

000 001 002 003 004 005 006 007 008 009 010 011 012 TARGET BEFORE YOU PERTURB: ENHANCING LOCALLY PRIVATE GRAPH LEARNING VIA TASK-ORIENTED PERTURBATION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Graph neural networks (GNNs) have achieved remarkable success in graph repre-
014 sentation learning and have been widely adopted across various domains. However,
015 real-world graphs often contain sensitive personal information, such as user pro-
016 files in social networks, raising serious privacy concerns when applying GNNs to
017 such data. Consequently, *locally private graph learning* has gained considerable
018 attention. This framework leverages local differential privacy (LDP) to provide
019 strong privacy guarantees for users' local data. Despite its promise, a key challenge
020 remains: how to preserve high utility for downstream tasks (*e.g.*, node classification
021 accuracy) while ensuring rigorous privacy protection. In this paper, we propose
022 TOGL, a Task-Oriented Graph Learning framework that enhances utility under
023 LDP constraints. Unlike prior approaches that blindly perturb all attributes, TOGL
024 first targets task-relevant attributes before applying perturbation, enabling more
025 informed and effective privacy mechanisms. It unfolds in three phases: *locally*
026 *private feature perturbation*, *task-relevant attribute analysis*, and *task-oriented*
027 *private learning*. This structured process enables TOGL to provide strict privacy
028 protection while significantly improving the utility of graph learning. Extensive ex-
029 periments on real-world datasets demonstrate that TOGL substantially outperforms
030 existing methods in terms of privacy preservation and learning effectiveness.

031 1 INTRODUCTION

032
033 Graph Neural Networks (GNNs) (Wu et al., 2020; Kipf & Welling, 2017) have emerged as powerful
034 tools for learning representations from graph-structured data, achieving remarkable success in diverse
035 applications such as social network analysis (Li et al., 2019; Wu et al., 2022; Sankar et al., 2021),
036 recommendation systems (Ying et al., 2018; Sharma et al., 2024), and bioinformatics (Fout et al.,
037 2017; Bessadok et al., 2022). Despite these successes, applying GNNs to real-world graphs often
038 involves processing sensitive user data, such as profiles and behavioral logs on social networks. This
039 raises substantial privacy risks, as recent studies have shown that adversaries can exploit trained GNNs
040 to recover private information (Zhang et al., 2022; Meng et al., 2023; Wang & Wang, 2022; Yuan
041 et al., 2024; Zhang et al., 2024b). Therefore, it is imperative to design an efficient privacy-preserving
042 GNN framework that protects users' private information throughout the learning process.

043 Recently, *locally private graph learning* (Sajadmanesh & Gatica-Perez, 2021; Lin et al., 2022; Pei
044 et al., 2023; Li et al., 2024; He et al., 2025a) has garnered considerable attention from the security and
045 privacy research community. In this framework (as illustrated in Fig. 1(a)), each user independently
046 perturbs their original node features using a local differential privacy (LDP) (Dwork et al., 2006)
047 mechanism. The privacy level is governed by a parameter ϵ , known as the *privacy budget*, where a
048 smaller ϵ implies stronger privacy guarantees. The perturbed node features are then transmitted to
049 an untrusted third-party server, which performs private graph learning on the noisy data to support
050 downstream tasks such as node classification (Kipf & Welling, 2017) and link prediction (Zhang &
051 Chen, 2018). LDP ensures that even if the transmitted data is intercepted, an adversary cannot reliably
052 infer an individual's true input, thereby providing strong privacy guarantees in the local setting.

053 However, striking a balance between privacy and utility remains a significant challenge. Users' node
054 features are typically high-dimensional and composed of multiple distinct attributes. Given a total

Figure 1: **Comparison of prior works with ours.** (a) Prior work adopts a “random-then-perturb” paradigm, where a random subset of attributes (e.g., ② and ④) is selected for perturbation while the rest are discarded (zeroed out), potentially overlooking task-relevant information. (b) In contrast, our work follows a “target-then-perturb” paradigm, which explicitly identifies task-relevant attributes (e.g., ① and ③) and perturbs them to enhance learning utility under the same privacy guarantee.

privacy budget ϵ (which is usually small), naively dividing ϵ equally across all feature dimensions and perturbing each leads to substantial utility loss. To mitigate this, as shown in Fig. 1(a), recent state-of-the-art approaches (Sajadmanesh & Gatica-Perez, 2021; Lin et al., 2022; Pei et al., 2023; Li et al., 2024; Jin & Chen, 2022; He et al., 2025a) adopt a “random-then-perturb” paradigm: a small subset of attributes is randomly selected, and the entire ϵ is evenly allocated among them, while the remaining unselected attributes are zeroed out. This strategy helps preserve the quality of the selected attributes by reducing the per-dimension noise under the same privacy guarantee (same ϵ). Nevertheless, LDP mechanisms based on this paradigm still suffer from limited utility in practice.

In this paper, as illustrated in Fig. 1(b), we propose TOGL, a Task-Oriented Graph Learning framework designed to enhance utility under LDP constraints. TOGL is motivated by the realistic observation that, in realistic graph learning scenarios, the utility of downstream tasks often relies on only a small subset of attributes within the high-dimensional node features. For example, in a node classification task like credit risk prediction (Wang et al., 2021), the model may primarily rely on a few critical attributes (such as income, repayment history, and employment), while other attributes contribute little. Leveraging this insight, TOGL introduces a novel “target-then-perturb” paradigm for LDP. In contrast to existing methods that randomly select attributes to perturb, TOGL first targets task-relevant attributes and then applies perturbation specifically to them. This targeted perturbation strategy facilitates more accurate privacy preservation and achieves improved learning utility.

Achieving the above objective is highly non-trivial due to several key challenges. First, identifying task-relevant attributes under LDP constraints is inherently difficult, as the available data has already been perturbed, obscuring useful patterns. Second, the key attribute selection process itself must be privacy-preserving and must not weaken the privacy guarantees compared to existing methods, further complicating the extraction of informative task signals. Third, naively maximizing task relevance can be counterproductive: overemphasizing task-specific attributes may impair the graph’s topological distinguishability, thereby degrading the model’s ability to capture structural patterns essential for generalization. These challenges highlight the need for a careful balance among task utility, attribute privacy, and structural information, along with clear metrics to guide this trade-off.

To address these challenges, TOGL follows a three-phase pipeline: ① *Locally Private Feature Perturbation*. Each user perturbs their node features using an LDP mechanism and uploads the perturbed features to the server. The server denoises features via multi-hop aggregation to enable more accurate attribute analysis. ② *Task-Relevant Attribute Analysis*. We introduce two methods to identify task-relevant attributes: Fisher Discriminant Analysis (FDA), which captures discriminative signals across classes, and Sparse Model Attribution (SMA), which highlights sparse, high-impact features based on model behavior. ③ *Task-Oriented Private Learning*. The model selectively perturbs a combination of task-relevant attributes and randomly sampled attributes to balance task consistency and topological distinguishability. Throughout the pipeline, TOGL ensures strict end-to-end LDP guarantees while significantly enhancing the utility of private graph learning.

Contributions. The key contributions are as follows. ① We introduce a novel task-oriented perspective for studying locally private graph learning. ② We propose TOGL, a Task-Oriented Graph Learning framework that enhances utility while adhering to LDP constraints. ③ Extensive experiments on six real-world datasets demonstrate substantial utility improvements over existing baselines.

108 **2 PRELIMINARIES**

110 In this section, we first define the problem (Sec. 2.1), then present the essential background of local
 111 differential privacy (Sec. 2.2), and finally introduce the framework of locally private graph learning
 112 (Sec. 2.3). Important notations are summarized in Appendix A.

113 **2.1 PROBLEM DEFINITION**

114 Consider a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the set of nodes and \mathcal{E} is the set of edges. Let $\mathbf{X} \in \mathbb{R}^{|\mathcal{V}| \times d}$
 115 denote the node feature matrix, where each node $v \in \mathcal{V}$ is associated with a d -dimensional feature
 116 vector $\mathbf{x}_v \in [\alpha, \beta]^d$ containing sensitive user information¹. Each node is also associated with a
 117 label $y_v \in \mathcal{Y}$, where $\mathcal{Y} = \{y_1, y_2 \dots, y_C\}$ denotes the set of possible classes. The objective is to
 118 train a GNN model to perform tasks such as node classification (Kipf & Welling, 2017) using graph
 119 data. However, uploading such data to an untrusted server for GNN-based graph learning introduces
 120 significant privacy risks (Zhang et al., 2022; Meng et al., 2023; Zhang et al., 2024b; Wang & Wang,
 121 2022; Yuan et al., 2024). To address this, *locally private graph learning* (Sajadmanesh & Gatica-
 122 Perez, 2021; Lin et al., 2022; Pei et al., 2023; Li et al., 2024; He et al., 2025a; Jin & Chen, 2022)
 123 seeks to leverage LDP (Yang et al., 2024) to protect individual node privacy while maintaining high
 124 utility (e.g., node classification accuracy) in graph learning tasks. This paper proposes to optimize
 125 existing LDP perturbation mechanisms from a *task-oriented perspective*, thereby promoting a more
 126 utility-efficient framework for locally differentially private graph learning.

