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ABSTRACT

The task of temporal action proposal generation (TAPG) aims to provide high-
quality video segments, i.e., proposals that potentially contain action events. The
performance of tackling the TAPG task heavily depends on two key issues, feature
representation and scoring mechanism. To simultaneously take account of both
aspects, we introduce an attention-based model, termed as FITS, to address the
issues for retrieving high-quality proposals. We first propose a novel Feature-
Integration (FI) module to seamlessly fuse two-stream features concerning their
interaction to yield a robust video segment representation. We then design a group
of Transformer-driven Scorers (TS) to gain the temporal contextual supports over
the representations for estimating the starting or ending boundary of an action event.
Unlike most previous work to estimate action boundaries without considering the
long-range temporal neighborhood, the proposed action-boundary co-estimation
mechanism in TS leverages the bi-directional contextual supports for such boundary
estimation, which shows the advantage of removing several false-positive boundary
predictions. We conduct experiments on two challenging datasets, ActivityNet-1.3
and THUMOS-14. The experimental results demonstrate that the proposed FITS
model consistently outperforms state-of-the-art TAPG methods.

1 INTRODUCTION

Owing to the fast development of digital cameras and online video services, the rapid growth of
video sequences encourages the research of video content analysis. The applications of interest
include video summarization (Yao et al., 2015; 2016), captioning (Chen et al., 2019a; Chen & Jiang,
2019), grounding (Chen et al., 2019b), and temporal action detection (Gao et al., 2019; Zhang et al.,
2019). The temporal action detection task is an important topic related to several video content
analysis methods, and it aims to detect the human-action instances within the untrimmed long video
sequences. Like the image object detection task, the temporal action detection can be separated
into a temporal action proposal generation (TAPG) stage and an action classification stage. Recent
studies (Escorcia et al., 2016; Buch et al., 2017b; Lin et al., 2018; Liu et al., 2019; Lin et al., 2019;
2020) demonstrate that the way to pursue the proposal quality clearly improves the performance of
two-stage temporal action detectors. To this end, a temporal action proposal generator is demanded
to use a limited number of proposals for capturing the ground-truth action instances in a high recall
rate, hence reducing the burden of the succeeding action classification stage.

One popular way to tackle the TAPG task is to generate the proposals via the estimations of boundary
and actioness probabilities. The boundary probability is usually factorized as the starting and ending
for an action instance. Rather than directly estimating the actioness boundary as the existing methods,
we leverage the actioness estimation and the additional background estimation in a bi-directional
temporal manner to co-estimate the action boundaries. The background means existing no actions.
This sort of boundary estimation derived from the observation that the features for describing the
long-time actioness/background are more consistent along the temporal dimension than the short-time
starting/ending. Therefore, estimating the boundary with the actioness and background features allows
us to estimate the proposal boundaries of much less false-positive, hence obtaining the high-quality
proposal candidates for further scoring. In practice, we estimate an action starting boundary as the
time of descending background with simultaneous ascending actioness. In contrast, an action ending
boundary occurs with the ascending background with descending actioness. Figure 1 illustrates our
action-boundary co-estimation mechanism.
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Figure 1: The proposed action-boundary co-estimation mechanism. Our transformer-driven scorers
module estimates four boundary estimations of forward-actioness, backward-actioness, forward-
background, and backward-background. The backward-actioness and forward-background co-
estimate the action starting, and the forward-actioness and backward-background co-estimate the
action ending. The transformer-style units enable these temporal estimations to collect the temporal
contextual supports over each inputted representation. The right-most figures show the estimations of
action starting and action ending without (top) and with (bottom) the TS co-estimation. The proposed
action-boundary co-estimation within our TS module is able to reduce more false-positive predictions.

This paper introduces an effective temporal action proposal generator, i.e., FITS, which aims to
provide the action proposals, that precisely and exhaustively cover the human-action instances.
By considering the two essential TAPG issues, namely the feature representation and the scoring
mechanism, and the above-mentioned action-boundary co-estimation, our attention-based FITS model
comprises Feature Integration (FI) module and Transformer-driven Scorers (TS) module for dealing
with these considerations. Precisely, our FI module enhances the common TAPG two-stream features
(Simonyan & Zisserman, 2014; Wang et al., 2016; Xiong et al., 2016) by concerning the feature
interaction. The previous TAPG methods usually directly concatenate the appearance stream and
motion stream features for usage. In contrast, we were inspired by the non-local attention mechanisms
(Wang et al., 2018; Hsieh et al., 2019) to extend such a long-range attention mechanism for integrating
the two-stream features. As a result, our experiments show the robustness of the integrated features by
reducing their mutual feature discrepancies. More importantly, to score the temporal action proposals
for discriminating high-quality ones, we devise a novel transformer-driven scoring mechanism. The
TS mechanism leverages the temporal contextual supports over the feature representations to obtain
the self-attended representations and then associates these self-attended representations to co-estimate
the action boundaries. The experiments show the retrieved action proposals containing much less
false-positive ones. Figure 2 overviews our temporal action proposal model, termed as FITS network.

To sum up, our main contributions include i) We introduce the novel feature integration module to
integrate the two-stream features by reducing their feature discrepancies via non-local-style attention
and obtaining robust representation. ii) We devise the novel transformer-driven scorers module to
co-estimate the transformer-driven self-attended representations, which leverage long-range temporal
contextual supports. Hence, we are able to retrieve high-quality temporal action proposals. iii)
The extensive experiments demonstrate that the proposed FITS model achieves significantly better
performance than current state-of-the-art TAPG methods.

