super-resolution task. Lienen et al. (2023) take
early steps towards turbulent flows in 3D, via a purely generative diffusion setup based on boundary
geometry information. Instead of an autoregressive approach, Yang & Sommer (2023) use physical
time as a conditioning for diffusion-based fluid field prediction, but report unphysical prediction
results. Contemporarily, multi-step refinement (Lippe et al., 2023) and predictor-interpolator schemes
(Cachay et al., 2023) inspired by diffusion models were proposed to improve the stability of PDE
predictions, but both approaches provide little variance in posterior samples. In our experiments, the
former is highly sensitive to hyperparameters and lacks accuracy, and we achieve better temporal
coherence compared to the Bayesian interpolator samples from Cachay et al. (2023).
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3 AUTOREGRESSIVE CONDITIONAL DIFFUSION

Our problem setting is the following: a temporal trajectory s1, s2, . . . , sT of states should be predicted
given an initial state s0. Each st consists of dense spatial fields, like velocity, and scalar parameters
such as the Reynolds number. Numerical solvers f iteratively predict st = f(st−1), and we similarly
propose to use a diffusion model fθ with parameters θ to autoregressively predict st ∼ fθ(s

t−1).
Below, we briefly summarize the basics of diffusion models, before providing details on how to
condition and unroll them to obtain stable temporal predictions of physics systems. It is important to
distinguish the simulation rollout via fθ from the diffusion rollout pθ. The former corresponds to
physical time and consists of simulation- or time steps denoted by t ∈ 0, 1, . . . , T superscripts. The
latter refers to diffusion steps in the Markov chain, denoted by r ∈ 0, 1, . . . , R subscripts.

Preliminaries: Diffusion Models A denoising diffusion probabilistic model (DDPM) is a gen-
erative model based on a parameterized Markov chain, and contains a fixed forward and a learned
reverse process (Ho et al., 2020). The forward process

q(xr|xr−1) = N (xr;
√
1− βrxr−1, βrI) (1)

incrementally adds Gaussian noise to the original data x0 according to a variance schedule β1, . . . , βR

resulting in the latent variable xR, that corresponds to pure Gaussian noise. The reverse process

pθ(xr−1|xr) = N (xr−1;µθ(xr, r),Σθ(xr, r)) (2)

contains learned transitions, i.e. µθ and Σθ are computed by a neural network parameterized by θ
given xr and r. The network is trained via the variational lower bound (ELBO) using reparameteriza-
tion. During inference the initial latent variable xR ∼ N (0, I) as well as the intermediate diffusion
steps are sampled, leading to a probabilistic generation of x0 with a distribution that is similar to
the distribution of the training data. Note that the latent space of a DDPM by construction has the
same dimensionality as the input space, in contrast to, e.g., variational autoencoders (VAEs) (Kingma
& Welling, 2014). Thereby, it avoids problems with the generation of high frequency details due to
compressed representations. Compared to generative adversarial networks (GANs), diffusion models
typically do not suffer from mode collapse problems or convergence issues (Metz et al., 2017).

Preliminaries: Conditioning Practical physics simulators need to be conditioned on information
like the initial state and characteristic dimensionless quantities. To obtain a conditional DDPM,
we employ a concatenation-based conditioning approach (Batzolis et al., 2021): Each element
x0 = (d0, c0) of the diffusion process now consists of a data component d0 that is only available
during training and a conditioning component c0 that is always given. Correspondingly, the task at
inference time is the conditional prediction P (d0|c0). During training, the basic DDPM algorithm
remains unchanged as xr = (cr,dr), with cr ∼ q( · |cr−1) and dr ∼ q( · |dr−1), is still produced
by the incremental addition of noise during the forward process. During inference dR ∼ N (0, I) is
sampled and processed in the reverse process, while c0 is known and any cr thus can be obtained
from Eq. (1), i.e.,

xr = (cr,dr) where cr ∼ q( · |cr−1) and dr ∼ pθ( · |xr+1). (3)

Here, q(cr|cr−1) denotes the forward process for c, and dr ∼ pθ( · |xr+1) is realized by discarding
the prediction of cr when evaluating pθ. A visualization of this conditioning technique is shown in
Fig. 1. We found the addition of noise to the conditioning, instead of simply using c0 over the entire
diffusion process, to be crucial for the temporal simulation rollout stability as detailed in Sec. 5.
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Figure 1: Diffusion conditioning approach with the forward (black) and reverse process (red) during
training and inference. White backgrounds for c or d indicate given information, i.e., inputs in each
phase, and d0 is the generated result during inference, i.e., the prediction of the next simulation step.
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Training and Autoregressive Rollout To extend the conditional setup to temporal tasks, we
build on autoregressive single-step prediction as outlined above, with k previous steps: st ∼
fθ( · |st−k, . . . , st−1). The conditional DDPM for fθ is trained in the following manner: Given a
data set with different physical simulation trajectories, a random simulation state st ∈ s0, s1, . . . , sT

is selected from a sequence as the prediction target d0. This state consists of dense simulation fields
like velocity or pressure, and scalar parameters like the Mach number (see right of Fig. 2). The
corresponding conditioning consists of k previous simulation states c0 = (st−k, . . . , st−1). Next, a
random diffusion time step r is sampled, leading to xr via the forward process. The network learns
to predict the added noise level via the ELBO as in the original DDPM (Ho et al., 2020).
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Figure 2: Autoregressive simulation rollout for
k = 2 (left) and simulation state contents (right).

This training objective allows for producing a
single subsequent time step as the final output
of the diffusion process d0 during inference.
We can then employ this single-step predic-
tion for sampling simulation rollouts with ar-
bitrary length by autoregressively reusing gener-
ated states as conditioning for the next iteration:
For each simulation step, Eq. (3) is unrolled
from xt

R to xt
0 starting from dt

R ∼ N (0, I)
and ct0 = (st−k, . . . , st−1). Then, the predicted
next time step is st = dt

0. This process is visu-
alized in Fig. 2, and we denote models trained
with this approach as autoregressive conditional
diffusion models (cDDPM) in the following.

The motivation for this combination of conditioning and simulation rollout is the hypothesis that
perturbations to the conditioning can be compensated during the diffusion rollout, leading to improved
temporal stability. Especially so, when smaller inference errors inevitably accumulate over the course
of long simulation rollouts. Furthermore, this autoregressive rollout approach ensures that the network
produces a temporally coherent trajectory for every step along the inferred sequence. This stands in
contrast to explicitly conditioning the DDPM on physical time t, i.e. treating it in the same way as
the diffusion step r, as proposed by Yang & Sommer (2023). For a probabilistic model it is especially
crucial to have access to previously generated outputs during the prediction, as otherwise temporal
coherence can only potentially be achieved via tricks such as fixed temporal and spatial noise patterns.

Implementation We employ a widely used U-Net (based on Ronneberger et al., 2015) with various
established smaller architecture modernizations (Ho et al., 2020; Dhariwal & Nichol, 2021), to learn
the reverse process with a linear variance schedule. We use k = 2 previous steps for the model input,
and achieved high-quality samples with 20–100 diffusion steps R, depending on how strongly each
setting is conditioned. This is in line with other recent works that achieve competitive results with as
little as R ≈ 30 in the image domain (Karras et al., 2022; Chung et al., 2022). Combining d0 and
c0 to form x0, as well as aggregating multiple states for c0 is achieved via concatenation along the
channel dimension. Likewise, scalar simulation parameters are concatenated as constant, spatially
expanded channels.

Baseline Models A crucial question is how much difference the diffusion training itself makes in
comparison to a classic supervised training approach of the same backbone architecture. Hence, we
use a network with identical architecture to the cDDPM model that is trained with such a supervised
setup as a baseline. It is trained with an MSE loss to predict one future simulation state with a single
model pass and denoted by U-Net in the following.

The success of transformer architectures (Vaswani et al., 2017) and their recent application to physics
predictions (Han et al., 2021) raises the question how the cDDPM approach fares in comparison
to state-of-the-art transformer architectures. Being tailored to sequential processing with a long-
term observation horizon, these models operate on a latent space with a reduced size. In contrast,
diffusion models by construction operate on the full spatial resolution. Specifically, we test the
encoder-processor-decoder architecture from Han et al. (2021) adopted to regular grids via a CNN-
encoding, denoted by TFMGN below. Furthermore, we provide an improved variant (TFEnc) that allows
to simulate flows with varying parameters over the simulation rollout, and varies key transformer
parameters. Compared to TFMGN it relies on transformer encoder layers and uses full latent predictions
instead of residual predictions. Lastly, we test the transformer-based prediction in conjunction with a
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probabilistic VAE, denoted by TFVAE. All transformer architectures have access to a large number
of previous steps and use a rollout schedule in line with Han et al. (2021) during training, however
teacher forcing is removed. By default we use a 30 step input window and a rollout length of 60.

Furthermore, we investigate dilated ResNets (based on Stachenfeld et al., 2022) and Fourier Neural
Operators (FNOs) (Li et al., 2021) as two other popular approaches. For the former, the proposed
dilated ResNet (ResNetdil.) as well as the same architecture without dilations (ResNet) are included.
For the latter, we show models using (16, 8) Fourier modes in x- and y-direction (FNO16) and (32, 16)
modes (FNO32). To ensure a fair comparison, all models were parameterized with a similar parameter
count, and suitable key hyperparameters were determined with a broad search for each architecture.
Additional cDDPM implementation information, and details for each baseline can be found in App. B.

4 EXPERIMENTS

We quantitatively and qualitatively evaluate our DDPM-based simulator and the baseline models on
three scenarios with increasing difficulty: (i) an incompressible wake flow, (ii) a transonic cylinder
flow with shock waves, and (iii) an isotropic turbulence flow. Test cases for each scenario contain
out-of-distribution data via simulation parameters outside of the training data range. Example
visualizations are shown in Fig. 3, and experimental details are provided in App. A. We use R = 20
diffusion steps for each experiment unless denoted otherwise (see App. C.4 for an ablation on R).
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Figure 3: Zoomed examples of Inchigh with Re = 1000 (left, vorticity), Tralong with Ma = 0.64
(middle, pressure), and Isowith z = 280 (right, vorticity). Shown are trajectories from the numerical
solver, and predictions by U-Net and cDDPM (see App. D for more extensive visualizations).

Incompressible Wake Flow Our first case targets incompressible wake flows. These flows already
encompass the full complexity of the Navier-Stokes equations with boundary interactions, but due
to their direct unsteady periodic nature represent the simplest of our three scenarios. We simulate
a fully developed incompressible Karman vortex street behind a cylindrical obstacle with PhiFlow
(Holl et al., 2020) for a varying Reynolds number Re ≤ 1000. The corresponding flows capture
the transition from laminar to the onset of turbulence. Models are trained on data from simulation
sequences with Re ∈ [200, 900]. We evaluate generalization on the extrapolation test sets Inclow
with Re ∈ [100, 180] for T = 60, and Inchigh with Re ∈ [920, 1000] for T = 60. While all
training is done with constant Re, we add a case with varying Re as a particularly challenging test
set: Incvar features a sequence of T = 250 steps with of a smoothly varying Re from 200 to 900
over the course of the simulation time.

Transonic Cylinder Flow As a significantly more complex scenario we target transonic flows.
These flows require the simulation of a varying density, and exhibit the formation of shock waves that
interact with the flow, especially at higher Mach numbers Ma . These properties make the problem
highly chaotic and longer prediction rollouts especially challenging. We simulate a fully developed
compressible Karman vortex street using SU2 (Economon et al., 2015) with Re = 10000, while
varying Ma in a transonic regime where shock waves start to occur. Models are trained on sequences
with Ma ∈ [0.53, 0.63] ∪ [0.69, 0.90]. We evaluate extrapolation on Traext with Ma ∈ [0.50, 0.52]
for T = 60, interpolation via Traint with Ma ∈ [0.66, 0.68] for T = 60, and longer rollouts of
about 8 vortex shedding periods using Tralong with Ma ∈ [0.64, 0.65] for T = 240.