127 **2.2 LOCAL DIFFERENTIAL PRIVACY**

128 LDP (Yang et al., 2024) is a rigorous privacy framework that enables meaningful data analysis while
 129 protecting individual privacy. It has been widely adopted in various decentralized data collection and
 130 distribution settings (Duchi et al., 2013; Kairouz et al., 2014; 2016; Cormode et al., 2018; Wang et al.,
 131 2019a;b). By introducing randomized noise into the data processing pipeline, LDP offers strong
 132 privacy guarantees for users’ raw data. Under the LDP paradigm, each user locally perturbs their
 133 data x using a randomized mechanism \mathcal{M} before transmitting it to potentially untrusted servers for
 134 downstream tasks. The mechanism \mathcal{M} must satisfy the following definition:

135 **Definition 1** (ϵ -LDP). *A randomized algorithm $\mathcal{M} : \mathcal{X} \rightarrow \mathcal{Z}$, where \mathcal{X} is the domain of all input x ,
 136 satisfies ϵ -local differential privacy (ϵ -LDP) if for any two inputs $x, x' \in \mathcal{X}$ and any output $z \in \mathcal{Z}$,*

$$\Pr[\mathcal{M}(x) = z] \leq e^\epsilon \cdot \Pr[\mathcal{M}(x') = z], \quad \epsilon > 0. \quad (1)$$

137 The parameter ϵ , known as the *privacy budget*, quantifies the trade-off between privacy and utility. A
 138 smaller ϵ implies that \mathcal{M} offers stronger privacy protection, but typically at the cost of reduced utility.
 139 The two most commonly studied properties (Dwork et al., 2014) of LDP are as follows:

140 **Theorem 1** (Sequential Composition). *If $\mathcal{M}_i : \mathcal{X} \mapsto \mathcal{Z}_i$ satisfies ϵ_i -LDP for each $i \in \{1, 2, \dots, n\}$,
 141 then the composed mechanism $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_n) : \mathcal{X} \mapsto \prod_{i=1}^n \mathcal{Z}_i$ satisfies $(\sum_{i=1}^n \epsilon_i)$ -LDP.*

142 **Theorem 2** (Post-Processing Invariance). *Let $\mathcal{A} : \mathcal{X} \mapsto \mathcal{Z}$ satisfies ϵ -LDP, and let $\mathcal{F} : \mathcal{Z} \mapsto \mathcal{Z}'$ be
 143 any (possibly randomized) mapping. Then the composed mechanism $\mathcal{A} \circ \mathcal{F} : \mathcal{X} \mapsto \mathcal{Z}'$ satisfies ϵ -LDP.*

144 **2.3 LOCALLY PRIVATE GRAPH LEARNING**

145 Locally private graph learning consists of two steps: *perturb* and *learn*, where data perturbation is
 146 performed on the user side, and graph learning is carried out on the server side.

- 147
 - 148 • *Perturb*. To protect the privacy of node features, three state-of-the-art LDP mechanisms have
 149 been proposed: the piecewise mechanism (PM) (Pei et al., 2023; Wang et al., 2019a), the multi-bit
 150 mechanism (MB) (Lin et al., 2022; Sajadmanesh & Gatica-Perez, 2021; Jin & Chen, 2022), and
 151 the square wave mechanism (SW) (Li et al., 2024; 2020). Given the high dimensionality of node
 152 features, blindly perturbing each attribute can significantly impair data utility. To mitigate this,
 153 these mechanisms adopt a “*random-then-perturb*” paradigm (Fig. 1(a)) to balance privacy with
 154 utility. The general ingestion process consists of two steps. First, m values are randomly selected

155 ¹This paper focuses on protecting users’ node features, which are often the most sensitive and critical for
 156 downstream learning tasks. Our approach is orthogonal to existing privacy-preserving techniques for neighbor
 157 lists (Hidano & Murakami, 2024; Zhu et al., 2023a), and can be seamlessly integrated with them. While we
 158 do not directly consider link-level privacy in this work, TOGL remains effective, and additional experiments in
 159 Appendix D.5 demonstrate that it maintains strong performance even when neighbor lists are locally perturbed.

Figure 2: The overview of TOGL consists of three successive phases: locally private feature perturbation, task-relevant attribute analysis, and task-oriented private learning. Specifically, in Phase I, TOGL utilizes a LDP mechanism to collect initial node features and perform aggregation denoising, enabling subsequent attribute analysis. In Phase II, task-relevant attributes are scored using the FDA or SMA methods to identify the top- m key attribute set \mathcal{S}^* . Finally, in Phase III, TOGL conducts task-oriented private graph learning guided by \mathcal{S}^* to solve downstream tasks such as node classification.

without replacement from the d -dimensional feature space $[d]$. Then, an ϵ/m -LDP perturbation is applied to each of the m selected dimensions, while the remaining $d - m$ dimensions are zeroed. Specifically, for the PM in the one-dimensional setting (see App. B for more details on MB and SW), the input domain is $[\alpha, \beta]$, and the output range is $[-\mathcal{B}, \mathcal{B}]$, where $\mathcal{B} = \frac{e^{\epsilon/2} + 1}{e^{\epsilon/2} - 1}$. Given an original input value x , the perturbed value x' is sampled from the following probability density function:

$$\Pr[x' = c|x] = \begin{cases} p, & \text{if } c \in [l(x), r(x)] \\ p/e^\epsilon, & \text{if } c \in [-\mathcal{B}, l(x)] \cup (r(x), \mathcal{B}] \end{cases}, \quad (2)$$

where $p = \frac{e^\epsilon - e^{\epsilon/2}}{2e^{\epsilon/2} + 2}$, $l(x) = \frac{\mathcal{B} + 1}{2} \cdot x - \frac{\mathcal{B} - 1}{2}$, and $r(x) = l(x) + \mathcal{B} - 1$.

- **Learn.** After collecting all perturbed node features, the server performs private graph learning using a GNN model for downstream tasks such as node classification. The GNN iteratively updates node embeddings by aggregating local neighborhood information. At layer k , each node $v \in \mathcal{V}$ first aggregates the embeddings from its neighbors $\mathcal{N}(v)$, and then applies a learnable update function:

$$\mathbf{h}_{\mathcal{N}(v)}^k = \text{AGGREGATE}_k(\{\mathbf{h}_u^{k-1} \mid u \in \mathcal{N}(v)\}), \quad \mathbf{h}_v^k = \text{UPDATE}_k(\mathbf{h}_{\mathcal{N}(v)}^k), \quad (3)$$

where \mathbf{h}_u^{k-1} is the embedding of node $u \in \mathcal{N}(v)$ from the previous layer. The aggregation function $\text{AGGREGATE}(\cdot)$ (e.g., mean, sum, or max) combines information from neighboring nodes, while the update function $\text{UPDATE}(\cdot)$ (e.g., a neural network layer) refines the representation. The process is initialized with $\mathbf{h}_v^0 = \mathbf{x}_v$, where \mathbf{x}_v denotes the input feature vector of node $v \in \mathcal{V}$.

3 METHODOLOGY

In this section, we detail the *Task-Oriented Graph Learning* (TOGL) framework under LDP constraints. TOGL is designed to optimize the initial LDP perturbation process for graph learning from a task-oriented perspective, thereby enhancing the utility of downstream learning tasks. Fig. 2 illustrates the overview of TOGL, and Alg. 2 presents the details.

3.1 LOCALLY PRIVATE FEATURE PERTURBATION

This phase begins with applying *LDP perturbation* to privately collect user node features, followed by *aggregation denoising* to enable attribute analysis in later phases.

LDP Perturbation. In TOGL, we aim to analyze the node features $\mathbf{x}_v \in [\alpha, \beta]^d$ of all users $v \in \mathcal{V}$ to identify a top- m set of attributes, denoted as \mathcal{S}^* , that are most relevant to the downstream learning task. However, under privacy constraints, direct access to the original node features is not available. Therefore, we first apply an LDP mechanism to perturb \mathbf{x}_v and obtain its privatized version. As discussed in Sec. 2.3, we consider three state-of-the-art LDP mechanisms (PM, MB, and SW) suitable for protecting high-dimensional node features. These mechanisms are unified into a general LDP perturbation protocol II, as presented in Alg. 1. The inputs to this protocol are \mathbf{x}_v and ϵ .