2 RELATED WORK

Feature Representation. As a de facto trend, instead of using the handcrafted features, the neural-
network-based features are widely employed for addressing the action classification task. These
popular neural network approaches include the two-stream networks (Simonyan & Zisserman, 2014;
Feichtenhofer et al., 2016; Wang et al., 2016), which separately represent the appearance feature
and the motion feature, and 3D networks (Tran et al., 2015; Carreira & Zisserman, 2017; Qiu et al.,
2017; Xu et al., 2017), which directly represent a video sequence as the spatio-temporal feature. In
this paper, we use the action recognition model (Wang et al., 2016; Xiong et al., 2016) to extract
two-stream features for representing each untrimmed video sequence.
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Attention Mechanism. The attention mechanism is the process of selectively focusing on a few
relevant things in comparison with everything. Fields like natural language processing and computer
vision, broadly leverage such an attention mechanism. For instances, Bahdanau et al. (2015) enable
their model to focus on searching a group of related words from the input sentences for predicting
the target words, Xu et al. (2015) introduce the soft and hard attention to generate image captions,
and LFB (Wu et al., 2019) introduces long-term feature banks to analyze videos, Hsieh et al. (2019)
employ non-local attention (Wang et al., 2018) to capture long-range dependencies and channel
attention (Hu et al., 2018) to re-weight the channel-level feature maps. Since Vaswani et al. (2017)
introduce a self-attention mechanism, called Transformer, for exploring the intra-attention and inter-
attention to address the machine translation task, the Transformer-based models show their advantages
to tackle various tasks, such as object detection (Carion et al., 2020), action recognition (Girdhar
et al., 2019), image generation (Parmar et al., 2018), and image captioning (Cornia et al., 2020). We
notice that the work of Girdhar et al. (2019) that classifies the human actions by first use the RPN
(Ren et al., 2015) to localize the human body parts as several frame crops, and then encodes these
crops via Transformers for the subsequent classification. In contrast, a TAPG task discriminates
whether a given video segment, composed of several video frames, covering any action event. Our
model extends the merits of these attention efforts for constructing a robust action proposal generator.

Temporal Action Proposal Generation. We categorize the TAPG methods into Anchor-based
(Gao et al., 2017; Heilbron et al., 2016; Shou et al., 2016) and Probability-based (Lin et al., 2020;
2019; 2018; Zhao et al., 2017). The former focuses on designing several multi-scale anchor boxes
to cover action instances, while the latter estimates the temporal location probabilities of the action
instances. Besides, some methods (Gao et al., 2018; Liu et al., 2019; Gao et al., 2020) also explore the
way to integrate the above-mentioned two categories for precisely localizing the temporal boundaries.
In anchor-based methods, the S-CNN (Shou et al., 2016) and Heilbron et al. (2016) respectively
evaluate anchors via C3D network and sparse learning, and TURN (Gao et al., 2017) suggests
regressing the temporal boundaries of action instances. The probability-based work, TAG (Zhao et al.,
2017), generates action proposals via a temporal watershed algorithm to merge contiguous temporal
locations of high actioness probabilities. BSN (Lin et al., 2018) generates proposals as well as their
confidence by formulating the probabilities of boundaries and actioness. BMN (Lin et al., 2019)
proposes a boundary-matching mechanism to evaluate the confidence among densely distributed
proposals. DBG (Lin et al., 2020) uses the maps of dense boundary confidence and completeness to
further score boundaries for all action proposals. BC-GNN (Bai et al., 2020) employs a Graph Neural
Network to model the relationship between the actioness and boundaries. Zhao et al. (2020) propose
loss terms to regularize the feature consistency between the actioness and boundaries.

In sum, the anchor-based methods focus on the anchor-box design and usually lack the flexible
temporal boundaries for various action instances. The existing probability-based methods may
generate the action proposals, but merely rely on the actioness (Zhao et al., 2017) or the boundary
information (Lin et al., 2019), or lack the association between the actioness and the boundaries
of action instances (Lin et al., 2020; 2018). By contrast, we introduce the Transformer-driven
scorers module to score proposals by explicitly associating the self-attended representations during
scorers training. Combining with our feature integration module for retrieving the robust feature
representation, the experiments show that our model outperforms the existing leading TAPG methods.

3 METHOD

TAPG Formulation. Given a video sequence X = {xn}Nn=1 of N frames, we assume it includes
I action instances. The TAPG task aims at generating a proper set of action proposals that can be
used to detect the underlying human actions in X . We denote an action proposal as p = (s, e) to
indicate that the proposal p starts at the sth frame and ends at the eth frame of X . Analogous to the
object proposals for detection, action proposals are generic and class agnostic. Let the I ground-truth
actions of X be Y = {(s∗, e∗)i = (s∗i , e

∗
i )}Ii=1. An action proposal (s, e) is said to be matched to

some ground-truth action (s∗, e∗) if their time-interval IoU (in terms of frames) is greater than a
specified threshold τ . Considering a set P of proposals, its goodness to X can be explicitly measured
by the number of matched action proposals.
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Figure 2: The architecture of our FITS temporal action proposal generation model. Our model is
composed of a Feature Integration module, in charge of integrating the two-stream representations,
and a Transformer-driven Scorers module, in charge of extracting the temporal contextual supports
within representation and then associating these representations to co-estimate the action boundaries.