Isotropic Turbulence As a third scenario we evaluate the inference of planes from 3D isotropic
turbulence. This case is inherently difficult, due to its severely underdetermined nature, as the
information provided in a 2D plane allows for a large space of possible solutions, depending on the
3D motion outside of the plane. Thus, it is expected that deviations from the reference trajectories
occur across methods, and we use R = 100 steps in cDDPM as a consequence. For this setup,
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we observed a tradeoff between accuracy and sampling speed, where additional diffusion steps
continued to improve prediction quality. As training data, we utilize 2D z-slices of 3D data from the
Johns Hopkins Turbulence Database (Perlman et al., 2007). Models are trained on sequences with
z ∈ [1, 199] ∪ [351, 1000], and we test on Iso with sequences from z ∈ [200, 350] for T = 100.

5 RESULTS

In the following, we analyze the cDDPM posterior sampling and evaluate the different methods in
terms of their general accuracy and temporal stability. Appendix C contains additional results and
evaluations for various aspects discussed in the following. Unless denoted otherwise, mean and
standard deviation over all sequences from each data set, multiple training runs, and multiple random
model evaluations are reported. We evaluate two training runs with different random seeds for Iso,
and three for Inc and Tra. For the probabilistic methods TFVAE and cDDPM, five random model
evaluations are taken into account per trained model.

Accuracy As the basis for assessing the quality of flow predictions, we first measure direct errors
towards the ground truth sequence. We use a mean-squared-error (MSE) and LSiM, a similarity
metric for numerical simulations (Kohl et al., 2020). For both metrics, lower values indicate better
reconstruction accuracy. Reported errors are rollout errors, i.e., computed per time step and field, and
averaged over the full temporal rollout.
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Figure 4: Quantitative comparison across our test sets for different network architectures in terms of
MSE (top) and LSiM (bottom). The full, numerical accuracy results are also included in App. C.3.

As shown in Fig. 4, cDDPM produces accurate results with low standard deviation across all
experiments and test sets. For the easiest test case Inc, all model classes can do well, as shown by
the comparable performance of ResNetdil., FNO16, TFEnc, U-Net and cDDPM with low error. On the
more complex Tra case, all transformer-based and FNO architectures are already substantially less
accurate, and mainly the ResNet variants remain competitive with cDDPM in terms of error. However,
for the longer rollouts in Tralong they additionally face temporal stability issues, as discussed below.
On Iso, all models are struggling due to the highly underdetermined nature of this experiment. The
transformer-based methods lack accuracy, as the compressed latent representations are unable to
capture the high frequency details of this data set. The remaining baselines diverge at some point over
the rollout as shown in App. D, while cDDPM remains stable and achieves an improvement of more
than 35% compared to the best baseline. Below, we will only further investigate the most successful
architecture in each baseline model class, i.e., ResNetdil., FNO16 (FNO32 for Iso), TFEnc, and U-Net.

The improved performance of ResNetdil. compared to ResNet, and the generally weak results of FNO
on our more complex tasks confirm the findings from Stachenfeld et al. (2022). The regular U-Net,
despite its network structure being identical to cDDPM, frequently performs worse on Tra and Iso.
Thus, we include an ablation on cDDPM in Fig. 4, that behaves similarly to U-Net in terms of error
propagation: For the cDDPMncn model no conditioning noise is applied, i.e., c0 is used over the entire
diffusion process. It performs substantially worse than cDDPM across cases, as it does not prevent
the buildup of errors similar to the U-Net or ResNet baselines, due to the tight coupling between
conditioning and prediction. This highlights the benefits of the cDDPM approach, where the next
step is always created from scratch, leading to less error propagation and increased temporal stability.

Posterior Sampling Another attractive aspect of a DDPM-based simulator is posterior sampling,
i.e., the ability to create different samples from the solution manifold for one initial condition. Below,
we qualitatively and quantitatively evaluate the cDDPM posterior samples. First, it becomes apparent
that cDDPM can produce samples with substantial differences. This is illustrated in Fig. 5, where
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zoomed areas from three random cDDPM predictions on Tralong and Iso at different time steps
are displayed along with a sample from the regular simulation. The diffusion approach produces
realistic, diverse features, such as the strongly varying formation of shock waves near the immersed
cylinder for Tralong. Figure 5 also visualizes the resulting spatially varying standard deviation
across five samples. Due to the chaotic nature of both test cases, it increases over time, as expected.
The locations of high variance match areas that are more difficult to predict, such as vortices and
shock wave regions for Tralong, and regions with high vorticity for Iso. In contrast, the posterior
sampling of TFVAE does not manage to produce such results, as samples from one model exhibit only
minor differences and high-frequency structures are either missing or unphysical, e.g., in areas where
shock waves should normally occur. A posterior sample analysis for TFVAE is contained in App. C.2.
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Figure 5: cDDPM posterior samples with corresponding standard deviation on Tralong with Ma =
0.64 (left, pressure) and Iso with z = 300 (right, vorticity) at different zoom levels and time steps t.

To analyze the quality of a distribution of predicted simulation trajectories from a probabilistic
algorithm, it is naturally not sufficient to directly compare to a single target sequence, as even highly
accurate numerical simulations would eventually decorrelate from a target simulation over time (Hu
& Liao, 2020). Instead, our experimental setups allow for using temporal and spatial evaluations to
measure whether different samples statistically match the reference simulation, as established by
turbulence research (Dryden, 1943). While a broader evaluation is provided in App. C.1, two metrics
for a sequence from Tralong are discussed here: We evaluate the wavenumber of the horizontal
motion across a vertical line in the flow (averaged over time), and the temporal frequency of the
vertical motion at a point probe. As shown in Fig. 6, the samples produced by cDDPM accurately
match the statistics of the reference simulation. Even the high frequency content on the right side of
the spectrum is on average correctly reproduced by the cDDPM outputs. Thus, the posterior samples
exhibit a high correspondence to the statistical physical behavior of the reference simulations. Note
that a high-quality deterministic baseline can achieve a comparable spectral mean in this evaluation.
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Figure 6: Spatial (left) and temporal (right) frequency analysis across posterior samples for a full
sequence from Tralong with Ma = 0.65. The shaded area shows the 5th to 95th percentile across all
trained models and posterior samples.

Comparing Temporal Statistics Temporal statistics also highlight the differences of the model
architectures under consideration. The left of Fig. 7 shows an evaluation in terms of the frequency of
the x-velocity for Iso averaged across every spatial point. TFEnc is lacking across the frequency band,
while models with direct error propagation such as ResNetdil., FNO16, U-Net, and cDDPMncn clearly
overshoot. High frequencies are modeled well by cDDPM, but it also slightly deviates in terms of
lower temporal frequencies. This is most likely caused by the strongly under-determined nature of
Iso, causing cDDPM to unnecessarily dissipate spatial high-frequency motions, which impacts low
temporal frequencies over longer rollouts. Nonetheless, it still outperforms other approaches.
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Figure 7: Temporal frequency analysis on a sequence from Iso with z = 300 (left). Correlation of
predictions from different methods with the reference simulation over the rollout on Incvar (right).

Temporal Stability A central motivation for employing diffusion models in the context of transient
simulations is the hypothesis that the stochastic training procedure leads to a more robust temporal
behavior at inference time. This is especially crucial for practical applications of fluid simulations,
where rollouts with thousands of steps are not uncommon. We now evaluate this aspect in more
detail, first, by measuring the Pearson correlation coefficient (Pearson, 1920) between prediction
and reference over time. We evaluate this for the Incvar test, which contains T = 250 steps with a
previously unseen change of the Reynolds number over the rollout (see Fig. 7 on the right). Initially,
U-Net and ResNet are most accurate, but both exhibit a fast decorrelation over time. This already
indicates a lack of tolerance to rollout errors observed on our more complex cases. FNO16 is on
par with cDDPM, as Incvar mainly contains low frequencies. However, the FNO variants have
difficulties with high-frequency information, as shown below and reported, e.g., by Stachenfeld et al.
(2022). TFEnc keeps a high level of correlation that even slightly outperforms cDDPM. However, all
transformer-based methods have the advantage of receiving a larger range of previous simulation
states during training and inference (here k = 30) to predict the next state.

Simulation ResNetdil. FNO16 FNO32 TFEnc U-Net ACDMncn ACDM
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Figure 8: Stability analysis via error to previous time step on Tralong (left) and Iso (right).

To assess the dynamics of more complex cases, we measure the magnitude of the rate of change of
s, computed as ∥(st−st−1)/∆t∥1 for every normalized time step. Compared to the correlation, this
metric stays meaningful even for long rollout times, and indicates whether a simulator preserves the
expected evolution of states as given by the reference simulation. Figure 8 shows this evaluation for
Tralong and Iso. For Tralong, the reference simulation features steady oscillations as given by
the main vortex shedding frequency. TFEnc generally remains stable due to the long training rollout
indicated by a mostly constant rate of change. However, it exhibits minor temporal inconsistencies
and slightly undershoots compared to the reference, most likely due to temporal updates being
performed suboptimally in the latent space. The other baselines diverge at different points during
the rollout and mostly settle into a stable but clearly wrong state of a mean flow prediction without
vortices. Like these baselines, the cDDPM simulator closely follows the reference until about t = 60,
however it transitions to a relatively constant rate of change without diverging. Note that the vortex
shedding oscillations are averaged out over posterior samples and training runs in this evaluation.

The right side of Fig. 8 repeats this evaluation for the Iso experiment. Its isotropic nature in
combination with forcing leads to an almost constant rate of change over time for the reference
simulation. All methods struggle to replicate this accurately due the underdetermined learning task.
Apart from issues with the reconstruction quality, TFEnc exhibits undesirable spikes corresponding to
their temporal prediction window of k = 25 previous steps, and undershoots after one rollout window.
Similar as observed on Tralong, ResNetdil., FNO, and U-Net initially predict a quite accurate rate of
change, but diverge at different points over the rollout. Here, the common failure mode is an incorrect
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addition of energy to the system that causes a quick and significant divergence from the reference.
Despite the initially slightly larger rate of change, and the decay corresponding to an overly dissipative
prediction, cDDPM fares best among the investigated methods and remains fully stable over the
simulation rollout. These results confirm the initial hypothesis, and show that the DDPM-based
training not only leads to accurate instantaneous predictions, but also yields an excellent temporal
stability. This mainly caused by the increased error tolerance of cDDPM compared to cDDPMncn, as
the latter performs very similar to U-Net for both evaluated experiments in Fig. 8.
Discussion and Limitations So far, we have evaluated cDDPM and U-Net with training method-
ologies that were kept as similar as possible for fairness. However, several works have reported
improvements from unrolling predictions during training (Lusch et al., 2018; Geneva & Zabaras,
2020). We investigate U-Net architectures with such unrolling over m steps during training, where
the gradient is fully backpropagated (see App. C.5 for details). This additional complexity at training
time improves the results, for example, U-Netm8 is fully temporally stable on Iso, and is on par with
the cDDPM accuracy of 0.037 with an MSE of 0.045. Too large m can deteriorate performance, but
this can be mitigated via pre-training with smaller m. Furthermore, the usage of training noise was
proposed to reduce problems from error accumulation during inference (Sanchez-Gonzalez et al.,
2020). We investigate adding normally distributed noise to the U-Net input with varying standard
deviation n. With a well-tuned value of n = 10−2, U-Net results in an MSE of 0.0014 compared to
cDDPM with an MSE of 0.0023 on Traext, and does not show the issues with temporal stability
exhibited by the standard U-Net on Tralong or Iso (see App. C.6 for details).