216 Specifically, in II, the optimal perturbation
 217 size m is determined based on the feature
 218 dimension d , coefficient δ , and privacy budget
 219 ϵ (line 1). The coefficients are theoreti-
 220 cally derived to minimize estimation error:
 221 $\delta = 2/5$ for PM, $5/11$ for MB, and $2/5$
 222 for SW (please see Appendix B for details).
 223 Then, among the d dimensions, a random
 224 subset $\mathcal{S} \subset [d]$ of the m dimensions is
 225 selected for the perturbation, while the re-
 226 maining dimensions are zeroed out (lines
 227 2–7). Finally, the perturbed vector $\tilde{\mathbf{x}}_v$ is
 228 processed using the $\text{RECT}(\cdot)$ function to en-
 229 sure unbiased estimation, *i.e.*, $\mathbb{E}[\mathbf{x}'_v] = \mathbf{x}_v$,
 230 which helps to further reduce the impact
 231 of noise (line 8). The final output is the
 232 perturbed node feature \mathbf{x}'_v .

233 **Aggregation Denoising.** Once all the perturbed node features \mathbf{x}'_v are collected, the server proceeds
 234 with task-related attribute analysis. However, directly analyzing \mathbf{x}'_v may yield suboptimal results
 235 due to substantial noise. To mitigate this issue, we consider the aggregation operation (Eq. (3)) and
 236 introduce the following proposition.

237 **Proposition 1.** *Let $\mathbf{h}_{\mathcal{N}(v)}$ denote the true aggregated embedding over the neighborhood $\mathcal{N}(v)$, and
 238 let $\bar{\mathbf{h}}_{\mathcal{N}(v)}$ be its locally perturbed counterpart. Then the discrepancy Υ between the two decays
 239 inversely with the size of the neighborhood, *i.e.*, $\|\Upsilon \langle \bar{\mathbf{h}}_{\mathcal{N}(v)} - \mathbf{h}_{\mathcal{N}(v)} \rangle\| \propto 1/|\mathcal{N}(v)|$.*

240 Proposition 1 (see Appendix C.1 for details) indicates that increasing the neighborhood size $|\mathcal{N}(v)|$
 241 reduces the discrepancy with the true aggregated embedding, thereby calibrating the error and
 242 improving subsequent attribute analysis. To this end, we perform K recursive aggregation steps
 243 $\text{AGGREGATE}(\cdot)$ without applying any non-linear transformation, as defined below.

$$\bar{\mathbf{h}}_{\mathcal{N}(v)}^k = \text{AGGREGATE}_k(\{\bar{\mathbf{h}}_u^{k-1} \mid u \in \mathcal{N}(v)\}), \quad k \in \{1, 2, \dots, K\}. \quad (4)$$

244 The process is initialized with $\bar{\mathbf{h}}_v^0 = \mathbf{x}'_v$, and the final estimated node embedding is denoted by $\bar{\mathbf{h}}_v$.
 245

247 3.2 TASK-RELEVANT ATTRIBUTE ANALYSIS

248 After completing Phase I and obtaining the estimated node embeddings for all nodes $v \in \mathcal{V}$ (denoted
 249 as $\mathbf{H} = \{\bar{\mathbf{h}}_1, \bar{\mathbf{h}}_2, \dots, \bar{\mathbf{h}}_{|\mathcal{V}|}\}$), the server then utilizes them for key attribute analysis to identify the
 250 top- m task-relevant attributes², denoted as \mathcal{S}^* . In Phase II, we propose two task-relevant attribute
 251 analysis methods: *Fisher Discriminant Analysis* (FDA) and *Sparse Model Attribution* (SMA). FDA is
 252 grounded in classical statistical pattern recognition theory, evaluating each attribute independently
 253 based on its class separability (inter-class vs. intra-class variance). This makes FDA computationally
 254 efficient and robust when features are relatively independent. In contrast, SMA adopts a model-
 255 driven approach, using sparse logistic regression with L_1 regularization to capture task-adaptive
 256 feature dependencies. By learning which attributes jointly contribute to correct predictions, SMA can
 257 identify relevant features even when their importance arises from interactions rather than individual
 258 discriminative power. These two methods provide complementary perspectives: FDA offers statistical
 259 separability analysis, while SMA captures learned task-specific patterns.

260 **Fisher Discriminant Analysis (FDA).** Drawing inspiration from the classical Fisher discriminant
 261 criterion (Mika et al., 1999), we propose the FDA, which leverages statistical pattern recognition to
 262 quantify the task relevance of each individual attribute dimension. Specifically, given the aggregated
 263 embeddings $\mathbf{H} = \{\bar{\mathbf{h}}_v\}_{v \in \mathcal{V}}$ and their corresponding labels $\mathbf{y} = \{y_v\}_{v \in \mathcal{V}}$, we evaluate each dimension
 264 j of the feature vector by measuring its ability to distinguish between different classes.

265 Formally, for each class $c \in \{1, 2, \dots, C\}$, we compute the class-conditional mean $\mu_j^{(c)}$ and variance
 266 $\sigma_j^{(c)}$ of dimension $j \in \{1, 2, \dots, d\}$, based on the set of embeddings $\bar{\mathbf{h}}_v$ where $y_v = c$. The overall

267 ²The task-specific signals required by TOGL are broadly defined and not limited to explicit node labels. See
 268 Appendix F for a detailed discussion on their practical availability across different learning settings.

270 class-weighted mean $\bar{\mu}_j$ is given by: $\bar{\mu}_j = \sum_{c=1}^C (N_c/|\mathcal{V}|) \cdot \mu_j^{(c)}$, where N_c is the number of nodes in
 271 class c and $|\mathcal{V}|$ is the total number of nodes. The inter-class (between-class) variance and intra-class
 272 (within-class) variance for dimension j are computed as:
 273

$$S_B(j) = \sum_{c=1}^C \frac{N_c}{|\mathcal{V}|} (\mu_j^{(c)} - \bar{\mu}_j)^2, \quad S_W(j) = \sum_{c=1}^C \frac{N_c}{|\mathcal{V}|} \sigma_j^{(c)}. \quad (5)$$

276 We then define the Fisher discriminative score for the dimension j as: $\Psi_{\text{FDA}}(j) = \frac{S_B(j)}{S_W(j) + \varsigma}$, where
 277 $\varsigma > 0$ is a small smoothing constant to ensure numerical stability. Intuitively, this criterion favors
 278 dimensions whose values are well-separated across classes (high between-class variance) and consistent
 279 within each class (low within-class variance). The top- m dimensions with the highest $\Psi_{\text{FDA}}(j)$
 280 scores are selected as candidates for task-relevant attributes, serving as the input to the final selection
 281 in Phase III (Sec. 3.3). This process is formalized in Eq. (6) and yields the final attribute set \mathcal{S}^* .
 282

$$\mathcal{S}^* \leftarrow \text{TOP-K}_{j \in [d]} \Psi_{\text{FDA}}(j), \quad |\mathcal{S}^*| = m. \quad (6)$$

283 **Sparse Model Attribution (SMA).** While FDA evaluates each attribute dimension independently
 284 based on class separability statistics, it does not capture potential interactions among features. As a
 285 complementary perspective, we consider a model-informed scoring strategy that reflects the joint
 286 contribution of attributes under a sparse predictive model. We train a multi-class logistic regression
 287 (LR) (LaValley, 2008) with L_1 -regularization on $\mathbf{H} = \{\mathbf{h}_v\}$ and $\mathbf{y} = \{y_v\}$. The objective is:
 288

$$\mathbf{W}^* = \arg \min_{\mathbf{W} \in \mathbb{R}^{C \times d}} (1/|\mathcal{V}|) \cdot \sum_{i=1}^{|\mathcal{V}|} \ell(y_i, \mathbf{W} \mathbf{h}_i) + \lambda \|\mathbf{W}\|_1, \quad (7)$$

289 where ℓ is the softmax cross-entropy loss, and
 290 $\lambda > 0$ controls sparsity. After training, the attri-
 291 bution score for feature dimension j is defined as:
 292 $\Psi_{\text{SMA}}(j) = (1/C) \sum_{c=1}^C |W_{c,j}^*|$. In Algorithm 2,
 293 Line 5, when SMA is selected for attribute anal-
 294 ysis, we solve Eq. (7) to obtain \mathbf{W}^* , compute
 295 $\Psi_{\text{SMA}}(j)$ for all dimensions, and select the top- m
 296 dimensions to form \mathcal{S}^* . This procedure favors
 297 features that consistently contribute to correct
 298 predictions across classes, while suppressing re-
 299 dundant or noisy dimensions. Compared to FDA,
 300 it accounts for task-adaptive feature dependencies
 301 and can be more robust when class boundaries
 302 are non-linearly entangled.
 303