3.1 FEATURE INTEGRATION

We decompose each video sequence X into a set of, say, T consecutive video segments, denoted
as V = {vt}Tt=1, where v is called a snippet. Each snippet v is then represented with two-stream
features. To account for videos of various lengths, we adopt the setting in BSN (Lin et al., 2018) to
sample single-stream features over the temporal (frame) dimension to consistently obtain T snippets
per video sequence. Precisely, each video sequence X is represented by an appearance feature tensor
A ∈ RC×T and a motion feature tensor M ∈ RC×T . To enhance the representation power of each
snippet, we enrich the representation by three-step operations: co-attention, mutual-excitation, and
aggregation. Before we describe the steps, we first define a basic convolutional layer φ by

φ(X; f, o) = ReLU(W ∗X + b) , (1)

where X , f , o respectively denotes the input feature, the filter size, and the number of the output
filters. ReLU, ∗, W, b means the activation, convolution operation, the weights and bias of φ.

Co-attention. We consider the non-local function (Hsieh et al., 2019; Wang et al., 2018) to explore
the snippet-level correlations between the two-stream cues. Hence we enable our model to learn
to emphasize the temporal correlations of human-action descriptions between the two-stream cues.
Given a video sequence X , its appearance tensor A ∈ RC×T and motion tensor M ∈ RC×T , the
proposed two-stream co-attention is achieved by carrying out the following feature re-adjustment:

Â = Φ(A;M)⊕A, M̂ = Φ(M ;A)⊕M , (2)

where Â, M̂ ∈ RC×T , the non-local function Φ(·) yields T × T snippet-level feature correlations for
feature adjustment that conditioning on the other feature, and ⊕ denotes the element-wise addition.

Mutual-excitation. We further enhance the two-stream features by re-weighting over the channel
dimension C. To this end, we introduce a mutual-excitation mechanism to re-weight each single-
stream feature concerning the channel-attention from the other stream. A convolution layer φ of
filter size 1× 1 over the channel dimension is applied to re-organize the two-stream features. With
the adjusted features, we construct a two-stream mutual-excitation function Ψ to extract the channel
attention vector from one stream to excite the feature of the other stream. That is, we have

Ã = Ψ(φ(M̂ ; 1× 1, C))� φ(Â; 1× 1, C), M̃ = Ψ(φ(Â; 1× 1, C))� φ(M̂ ; 1× 1, C) , (3)

where Ã, M̃ ∈ RC×T , the mutual-excitation function Ψ(·) is generalized from squeeze-and-excitation
(Hu et al., 2018) for describing channel-attention, and � symbolizes the element-wise multiplication.

Aggregation. Inspired by the inception block (Szegedy et al., 2015; 2016), we further enrich the
feature representation concerning the multi-scale temporal contexts before integrating the two-stream
features. Given the two-stream features Ã and M̃ , we employ the convolution layer and max-pooling
layer to respectively map each of the two-stream features in two different temporal contexts by

Ā1 = φ(Ã; 1×3, C′), Ā2 = φ(ρ(Ã); 1×3, C′), M̄1 = φ(M̃ ; 1×3, C′), M̄2 = φ(ρ(M̃); 1×3, C′) , (4)
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where Ā1, Ā2, M̄1, M̄2 ∈ RC′×T , the max-pooling function ρ(·) using the filter of size 1× 3. We
then concatenate all features followed by another convolution layer to unify them. Formally, the
aggregated feature, say F, is generated by

F = φ(Ā1 ‖ Ā2 ‖ M̄1 ‖ M̄2; 1× 3× 4, C ′′) , (5)
where the notation ‖ symbolizes the concatenation over an augmented last dimension, namely,
(Ā1 ‖ Ā2 ‖ M̄1 ‖ M̄2) ∈ RC′×T×4, and F ∈ RC′′×T is squeezed over the augmented last dimension.

3.2 TRANSFORMER-DRIVEN SCORERS

Our transformer-driven scorers comprises four encoder-decoder pairs. Both encoder and decoder are
made of stacks of attention layers. Each encoder-decoder pair, i.e., a Transformer unit, is in charge
of extracting the inputted representation F’s temporal contextual supports, in which the temporal
contextual supports consider one single temporal direction with respect to the actioness or back-
ground. Hence, our encoder-decoder pairs generate the attended representations Ffa,Fba,Ffb,Fbb

for forward-actioness, backward-actioness, forward-background, and backward-background, respec-
tively. In Figure 2, the left part sketches our FITS model, and the right part details the architecture of
one transformer units, i.e., encoder-decoder. Precisely, we employ a one-layer eight-head Transformer
with additional head-selection operation as one single encoder-decoder pair within our FITS model.

Basic Units. Since our model shares the same Transformer’s basic units, i.e., positional encoding,
multi-head attention, add & norm, feed forward network, and masked multi-head attention, we refer
the readers to Vaswani et al. (2017) for more details about these units. Here we briefly review the
original Transformer architecture. The Transformer is a self-attention mechanism to compare each
feature with all other features in the sequence. This paper employs such a self-attention mechanism
to gain the temporal contextual supports from all other snippets for the snippet-level representation.
The mechanism embeds the inputted feature to query Q, key K, and value V via linear projections.
The product of Q and K formulates the attention weights for adjusting the value V as the output.