Both changes to the U-Net training are faster at inference time than cDDPM, with a factor roughly
equal to the number of backbone model evaluations, i.e., diffusion steps R. While improvements in
terms of sampling procedures are to be expected in future work, the advantages of diffusion-based
approaches most likely stem from their iterative nature over the diffusion rollout, and hence we
anticipate that a constant factor over deterministic, single-pass inference will remain. However, both
stabilization methods naturally do not provide the U-Net with capabilities for posterior sampling.
Unrolling also introduces additional computational overheads during training (see App. B.6). Fur-
thermore, training noise necessitates hyperparameter tuning for n, as suboptimal values can even
deteriorate performance (see details in App. C.6), while cDDPM works well out-of-the-box, with R
only serving as a balancing factor between accuracy and inference costs.

Concurrently, two methods with a similar focus as cDDPM were proposed: PDE-Refiner (Lippe et al.,
2023), and DYffusion (Cachay et al., 2023). PDE-Refiner relies on a refinement of direct one-step
predictions, by adding noise and denoising the result via diffusion within a single model. Compared
to our method, it can achieve similar temporal stability in less inference time, as only about R = 4
model evaluations are required. However PDE-Refiner, (i) consistently achieves worse accuracy
than cDDPM, (ii) exhibits unstable behavior across its multiple hyperparameters, (iii) results in
worse posterior coverage compared to cDDPM, due to its probabilistic refinement of deterministic
predictions. We provide a detailed comparison against PDE-Refiner in App. C.9. DYffusion combines
a predictor, that equates the diffusion time step with the physical time step of the simulation, with
a probabilistic interpolator model. Compared to cDDPM, the method can use large time steps,
generalizes to arbitrary prediction time intervals, and is significantly faster, with little overhead
compared to a standard U-Net inference. However, cDDPM achieves better temporal coherence and
posterior coverage, due to the fully diffusion-based approach compared to the Bayesian interpolation.

6 CONCLUSION AND FUTURE WORK

We demonstrated the attractiveness of autoregressive conditional diffusion models for the simulation
of complex flow phenomena. Our findings show that using a diffusion-based approach has clear
advantages in terms of accuracy for complex, underdetermined flow prediction problems, while at the
same time enabling probabilistic inference, that faithfully reproduces the physical statistics of the
reference solutions. Our results show improved temporal stability of the diffusion-based training,
which surpasses the established methodologies for classical supervised training, and transformer-
based sequence modeling methods. We believe that recent advances in sampling procedures such
as distillation (Salimans & Ho, 2022) are a promising avenue for improved inference performance
for cDDPM in future work. Naturally, considering other PDEs, or larger, three-dimensional flows
is likewise a highly interesting direction. For the latter, single-step cDDPM training is particularly
attractive, as it avoids the substantial costs of temporal training rollouts (Sirignano et al., 2020).
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ETHICS STATEMENT

Our method primarily focuses on an early exploration of integrating diffusion models as a beneficial
tool in a larger fluid simulation toolbox. As such, we anticipate that our research will not directly
result in negative societal or ethical consequences. However, it is important to acknowledge that there
may be a potential military relevance, similar to existing flow simulation technologies like numerical
fluid solvers. Furthermore, the broader environmental implications of deep learning as a whole are an
aspect worth considering.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed appendix with additional information for data sets,
model variants, training, and additional evaluations below. Furthermore, we provide our source code
for dataset generation, training, model sampling, and evaluations alongside this submission. The
source code and data sets will be publicly available upon acceptance as well.
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A DATA DETAILS

In the following, we provide details for each simulation setup: the incompressible wake flow Inc in
App. A.1, the transonic cylinder flow Tra in App. A.2, and the isotropic turbulence Iso in App. A.3.
Further details can be found in the source code accompanying this submission.

A.1 INCOMPRESSIBLE FLOW SIMULATION

To create the incompressible cylinder flow we employ the fluid solver PhiFlow1 (Holl et al., 2020).
Velocity data is stored on a staggered grid, we employ an advection scheme based on the MacCormack
method, and use the adaptive conjugate gradient method as a pressure solver. We enforce a given
Reynolds number in [100, 1000] via an explicit diffusion step.
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Figure 9: Simulation domain for incompressible
flow simulation.

Our domain setup is illustrated in Fig. 9. We
use Neumann boundary conditions in vertical
x-direction of the domain and around the cylin-
der, and a Dirichlet boundary condition for the
outflow on the right of the domain. For the
inflow on the left of the domain we prescribe
a fixed freestream velocity of

(
0
0.5

)
during the

simulation. To get oscillations started, the y-
component of this velocity is replaced with
0.5 · (cos(π · x) + 1), where x denotes normal-
ized vertical domain coordinates in [0, 1], during
a warmup of 20 time steps. We run and export
the simulation for 1300 iterations at time step
0.05, using data after a suitable warmup period
t > 300. The spatial domain discretization is
256 × 128, but we train and evaluate models on a reduced resolution via downsampling the data
to 128 × 64. Velocities are resampled to a regular grid before exporting, and pressure values are
exported directly. In addition, we normalize all fields and scalar components to a standard normal
distribution. The velocity is normalized in terms of magnitude. During inference we do not evaluate
the cylinder area; i.e., all values inside the cylinder are set to zero via a multiplicative binary mask
before every evaluation or loss computation.

We generated a data set of 91 sequences with Reynolds number Re ∈ {100, 110, . . . , 990, 1000}.
Running and exporting the simulations on a machine with an NVIDIA GeForce GTX 1080 Ti GPU
and an Intel Core i7-6850k CPU with 6 cores at 3.6 GHz took about 5 days. Models are trained using
the data of 81 sequences with Re ∈ {200, 210, . . . , 890, 900} for t ∈ [800, 1300]. Training and test
sequences employ a temporal stride of 2. As test sets we use:

• Inclow: five sequences with Re ∈ {100, 120, 140, 160, 180} for t ∈ [1000, 1120) with
T = 60.

• Inchigh: five sequences with Re ∈ {920, 940, 960, 980, 1000} for t ∈ [1000, 1120) with
T = 60.

• Incvar: one sequence for t ∈ [300, 800) with T = 250, and a smoothly varying Re from
200 to 900 during the simulation. This is achieved via linearly interpolating the diffusivity
to the corresponding value at each time step.

For the Incvar test set, we replace the model predictions of Re that are learned to be constant for
cDDPM, U-Net, ResNet, and FNO with the linearly varying Reynolds numbers over the simulation
rollout during inference. The transformer-based methods TFEnc and TFVAE receive all scalar simulation
parameters as an additional input to the latent space for each iteration of the latent processor. Note
that the architectural design of TFMGN does not allow for varying simulation parameters over the
rollout, as only one fixed parameter embedding is provided as a first input step for the latent processor,
i.e. the model is expected to diverge quickly in this case.

1https://github.com/tum-pbs/PhiFlow
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A.2 TRANSONIC FLOW SIMULATION

To create the transonic cylinder flow we use the simulation framework SU22 (Economon et al., 2015).
We employ the delayed detached eddy simulation model (SA-DDES) for turbulence closure, which
is derived from the one-equation Spalart-Allmaras model (Spalart et al., 2006). By modifying the
length scale, the model behaves like RANS for the attached flow in the near wall region and resolves
the detached flows in the other regions. No-slip and adiabatic conditions are applied on the cylinder
surface. The farfield boundary conditions are treated by local, one-dimensional Riemann-invariants.
The governing equations are numerically solved by the finite-volume method. Spatial gradients are
computed with weighted least squares, and the biconjugate gradient stabilized method (BiCGSTAB)
is used as the implicit linear solver. For the freestream velocity we enforce a given Mach number in
[0.5, 0.9] while keeping the Reynolds number at a constant value of 104.

To prevent issues with shockwaves from the initial flow phase, we first compute a steady RANS
solution for each case for 1000 solver iterations and use that as the initialization for the unsteady
simulation. We run the unsteady simulation for 150 000 iterations overall, and use every 50th step
once the vortex street is fully developed after the first 100 000 iterations. This leads to T = 1000
exported steps with velocity, density, and pressure fields. The non-dimensional time step for each
simulation is 0.002 ∗ D̃/Ũ∞, where D̃ is the dimensional cylinder diameter, and Ũ∞ the free-stream
velocity magnitude.
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0 20.529.5
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Figure 10: Full simulation mesh with highlighted resampling area (left) and resampling domain setup
(right) for the transonic flow simulation.

The computational mesh is illustrated on the left in Fig. 10. Inference is focused on the near field
region around the obstacle (marked in red on the left, and shown in detail on the right). To interpolate
from the original mesh to the resampled training and testing domain, which is a regular, Cartesian grid
with resolution 128× 64, we use an interpolation based on radial basis functions. It employs a linear
basis function across the 5 nearest data points of the original mesh. In terms of field normalization
and masking the cylinder area during inference, we treat this case in the same way as described in
App. A.1.

We created a data set of 41 sequences with Mach number Ma ∈ {0.5, 0.51, . . . , 0.89, 0.90} at
Reynolds number 104 with the T = 1000 exported steps each. We sequentially ran the simulations on
one CPU cluster node that contains 28 Intel Xeon E5-2690 v3 CPU cores at 2.6 GHz in about 5 days.
Each simulation was computed in parallel with 56 threads, and one separate thread simultaneously
resampled and processed the simulation outputs online during the simulation. All models are trained
on the data of 33 sequences with Ma ∈ {0.53, 0.54, . . . , 0.62, 0.63} ∪ {0.69, 0.70, . . . , 0.89, 0.90}.
Training and test sequences use a temporal stride of 2. The used test cases for this compressible,
transonic flow setup are:

2https://su2code.github.io
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• Traext: six sequences from Ma ∈ {0.50, 0.51, 0.52}, for t ∈ [500, 620) and for t ∈
[620, 740) with T = 60.

• Traint: six sequences from Ma ∈ {0.66, 0.67, 0.68}, for t ∈ [500, 620) and for t ∈
[620, 740) with T = 60.

• Tralong: four sequences from Ma ∈ {0.64, 0.65}, for t ∈ [0, 480) and for t ∈ [480, 960)
with T = 240.

A.3 ISOTROPIC TURBULENCE

For the isotropic turbulence experiment, we make use of the 3D isotropic1024coarse simulation
from the Johns Hopkins Turbulence Database3 (Perlman et al., 2007). It contains simulations of
forced turbulence with a direct numerical simulation (DNS) using a pseudo-spectral method on
10243 nodes for 5028 time steps. The database allows for direct download queries of parameterized
simulation cutouts; filtering and interpolation are already provided. We utilize sequences of individual
2D slices with a spatio-temporal starting point of (sx, sy, sz, st) = (1, 1, z, 1) and end point of
(ex, ey, ez, et) = (256, 128, z + 1, 1000) for different values of z. A spatial striding of 2 leads to the
training and evaluation resolution of 128 × 64. We use the pressure, as well as the velocity field
including the velocity z-component. We normalize all fields to a standard normal distribution before
training and inference. In this case, the velocity components are normalized individually, which is
statistically comparable to a normalization in terms of magnitude for isotropic turbulence.

We utilize 1000 sequences with z ∈ {1, 2, . . . , 999, 1000} and T = 1000. Models are trained on 849
sequences with z ∈ {1, 2, . . . , 198, 199} ∪ {351, 352, . . . , 999, 1000}. The test set in this case is
Iso using 16 sequences from z ∈ {200, 210, . . . , 340, 350} for t ∈ [500, 600), meaning T = 100.