3.3 TASK-ORIENTED PRIVATE LEARNING

304 After identifying the task-relevant attribute set
 305 \mathcal{S}^* via FDA or SMA, a new round of LDP per-
 306 turbation is optimized under its guidance to enable
 307 fine-grained noise injection, thereby enhancing
 308 the private graph learning utility. However, the
 309 performance of graph learning is influenced by
 310 both task relevance and the level of topological
 311 distinguishability (Theorem 3). Directly setting the set \mathcal{S} in Alg. 1 to \mathcal{S}^* ensures task consistency but
 312 undermines the topological smoothness of the graph (Corollary 1), diminishing the topology-aware
 313 noise calibration achieved via the message-passing of GNNs. To address this, given the global top- m
 314 attribute set \mathcal{S}^* , we define each node v 's personalized perturbation subset \mathcal{S}_v as:
 315

$$\mathcal{S}_v = \underbrace{\text{TOP-}m^*(\mathcal{S}^*)}_{\text{task-relevant}} \cup \underbrace{\text{RANDOMSAMPLE}([d] \setminus \mathcal{S}_{\text{fixed}}, m - m^*)}_{\text{randomized diversity}}, \quad (8)$$

316 where $m^* = \lfloor \rho \cdot m \rfloor$ and $\rho \in [0, 1]$ is a hyperparameter controlling the trade-off between *task*
 317 *consistency* and *topological distinguishability*, with $\mathcal{S}_{\text{fixed}}$ denoting the subset of attribute dimensions
 318 that are deterministically selected based on task relevance—that is, the top- m^* attributes in \mathcal{S}^* .
 319

320 **Complexity Analysis.** The computational complexity primarily arises from the K -hop neighborhood
 321 aggregation in Phase I and the attribute analysis (FDA or SMA) in Phase II. These cost $\mathcal{O}(K \cdot |\mathcal{E}| \cdot d)$
 322 and $\mathcal{O}(|\mathcal{V}| \cdot d \cdot I + d \log d)$ respectively (I is the number of iteration rounds of LR training), both
 323 scaling linearly with graph size and feature dimension. More details are provided in Appendix C.2.

324 4 THEORETICAL ANALYSIS

326 **Task–Topology Tradeoff.** As in Theorem 3 and Corollary 1, the utility of private graph learning is
 327 influenced not only by task consistency, but also by the preservation of topological distinguishability.

328 **Theorem 3.** Let $f_\Theta : \mathbb{R}^d \rightarrow \mathbb{R}^C$ be a GCN-like node classifier trained under LDP-constrained inputs
 329 $\{\mathbf{x}'_v\}_{v \in \mathcal{V}}$, where each node $v \in \mathcal{V}$ perturbs only a fixed dimension subset $\mathcal{S} \subset [d]$. Then the upper
 330 bound of expected generalization error Δ satisfies:

$$331 \Delta \leq \gamma(m, \mathbb{S}) \cdot \underbrace{\mathbb{E}_i[\mathcal{L}(f_\Theta(\bar{\mathbf{h}}_i), y_i)]}_{\text{Task consistency}} + \omega(m, \mathbb{S}) \cdot \underbrace{\mathbb{E}_{(i,j) \in \mathcal{E}} \|\bar{\mathbf{h}}_i - \bar{\mathbf{h}}_j\|^2}_{\text{Topological distinguishability}}, \quad (9)$$

334 where $\gamma(m, \mathbb{S}), \omega(m, \mathbb{S}) > 0$ are coefficients depending on the number of perturbed features m and
 335 the selection strategy \mathbb{S} , and $\bar{\mathbf{h}}$ is the aggregated representation. See Appendix C.3 for more details.

337 **Corollary 1.** If all nodes use the same fixed subset \mathcal{S} in Alg. 1, then: $\|\bar{\mathbf{h}}_i - \bar{\mathbf{h}}_j\|^2 \approx 0, \forall (i, j) \in \mathcal{E}$, and
 338 the propagation operator (e.g., GCN) reduces to mean-pooling, weakening structural discrimination.

339 **Privacy Analysis.** A total of two rounds of $\epsilon/2$ -perturbation based on Π are sequentially applied in
 340 TOGL, yielding an overall guarantee of ϵ -LDP by the Theorem 1. Furthermore, by the Theorem 2, the
 341 subsequent GNN training does not degrade the privacy guarantee. See Appendix C.4 for more details.

342 5 EXPERIMENTS

344 We conduct a series of experiments to evaluate the effectiveness of our method. Sec. 5.1 details the
 345 experimental setup, while Sec. 5.2 reports and analyzes the results in detail. Additional results on
 346 extended datasets and ablations are provided in Appendix D.5, including evaluations on large-scale
 347 datasets, robustness under noisy or sparse labels, robustness under structural privacy, and empirical
 348 resistance to inference attacks, among others.

349 5.1 EXPERIMENTAL SETTINGS

Table 1: Statistics of datasets.

Type	Dataset	Nodes	Edges	Features	Classes
Citation Network	Cora	2,708	5,278	1,433	7
	Citeseer	3,327	4,552	3,703	6
	Pubmed	19,717	44,324	500	3
Social Network	LastFM	7,624	27,806	7,842	18
	Twitch	4,648	61,706	128	2
	Facebook	22,470	170,912	4,714	4

359 These datasets are summarized in Table 1. Refer to Appendix D.1 for more details.

360 **GNN Models.** We consider seven representative GNN models: GCN (Kipf & Welling, 2017), Graph-
 361 SAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018), GIN (Xu et al., 2019), APPNP (Klicpera
 362 et al., 2019), SGC (Wu et al., 2019), and SSGC (Zhu & Koniusz, 2021). Each model consists of
 363 two graph convolution layers with 64 neurons in each hidden layer, utilizing ReLU as the activation
 364 function (Klambauer et al., 2017) and dropout (Baldi & Sadowski, 2013) for regularization. Please
 365 refer to Appendix D.2 for more details. By default, GCN is used as the backbone model.

366 **LDP Mechanisms.** We consider six LDP mechanisms for protecting node features. Among them,
 367 three state-of-the-art (SOTA) baselines: the piecewise mechanism (PM) (Pei et al., 2023; Wang et al.,
 368 2019a), the multi-bit mechanism (MB) (Sajadmanesh & Gatica-Perez, 2021; Lin et al., 2022; Jin
 369 & Chen, 2022), and the square wave mechanism (SW) (Li et al., 2024; 2020). The other three are
 370 classical baselines: the 1-bit mechanism (1B) (Ding et al., 2017), the Laplace mechanism (LP) (Phan
 371 et al., 2017), and the Analytic Gaussian mechanism (AG) (Balle & Wang, 2018). These mechanisms
 372 inject random noise into the original node features based on a predefined privacy budget $\epsilon > 0$,
 373 providing formal LDP guarantees. All six mechanisms are implemented independently according
 374 to their original formulations, not by modifying any specific baseline framework. The three SOTA
 375 mechanisms (PM, MB, SW) are unified under the general LDP perturbation protocol Π presented in
 376 Alg. 1, while the three classical mechanisms are implemented following their standard definitions in
 377 Appendix D.3. For clarity, LPGNN refers specifically to the framework proposed by Sajadmanesh &
 378 Gatica-Perez (2021) using the MB mechanism, which is included as one of our baselines. Unless

378 otherwise specified, PM is used as the default LDP perturbation mechanism. In Figures 4, 5, and 6,
 379 "SOTA" specifically refers to PM, which generally achieves the best or near-best performance among
 380 the three state-of-the-art mechanisms (PM, MB, SW) across most experimental settings.
 381

382 **Parameter Settings.** For all datasets, we randomly split the nodes into training, validation, and test
 383 sets using a 50%/25%/25% ratio. Regarding the privacy budget ϵ , note that the perturbation size m for
 384 the three LDP mechanisms (PM, MB, and SW) is constrained by a coefficient δ (see Sec. 3.1 for details).
 385 To ensure $m > 1$ for meaningful evaluation, we set ϵ to values in the set $\{5.0, 7.5, 10.0, 12.5, 15.0\}$,
 386 corresponding to $m \in \{2, 3, 4, 5, 6\}$, respectively. For experiments and discussions where $m = 1$ (i.e.,
 387 $0 < \epsilon < 5.0$), refer to Appendix D.5. The parameter ρ is selected from the set $\{0, 0.3, 0.5, 0.7, 1.0\}$,
 388 and the denoising aggregation parameter K is varied over $\{0, 1, 2, 3, 4, 5\}$. Unless otherwise specified,
 389 the default ϵ is set to 10.0. Additional hyperparameter configurations are provided in Appendix D.4.
 390

391 **Evaluation Metrics.** We conduct experiments on two fundamental and widely adopted tasks in
 392 graph learning: *node classification (NC)* and *link prediction (LP)*. These two tasks serve as the
 393 cornerstone of numerous downstream applications and are the primary benchmarks for evaluating
 394 graph representation methods. For evaluation, we use *classification accuracy* on the test set for
 395 the NC task, and *the area under the ROC curve (AUC)* for the LP task. Accuracy and AUC are
 396 standard and widely adopted metrics that effectively reflect model performance in NC and ranking
 397 tasks, respectively. The default task is node classification. We report the mean performance and 95%
 398 confidence intervals over 10 independent runs, calculated using bootstrapping with 1000 resamples.
 399