Transformer Unit. Each of our encoder-decoder pair takes a representation of F as input, and map
it into query, key, and value. For a snippet of one action event as the query, the encoder-decoder pair
then compares the relationship between the query and the keys of all other snippets to update the
snippet’s value. Intuitively, the self-attention process collects the contextual information from all
other snippets to adjust the queried snippet’s representation. Therefore, each snippet-level prediction
actually considers the other snippets and hence smooths the prediction results, as shown in Figure 1.
We now show the method to employ our encoder-decoder pairs. An attention function of a headi

(Vaswani et al., 2017) is defined as:

headi(Q,K, V ) = softmax(
QKᵀ

√
d

)V , (6)

where d denotes the normalization term. The head attention function is the main component of
the multi-head attention module and the masked multi-head attention module in the Transformer.
Yet we use the additional head selection to fuse all heads within these modules. Our encoder and
decoder empirically respectively take the representations of Ã ‖ M̃ and F as inputs. We use four
encoder-decoder pairs to generate the attended representations Ffa,Fba,Ffb,Fbb ∈ RC′′×T . Note
that the inputs for Fba and Fbb are reversed over the temporal dimension concerning the backward
temporal relation. For an attended representations Fi ∈ {Ffa,Fba,Ffb,Fbb}, we use (1) to predict its
probability Pi = φ(Fi; 1× 3, 1) ∈ R1×T . Hence, we can obtain the probabilities Pfa,Pba,Pfb,Pbb.

Head Selection. Unlike Vaswani et al. (2017) to directly concatenate all heads’ results with a
subsequent linear projection, we present the head selection to make each neuron adaptive select its
representation from the multiple heads. The head selection ξ is defined as

ξ({headi}) = φ(
∑

(scalei × headi); 1× 1, C ′′) , (7)

scalei = softmax(FC(GAP(
∑

headi))) , (8)

where headi denotes the ith head result,
∑

denotes the element-wise summation, FC and GAP are
fully-connection and global average pooling, respectively. Note that the softmax in (8) operates over
the head dimension rather than the channel or temporal dimension. The head selection is designed to
adjust the channel scales for enhance the representation power as the SE-Net (Hu et al., 2018).
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Scorers. Intuitively, a snippet vi could be an action starting boundary if its previous snippet vi−1
is considered as a background, and its subsequent snippet vi+1 is likely as an action instance. On the
other hand, a snippet vi could be an action ending boundary if vi−1 is also as an action instance, and
vi+1 is likely as a background. Bearing these observations in mind, we predict the probabilities of
action starting Ps and action ending Pe over all snippets with two convolution layers by

Ps = φ(φ(Fba ‖ Ffb; 1× 3, C); 1× 1, 1) , (9)

Pe = φ(φ(Ffa ‖ Fbb; 1× 3, C); 1× 1, 1) , (10)

where Ps,Pe ∈ R1×T , the notation ‖ symbolizes the concatenation over the channel-dimension.
Besides the snippet-level probabilities Ps and Pe, we further consider the proposal-level probabilities.
Given a proposal starting from the ith snippet to the jth snippet, we predict the action-covering
probability Pc and boundary-relation probability Pse as

Pc = φ(Hc; 1× 3× 3, 1) , Pse = φ(Hse; 1× 3× 3, 1) , (11)

where Pc,Pse ∈ R1×T×T . Each element Hc
i,j ∈ Hc indicates the truncated probability vector from

the ith bin to the jth bin, followed by ROI-Align (Ren et al., 2015), where the probability vector is
φ(Ffa ‖Fba; 1×3, 1). Each element Hse

i,j ∈ Hse indicates two truncated intermediate representations
of (9) and (10) from the ith snippet to the jth snippet, followed by element-wise addition, where the
intermediate representations are the results of the first convolution layer of (9) and (10). Note that we
calculate Pc and Pse by using the filter of size 3× 3 to consider the neighboring proposals.

Given an action proposal starting from the ith snippet to the jth snippet, we empirically define its
score sij with the probabilities mentioned above as:

sij = exp(Ps
i · Pe

j)× Pse
ij × (Pc

ij)
1
4 , (12)

where exp(Ps
i · Pe

j), Pse
ij and (Pc

ij)
1/4 are introduced for respectively preferring high boundary

confidence, high boundary correlation for a starting-ending pair, and high overlapping ratio between
proposal and action-instance. In our implementation, we follow BSN (Lin et al., 2018) to collect
candidate proposals by employing the probabilities of Ps and Pe. Thus, each proposal is scored via
(12) and followed by the soft non-maximum suppression for retrieving the top-scored proposals.

3.3 OPTIMIZATION

The overall loss function for training is formulated as a multi-task objective that comprises encoding
loss (Lenc) and scoring loss (Lscr):

L = Lenc + λLscr , (13)

where Lenc is used for training the four probabilities Pfa,Pba,Pfb,Pbb, and Lscr is designed for
learning the remaining probabilities Ps, Pe, Pc, and Pse. The encoding loss Lenc encourages
each Transformer to encode all its representations for predicting the probabilities of actioness or
background, and the scoring loss Lscr encourages all Transformers to correlate their representations
for ranking the proposals. Both the loss terms in (13) employ the binary logistic regression loss.