B IMPLEMENTATION AND MODEL DETAILS

Using the data generated with the techniques described above, the deep learning aspects of this work
are implemented in PyTorch (Paszke et al., 2019). For every model we optimize network weights
using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 10−4 (using β1 = 0.9 and
β2 = 0.999), where the batch size is chosen as 64 by default. If models would exceed the available
GPU memory, the batch size is reduced accordingly. For each epoch, the long training sequences
are split into shorter parts according to the required training sequence length for each model and the
temporal strides described in App. A. To prevent issues with a bias towards certain initial states, the
start (and corresponding end) of each training sequence is randomly shifted forwards or backwards in
time by half the sequence length every time the sequence is loaded. This is especially crucial for the
oscillating cylinder flows when training models with longer rollouts. For instance, training a model
with a training rollout length of 60 steps on a data set that contains vortex shedding oscillations with a
period of 30 steps would lead to a correlation between certain vortex arrangements and the temporal
position in the rollout during training (and inference). This could potentially lead to generalization
problems when the model is confronted with a different vortex arrangement than expected at a
certain time point in the rollout. The sequences for each test set are used directly without further
modifications.

In the following, we provide architectural and training details for the different model architectures
discussed in the main paper: cDDPM in App. B.1, U-Net in App. B.2, ResNet in App. B.3, FNO in
App. B.4, and the transformer-based models in App. B.5. In addition, App. B.6 contains an overview
on training cost and inference performance across architectures.

B.1 ACDM IMPLEMENTATION

For the cDDPM models, we employ a “modern” U-Net architecture commonly used for diffusion
models: The setup at its core follows the traditional U-Net architecture (Ronneberger et al., 2015)
with an initial convolution layer, several downsampling blocks, one bottleneck block, and several
upsampling blocks followed by a final convolution layer. The downsampling and upsampling block at
one resolution are connected via skip connections in addition to the connections through lower layers.
The modernizations mainly affect the number and composition of the blocks: We use three feature

3https://turbulence.pha.jhu.edu/
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map resolutions (128× 64, 64× 32, and 32× 16), i.e. three down- and three upsamling blocks, with
a constant number of channels of 128 at each resolution level. The down- and upsampling block at
each level consists of two ConvNeXt blocks (Liu et al., 2022) and a linear attention layer (Shen et al.,
2021). The bottleneck block uses a regular multi-head self-attention layer (Vaswani et al., 2017)
instead. As proposed by Ho et al. (2020), we:

• use group normalization (Wu & He, 2018) throughout the blocks,

• use a diffusion time embedding for the diffusion step r via a Transformer sinusoidal position
embedding layer (Vaswani et al., 2017) combined with an MLP consisting of two fully
connected layers, that is added to the input of every ConvNeXt block,

• train the model via reparameterization,

• and employ a linear variance schedule.

Since the variance hyperparameters provided by Ho et al. (2020) only work for a large number of
diffusion steps R, we adjust them accordingly to fewer diffusion steps: β0 = 10−4 ∗ (500/R) and
βR = 0.02 ∗ (500/R). We generally found R = 20 to be sufficient on the strongly conditioned data
set Inc and Tra, but on the highly complex Iso data, cDDPM showed improvements up to about
R = 100. The same value of R is used during training and inference. In early exploration runs,
we found k = 2 input steps to show slightly better performance compared to k = 1 used by U-Net
below, and kept this choice for consistency across diffusion evaluations. However, the differences for
changing the number of input steps from k ∈ {1, 2, 3, 4} are minor compared to the performance
difference between architectures. The resulting models are trained for 3100 epochs on Inc and
Tra, and 100 epochs on Iso. All setups use a batch size of 64 during training, and employ a Huber
loss, which worked better than an MSE loss. However, the performance difference between loss are
marginal, compared to the difference between architectures.

For the cDDPMncn variants, we leave all these architecture and training parameters untouched, and
only change the conditioning integration: Instead of adding noise to c0 in the forward and reverse
diffusion process at training and inference time, c0 is used without alterations over the entire diffusion
rollout.

B.2 IMPLEMENTATION OF U-NET (AND U-NET VARIANTS)

For the implementation of U-Net we use an identical U-Net architecture as described above in
App. B.1. The only difference being that the diffusion time embeddings are not necessary. The
resulting model is trained with an MSE loss on the subsequent time step. In early exploration runs,
we found k = 1 input steps to perform best for this direct next-step prediction setup with U-Net (and
similarly for ResNet and FNO below), when investigating k ∈ {1, 2, 3, 4}. However, compared to
the difference between architectures, these changes are minor.

The additional U-Net variants with time unrolling during training share the same architecture. They
are likewise trained with an MSE loss applied equally to every step of the predicted rollout with
length m against the ground truth. A U-Net trained with, e.g., m = 8 is denoted by U-Netm8 below.
To keep a consistent memory level during training, the batch size is reduced correspondingly when m
is increased. Thus, the training time of U-Net significantly depends on m. While m = 2 allows for a
batch size of 64, m = 4 reduces that to 32, m = 4 leads to 16, and finally, for m = 16 the batch size
is only 8. All U-Net variants were trained for 1000 epochs on Inc and Tra, and 100 epochs on Iso.

B.3 IMPLEMENTATION OF DILATED RESNETS

For the implementation of ResNetdil. and ResNet, we follow the setup proposed by Stachenfeld et al.
(2022) that relies on a relatively simple architecture: both models consist of 4 blocks connected with
skip connections as originally proposed by He et al. (2016). Each block consists of 8 convolution
layers with kernel size 3 and stride 1, followed by ReLU activations. For the ResNetdil. model, the
convolution layers in each block employ the following dilation and padding values: (1, 2, 4, 8, 4, 2, 1).
For ResNet, all dilation and padding values are set to 1. Both models use a batch size of 64, receive
k = 1 input steps, predict a single next step, and are trained via an mean-squared-error (MSE) on the
prediction against the simulation trajectory as described in App. B.2.
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B.4 IMPLEMENTATION OF FNOS

For the implementation of the FNO variants, we follow the official PyTorch FNO implementation.4
The lifting and projection block setups are directly replicated from Li et al. (2021), and all models
use 4 FNO layers. We vary the number of modes that are kept in in x- and y-direction in each layer
as follows: FNO16 uses (16, 8) modes and FNO32 uses (32, 16) modes. To ensure a fair comparison,
the hidden size of all models are parameterized to reach a number of trainable parameters similar
to cDDPM, i.e. 112 for FNO16 and 56 for FNO32. Both models use a batch size of 64, receive
k = 1 input steps, predict a single next step, and are trained via an mean-squared-error (MSE) on the
prediction against the simulation trajectory as described in App. B.2.

B.5 TRANSFORMER IMPLEMENTATION

To adapt the approach from Han et al. (2021) to regular grids instead of graphs, we rely on CNN-based
networks to replace their Graph Mesh Reducer (GMR) network for encoding and their Graph Mesh
Up-Sampling (GMUS) network for decoding. Our encoder model consists of convolution+ReLU
blocks with MaxPools and skip connections. In the following, convolution parameters are given as
input channels → output channels, kernel size, stride, and padding. Pooling parameters are given
as kernel size, stride, and Upsampling parameters are give as scale factor in x, scale factor in y,
interpolation mode. The number of channels of the original flow state are denoted by in , the encoder
width is we, the decoder width is wd, and L is the size of the latent space. The encoder layers are:

1. Conv(in → we, 11, 4, 5) + ReLU + MaxPool(2, 2)
2. Conv(we + in1 → 3 ∗ we, 5, 1, 2) + ReLU + MaxPool(2, 2)
3. Conv(3 ∗ we + in2 → 6 ∗ we, 3, 1, 1) + ReLU
4. Conv(6 ∗ we + in2 → 4 ∗ we, 3, 1, 1) + ReLU
5. Conv(4 ∗ we + in2 → we, 3, 1, 1) + ReLU
6. Conv(we + in2 → L, 1, 1, 0) + ReLU + MaxPool(2, 2)

Here, in1 and in2 are skip connections to spatially reduced inputs that are computed directly on
the original encoder input with an AvgPool(8, 8) and AvgPool(16, 16) layer, respectively. Finally,
the output from the last convolution layer is spatially reduced to a size of 1 via an adaptive average
pooling operation. This results in a latent space with L elements. This latent space is then decoded
with the following decoder model based on convolution+ReLU blocks with Upsampling layers:

1. Conv(L → wd, 1, 1, 0) + ReLU + Upsample(4, 2,nearest)
2. Conv(wd + L → wd, 3, 1, 1) + ReLU + Upsample(2, 2,nearest)
3. Conv(wd + L → wd, 3, 1, 1) + ReLU + Upsample(2, 2,nearest)
4. Conv(wd + L → wd, 3, 1, 1) + ReLU + Upsample(2, 2,nearest)
5. Conv(wd + L → wd, 3, 1, 1) + ReLU + Upsample(2, 2,nearest)
6. Conv(wd + L → wd, 3, 1, 1) + ReLU + Upsample(2, 2, bilinear )
7. Conv(wd + L → wd, 5, 1, 2) + ReLU
8. Conv(wd + L → wd, 3, 1, 1) + ReLU
9. Conv(wd → in, 3, 1, 1)

Here, the latent space is concatenated along the channel dimension and spatially expanded to match
the corresponding spatial input size of each layer for the skip connections. In our implementation,
an encoder width of we = 32, a decoder width of wd = 96 with a latent space dimensionality of
L = 32 worked best across experiments. For the model TFEnc on the experiments Inc and Tra,
we employ L = 31 and concatenate the scalar simulation parameter that is used for conditioning,
i.e., Reynolds number for Inc and Mach number for Tra, to every instance of the latent space. For
TFVAE we proceed identically, but here every latent space element consists of two network weights
for mean and variance via reparameterization as detailed by Kingma & Welling (2014). For TFMGN,
we use an additional first latent space of size L that contains a simulation parameter encoding via an
MLP as proposed by Han et al. (2021). Compared to our improved approach, this means TFMGN is
not capable to change this quantity over the course of the simulation.

4https://github.com/NeuralOperator/neuraloperator
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For the latent processor in TFMGN we directly follow the original transformer specifications of Han
et al. (2021) via a single transformer decoder layer with four attention heads and a layer width of
1024. Latent predictions are learned as a residual from the previous step. For our adaptations TFEnc
and TFVAE, we instead use a single transformer encoder layer and learn a full new latent state instead
of a residual prediction.

To train the different transformer variants end-to-end, we always use a batch size of 8. We train
each model with a training rollout of m = 60 steps (m = 50 for Iso) using a transformer input
window of k = 30 steps (k = 25 for Iso). We first only optimize the encoder and decoder to
obtain a reasonably stable latent space, and then the training rollout is linearly increased step by
step as proposed by Han et al. (2021). We start increasing the rollout at epoch 300 (40 for Iso)
until the full sequence length is reached at epoch 1200 (160 for Iso). Each model is trained with
an MSE loss over the full sequence (adjusted to the current rollout length). On Inc and Tra these
transformer-based models were trained for 5000 epochs, and on Iso for 200 epochs.

We do not train the decoder to recover values inside the cylinder area for Inc and Tra, by applying
a binary masking (also see App. A.1 for details) before the training loss computation. Note that this
masking is not suitable for autoregressive approaches in the input space, as the masking can cause a
distribution shift via unexpected values in the masked area during inference, leading to instabilities.
The pure reconstruction, i.e. the first step of the sequence that is not processed by the latent processor,
receives a relative weight of 1.0, and all steps of the rollout jointly receive a weight of 1.0 as well,
to ensure that the model balances reconstruction and prediction quality. For TFVAE, an additional
regularization via a Kullback–Leibler divergence on the latent space with a relative weight of 0.1 is
used. As detailed by Kingma & Welling (2014), for a given mean lim and log variance liv of each
latent variable li with i ∈ 0, 1, . . . , L, the regularization LKL is computed as

LKL = −0.5 ∗ 1

L
∗

L∑
i=0

1 + liv − lim
2 − el

i
v .