5.2 RESULTS & DISCUSSION

400 **Effectiveness.** We comprehensively evaluate our method across six benchmark datasets under varying
 401 noise scales (ϵ), comparing it with six baselines. As shown in Fig. 3, our approach consistently
 402 achieves higher node classification accuracy than all baselines, with particularly notable improvements
 403 over classical methods such as 1B, LP, and AG, demonstrating enhanced task utility. Fig. 4 further
 404 confirms the generalizability of our method across various GNN architectures (Cora dataset), where
 405 it outperforms SOTA baselines. Furthermore, Fig. 5 presents link prediction results, showing that
 406 the effectiveness of our method extends beyond node classification by surpassing existing SOTA
 407 methods. Together, these experiments validate that our approach significantly enhances the utility of
 408 locally private graph learning across multiple tasks, datasets, and models.
 409

410 **Scalability Evaluation.** To assess TOGL's practicality on large graphs, we evaluated its runtime
 411 and memory usage on two representative large-scale datasets: *Co-Phy* (Shchur et al., 2018) and
 412 *Ogbn-arxiv* (Hu et al., 2020) (see Appendix D.5 'Scalability evaluation' for details). As reported in
 413 Table 8, TOGL introduces only moderate computational overhead compared with the PM baseline,
 414 demonstrating that it remains efficient and scalable for large-scale graph learning.
 415

416 **Ablation Studies.** In this experiment, we assess two key components of our framework: task-relevant
 417 attribute analysis and aggregation denoising. Fig. 6 compares two attribute analysis strategies: Fisher
 418 Discriminant Analysis (FDA) and Sparse Model Attribution (SMA), with more detailed statistics
 419 provided in Table 17. Both outperform the SOTA baseline, with SMA slightly ahead. This modest
 420 advantage of SMA likely stems from its ability to capture feature interactions through learned model
 421 weights, whereas FDA treats each dimension independently. However, the performance gap between
 422 FDA and SMA remains small, indicating that TOGL is not highly sensitive to the choice of attribution
 423 method. Both successfully identify task-relevant attributes that improve utility compared to random
 424 selection, demonstrating that our framework's effectiveness stems from the general principle of
 425 task-oriented selection rather than reliance on a specific attribution technique. Fig. 7 evaluates the
 426 effect of the aggregation parameter K . Without aggregation ($K = 0$), utility is limited. Moderate
 427 aggregation (e.g., $K = 3$ for Cora dataset) boosts performance by improving the quality of selected
 428 features. However, large K values degrade utility due to over-smoothing, where node representations
 429 lose distinction. Overall, these results underscore the importance of both components and highlight
 430 the need to balance aggregation and analysis strategy for optimal privacy-utility trade-offs.
 431

432 **Parameter Analysis.** In this experiment, we examine how the privacy budget ϵ and the task-topology
 433 trade-off parameter ρ affect model performance. Fig. 8 shows that increasing ϵ steadily improves
 434 accuracy, as weaker noise preserves more informative features, enhancing utility. Fig. 9 explores
 435 the impact of ρ . Performance first rises then falls with increasing ρ , indicating the need for balance:
 436 low ρ weakens task relevance due to random feature selection, while high ρ reduces structural
 437 diversity. Further analysis is available in Appendix D.5 (Analysis of the Parameter ρ). For real-world
 438

Figure 3: Performance comparison between our proposed TOGL (Ours) and existing baselines on the node classification task. The x-axis denotes the privacy budget ϵ , and the y-axis indicates the test accuracy (%). Our method consistently improves the performance of all LDP mechanisms across different privacy levels. Please see Appendix D.5 for more experimental results and analysis.

Figure 4: Comparison of accuracy (%) between our method and the SOTA baseline under different GNN models. The results show that our approach consistently outperforms the existing SOTA baseline across all cases.

Figure 5: Comparison of AUC (%) between our method and the SOTA baseline on the link prediction (LP) task. The results indicate that our method consistently achieves superior performance across all datasets.

Figure 6: Comparison of normalized accuracy (0 ~ 1) using two our proposed task-relevant attribute analysis methods, FDA and SMA, within our framework across different datasets, in comparison with the SOTA baseline.

deployment, the optimal ρ values typically lie within $[0.3, 0.7]$ across our experiments, reflecting an effective balance between task consistency and topological distinguishability. We recommend using $\rho = 0.5$ as a robust default choice, which consistently achieves near-optimal or optimal performance across all six datasets without requiring validation-based tuning. When validation data is available and computational resources permit, a lightweight grid search over $\{0.3, 0.5, 0.7\}$ can further optimize performance with minimal overhead.

6 RELATED WORK

This section provides a brief overview of *local differential privacy* and *locally private graph learning*. Additional details and extended discussions are available in Appendix E.

486
487
488
489
490
491
492
493
494
495
496
497
Figure 7: Comparison of model performance under varying values of the parameter K .

Figure 8: Comparison of model performance under varying values of the privacy budget ϵ .

Figure 9: Comparison of model performance under varying values of the hyperparameter ρ .

498
499
500
501
Local Differential Privacy. LDP (Dwork et al., 2006) is a rigorous privacy notion that enables users
502 to perturb their data locally before sharing it, thereby eliminating the need for a trusted aggregator.
503 Due to its strong privacy guarantees, LDP has been widely adopted in diverse data collection and
504 analysis scenarios (Jia & Gong, 2019; Li et al., 2020; Wang et al., 2017; 2019a; Asi et al., 2022).

505
Locally Private Graph Learning. Recently, locally private graph learning (Sajadmanesh & Gatica-
506 Perez, 2021; Lin et al., 2022; Pei et al., 2023; Li et al., 2024; He et al., 2025a; Jin & Chen, 2022) has
507 emerged as a promising research area within the privacy and security community. To support this
508 paradigm, researchers have developed several mechanisms for perturbing node features under LDP
509 constraints. For instance, (Sajadmanesh & Gatica-Perez, 2021) extended the one-bit mechanism (Ding
510 et al., 2017) to high-dimensional node features via the multi-bit (MB) mechanism. Follow-up work
511 proposed the piecewise (PM) (Pei et al., 2023) and square wave (SW) (Li et al., 2024) mechanisms to
512 further enhance utility. While these methods have demonstrated effectiveness in tasks such as node
513 classification (Kipf & Welling, 2017; Lin et al., 2022), their utility remains limited. To address this
514 challenge, we propose a task-oriented framework for locally private graph learning. To the best of our
515 knowledge, this is the first work to incorporate task-awareness into LDP-constrained graph learning,
516 significantly enhancing utility while preserving strong privacy guarantees.

517 7 CONCLUSION

518 In this work, we propose TOGL, a novel task-oriented framework for locally private graph learning.
519 The framework operates in three phases: ① *locally private feature perturbation*, ② *task-relevant*
520 *attribute analysis*, and ③ *task-oriented private learning*. This structured design enables the explicit
521 identification of feature dimensions most relevant to the downstream task prior to perturbation, thereby
522 maximizing the retention of informative signals while ensuring strong local differential privacy
523 guarantees. Extensive experiments on six representative real-world graph datasets demonstrate that
524 TOGL consistently outperforms existing methods in terms of both utility and privacy preservation.
525 For a discussion of broader impact, limitations, and the use of LLMs, please refer to Appendix G.

526 527 ETHICS STATEMENT

528 This work fully complies with the ICLR Code of Ethics. It raises no ethical concerns: all experiments
529 are conducted on publicly available benchmark datasets (*e.g.*, Cora (Yang et al., 2016)) that contain
530 no personally identifiable information. No human subjects, sensitive attributes, or private data beyond
531 these open datasets are involved. Our proposed methods are designed to enhance privacy-preserving
532 graph learning under LDP, thereby strengthening privacy guarantees rather than introducing risks.

533 534 REPRODUCIBILITY STATEMENT

535 We have taken several measures to ensure the reproducibility of our work. ① The proposed framework,
536 algorithms, and theoretical analyses are described in detail in Sections 3 and 4, with complete proofs
537 provided in Appendix C. ② Experimental settings, including GNN models, LDP mechanisms, and
538 hyperparameters, are documented in Section 5, Appendix B, and Appendix D. ③ All benchmark
539 datasets (*e.g.*, Cora) used in our experiments are publicly available, and we provide detailed de-
540 scriptions in Appendix D.1. ④ An anonymous implementation of our framework is included in the
541 supplementary material to facilitate replication of our results.