4 EXPERIMENTS

Datasets and Metrics. We conduct experiments on ActivityNet-1.3 (Heilbron et al., 2015) dataset
and THUMOS-14 (Jiang et al., 2014) dataset. The ActivityNet-1.3 is a large-scale action understand-
ing dataset, which is available for evaluating the tasks of proposal generation, action recognition,
temporal detection, and dense captioning. There are 19,994 temporal annotated untrimmed videos
comprising 200 action categories. The THUMOS-14 dataset contains 1,010 validation videos and
1,574 testing videos of 20 action categories. There are 200 validation videos, and 212 testing videos
contain temporal action annotations. We use the validation set for training and use the testing set for
evaluating. We use three metrics to evaluate the proposal quality. i) AR@AN, which evaluates the
relation between Average Recall (AR), that calculated with multiple specified IoU thresholds, and
Average Number of proposals (AN). ii) AUC, which denotes the area under the AR vs. AN curve.
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Table 1: Comparison of the state-of-the-art methods on ActivityNet-1.3 validation and testing split
and on THUMOS-14 testing split. Notation “*” indicates the model using non-two-stream features.

Method
ActivityNet-1.3 THUMOS-14

AR@100 (val) AUC (val) AUC (test) AR@50 AR@100 AR@200 AR@500 AR@1000

*GTAN (Long et al., 2019) 74.80 67.10 67.40 - - 54.30 - -
BMN (Lin et al., 2019) 75.01 67.10 67.19 39.36 47.72 54.70 62.07 65.49

RapNet (Gao et al., 2020) 76.71 67.63 67.72 40.35 48.23 54.92 61.41 64.47
DBG (Lin et al., 2020) 76.65 68.23 68.57 37.32 46.67 54.50 62.21 66.40

Zhao et al. (2020) 75.27 66.51 - 44.23 50.67 55.74 - -
BC-GNN (Bai et al., 2020) 76.73 68.05 - 40.50 49.60 56.33 62.80 66.57

FITS 77.59 69.36 70.00 40.32 49.53 57.55 65.34 69.56

Label Assignment. We adopt actioness Pa, action starting Ps, and action ending Pe to estimate
each frame’s probabilities being an actioness, action-starting point, and action-ending point, re-
spectively. Given a video sequence X = {xn}Nn=1 of N frames, we assume it includes I action
instances. Hence the ground-truth actions of X are Y = {(s∗, e∗)i = (s∗i , e

∗
i )}Ii=1. We then define

the ground-truth probabilities of Pa, Ps, and Pe within a time span of ith action instance as

T a
i = [s∗i , e

∗
i ] , T s

i = [s∗i − δi, s∗i + δi] , T e
i = [e∗i − δi, e∗i + δi] , (14)

where we shift the time span by δi = (e∗ − s∗)/η, and we set η to 40 empirically. Given the nth
frame, we represent the corresponding time span as Tn = [n, n+ 1]. We then use Tn to calculate
the overlap ratio with respect to T a

i , T s
i , and T e

i for actioness, action starting, and action ending,
respectively. The overlap ratio serves as the ground-truth probability. The probabilities of actioness
and background are complementary with a summation of 1. Note that the ground-truth actioness
probabilities for both directions, i.e., Pfa and Pba, are the same. Analogously, the ground-truth
background probabilities of Pfb and Pbb are the same.

We take two aspects to define proposal-level confidence scores. First, we determine the action-
covering ratio as the probability Pc for each action proposal (s, e) by calculating the time-interval
IoU with all action instances I . The action instance of the highest IoU value is regarded as the ground-
truth action-covering score of the proposal. That is, a time-interval IoU determines the coverage
between an action proposal and action instances within a time interval of [s, e]. We then employ
the aspect of the proposal’s boundary to define the confidence score. Higher boundary probability
potentially denotes an action starting at the sth frame and ending at the eth frame. Specifically, we
obtain the ground-truth boundary-relation probabilities of Pse for all proposals by applying the outer
product between ground-truth probabilities of Ps and Pe.

4.1 COMPARISON WITH STATE-OF-THE-ARTS

Table 1 summarizes the comparison of our approach against state-of-the-art TAPG methods. Our
model significantly outperforms other TAPG methods on all metrics of both datasets. Specially, we
improve AR@100 and AUC of ActivityNet-1.3 validation split by 0.86% and 1.13%, respectively.
On the ActivityNet-1.3 testing split evaluating on the official server, we further improve AUC by
1.43%. On the THUMOS-14 testing splits, though the very recent method Zhao et al. (2020) shows
the outstanding ranking results and hence surpasses FITS at AR@50 and AR@100, our FITS model
surpasses all other methods with a sufficient number of available proposals. This comparison also
shows that our FITS is able to retain more high-quality proposals compared to other TAPG methods.

4.2 ABLATION STUDY

We conduct a detailed ablation study on ActivityNet-1.3 validation split to realize the importance
per component of our FITS model. Table 2 summarizes the ablation study of the feature integration
module and transformer-driven scorers module, and please notice we assume a single module in this
ablation equips with all the components of the other module. Table 3 summarizes the ablation study
of the configurations in the transformer-driven scorers module.

Feature Integration. The left part in Table 2 compares the components within the feature integra-
tion module. The first row, i.e., baseline-FI, serves as the baseline that concatenates the two-stream
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Table 2: Ablation study on ActivityNet-1.3 validation split. The meanings of abbreviations are CA:
co-attention; ME: mutual-excitation; AG: aggregation; PG: performance gain on AUC; baseline-FI:
concatenating the two-stream features; baseline-TS: estimating action boundaries as BSN and BMN.