B.6 TRAINING AND INFERENCE PERFORMANCE

All model architectures were trained, evaluated, and benchmarked on a server with an NVIDIA RTX
A5000 GPU with 24GB of video memory and an Intel Xeon Gold 6242R CPU with 20 cores at 3.1
GHz. A performance overview across models can be found in Tab. 1. The training speed in the
central columns indicates how many hours are approximately required to fully train a single model
according to the training epochs and batch size given further left. For each architecture, we train 3
models (2 for Iso) based on randomly seeded runs for the evaluations in the main paper.

Table 1: Overview of training and inference performance for different model architectures.

Architecture Training Batch Training Training Training Inference Inference
Epochs Size Speed Speed Speed Speed Speed

Inc / Tra / Iso Inc [h] Tra [h] Iso [h] without I/O [s] with I/O [s]

cDDPMR20 3100 / 3100 / 100 64 65-66 40-43 61-62 193.9 195.7
cDDPMR100 973.2 975.0

U-Net

1000 / 1000 / 100

64 24-28 18-20 89-91

9.4 11.1U-Netm4 32 33-34 30-31 154-157
U-Netm8 16 44-45 42-44 216-218
U-Netm16 8 53-54 50-52 260-263

TFMGN
5000 / 5000 / 200 8

42-43 41-43 68-70 0.8 2.8
TFEnc 36-37 36-39 66-67 0.6 2.8
TFVAE 37-38 36-37 66-69 0.7 2.7

ResNetdil. 1000 / 1000 / 100 64 51-52 48-49 261-263 4.2 6.0ResNet 51-52 48-49 262-264

FNO16 2000 / 2000 / 200 64 12-13 11-12 54-55 2.3 4.1
FNO32 7-8 7-8 32-33 2.5 4.2

All model architectures were trained on each data set until their training loss curves were visually
fully converged. This means, architectures with more complex learning objectives require more
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epochs compared to simpler methods. As such, the transformer variants are highly demanding, as
they first need to learn a good latent embedding via the encoder and decoder, and afterwards need
to learn the transformer unrolling schedule that is faded in during training time. cDDPM which
needs to learn a full denoising schedule via random sampling can also require more training iterations
compared to direct next-step predictors such as U-Net, ResNet, or FNO. Furthermore, we found the
performance of next-step predictors to degrade when trained substantially past the point of visual
convergence in early exploration runs. As mentioned above, the default training batch size of 64
is reduced for architectures that exceed available GPU memory, so the training time comparison
is performed at roughly equal memory. Thus, training unrolled U-Net models is highly expensive,
especially on Iso, both via higher memory requirements that result in a lower batch size, but also in
the number of computations required for the training rollout.

The right side of Tab. 1 features the inference speed of each method. It is measured on a single
example sequence consisting of T = 1000 time steps. We report the overall time in seconds that
each architecture required during inference for this sequence. Shown in the table is the pure model
inference time, as well as the performance including I/O operations and data transfers from CPU
to GPU. Note that compared to the performance of U-Net, the inference speed slowdown factor of
cDDPM is closely related to the number of diffusion steps R, which corresponds to the number of
backbone model evaluations.

C ADDITIONAL RESULTS, EVALUATIONS, AND ABLATIONS

In the following, we provide additional evaluations and results. This includes further frequency
evaluations in App. C.1, as well as an analysis of the posterior sampling of TFVAE in App. C.2. We
also include full numerical results for the accuracy analysis in App. C.3. Furthermore, we perform
ablations on the number of diffusion steps in App. C.4, as well as ablations on the stabilization
techniques of longer training rollouts in App. C.5 and training noise in App. C.6. Finally, we
investigate different loss formulations in App. C.7, analyze the impact of the recently proposed
architecture modernizations for U-Nets in App. C.8, and compare to the contemporarily proposed
PDE-Refiner method (Lippe et al., 2023) in App. C.9.

C.1 ADDITIONAL FREQUENCY EVALUATIONS

In addition to the statistical frequency evaluations in the main paper, below we provide further
evaluations on different data sets across the models under consideration. For Inclow, we evaluate
the wavenumber of the horizontal motion across a vertical line in the flow (averaged over time),
shown on the left of Fig. 11. All models and posterior samples for the given sequence are used
in the analysis, and the shaded area corresponds to the 5th to 95th percentile across them. For this
relatively simple case, all models, accurately reconstruct low and medium frequencies. Only FNO16
exhibits a large variance in the higher frequencies, indicating stability problems within some trained
model runs. The difference between the other methods are the high spatial frequencies, where all
models overshoot to different degrees, however these differences are not apparent to the human eye
in prediction visualizations. cDDPMncn performs worse compared to cDDPM due the lack of error
mitigation mechanisms, as there is no noise on the conditioning component during the diffusion
processes. The cDDPM model with conditioning noise retains the highest spectral accuracy, and
stays in line with the simulation reference as shown in the zoomed inset area.

Simulation ResNetdil. FNO16 FNO32 TFEnc U-Net ACDMncn ACDM
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Figure 11: Spatial frequency on a sequence from Inclow with Re = 100 (left), and spatial frequency
via the turbulent kinetic energy (TKE) on a sequence from Iso with z = 300 (right).
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On the right in Fig. 11, we compute a spatial frequency analysis on Iso in terms of the turbulent
kinetic energy (TKE) averaged across all time steps. TFEnc can only reproduce medium spatial
frequencies and lacks in terms of low and high frequencies. ResNetdil., FNO32, and U-Net clearly
overshoot in medium and high frequencies, leading to a lacking temporal stability as additional energy
is introduced in the prediction. Medium and high spatial frequencies are modeled best by cDDPM,
but there is still a gap to the reference simulation, meaning cDDPM is more dissipative than necessary
in the spatial high-frequency regime. This is most likely caused by the strongly under-determined
setting of the isotropic turbulence case, where even a numerical solver in 2D would struggle to
provide accurate predictions. Note how cDDPMncn diverges for medium and high frequencies, very
similar to U-Net, as errors propagate easily over the simulation rollout compared to a conditioning
with noise during training.

Figure 12: Evaluation line for spatial frequency analysis (top) and evaluation point for temporal
frequency analysis (bottom) on Tra mean flow (vorticity).

For the frequency evaluations on Tralong, we follow the setup from the main paper. Spatial
frequencies are evaluated via the horizontal motion across a vertical line in the flow (averaged over
time), and temporal frequencies of the vertical motion are computed at a point probe. Figure 12
illustrates the evaluation locations on top of the mean flow of a sequence from Tralong, where both
the point and line probes are positioned one cylinder diameter downstream. Figure 13 contains spatial
and temporal frequency analyses on a sequence with Ma = 0.65 from Tralong for each model
architecture. All trained models and posterior samples are used in this analysis, and the shaded area
corresponds to the 5th to 95th percentile across them. Models such as U-Net, FNO16, or cDDPMncn
that clearly diverge can be easily identified due to large temporal or spatial spectral errors. cDDPM
reconstructs both spatial and temporal frequencies most accurately among the compared approaches,
closely followed by ResNetdil. Note that the variance for deterministic methods is only calculated
over three training runs in this evaluation.
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Figure 13: Spatial (left) and temporal (right) frequency analysis for a full sequence from Tralong
with Ma = 0.65. The shaded area shows the 5th to 95th percentile across all trained models and
posterior samples for probabilistic models.
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C.2 ADDITIONAL VARIATIONAL AUTOENCODER EVALUATIONS

Temporal Coherence Here, we analyze the temporal coherence between individual time steps of
the TFVAE model. As an important difference to cDDPM, the decoder of TFVAE does not have access
to previously generated time steps, as its input is only a sample from the latent space at every step.
This leads to temporal artifacts where large differences between consecutive time steps can occur. In
Fig. 14 on the left, we display the first three simulation steps of a sequence from Iso, along with
the corresponding predictions of TFEnc and TFVAE. In addition, the change between the first two
predicted steps and s0 is shown on the right. While both methods struggle to reproduce the original
vorticity field at t = 0, there is a clear difference between both trajectories: the distance between the
predictions at t = 0 and t = 1 is relatively small for TFEnc, but big for TFVAE. This results in an even
visually noticeable jump in the predictions of TFVAE.
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Figure 14: Temporal coherence of TFEnc and TFVAE (left) and difference between reconstruction and
first two prediction steps for both models (right) on an example from Iso with z = 300.

Posterior Sampling Similar to the posterior sampling evaluation for cDDPM, we also analyze the
posterior samples create by the TFVAE model. We use the same sequence, time step, and zoomed
sample area as shown in the main paper. Figure 15 contains three random TFVAE example samples
and a spatial standard deviation for all five samples across different time steps on Tralong and Iso.
Note that the zoomed samples are displayed via Catmull-Rom spline interpolation for visual clarity
in this visualization. Compared to cDDPM, all samples are generally highly similar and exhibit very
little variance across random model evaluations. While small scale details are varying, the overall
structure, e.g., vortex positions for Tralong or areas of high vorticity for Iso, is identical for each
sample. In addition, the variance does not substantially increase over time as it would be expected.
Due to the inherent data compression, TFVAE introduces some noise artifacts which are especially
noticeable in the vorticity prediction for Iso on the bottom right in Fig. 15. Furthermore, it also
struggles to create fine details like the shock waves in Tralong as shown at the bottom left.
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Figure 15: Zoomed TFVAE posterior samples with corresponding standard deviation from Tralong
with Ma = 0.64 (left, pressure) and Iso with z = 300 (right, vorticity) at different time steps t.
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C.3 FULL ACCURACY RESULTS AND EVALUATION DETAILS

Table 2: Quantitative comparison across our test sets for different network architectures (best and
second best results are highlighted for each data set).

Inclow Inchigh Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM MSE LSiM MSE LSiM
Method (10−4) (10−2) (10−5) (10−2) (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

ResNet 10±9.1 17±7.8 16±3.0 5.9±1.6 2.3±0.9 1.4±0.2 1.8±1.0 1.0±0.3 6.7±2.4 9.1±2.2
ResNetdil. 1.6±1.8 7.7±5.5 1.5±0.8 2.6±0.7 1.7±1.0 1.2±0.3 1.7±1.4 1.0±0.5 5.7±2.1 8.2±2.0

FNO16 2.8±3.1 8.8±7.1 8.9±3.8 2.5±1.2 4.8±1.2 3.4±1.1 5.5±2.6 2.6±1.1 2m±6m 15±1.5
FNO32 160±50 80±5.4 1k±140 57±4.9 4.9±1.9 3.6±0.9 6.8±3.4 3.1±1.1 14±5.3 8.9±1.2

TFMGN 5.7±4.3 13±6.4 10±2.9 3.5±0.4 3.9±1.0 1.8±0.3 6.3±4.4 2.2±0.7 8.7±3.8 7.0±2.2
TFEnc 1.5±1.7 6.3±4.2 0.6±0.3 1.0±0.3 3.3±1.2 1.8±0.3 6.2±4.2 2.2±0.7 11±5.2 7.2±2.1
TFVAE 5.4±5.5 13±7.2 14±19 4.1±1.4 4.1±0.9 2.4±0.2 7.2±3.0 2.7±0.6 11±5.1 7.5±2.1

U-Net 1.0±1.1 5.8±3.2 2.7±0.6 2.6±0.6 3.1±2.1 3.9±2.8 2.3±2.0 3.3±2.8 26±35 11±3.9

cDDPMncn 0.9±0.8 6.6±2.7 5.6±2.6 3.6±1.2 4.1±1.9 1.9±0.6 2.8±1.3 1.7±0.4 18.3±2.5 8.9±1.5
cDDPM 1.7±2.2 6.9±5.7 0.8±0.5 1.0±0.3 2.3±1.4 1.3±0.3 2.7±2.1 1.3±0.6 3.7±0.8 3.3±0.7

Table 2 contains the full, numerical accuracy values corresponding to Fig. 4. Shown are the mean-
squared-error (MSE) and LSiM, a similarity metric for numerical simulation data (Kohl et al., 2020),
which is described in more detail below. For both metrics, lower values indicate better reconstruction
accuracy, and rollout errors reported, i.e., computed per time step and field, and averaged over the
full temporal rollout. Shown are mean and standard deviation over all sequences from each data set,
multiple training runs, and multiple random model evaluations: We evaluate two training runs with
different random seeds for Iso, and three for Inc and Tra. For the probabilistic methods TFVAE
and cDDPM, five random model evaluations are taken into account per trained model. Errors of
models that diverge during inference, e.g. FNO16 on Iso or FNO32 on Inchigh, are displayed with
factors of 103 (k) or 106 (m) in addition to the error scaling indicated in the second table row.