540 REFERENCES
541

- 542 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
543 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
544 chitectures via sparsified neighborhood mixing. In *International Conference on Machine Learning*
545 (*ICML* 2019), pp. 21–29. PMLR, 2019.
- 546 Hilal Asi, Vitaly Feldman, and Kunal Talwar. Optimal algorithms for mean estimation under local
547 differential privacy. In *International Conference on Machine Learning (ICML)*, pp. 1046–1056.
548 PMLR, 2022.
- 549 Pierre Baldi and Peter J Sadowski. Understanding dropout. *Advances in Neural Information
550 Processing Systems (NeurIPS)*, 26:2814–2822, 2013.
- 551 Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy:
552 Analytical calibration and optimal denoising. In *International Conference on Machine Learning*
553 (*ICML*), pp. 394–403. PMLR, 2018.
- 554 Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. In
555 *Noise Reduction in Speech Processing*, pp. 1–4. Springer, 2009.
- 556 Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Graph neural networks in network
557 neuroscience. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 45(5):
558 5833–5848, 2022.
- 559 Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava, and Tianhao Wang.
560 Privacy at scale: Local differential privacy in practice. In *International Conference on Management
561 of Data (SIGMOD)*, pp. 1655–1658, 2018.
- 562 Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately. *Advances
563 in Neural Information Processing Systems (NeurIPS)*, 30:3571–3580, 2017.
- 564 John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and statistical minimax
565 rates. In *2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS)*, pp.
566 429–438. IEEE, 2013.
- 567 Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph
568 neural networks. In *Machine Learning and Knowledge Discovery in Databases (ECML PKDD)*,
569 pp. 302–318. Springer, 2021.
- 570 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
571 in private data analysis. In *Theory of Cryptography: Third Theory of Cryptography Conference
572 (TCC)*, pp. 265–284. Springer, 2006.
- 573 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations
574 and Trends® in Theoretical Computer Science*, 9(3–4):211–407, 2014.
- 575 Ali El Akadi, Abdeljalil El Ouardighi, and Driss Aboutajdine. A powerful feature selection approach
576 based on mutual information. *International Journal of Computer Science and Network Security
577 (IJCSNS)*, 8(4):116, 2008.
- 578 Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
579 convolutional networks. *Advances in Neural Information Processing Systems (NeurIPS)*, 30:
580 6530–6539, 2017.
- 581 David F Gleich. Pagerank beyond the web. *siam REVIEW*, 57(3):321–363, 2015.
- 582 Mehmet Emre Gursoy, Acar Tamersoy, Stacey Truex, Wenqi Wei, and Ling Liu. Secure and utility-
583 aware data collection with condensed local differential privacy. *IEEE Transactions on Dependable
584 and Secure Computing*, 18(5):2365–2378, 2019.
- 585 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
586 *Advances in neural information processing systems (NeurIPS)*, 30:1024–1034, 2017.

- 594 Longzhu He, Chaozhuo Li, Peng Tang, and Sen Su. Going deeper into locally differentially private
 595 graph neural networks. In *International Conference on Machine Learning (ICML)*. PMLR, 2025a.
 596
- 597 Yizhang He, Kai Wang, Wenjie Zhang, Xuemin Lin, Wei Ni, and Ying Zhang. Butterfly counting
 598 over bipartite graphs with local differential privacy. In *2024 IEEE 40th International Conference
 599 on Data Engineering (ICDE)*, pp. 2351–2364. IEEE, 2024a.
- 600 Yizhang He, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. Common neighborhood
 601 estimation over bipartite graphs under local differential privacy. *Proceedings of the ACM on
 602 Management of Data (SIGMOD)*, 2(6):1–26, 2024b.
 603
- 604 Yizhang He, Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, and Wei Ni. Robust privacy-
 605 preserving triangle counting under edge local differential privacy. *Proceedings of the ACM on
 606 Management of Data (SIGMOD)*, 3(3):1–26, 2025b.
 607
- 608 Yuanyuan He, Meiqi Wang, Xianjun Deng, Peng Yang, Qiao Xue, and Laurence T Yang. Personal-
 609 ized local differential privacy for multi-dimensional range queries over mobile user data. *IEEE
 610 Transactions on Mobile Computing (TMC)*, 2025c.
 611
- 612 Seira Hidano and Takao Murakami. Degree-preserving randomized response for graph neural
 613 networks under local differential privacy. *Transactions on Data Privacy (TDP)*, 17(2):89–121,
 2024.
 614
- 615 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 616 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in
 617 Neural Information Processing Systems (NeurIPS)*, 33:22118–22133, 2020.
 618
- 619 Kai Huang, Gaoya Ouyang, Qingqing Ye, Haibo Hu, Bolong Zheng, Xi Zhao, Ruiyuan Zhang, and
 620 Xiaofang Zhou. Ldpguard: Defenses against data poisoning attacks to local differential privacy
 621 protocols. *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, 36(7):3195–3209,
 2024.
 622
- 623 Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Locally differentially private analysis of
 624 graph statistics. In *30th USENIX security symposium (USENIX Security)*, pp. 983–1000, 2021.
 625
- 626 Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Communication-efficient triangle counting
 627 under local differential privacy. In *31st USENIX security symposium (USENIX Security)*, pp.
 537–554, 2022.
 628
- 629 Jinyuan Jia and Neil Zhenqiang Gong. Calibrate: Frequency estimation and heavy hitter identification
 630 with local differential privacy via incorporating prior knowledge. In *IEEE Conference on Computer
 631 Communications (INFOCOM)*, pp. 2008–2016. IEEE, 2019.
 632
- 633 Hongwei Jin and Xun Chen. Gromov-wasserstein discrepancy with local differential privacy for
 634 distributed structural graphs. In *Proceedings of the Thirty-First International Joint Conference on
 635 Artificial Intelligence (IJCAI)*, pp. 2115–2121, 2022.
 636
- 637 Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
*Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
 638 Sciences*, 374(2065):20150202, 2016.
 639
- 640 Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal mechanisms for local differential
 641 privacy. *Advances in Neural Information Processing Systems (NeurIPS)*, 27, 2014.
 642
- 643 Peter Kairouz, Keith Bonawitz, and Daniel Ramage. Discrete distribution estimation under local
 644 privacy. In *International Conference on Machine Learning (ICML)*, pp. 2436–2444. PMLR, 2016.
 645
- 646 Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
Advances in Neural Information Processing Systems (NeurIPS), 35:2268–2281, 2022.
 647
- Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 arXiv:1412.6980*, 2014.

- 648 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 649 In *5th International Conference on Learning Representations (ICLR)*, pp. 1–15, 2017.
 650
- 651 Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
 652 neural networks. *Advances in Neural Information Processing Systems (NeurIPS)*, 30:971–980,
 653 2017.
- 654 Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
 655 Graph neural networks meet personalized pagerank. In *7th International Conference on Learning
 656 Representations (ICLR)*, pp. 1–15, 2019.
- 657 John K Kruschke. Bayesian estimation supersedes the t test. *Journal of Experimental Psychology: General*, 142(2):573, 2013.
 658
- 660 Michael P LaValley. Logistic regression. *Circulation*, 117(18):2395–2399, 2008.
 661
- 662 Jeongmyung Lee, Seokwon Kang, Yongseung Yu, Yong-Yeon Jo, Sang-Wook Kim, and Yongjun
 663 Park. Optimization of gpu-based sparse matrix multiplication for large sparse networks. In *2020
 664 IEEE 36th International Conference on Data Engineering (ICDE)*, pp. 925–936. IEEE, 2020.
- 665 Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan
 666 Liu. Feature selection: A data perspective. *ACM Computing Surveys (CSUR)*, 50(6):1–45, 2017.
 667
- 668 Junhui Li, Wensheng Gan, Yijie Gui, Yongdong Wu, and Philip S Yu. Frequent itemset mining with
 669 local differential privacy. In *Proceedings of the 31st ACM International Conference on Information
 670 & Knowledge Management (CIKM)*, pp. 1146–1155, 2022a.
- 671 Michelle M Li, Kexin Huang, and Marinka Zitnik. Graph representation learning in biomedicine and
 672 healthcare. *Nature Biomedical Engineering*, 6(12):1353–1369, 2022b.
 673
- 674 Xiaoguang Li, Haonan Yan, Zelei Cheng, Wenhui Sun, and Hui Li. Protecting regression models with
 675 personalized local differential privacy. *IEEE Transactions on Dependable and Secure Computing
 676 (TDSC)*, 20(2):960–974, 2022c.
- 677 Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks
 678 for learning the similarity of graph structured objects. In *International Conference on Machine
 679 Learning (ICML)*, pp. 3835–3845. PMLR, 2019.
- 680 Zening Li, Rong-Hua Li, Meihao Liao, Fusheng Jin, and Guoren Wang. Privacy-preserving graph
 681 embedding based on local differential privacy. In *Proceedings of the 33rd ACM International
 682 Conference on Information and Knowledge Management (CIKM)*, pp. 1316–1325, 2024.
- 683 Zitao Li, Tianhao Wang, Milan Lopuhaä-Zwakenberg, Ninghui Li, and Boris Škoric. Estimating
 684 numerical distributions under local differential privacy. In *Proceedings of the 2020 ACM SIGMOD
 685 International Conference on Management of Data (SIGMOD)*, pp. 621–635, 2020.
- 686 Wanyu Lin, Baochun Li, and Cong Wang. Towards private learning on decentralized graphs with
 687 local differential privacy. *IEEE Transactions on Information Forensics and Security (TIFS)*, 17:
 688 2936–2946, 2022.
- 689 Chuang Liu, Xueqi Ma, Yibing Zhan, Liang Ding, Dapeng Tao, Bo Du, Wenbin Hu, and Danilo P
 690 Mandic. Comprehensive graph gradual pruning for sparse training in graph neural networks. *IEEE
 691 Transactions on Neural Networks and Learning Systems (TNNLS)*, 2023.
- 692 Huan Liu and Rudy Setiono. Chi2: Feature selection and discretization of numeric attributes. In
 693 *Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)*, pp.
 694 388–391. Ieee, 1995.
- 695 Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S Yu. Graph self-
 696 supervised learning: A survey. *IEEE Transactions on Knowledge and Data Engineering (TKDE)*,
 697 35(6):5879–5900, 2022a.
 698
- 699 Yuhan Liu, Suyun Zhao, Yixuan Liu, Dan Zhao, Hong Chen, and Cuiping Li. Collecting triangle
 700 counts with edge relationship local differential privacy. In *2022 IEEE 38th International Conference
 701 on Data Engineering (ICDE)*, pp. 2008–2020. IEEE, 2022b.