Component Feature Integration Component Transformer-driven Scorers
CA ME AG AUC PG AR@30 AR@50 AR@80 AR@100 Ps,Pe Pse Pc AUC PG AR@30 AR@50 AR@80 AR@100

baseline-FI 67.51 - 66.54 71.02 74.47 75.86 baseline-TS 65.63 - 64.74 69.13 72.50 73.85
3 - - 67.91 +0.40 67.11 71.40 74.81 76.24 3 - - 68.21 +2.58 67.58 71.56 74.93 76.28
3 3 - 68.42 +0.91 67.52 71.92 75.23 76.55 3 3 - 68.50 +2.87 67.87 72.06 75.48 76.93
- - 3 68.47 +0.96 67.64 72.03 75.57 76.91 3 - 3 68.60 +2.97 67.77 72.34 75.37 76.73
3 3 3 69.36 +1.85 68.79 73.08 76.24 77.59 3 3 3 69.36 +3.73 68.79 73.08 76.24 77.59

self-attention 3 3 69.16 +1.65 68.65 72.81 76.00 77.37 - - - - - - - - -
3 self-excitation 3 69.10 +1.59 68.38 72.77 76.12 77.29 - - - - - - - - -

Table 3: Ablation study of transformer-driven scorers module on ActivityNet-1.3 validation split.

Input Transformer-driven Scorers Input Transformer-driven Scorers
Encoder Decoder AUC PG AR@30 AR@50 AR@80 AR@100 Encoder Decoder AUC PG AR@30 AR@50 AR@80 AR@100

Ã ‖ M̃ Ã ‖ M̃ 67.49 - 66.62 71.23 74.33 75.90 F Ã ‖ M̃ 68.34 +0.85 67.49 71.88 75.20 76.54
F F 69.19 +1.70 68.59 72.77 76.11 77.42 Ã ‖ M̃ F 69.36 +1.87 68.79 73.08 76.24 77.59

Head Selection Transformer-driven Scorers Head Selection Transformer-driven Scorers
# heads Operation AUC PG AR@30 AR@50 AR@80 AR@100 # heads Operation AUC PG AR@30 AR@50 AR@80 AR@100

8 Concatenation 69.07 - 68.53 72.59 75.90 77.22 8 Selection 69.36 +0.29 68.79 73.08 76.24 77.59

features over the channel dimension for the subsequent proposal generation. The comparisons show
that all three components, i.e., CA, ME, AG, contribute positively. Precisely, the CA & ME improve
AUC by 0.91% and the AG module improves AUC by 0.96%, which respectively shows that concern-
ing the two stream’s interaction and the multi-scale temporal contexts is beneficial for obtaining the
robust video representation. With the complete FI module, we can further improve AUC by 1.85%.
Furthermore, the bottom two rows show the comparison results once we employ self-adjustment on
each single-stream feature. The results show that the two-stream interaction is indeed advantaged.
Precisely, compared with our full model, i) when replacing co-attention with self-attention, the AUC
declines to 69.16 by 0.20%; ii) when replacing mutual-excitation with self-excitation, the AUC also
declines to 69.10 by 0.26%.

Transformer-driven Scorers. The right part in Table 2 compares the probability setting within the
TS module. The first row, i.e., baseline-TS, serves as the baseline that only employs the probabilities
of Ps & Pe to generate proposals. The comparisons show that all these scoring probabilities contribute
positively. Precisely, the Ps & Pe using our boundary co-estimation has significantly improved the
AUC by 2.58%. With the aids of the proposal-level scoring probabilities Pse and Pc, we can improve
more AUC by 0.29% and 0.39%. As a result, our complete TS module remarkably improves AUC by
3.73%. The ablation results demonstrate that it is beneficial to retrieve action proposals concerning
the boundary co-estimation and the association of the self-attended representations. Our TS-based
approach fulfills the goal with noticeable performance gain.

Table 3 ablates the configurations of the TS module. The top part shows the various inputs for the
encoder-decoder pair. The ablation shows that though the aggregated representation F helps use in the
encoder-decoder pair, simultaneous employing the Ã ‖ M̃ & F gains more performance improvement.
The bottom part shows the advantage of our head selection. Comparing to concatenating multiple
heads directly, our head selection shows higher performance improvement.

Visualization. Figure 3 visualizes the effects of employing our co-attention and mutual-excitation
and transformer-driven scorers. The left figures select the two-stream features of the 70th snippet
locating at an action instance for comparison. The result shows that our co-attention and mutual-
excitation modules obviously reduces the feature discrepancies between two-stream features. As a
result, our proposal generation can employ the two-stream features without noticeable preferences.
The right four figures show the estimated action-boundary probabilities between “baseline-TS” and
our “full model.” In comparison with baseline-TS, the full model estimates the boundary probabilities
by using probabilities Ps, Pe, Pse, and Pc. The results show that our model contributes to estimating
less false positive estimations, which again demonstrate the effectiveness of our FITS model.
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Figure 3: Effect visualization of our model on video id “pIk9qMEyEd4.” The top row shows the
sampled frames of the video. The left two figures in the bottom image set, which depict the absolute
differences (y-axis) between motion cue and appearance cue over feature channels (x-axis), show our
co-attention and mutual-excitation mechanism can reduce the two-stream feature discrepancies. The
right four figures in the bottom image set, which plot the predicted boundary probabilities (y-axis) Ps

and Pe over the snippet dimension (x-axis), show our TS module’s effect. In this four-image set, the
top row shows the original results, and the bottom row shows the results using our modules.