LSiM Overview The LSiM metric (Kohl et al., 2020) is a deep learning-based similarity measure
for data from numerical simulations. It is designed to more accurately capture the similarity behavior
of larger patterns or connected structures that are neglected by the element-wise nature of point-based
metrics like MSE. As a simple example, consider a vortex inside a fluid flow that is structurally
correctly predicted, but spatially misplaced compared to a reference simulation. While MSE would
result in a large distance value, LSiM results in a relatively low distance, especially compared
to another vortex that is spatially correctly positioned, but structurally different. LSiM works by
embedding both inputs that should be compared in a latent space of a feature extractor network,
computing an element-wise difference, and aggregating this difference to a scalar distance value via
different operations. The metric is trained on a range of data sets consisting of different transport-based
PDE simulations like advection-diffusion equations, Burgers’ equation, or the full Navier-Stokes
equations. It has been shown to generalize well to flow simulation data outside its training domain
like isotropic turbulence.

C.4 ABLATION ON DIFFUSION STEPS

In the following, we will investigate the cDDPM approach with respect to the effect of the number
of diffusion steps R in each autoregressive prediction step. For this purpose, we use the adjusted
linear variance schedule as discussed in App. B.1, according to the investigated diffusion step R.
At training and inference time, models always use R diffusion steps. Prediction examples for this
evaluation can be found in Figs. 34 and 35 in App. E.

Accuracy Tab. 3 contains the accuracy, which is computed as described in App. C.3, of cDDPM
models with a different number of diffusion steps R. While too few diffusion steps on Tra are detri-
mental, as visible for cDDPMR10, adding more steps after around R = 20 does not improve accuracy.
However, on Iso the accuracy of cDDPM does continue to improve slightly with increased values
of R up to our evaluation limit of R = 500. We believe this results from the highly underdetermined
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Table 3: Accuracy ablation for different diffusion steps R.

Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method R (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

cDDPM 10 3.8±1.4 1.8±0.3 6.2±2.5 2.1±0.6 15.1±7.4 6.6±1.4
cDDPM 15 2.5±1.5 1.4±0.3 2.7±2.0 1.4±0.5 4.8±1.6 4.3±1.0
cDDPM 20 2.3±1.4 1.3±0.3 2.7±2.1 1.3±0.6 4.5±1.3 4.1±0.8
cDDPM 30 2.5±1.9 1.4±0.4 2.7±2.3 1.3±0.6 4.8±1.9 4.1±0.9
cDDPM 50 2.3±1.4 1.3±0.3 2.4±2.1 1.3±0.6 3.4±0.9 3.4±0.7
cDDPM 100 2.3±1.3 1.3±0.3 3.1±2.7 1.4±0.6 3.7±0.8 3.3±0.7
cDDPM 500 2.5±1.5 1.4±0.4 3.1±2.5 1.4±0.6 3.5±0.9 3.2±0.7

setting of the Iso experiment. Note that there is a relatively sharp boundary between too few and a
sufficient number of steps; in our experiments 15− 20 steps on Tra and 50− 100 steps on Iso.

Temporal Stability In Fig. 16, we evaluate the temporal stability via the magnitude of the rate
of change of s, as detailed in the main paper. Here, different behavior for the ablation models with
respect to the number of diffusion steps emerges on Tralong and Iso. For the former, too little
steps, i.e., for cDDPMR10, result in unwanted, high-frequency temporal spikes that are also visible
as slightly noisy predictions. For 15− 20 diffusion steps, these issues vanished, and adding further
iterations does not substantially improve temporal stability. Only a slightly higher rate of change can
be observed for cDDPMR50 and cDDPMR500.
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Figure 16: Temporal stability evaluation via error to previous time step for different diffusion steps R
on Tralong (left) and Iso (right).
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Figure 17: Spatial frequency analysis via the tur-
bulent kinetic energy (TKE) on a sequence from
Iso with z = 300 for the diffusion step ablation.

On Iso, a tradeoff between prediction accu-
racy and sampling speed occurs. Even though
there are some minor temporal inconsistencies
in the first few time steps for very low R, all
variants result in a stable prediction. However,
the magnitude of the rate of change consistently
matches the reference trajectory more closely
when increasing R. This also corresponds to a
slight reduction in the overly diffusive predic-
tion behavior for large R, both visually and in a
spatial spectral analysis via the TKE, as shown
in Fig. 17. We believe this tradeoff is caused by
the highly underdetermined nature of the Iso
experiment, that leads to a weaker conditioned
learning setting, that naturally requires more dif-
fusion steps for high-quality results. Furthermore, the predictions of cDDPMR100 exhibit minor
visually visible temporal coherence issues on Iso, where small-scale details can flicker quickly. This
is caused by highly underdetermined nature of Iso, and can be mitigate by more diffusion steps as
well, as cDDPMR500 reduces this behavior.

Summary cDDPM works well out-of-the-box with a large number of diffusion steps, but R can
be used to balance accuracy and inference performance. Finding the number of diffusion steps for
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the best tradeoff is dependent on the data set and learning problem formulation. Generally, setups
with stronger conditioning work with few diffusion steps, while less restrictive learning problems
can benefit from more diffusion samples. In our experiments, the ideal thresholds emerged relatively
clearly.

C.5 ABLATION ON TRAINING ROLLOUT

Here, we investigate the impact of unrolling the U-Net model at training time, via varying the training
rollout length m. For these models, we use the U-Net architecture as described in App. B.2 with
k = 1 input steps. However, gradients are propagated through multiple state predictions during
training, and corresponding MSE loss over all predicted steps is applied. Prediction examples can be
found in Figs. 36 and 37 in App. E.

Table 4: Accuracy ablation for different training rollout lengths m and pre-training (Pre.).

Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method m Pre. (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

U-Net 2 no 3.1±2.1 3.9±2.8 2.3±2.0 3.3±2.8 25.8±35 11.3±3.9
U-Net 4 no 1.6±1.0 1.4±0.8 1.1±1.0 0.9±0.4 3.7±0.8 2.8±0.5
U-Net 8 no 1.6±0.7 1.1±0.2 1.5±1.5 1.0±0.5 4.5±2.8 2.4±0.5
U-Net 16 no 2.2±1.1 1.3±0.3 2.4±1.3 1.3±0.5 13.0±11 3.8±1.5

U-Net 4 yes — — — — 5.7±2.6 3.6±0.8
U-Net 8 yes — — — — 2.6±0.6 2.3±0.5
U-Net 16 yes — — — — 2.9±1.4 2.3±0.5

Accuracy Table 4 shows models trained with different rollout lengths, and also includes the
performance of U-Net with m = 2 for reference. For the transonic flow, m = 4 is already sufficient
to substantially improve the accuracy compared to U-Net for the relatively short rollout of T = 60
steps during inference for Traext and Traint. Increasing the training rollout further does not lead
to additional improvements and only slightly changes the accuracy. However, note that there is still a
substantial difference between the temporal stability of U-Netm4 compared to U-Netm8 or U-Netm16
for cases with a longer inference rollout as analyzed below.

On Iso, the behavior of U-Net models with longer training rollout is clearly different as models
with m > 4 substantially degrade compared to m = 4. The main reason for this behavior is that
gradients from longer rollouts can be less useful for complex data when predictions strongly diverge
from the ground truth in early training stages. Thus, we also considered variants, with m > 2 that
are finetuned from an initialization of a trained basic U-Net, denoted by e.g., U-Netm4,Pre. With this
pre-training the previous behavior emerges, and U-Netm8,Pre even clearly improves upon U-Netm4.

Temporal Stability In Fig. 18, we evaluate the temporal stability via the magnitude of the rate
of change of s, as detailed in the main paper. On Tralong all models perform similar until about
t = 50 where U-Net deteriorates. U-Netm4 also exhibits similar signs of deterioration around t = 130
during the rollout. Only U-Netm8 and U-Netm16 are fully stable across the entire rollout of T = 240
steps. On Iso, U-Netm8 achieves comparable stability to cDDPM, with an almost constant rate of
change for the entire rollout. Models with shorter rollouts, i.e., U-Net and U-Netm4 deteriorate after
an initial phase, and longer rollouts prevent effective training for U-Netm16 as explained above. The
variants with additional pre-training are also included: U-Netm4,Pre does not substantially improve
upon U-Netm4, and U-Netm8,Pre performs very well, similar to U-Netm8. Only for the longer rollouts
in the U-Netm16,Pre model pre-training clearly helps, such that U-Netm16,Pre is also fully stable.

Summary Compared to cDDPM, the variants of U-Net with longer training rollouts can achieve
similar or slightly higher accuracy and a equivalent temporal stability at a faster inference speed.
However, this method requires additional computational resources during training, both in terms of
memory over the rollout as well as training time. For example, U-Netm16,Pre on Iso increases the
required training time (90h of pre-training + 260h of refinement) by a factor of more than 5.6× at
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Figure 18: Temporal stability evaluation via error to previous time step for different training rollout
lengths m on Tralong (left) and Iso (right).

equal epochs and memory compared to cDDPMR100 as shown in Tab. 1. Naturally, longer training
rollouts do not provide U-Net with the ability for posterior sampling.

C.6 ABLATION ON TRAINING NOISE

We investigate the usage of training noise (Sanchez-Gonzalez et al., 2020) to stabilize predictions,
as it features interesting connections to our method. Instead of generating predictions from noise
to achieve temporal stability, this method relies on the addition of noise to the training inputs, to
simulate error accumulation during training. In this way, the model adapts to disturbances during
training, such that the data shift is reduced once errors inevitably accumulate during the inference
rollout, leading to increased temporal stability. We test this approach on U-Net and on cDDPMncn.
The latter evaluation serves as an example to understand if the lost tolerance for error accumulation in
cDDPMncn, the setup without conditioning noise, can be replaced with training noise. This cDDPMncn
version is not intended as a practical architecture as it inherits the drawbacks of both methods, the
inference cost from diffusion models, and the overhead and additional hyperparameters from added
training noise. For these ablations we use the same U-Net and cDDPMncn models as described in
Appendices B.1 and B.2. We only add normally distributed noise with standard deviation n to every
model input during training, while leaving the prediction target untouched. At inference time, the
models operate identically to their counterparts without training noise. In the following, U-Net
or cDDPMncn models trained with training noise of e.g., n = 10−1, are denoted by U-Netn1e-1 or
cDDPMncn,n1e-1 respectively. Prediction examples can be found in Figs. 38 and 39 in App. E.

Table 5: Accuracy ablation for different training noise standard deviations n.

Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method n (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

U-Net — 3.1±2.1 3.9±2.8 2.3±2.0 3.3±2.8 25.8±35 11.3±3.9
U-Net 1e–4 2.7±1.8 3.9±2.1 1.9±0.8 2.4±2.1 16.0±22 9.6±3.0
U-Net 1e–3 5.6±2.2 3.3±2.5 3.5±1.6 3.0±2.2 36.4±39 12.9±2.2
U-Net 1e–2 1.4±0.8 1.1±0.3 1.8±1.1 1.0±0.4 3.1±0.9 4.5±2.5
U-Net 1e–1 1.8±0.8 1.2±0.2 2.2±2.0 1.2±0.6 3.2±0.5 2.9±0.6
U-Net 1e0 4.0±1.5 1.8±0.3 11.4±6.3 2.9±1.3 16.2±7.8 7.5±2.7

cDDPMncn — 4.1±1.9 1.9±0.6 2.8±1.3 1.7±0.4 18.3±2.5 8.9±1.5
cDDPMncn 1e–4 3.8±1.5 2.0±0.3 4.3±2.3 1.7±0.4 14.2±1.7 8.1±1.2
cDDPMncn 1e–3 3.6±1.4 2.2±0.3 3.9±2.3 1.8±0.4 11.1±3.8 8.5±1.6
cDDPMncn 1e–2 3.6±1.6 1.7±0.4 2.6±2.3 1.3±0.5 26.7±25 12.2±2.8
cDDPMncn 1e–1 3.6±1.9 1.5±0.4 2.5±2.2 1.2±0.6 2.8±0.6 4.0±2.2
cDDPMncn 1e0 4.2±1.7 1.8±0.4 6.2±2.8 2.0±0.6 11.1±1.4 6.2±0.9

Accuracy The accuracy of U-Net and cDDPMncn setups with training noise using different standard
deviations n is analyzed in Tab. 5. On Tra, the accuracy trend is not fully consistent. Small values
of n such as 10−4 and 10−3 occasionally even reduce the final performance, but training noise with a
well-tuned standard deviation between 10−2 and 10−1 does increase accuracy. Choosing very large
standard deviations corrupts the training data too much, and reduces accuracy again as expected.
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The results on the isotropic turbulence experiment show a similar behavior for U-Net as well as
cDDPMncn.
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Figure 19: Temporal stability evaluation for different training noise standard deviations n of U-Net
(top) and cDDPMncn (bottom) on Tralong (left) and Iso (right).

Temporal Stability In Fig. 19, we evaluate the temporal stability of models with training noise via
the magnitude of the rate of change of s, as detailed in the main paper. On Tralong both architectures
U-Net and cDDPMncn behave similarly: while training noise with a standard deviation n that is too
low does not improve the stability and occasionally even deteriorates it, finding a suitable magnitude
is key for stable inference rollouts. In both cases, values of n between 10−2 and 10−1 produce the
best results. Increasing the noise further has detrimental effects, as for example slight overshooting
and high-frequency fluctuations occur for cDDPMncn,n1e0 or predictions can diverge early from the
simulation for U-Netn1e0. On Iso, a similar stabilizing effect from training noise can be observed,
given the noise magnitude is tuned sufficiently: While lower standard deviations barely alter the
time point t = 40, where predictions diverge from the reference simulation, too much training noise
already causes major problems at the very beginning of the prediction.

This behavior can also be observed on a spatial spectral analysis via the TKE in Fig. 20, where
the training noise can balance predictions between under- and overshooting. For both U-Net and
cDDPMncn, training noise with a suitable magnitude can result in a comparable temporal stability to
cDDPM, that includes noise on the conditioning.
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Figure 20: Spatial frequency analysis via the turbulent kinetic energy (TKE) on a sequence from Iso
with z = 300 for the training noise ablations on U-Net (left) and cDDPMncn (right).

Summary Training U-Net with training noise can achieve similar or slightly higher accuracy and
a competitive temporal stability compared to cDDPM. While this method exhibits faster inference
speeds, it does rely on the additional noise variance hyperparameter, that can even reduce performance
if not tuned well. Furthermore, training noise does not provide deterministic models with the ability
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for posterior sampling. Interestingly, the lost error tolerance of the cDDPMncn architecture without
conditioning noise, can be mostly restored with training noise of suitable magnitude.

C.7 ABLATION ON TRAINING WITH AN LSIM LOSS

In this section, we investigate usage of the LSiM metric (Kohl et al., 2020) as an additional loss
term, similar to perceptual losses in the computer vision domain (Dosovitskiy & Brox, 2016; Johnson
et al., 2016). This means, in addition to training U-Net with an MSE loss as above, the differentiable
learned LSiM metric model is also used during back-propagation. Given a predicted state st and the
corresponding ground truth state ŝt, we evaluate the training loss as

LMSE+LSiM =
(
st − ŝt

)2
+ λ ∗ LSiM(st, ŝt)

while leaving the inference of the models untouched. To use LSiM, each field from both states
is individually normalized to [0, 255]. The resulting loss values are aggregated with an average
operation across fields. Fields containing the scalar simulation parameters are not evaluated with this
metric. In the following, the impact of λ, the weight that controls the influence of the LSiM loss, is
investigated. U-Net models trained with e.g., λ = 10−1, are denoted by U-Netλ1e-1.

Table 6: Accuracy ablation for training with LSiM losses of different strengths λ.

Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method λ (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

U-Net — 3.1±2.1 3.9±2.8 2.3±2.0 3.3±2.8 25.8±35 11.3±3.9
U-Net 1e–5 4.2±2.9 4.5±3.0 2.6±2.2 2.1±2.0 67.4±75.7 12.4±3.8
U-Net 1e–4 2.3±1.2 3.7±2.6 1.6±1.4 2.0±1.8 12.3±9.3 11.8±2.5
U-Net 1e–3 2.9±1.9 1.7±0.8 2.2±2.3 1.5±0.9 6.3±3.1 9.4±2.8
U-Net 1e–2 4.5±1.3 3.5±1.1 3.0±2.3 1.8±0.9 0.1b±0.2b 15.3±1.2
U-Net 1e–1 5.8±1.8 3.0±0.8 5.2±1.9 2.3±0.6 12b±29b 15.0±1.0
U-Net 1e0 6.8±1.5 4.8±1.1 6.6±3.0 2.4±0.7 17b±552b 14.9±1.0

Accuracy In terms of accuracy, adding very small amounts of the LSiM term with λ = 10−5 to the
MSE loss does decrease performance, most likely due to suboptimal gradient signals through the
additional steps during back-propagation, as shown in Tab. 6. Similarly, adding too much, such that it
predominantly influences the overall loss causes problems. Especially on Iso, this causes models to
aggressively diverge after 30− 40 prediction steps, leading to errors in the range of 109 (b) in Tab. 6.
As expected, choosing a suitable loss magnitude around λ = 10−3 substantially reduces errors in
terms of LSiM across test sets. However, the added loss term does also improve performance in terms
of MSE, as similarly observed in the image domain (Dosovitskiy & Brox, 2016; Johnson et al., 2016).
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Figure 21: Temporal stability evaluation of U-Net for training with LSiM losses of different strengths
λ on Tralong (left) and Iso (right).

Temporal Stability In line with the accuracy results, U-Netλ1e-3 exhibits improved temporal
stability compared to U-Net as displayed in Fig. 21. Choosing unsuitable λ causes models to diverge
earlier from the reference trajectory when evaluating the difference between predictions steps, for
both Tralong and Iso. When analyzing the frequency behavior of the models trained with LSiM in
Fig. 22 the results are similar: Improved performance across the frequency band can be observed for
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U-Netλ1e-3, while smaller values of λ are less potent and can be detrimental or only slightly beneficial
compared to U-Net.
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Figure 22: Spatial frequency along a vertical line downstream on Tralong (left) and temporal
frequency analysis on a sequence from Iso with z = 300 (right) for the LSiM loss ablation models.

Summary Training U-Net with LSiM as an additional loss term, can increase accuracy, temporal
stability, and frequency behavior across evaluations. However, the resulting models are neither
competitive compared to other stabilization techniques discussed above, such as training rollouts or
training noise, nor to the proposed diffusion architecture.

C.8 ABLATION ON U-NET MODERNIZATIONS

As described in App. B.2, our U-Net implementation follows established diffusion model architectures,
that contain a range of modernizations compared to the original approach proposed by Ronneberger
et al. (2015). Here, we compare to a more traditional U-Net architecture which is known to work
well for fluid problems. We adapted the DFP model implementation5 of Thuerey et al. (2020) for our
settings. The architecture features:

• batch normalization instead group normalization, and no attention layers in the blocks,
• six downsampling blocks consisting of strided convolutions and leaky ReLU layers,
• six upsampling blocks consisting of convolution, bilinear upsamling, and ReLU layers,
• six feature map levels with spatial sizes of 64× 32, 32× 16, 16× 8, 8× 4, 4× 2, and 2× 1,
• an increasing number of channels for deeper features, i.e., 72, 72, 144, 288, 288, and 288.

It is trained as a direct one-step predictor (DFP) in the same way as described in App. B.2, as well as
employing it in the diffusion setup as a backbone architecture (DFPACDM). In both cases, we keep all
other hyperparameters identical with the corresponding baseline architecture.

Table 7: Accuracy of the “modern” U-Net architecture compared to DFP.

Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

U-Net 3.1±2.1 3.9±2.8 2.3±2.0 3.3±2.8 25.8±35 11.3±3.9
DFP 4.5±1.3 3.9±0.7 4.8±2.1 3.6±1.7 5.1±1.3 5.1±2.0

cDDPM 2.3±1.4 1.3±0.3 2.7±2.1 1.3±0.6 3.7±0.8 3.3±0.7
DFPACDM NaN NaN NaN NaN NaN NaN

Accuracy Table 7 shows a comparison of both architectures compared to U-Net and cDDPM on
our more challenging data sets Tra and Iso. Training DFPACDM as a diffusion backbone (with
additional time embeddings for the diffusion step r as discussed in App. B.1) failed to generalize
beyond the first few prediction timesteps across test sets in our experiments. This highlights the
general usefulness of the recently introduced modernizations to the U-Net architecture. There is a
noticeable drop in accuracy on Tra for DFP compared to U-Net, but it performs clearly better than
U-Net on Iso, however still lacking compared to cDDPM. This unexpected trend in accuracy is
mainly caused by the different rollout behavior of these architectures discussed in the following.

5https://github.com/thunil/Deep-Flow-Prediction
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Temporal Stability Figure 23 shows temporal stability evaluations of the variants on Tralong and
Iso, that illustrate the different rollout behavior of DFP compared to U-Net depending on the data
set. On Tralong on the left, DFP diverges earlier and more substantially compared to U-Net, when
measured via the difference to the previously predicted time step. However, the rollout behavior is
different on Iso, as illustrated via the Pearson correlation coefficient to the ground truth trajectory
on the right in Fig. 23. The simpler DFP model decorrelates more quickly for the first 50 steps, while
keeping a relatively constant decorrelation rate. U-Net is initially more in line with the reference,
however it sharply decreases after about 50 steps, meaning errors accumulate more quickly after an
initial phase of higher stability.
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Figure 23: Temporal stability evaluation via error to previous time step on Tralong (left) and the
correlation to the ground truth on Iso (right) for the U-Net modernization ablation.

Summary We found the recently proposed architecture modernizations to U-Nets to be an important
factor, when employing them as backbones in a diffusion-based setup. For some direct prediction
cases, the modernizations can delay diverging behavior due to unrolling during inference to some
degree. On other data, using no modernizations can be beneficial for longer rollouts in direct
prediction setting, but this comes at the costs of less initial accuracy, and lacking capacities as a
diffusion backbone.