- 702 Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. Feature selection using principal feature
 703 analysis. In *Proceedings of the 15th ACM International Conference on Multimedia (MM)*, pp.
 704 301–304, 2007.
- 705 Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
 706 networks. *Annual Review of Sociology*, 27(1):415–444, 2001.
- 708 Lingshuo Meng, Yijie Bai, Yanjiao Chen, Yutong Hu, Wenyuan Xu, and Haiqin Weng. Devil in
 709 disguise: Breaching graph neural networks privacy through infiltration. In *Proceedings of the 2023*
 710 *ACM SIGSAC Conference on Computer and Communications Security (CCS)*, pp. 1153–1167,
 711 2023.
- 712 Zakaria Mhammedi, Peter Grünwald, and Benjamin Guedj. Pac-bayes un-expected bernstein inequality.
 713 *Advances in Neural Information Processing Systems (NeurIPS)*, 32:12180–12191, 2019.
- 714
- 715 Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernhard Scholkopf, and Klaus-Robert Mullers.
 716 Fisher discriminant analysis with kernels. In *Neural networks for signal processing IX: Proceedings*
 717 *of the 1999 IEEE Signal Processing Society Workshop*, pp. 41–48. IEEE, 1999.
- 718 Hesham Mostafa and Marcel Nassar. Permutohedral-gcn: Graph convolutional networks with global
 719 attention. *arXiv preprint arXiv:2003.00635*, 2020.
- 720
- 721 Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Supachanun Wanapu. Using
 722 of jaccard coefficient for keywords similarity. In *Proceedings of the International MultiConference*
 723 *of Engineers and Computer Scientists (IMECS)*, volume 1, pp. 380–384, 2013.
- 724 Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
 725 Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
 726 for dynamic graphs. In *Proceedings of the AAAI conference on artificial intelligence (AAAI)*,
 727 volume 34, pp. 5363–5370, 2020.
- 728
- 729 Hongbin Pei, Bingzhe Wei, Kevin Chen Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 730 graph convolutional networks. In *International Conference on Learning Representations (ICLR)*,
 731 2020.
- 732
- 733 Xinjun Pei, Xiaoheng Deng, Shengwei Tian, Jianqing Liu, and Kaiping Xue. Privacy-enhanced graph
 734 neural network for decentralized local graphs. *IEEE Transactions on Information Forensics and
 Security (TIFS)*, 19:1614–1629, 2023.
- 735
- 736 Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information criteria
 737 of max-dependency, max-relevance, and min-redundancy. *IEEE Transactions on Pattern Analysis
 and Machine Intelligence (TPAMI)*, 27(8):1226–1238, 2005.
- 738
- 739 NhatHai Phan, Xintao Wu, Han Hu, and Dejing Dou. Adaptive laplace mechanism: Differential
 740 privacy preservation in deep learning. In *2017 IEEE International Conference on Data Mining
 (ICDM)*, pp. 385–394. IEEE, 2017.
- 741
- 742 Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. Generating synthetic
 743 decentralized social graphs with local differential privacy. In *Proceedings of the 2017 ACM
 SIGSAC Conference on Computer and Communications Security (CCS)*, pp. 425–438, 2017.
- 744
- 745 Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather,
 746 from statistical descriptors to parametric models. In *Proceedings of the 29th ACM International
 Conference on Information & Knowledge Management (CIKM)*, pp. 1325–1334, 2020.
- 747
- 748 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. *Journal
 of Complex Networks*, 9(2):cnab014, 2021.
- 749
- 750 Sina Sajadmanesh and Daniel Gatica-Perez. Locally private graph neural networks. In *Proceedings
 of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS)*, pp.
 751 2130–2145, 2021.
- 752
- 753 Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
 754 large-scale social platforms. In *Proceedings of the Web Conference (WWW)*, pp. 2535–2546, 2021.
- 755

- 756 Kartik Sharma, Yeon-Chang Lee, Sivagami Nambi, Aditya Salian, Shlok Shah, Sang-Wook Kim,
 757 and Srijan Kumar. A survey of graph neural networks for social recommender systems. *ACM*
 758 *Computing Surveys (CSUR)*, 56(10):1–34, 2024.
- 759
- 760 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 761 of graph neural network evaluation. *arXiv preprint arXiv:1811.05868*, 2018.
- 762
- 763 Haipei Sun, Xiaokui Xiao, Issa Khalil, Yin Yang, Zhan Qin, Hui Wang, and Ting Yu. Analyzing
 764 subgraph statistics from extended local views with decentralized differential privacy. In *Proceedings*
 765 of the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS), pp.
 766 703–717, 2019.
- 767
- 768 Wei Tong, Haoyu Chen, Jiacheng Niu, and Sheng Zhong. Data poisoning attacks to locally differ-
 769 entially private frequent itemset mining protocols. In *Proceedings of the 2024 on ACM SIGSAC*
 770 *Conference on Computer and Communications Security (CCS)*, pp. 3555–3569, 2024.
- 771
- 772 Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
 773 representations over dynamic graphs. In *International Conference on Machine Learning (ICLR)*.
 774 PMLR, 2019.
- 775
- 776 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 777 Bengio. Graph attention networks. In *6th International Conference on Learning Representations*
 778 (*ICLR*), pp. 1–15, 2018.
- 779
- 780 Daixin Wang, Zhiqiang Zhang, Jun Zhou, Peng Cui, Jingli Fang, Quanhui Jia, Yanming Fang, and
 781 Yuan Qi. Temporal-aware graph neural network for credit risk prediction. In *Proceedings of the*
 782 *2021 SIAM International Conference on Data Mining (SDM)*, pp. 702–710. SIAM, 2021.
- 783
- 784 Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin, Junbum Shin, and
 785 Ge Yu. Collecting and analyzing multidimensional data with local differential privacy. In *2019*
 786 *IEEE 35th International Conference on Data Engineering (ICDE)*, pp. 638–649. IEEE, 2019a.
- 787
- 788 Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differentially private protocols
 789 for frequency estimation. In *26th USENIX Security Symposium (USENIX Security)*, pp. 729–745,
 790 2017.
- 791
- 792 Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui Li, and Somesh Jha.
 793 Answering multi-dimensional analytical queries under local differential privacy. In *Proceedings of*
 794 *the 2019 International Conference on Management of Data (SIGMOD)*, pp. 159–176, 2019b.
- 795
- 796 Tianhao Wang, Ninghui Li, and Somesh Jha. Locally differentially private heavy hitter identification.
 797 *IEEE Transactions on Dependable and Secure Computing (TDSC)*, 18(2):982–993, 2019c.
- 798
- 799 Xiuling Wang and Wendy Hui Wang. Group property inference attacks against graph neural networks.
 800 In *Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security*
 801 (*CCS*), pp. 2871–2884, 2022.
- 802
- 803 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
 804 ing graph convolutional networks. In *International conference on machine learning (ICML)*, pp.
 805 6861–6871. PMLR, 2019.
- 806
- 807 Huayao Wu, Wenjun Deng, Xintao Niu, andanghai Nie. Identifying key features from app user
 808 reviews. In *2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)*, pp.
 809 922–932. IEEE, 2021.
- 810
- 811 Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Xiaojie Guo. Graph neural networks: foundation,
 812 frontiers and applications. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge*
 813 *Discovery and Data Mining (KDD)*, pp. 4840–4841, 2022.
- 814
- 815 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
 816 comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and*
 817 *Learning Systems (TNNLS)*, 32(1):4–24, 2020.