5 CONCLUSIONS

We have shown that the proposed FITS model, which is composed of the Feature-Integration module
and the Transformer-driven Scorers module, better addresses the temporal action proposal generation
task and achieves state-of-the-art performance. Specifically, the proposed action-boundary co-
estimation mechanism shows its advantages in retrieving proposals of less false-positive predictions
and, hence, helps retain high-quality proposals. The extensive experiments show that the performance
gain is derived from not only the Feature-Integration module, which enriches and integrates the
two-stream features as a robust snippet-level representation, but also the Transformer-driven Scorers
module, which first generates the self-attended representations concerning the temporal contextual
supports and then associates these self-attended representations for proposal scoring. As a result, our
FITS model effectively utilizes the standard two-stream features and explores the self-attended video
representations, therefore, lead to state-of-the-art TAPG performances on two challenging datasets.
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6 APPENDIX

Implementation Details. We use the two-stream features (Xiong et al., 2016) pre-trained on the
training set of ActivityNet-1.3 with the same parameter settings as (Gao et al., 2017; Lin et al., 2018).
We set 16 frames per snippet in ActivityNet-1.3 and 5 frames per snippet in THUMOS-14. Further,
we sample the snippets with T = 100 via linear interpolation in ActivityNet-1.3 and with T = 128
via truncation and overlapped sliding windows in THUMOS-14. All the snippet manipulations are
the same as (Lin et al., 2019; 2018). For the setting of soft-NMS, we respectively use threshold 0.8
and 0.65 for ActivityNet-1.3 and THUMOS-14, and the same decay parameter 0.85 for both datasets.
We train our model using Adam optimizer with batch size 24 in ActivityNet-1.3 and batch size 4
in THUMOS-14. The initial learning rate is 10−3 with decayed by 10−3 for every 10 epochs. The
channel numbers C = 200, C ′ = 1600, and C ′′ = 400. The weighting factor λ in (13) is set to 0.5.

Comparison against SOTA proposal generators Table 4 and Table 5 show the complete sum-
marization of our proposal generator, i.e., FITS, against state-of-the-art proposal generators on
ActivityNet-1.3 and THUMOS-14, respectively. In both tables, the notation “*” indicates the method
using non-two-stream features, and the notation “+” indicates the supplementary results. Our results
consistently outperform all other state-of-the-art proposal generators on two datasets. Please note
that the results of the ActivityNet-1.3 testing split are evaluated using the official server.

Table 4: Comparison of the state-of-the-art methods on ActivityNet-1.3 validation and testing splits.

Method +TCN Dai et al. (2017) +MSRA Ting et al. (2017) +Prop-SSAD Lin et al. (2017b) +CTAP Gao et al. (2018) FITS

AR@100 (val) - - 73.01 73.17 77.59
AUC (val) 59.58 63.12 64.40 65.72 69.36
AUC (test) 61.56 64.18 64.80 - 70.00

Method +BSN (Lin et al., 2018) +MGG (Liu et al., 2019) BMN (Lin et al., 2019) *GTAN (Long et al., 2019) FITS

AR@100 (val) 74.16 74.54 75.01 74.80 77.59
AUC (val) 66.17 66.43 67.10 67.10 69.36
AUC (test) 66.26 66.47 67.19 67.40 70.00

Method RapNet (Gao et al., 2020) DBG Lin et al. (2020) Zhao et al. (2020) BC-GNN (Bai et al., 2020) FITS

AR@100 (val) 76.71 76.65 75.27 76.73 77.59
AUC (val) 67.63 68.23 66.51 68.05 69.36
AUC (test) 67.72 68.57 - - 70.00

Table 5: Comparison of the state-of-the-art methods on THUMOS-14 testing split.

Method AR@50 AR@100 AR@200 AR@500 AR@1000

+*SCNN-prop(Shou et al., 2016) 17.22 26.17 37.01 51.57 58.20
+*SST (Buch et al., 2017b) 19.90 28.36 37.90 51.58 60.27
+TAG (Zhao et al., 2017) 18.55 29.00 39.61 - -
+TURN (Gao et al., 2017) 21.86 31.89 43.02 57.63 64.17
+CTAP (Gao et al., 2018) 32.49 42.61 51.97 - -
+BSN (Lin et al., 2018) 37.46 46.06 53.21 60.64 64.52
+MGG (Liu et al., 2019) 39.93 47.75 54.65 61.36 64.06

*GTAN (Long et al., 2019) - - 54.30 - -
BMN (Lin et al., 2019) 39.36 47.72 54.70 62.07 65.49

RapNet (Gao et al., 2020) 40.35 48.23 54.92 61.41 64.47
DBG (Lin et al., 2020) 37.32 46.67 54.50 62.21 66.40

Zhao et al. (2020) 44.23 50.67 55.74 - -
BC-GNN (Bai et al., 2020) 40.50 49.60 56.33 62.80 66.57

FITS 40.32 49.53 57.55 65.34 69.56
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Table 6: Temporal action detection results on ActivityNet-1.3 validation split. Notation ‘*’ indicates
the model leveraging the results from UntrimmedNet-based action classifier (Wang et al., 2017).