C.9 COMPARISON TO PDE-REFINER

Lippe et al. (2023) recently proposed a multi-step refinement process to improve the stability of
learned PDE predictions called PDE-Refiner. Their approach relies on starting from the predictions
of a trained one-step model, and iteratively refining them by adding noise of decreasing variances
and denoising the result. The resulting model is then autoregressively unrolled to form a prediction
trajectory, similar to our simulation rollout. This method implies, that only probabilistic refinements
are applied to a deterministic initial prediction. To train a model that can predict and refine at the
same time, a random step r ∈ [0, R] in the refinement process is sampled, and the model is trained
with a next-step MSE objective if r = R and with a standard denoising objective otherwise6. We
re-implement this method, closely following the provided pseudocode in their paper, only changing
the backbone network to our U-Net implementation (see App. B.2) for a fair comparison against our
architectures. Lippe et al. (2023) report that models with around R = 4 refinement steps perform
best, when paired with a custom, exponential noise schedule, parameterized with a minimum noise
variance7 around σ = 10−6. Nevertheless, we sweep over combinations of R ∈ {2, 4, 8} and
σ ∈ {10−7, 10−6, 10−5, 10−4, 10−3} here, to ensure ideal values for these hyperparameters in our
setting. Due to computational constraints for this large sweep, only one model per combination is
trained. Five samples from each model are considered, as above. We denote models trained with
e.g., R = 2 and σ = 10−3 by RefinerR2,σ1e-3. Prediction examples can be found in Figs. 40 and 41 in
App. E.

Accuracy Table 8 evaluates the accuracy of these PDE-Refiner variants compared to cDDPM and
U-Net on our data sets Tra and Iso. Overall, the performance of Refiner across data sets, number of
refinement steps R, and noise variances σ is highly unpredictable. There is neither a clear accuracy
trend over few or many refinement steps, nor high or low noise variance. Furthermore, a high accuracy

6Compared to Lippe et al. (2023), we switch the notation to R being the first step in the reverse process here,
in line with our notation above, which also matches the notation in the original DDPM (Ho et al., 2020).

7For brevity, we use σ for the minimum noise variance here, Lippe et al. (2023) refer to it as σ2
min.
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Table 8: Accuracy compare to PDE-Refiner for different refinement steps R and noise variances σ.

Traext Traint Iso

MSE LSiM MSE LSiM MSE LSiM
Method R σ (10−3) (10−1) (10−3) (10−1) (10−2) (10−1)

cDDPM — — 2.3±1.4 1.3±0.3 2.7±2.1 1.3±0.6 3.7±0.8 3.3±0.7
U-Net — — 3.1±2.1 3.9±2.8 2.3±2.0 3.3±2.8 25.8±35 11.3±3.9

Refiner 2 1e–3 3.3±1.3 1.4±0.3 3.9±1.6 1.4±0.3 6.1±1.9 7.2±1.6
Refiner 2 1e–4 12.7±2.9 4.2±0.5 10.1±1.5 2.4±0.3 0.1m±0.3m 12.5±5.2
Refiner 2 1e–5 4.8±1.4 2.6±0.3 4.0±3.1 2.1±0.5 3.3e30 15.2±0.9
Refiner 2 1e–6 5.0±1.9 2.0±0.3 3.6±2.6 1.9±0.4 0.1m±0.2m 16.1±1.0
Refiner 2 1e–7 13.6±9.9 6.1±4.0 54.6±68.7 6.7±5.0 22k±13k 14.9±0.9

Refiner 4 1e–3 5.3±0.8 3.2±0.4 6.0±1.2 2.6±0.4 5.1±1.8 4.7±0.8
Refiner 4 1e–4 3.4±2.0 1.9±0.3 5.7±2.4 1.9±0.5 7.0±3.1 5.0±1.0
Refiner 4 1e–5 7.0±1.7 2.7±0.4 3.1±0.8 1.7±0.2 4.9±2.0 7.6±2.1
Refiner 4 1e–6 3.5±1.1 2.1±0.5 8.8±0.9 4.3±2.1 66.1±38.4 11.7±0.7
Refiner 4 1e–7 5.4±1.0 3.1±0.2 8.3±2.2 2.7±0.2 1.9e18 14.8±1.0

Refiner 8 1e–3 7.1±1.5 3.5±0.4 4.4±1.8 2.7±0.4 5.5±1.3 6.9±1.0
Refiner 8 1e–4 13.8±2.3 5.0±0.5 8.6±4.2 2.4±0.7 5.1±1.3 5.9±1.1
Refiner 8 1e–5 6.3±1.1 3.5±0.4 6.0±1.8 2.4±0.6 4.7±0.7 5.4±1.2
Refiner 8 1e–6 3.1±1.3 2.2±0.2 6.4±2.1 2.0±0.4 0.1k±0.3k 6.1±4.3
Refiner 8 1e–7 4.3±1.4 2.1±0.3 3.3±1.2 1.6±0.3 88±70 6.2±1.9

on Tra is not directly correlated with a high accuracy on Iso either. As Refiner essentially improves
upon one-step predictions of U-Net via additional refinement steps, the results of a direct comparison
are interesting: On Tra, while Refiner consistently outperforms U-Net in terms of LSiM, it just as
consistently remains worse in terms of the MSE across hyperparameter combinations. We hypothesize
that these results are linked to the fundamentally different spectral behavior of Refiner described by
Lippe et al. (2023), but further research is required in this direction. On Iso, Refiner either improves
upon U-Net or substantially diverges (marked in grey in Tab. 8), especially for small σ. Overall,
PDE-Refiner is less effective than the stabilization techniques discussed in Appendices C.5 and C.6
in terms of accuracy improvements, and thus consistently falls short with respect to cDDPM across
the test sets and hyperparameter combinations considered here.

Temporal Stability To investigate the temporal stability of Refiner, we analyze the difference
to the previous time step in Fig. 24. First, it is shown that there are combinations of R and σ that
substantially improve the rollout stability of Refiner compared to U-Net, confirming the results
from Lippe et al. (2023). However, as observed in terms of accuracy above, there is no consistent
trend across hyperparameters and data sets. Especially, finding a suitable minimum noise variance σ
depends on both, data set and number of refinement steps R: While σ = 10−6 works best on Tralong
for R = 2, σ = 10−7 is ideal for R = 8. On Iso, R = 2 only works with σ = 10−3, R = 4 requires
σ = 10−4, and R = 8 is most stable with σ = 10−5. This unpredictable behavior with respect to
important hyperparameters makes PDE-Refiner resource-intensive and difficult to employ in practice.
The best Refiner variants on Iso, while more stable compared to U-Net, are nevertheless showing
signs of instabilities around t = 70. This means the refinement increases stability, but still falls short
compared to the other stabilization techniques discussed in Appendices C.5 and C.6.

Posterior Sampling As PDE-Refiner relies on deterministic predictions combined with proba-
bilistic refinements, achieving a broad and diverse posterior distribution is difficult. In Fig. 25, we
visualize posterior samples for Tralong from cDDPM and Refiner for R ∈ {2, 4, 8} and with the
ideal σ = 10−6 reported by Lippe et al. (2023). While cDDPM creates a broad range of samples as
discussed in more detail in the main paper above, RefinerR2,σ1e-6 does not create any visual variance.
While additional refinement steps slightly improve the spread across samples, even RefinerR8,σ1e-6
can only create minor differences with very similar spatial structures. Note that the Refiner models
are unable to create the detailed shockwaves below the cylinder that are found in the simulation
and the cDDPM samples. Similar, unphysical predictions after longer rollouts can be observed
across refinement steps and noise variances in Fig. 40 as well. Using the largest σ = 10−3 we
evaluated should theoretically allow Refiner to focus on a larger range of frequencies, but also does
not substantially improve quality or diversity of posterior samples over Fig. 25.
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Figure 24: Temporal stability evaluation via error to previous time step on Tralong (left) and on
Iso (right) for PDE-Refiner with different hyperparameter combinations of refinement steps R and
noise variances σ. The temporally most stable Refiner configuration is highly inconsistent, and for a
given R depends on the data set and noise variance.
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Figure 25: Posterior samples on Tralong from cDDPM (top left) compared to PDE-Refiner (bottom
and right). Refiner lacks sample diversity and quality compared to cDDPM across refinement steps
R.

Summary While the stability benefits of a well-tuned setup with PDE-Refiner compared to a
simple one-step prediction with U-Net are highly desirable and can be achieved with less inference
overhead compared to cDDPM, the method has several disadvantages: We found the setup to be
very sensitive regarding changes to refinement steps, data set, or noise variance. This means, a large
amount of computational resources are required for parameter tuning, which is crucial to obtain good
results. Suboptimal combinations of refinement steps and noise variance show substantially degraded
performance compared to U-Net in our experiments. Furthermore, Refiner achieves lower overall
accuracy across data sets and has substantial limits in terms of the posterior sampling compared to a
more direct application of diffusion models in cDDPM.
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D PREDICTION EXAMPLES

Over the following pages, prediction examples from all analyzed methods in the main paper are dis-
played. Shown are the different fields contained in an exemplary test sequence from each experiment.
Figures 26 and 27 feature the Incvar case, Figs. 28 to 30 contain an example from Tralong with
Ma = 0.64, and Figs. 31 to 33 display a sequence from Iso with z = 280.

Videos of predictions from some example sequences are also provided alongside this submission,
as they can visualize several aspects like temporal stability, temporal coherence, and visual quality
better than still images. We also include videos of different cDDPM posterior samples.
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Figure 26: Vorticity predictions for the Incvar sequence.
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Figure 27: Pressure predictions for the Incvar sequence.
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Figure 28: Vorticity predictions for an example sequence from Tralong with Ma = 0.64.
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Figure 29: Pressure predictions for an example sequence from Tralong with Ma = 0.64.
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Figure 30: Density predictions for an example sequence from Tralong with Ma = 0.64.
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Figure 31: Vorticity predictions (only z-component) for an example sequence from Iso with z = 280.
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Figure 32: Z-velocity predictions for an example sequence from Iso with z = 280.
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Figure 33: Pressure predictions for an example sequence from Iso with z = 280.
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E ABLATION STUDY PREDICTION EXAMPLES

Over the following pages, we show prediction examples from different ablation study models provided
in Appendices C.4 to C.6 and C.9. Shown are the pressure field from Tralong with Ma = 0.64, as
well as a vorticity sequence from Iso with z = 280.
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Figure 34: Diffusion Step Ablation (see App. C.4): Pressure predictions from Tralong.
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Figure 35: Diffusion Step Ablation (see App. C.4): Vorticity predictions from Iso.

44



Under review as a conference paper at ICLR 2024

Si
m
ul
at
io
n

U
-N
et

U
-N
et

m
4

U
-N
et

m
8

t=5

U
-N
et

m
16

t=30 t=100 t=150 t=200

0.2 0.3 0.4 0.5 0.6 0.7

Figure 36: Training Rollout Ablation (see App. C.5): Pressure predictions from Tralong.
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Figure 37: Training Rollout Ablation (see App. C.5): Vorticity predictions from Iso.
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Figure 38: Training Noise Ablation (see App. C.6): Pressure predictions from Tralong.
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Figure 39: Training Noise Ablation (see App. C.6): Vorticity predictions from Iso.
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Figure 40: Comparison to PDE-Refiner (see App. C.9): Pressure predictions from Tralong.

48



Under review as a conference paper at ICLR 2024

Si
m
ul
at
io
n

Re
fin

er
R2

,σ
1e

−
3

Re
fin

er
R2

,σ
1e

−
4

Re
fin

er
R2

,σ
1e

−
5

Re
fin

er
R2

,σ
1e

−
6

Re
fin

er
R2

,σ
1e

−
7

Re
fin

er
R4

,σ
1e

−
3

Re
fin

er
R4

,σ
1e

−
4

Re
fin

er
R4

,σ
1e

−
5

Re
fin

er
R4

,σ
1e

−
6

Re
fin

er
R4

,σ
1e

−
7

Re
fin

er
R8

,σ
1e

−
3

Re
fin

er
R8

,σ
1e

−
4

Re
fin

er
R8

,σ
1e

−
5

Re
fin

er
R8

,σ
1e

−
6

t=5

Re
fin

er
R8

,σ
1e

−
7

t=20 t=40 t=70 t=100

−20 −2−1 −2−2 −2−3 −2−4 −2−5 0 2−5 2−4 2−3 2−2 2−1 20

Figure 41: Comparison to PDE-Refiner (see App. C.9): Vorticity predictions from Iso.
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