Method mAP@0.5 mAP@0.75 mAP@0.95 Average

CDC (Shou et al., 2017) 43.83 25.88 0.21 22.77
SSN (Zhao et al., 2017) 39.12 23.48 5.49 23.98
*BSN (Lin et al., 2018) 46.45 29.96 8.02 30.03

*P-GCN (Zeng et al., 2019) 48.26 33.16 3.27 31.11
*BMN (Lin et al., 2019) 50.07 34.78 8.29 33.85

*G-TAD (Xu et al., 2020) 50.36 34.60 9.02 34.09
*BC-GNN (Bai et al., 2020) 50.56 34.75 9.37 34.26

FITS 51.89 35.05 10.16 34.75

Action detection with FITS action proposals Due to the limited space allowed in the main paper,
we provide the experimental results of temporal action detection task in the supplementary material.
The methods (Buch et al., 2017b; Escorcia et al., 2016; Gao et al., 2018; 2020; 2017; 2019; Lin
et al., 2020; 2019; 2018; Liu et al., 2019; Long et al., 2019; Shou et al., 2016; Xu et al., 2017; Zhao
et al., 2017) have been mentioned in the main paper. For assessing the quality of our proposals for
helping a video action classifier, we first feed FITS proposals into the state-of-the-art temporal action
classifier, i.e., P-GCN (Zeng et al., 2019) 1, in which the P-GCN classifier infers the action probability
distribution of each proposal. We then re-score each proposal by multiplying its action score, the
highest specific-action probability derived from the P-GCN classifier, with the FITS proposal score,
the equation (12) in the main paper. Finally, we re-rank the proposals according to their multiplied
scores for evaluation.

Table 6 shows the detection performance with top-100 proposals in metric mAP@IoU, which evaluates
the relation between mean Average Precision (mAP) and specified IoU thresholds, compared to the
state-of-the-art methods on ActivityNet-1.3 validation split. Following the methods (Lin et al., 2018;
Zeng et al., 2019; Xu et al., 2020), we adopt the video-level action probability distribution derived
from the UntrimmedNet-based action classifier (Wang et al., 2017). We then multiply the action
probability to our FITS proposal score, i.e., the equation (12) defined in the main paper.

Table 7 shows the detection performance in metric mAP@IoU, which evaluates the relation between
mean Average Precision (mAP) and specified IoU thresholds, compared to the state-of-the-art methods
on THUMOS-14 testing split. Note that the original P-GCN method (Zeng et al., 2019) adopts the
proposals generated by BSN Lin et al. (2018). When replacing the BSN proposals of P-GCN with
our FITS proposals, our detection result “FITS+P-GCN” achieves 5% performance gain compared to
P-GCN, 4% performance gain compared to “Zhao et al. (2020)+P-GCN,”, and 2.5% performance
gain compared to “G-TAD+P-GCN,” respectively. The experiment shows the advantage of our
proposals to improve an action classifier achieving state-of-the-art performance while addressing the
action detection task.

1P-GCN implementation: https://github.com/Alvin-Zeng/PGCN
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Table 7: Temporal action detection results on THUMOS-14 testing split.

Method mAP@0.1 mAP@0.2 mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7

DAP (Escorcia et al., 2016) - - - - 13.9 - -
S-CNN (Shou et al., 2016) 47.7 43.5 36.3 28.7 19.0 - -
SSAD (Lin et al., 2017a) 50.1 47.8 43.0 35.0 24.6 - -

SS-TAD (Buch et al., 2017a) - - 45.7 - 29.2 - 9.6
SST (Buch et al., 2017b) - - 37.8 - 23.0 - -
CDC (Shou et al., 2017) - - 40.1 29.4 23.3 13.1 7.9
TURN (Gao et al., 2017) 54.0 50.9 44.1 34.9 25.6 - -
R-C3D (Xu et al., 2017) 54.5 51.5 44.8 35.6 28.9 - -
SSN (Zhao et al., 2017) 66.0 59.4 51.9 41.0 29.8 - -
ETP (Qiu et al., 2018) - - 48.2 42.4 34.2 23.4 13.9

CTAP (Gao et al., 2018) - - - - 29.9 - -
BSN (Lin et al., 2018) - - 53.5 45.0 36.9 28.4 20.0

TAL-Net (Chao et al., 2018) 59.8 57.1 53.2 48.5 42.8 33.8 20.8
MGG (Liu et al., 2019) - - 53.9 46.8 37.4 29.5 21.3

GTAN (Long et al., 2019) 69.1 63.7 57.8 47.2 38.8 - -
BMN (Lin et al., 2019) - - 56.0 47.4 38.8 29.7 20.5

P-GCN (Zeng et al., 2019) 69.5 67.8 63.6 57.8 49.1 - -
DBS (Gao et al., 2019) 56.7 54.7 50.6 43.1 34.3 24.4 14.7
DBG (Lin et al., 2020) - - 57.8 49.4 39.8 30.2 21.7

FC-AGCN-P-C3D (Li et al., 2020) 59.3 59.6 57.1 51.6 38.6 28.9 17.0
PBRNet (Liu & Wang, 2020) - - 58.5 54.6 51.3 41.8 29.5

G-TAD (Xu et al., 2020) - - 54.5 47.6 40.2 30.8 23.4
Zhao et al. (2020) - - 53.9 50.7 45.4 38.0 28.5

BC-GNN (Bai et al., 2020) - - 57.1 49.1 40.4 31.2 23.1
G-TAD (Xu et al., 2020)+P-GCN - - 66.4 60.4 51.6 37.6 22.9

Zhao et al. (2020)+P-GCN 71.8 70.3 66.3 61.0 50.1 - -
FITS+P-GCN 75.0 72.7 69.1 62.7 54.1 41.1 27.8
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