- 810 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 811 networks? In *7th International Conference on Learning Representations (ICLR)*, pp. 1–15, 2019.
 812
- 813 Mengmeng Yang, Taolin Guo, Tianqing Zhu, Ivan Tjuawinata, Jun Zhao, and Kwok-Yan Lam.
 814 Local differential privacy and its applications: A comprehensive survey. *Computer Standards &*
 815 *Interfaces*, 89:103827, 2024.
- 816 Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
 817 graph embeddings. In *International Conference on Machine Learning (ICML)*, pp. 40–48. PMLR,
 818 2016.
- 819 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
 820 Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the*
 821 *24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD)*,
 822 pp. 974–983, 2018.
- 823 Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
 824 Generating explanations for graph neural networks. *Advances in Neural Information Processing*
 825 *Systems (NeurIPS)*, 32, 2019.
- 826 Sixing Yu, Arya Mazaheri, and Ali Jannesari. Topology-aware network pruning using multi-stage
 827 graph embedding and reinforcement learning. In *International Conference on Machine Learning*
 828 (*ICLR*), pp. 25656–25667. PMLR, 2022.
- 829 Hanyang Yuan, Jiarong Xu, Renhong Huang, Mingli Song, Chunping Wang, and Yang Yang. Can
 830 graph neural networks expose training data properties? an efficient risk assessment approach.
 831 *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1–15, 2024.
- 832 Guanhong Zhang, Xiang Cheng, Jiaan Pan, Zihan Lin, and Zhaofeng He. Locally differentially
 833 private graph learning on decentralized social graph. *Knowledge-Based Systems*, 304:112488,
 834 2024a.
- 835 Junpeng Zhang, Hui Zhu, Jiaqi Zhao, Rongxing Lu, Yandong Zheng, Jiezheng Tang, and Hui Li.
 836 Cokv: Key-value data collection with condensed local differential privacy. *IEEE Transactions on*
 837 *Information Forensics and Security (TIFS)*, 2025.
- 838 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. *Advances in Neural*
 839 *Information Processing Systems (NeurIPS)*, 31:5171–5181, 2018.
- 840 Yi Zhang, Yuying Zhao, Zhaoqing Li, Xueqi Cheng, Yu Wang, Olivera Kotevska, S Yu Philip, and
 841 Tyler Derr. A survey on privacy in graph neural networks: Attacks, preservation, and applications.
 842 *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, pp. 7497–7515, 2024b.
- 843 Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. Inference attacks against
 844 graph neural networks. In *31st USENIX Security Symposium (USENIX Security)*, pp. 4543–4560,
 845 2022.
- 846 Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In *9th International Conference on*
 847 *Learning Representations (ICLR)*, pp. 1–15, 2021.
- 848 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
 849 homophily in graph neural networks: Current limitations and effective designs. *Advances in Neural*
 850 *Information Processing Systems (NeurIPS)*, 33:7793–7804, 2020.
- 851 Xiaochen Zhu, Vincent YF Tan, and Xiaokui Xiao. Blink: Link local differential privacy in graph
 852 neural networks via bayesian estimation. In *Proceedings of the 2023 ACM SIGSAC Conference on*
 853 *Computer and Communications Security (CCS)*, pp. 2651–2664, 2023a.
- 854 Youwen Zhu, Yiran Cao, Qiao Xue, Qihui Wu, and Yushu Zhang. Heavy hitter identification over
 855 large-domain set-valued data with local differential privacy. *IEEE Transactions on Information*
 856 *Forensics and Security (TIFS)*, 19:414–426, 2023b.
- 857

864 **A NOTATIONS**
865866 We summarize the important notations of our paper in Table 2.
867868 Table 2: Notations.
869

Notation	Description
$\mathcal{V}, \mathcal{E}, \mathbf{X}, \mathcal{Y}$	Node set \mathcal{V} , edge set \mathcal{E} , feature matrix \mathbf{X} , label set $\mathcal{Y} = \{y_1, y_2, \dots, y_C\}$
\mathcal{G}	A graph defined on $\mathcal{V}, \mathcal{E}, \mathbf{X}$, and \mathcal{Y}
\mathbf{x}_v	The original feature vector of user $v \in \mathcal{V}$
y_v	Label of node $v \in \mathcal{V}$
Π	LDP perturbation protocol for node features
$\mathcal{M}, \mathcal{A}, \mathcal{F}$	LDP mechanism
d	The number of feature dimensions
m	The number of sampled dimensions
ϵ	Privacy budget
\mathcal{B}	Perturbed feature scale
\mathbf{x}'_v	The perturbed feature vector of user v
$\mathcal{N}(v)$	The set of neighbors of v
$\text{AGGREGATE}(\cdot)$	The aggregation function
$\text{UPDATE}(\cdot)$	The update function
\mathbf{h}_v^k	Original node embedding of node v after k aggregation steps
$\bar{\mathbf{h}}_v^k$	Estimated node embedding of node v after k aggregation steps
K	Aggregation denoising step
\mathcal{S}	Set of perturbed attributes
\mathcal{S}^*	Set of task-relevant attributes
ρ	Task-topology trade-off parameter
$\mathbb{E}[\cdot]$	Expectation

893 **B SOTA LDP MECHANISMS**
894895 In Sec. 2.3, we introduce three state-of-the-art (SOTA) LDP mechanisms designed to protect node
896 features: the piecewise mechanism (PM) (Pei et al., 2023; Wang et al., 2019a), the multi-bit mechanism
897 (MB) (Lin et al., 2022; Sajadmanesh & Gatica-Perez, 2021; Jin & Chen, 2022), and the square wave
898 mechanism (SW) (Li et al., 2024; 2020). Below, we provide detailed formulations for MB and SW³:
899

- 900 • MB: The one-dimensional multi-bit mechanism perturbs a real-valued input
- $x \in [\alpha, \beta]$
- by
-
- 901 randomly outputting a binary value
- $x' \in \{-1, 1\}$
- according to the following probability
-
- 902 distribution function:

903
$$\Pr[x' = c \mid x] = \begin{cases} \frac{1}{e^\epsilon + 1} + \frac{x - \alpha}{\beta - \alpha} \cdot \frac{e^\epsilon - 1}{e^\epsilon + 1}, & \text{if } c = 1 \\ \frac{e^\epsilon}{e^\epsilon + 1} - \frac{x - \alpha}{\beta - \alpha} \cdot \frac{e^\epsilon - 1}{e^\epsilon + 1}, & \text{if } c = -1 \end{cases} \quad (10)$$

904 This mechanism achieves ϵ -LDP while preserving the relative position of the input through
905 a probabilistic encoding over two discrete values.

- 906 • SW: The one-dimensional square wave mechanism perturbs original input
- $x \in [\alpha, \beta]$
- within
-
- 907 an expanded domain
- $[-b - 1, b + 1]$
- , where the parameter
- b
- is defined as:

908
$$b = \frac{\epsilon e^\epsilon - e^\epsilon + 1}{e^\epsilon (e^\epsilon - \epsilon - 1)}. \quad (11)$$

909 The perturbed output x' is then sampled from the following distribution:
910

911
$$\Pr[x' = c \mid x] = \begin{cases} p, & \text{if } c \in [x - b, x + b] \\ p/e^\epsilon, & \text{if } c \in [-b - 1, x - b) \cup (x + b, b + 1] \end{cases}, \quad (12)$$

912
913 ³PM, MB, and SW are pure LDP mechanisms, i.e., they satisfy ϵ -LDP and therefore do not involve a (ϵ, δ) -style
914 guarantee.

918 where $p = \frac{e^\epsilon}{2be^\epsilon + 2}$. This mechanism constructs a localized uniform distribution centered
 919 at x , with exponentially decaying probability for values farther from x , thereby balancing
 920 privacy and estimation accuracy.
 921

922 C PROOFS & THEORETICAL ANALYSIS

923 C.1 PROOF OF PROPOSITION 1

926 *Proof.* We consider a d -dimensional feature vector \mathbf{x}_i for each node v_i , and assume that each attribute
 927 $\mathbf{x}_{i,j}, j \in [d]$ is perturbed independently using the PM mechanism. (The proof process for the other
 928 mechanisms follows the same procedure.) Let $\mathbf{x}'_{i,j}$ be the perturbed value and define the discrepancy
 929 along dimension j for node v_i as: $\mathbf{z}_{i,j} := \mathbf{x}'_{i,j} - \mathbf{x}_{i,j}$. According to PM, each $\mathbf{z}_{i,j}$ satisfies:
 930

$$931 |\mathbf{z}_{i,j}| \leq \frac{d}{m} \cdot \frac{e^{\epsilon/2} + 1}{e^{\epsilon/2} - 1}. \quad (13)$$

933 Let the neighborhood of v_i be $\mathcal{N}(v_i)$. The true and perturbed mean embeddings in dimension j are:
 934

$$935 \mathbf{h}_{i,j} := \frac{1}{|\mathcal{N}(v_i)|} \sum_{u \in \mathcal{N}(v_i)} \mathbf{x}_{u,j}, \quad \bar{\mathbf{h}}_{i,j} := \frac{1}{|\mathcal{N}(v_i)|} \sum_{u \in \mathcal{N}(v_i)} \mathbf{x}'_{u,j}. \quad (14)$$

938 Considering Eqs. (13), (14) and $\mathbb{E}[\mathbf{z}_{i,j}] = 0$, and apply Bernstein's inequality (Mhammedi et al.,
 939 2019), we have:

$$940 \Pr [|\bar{\mathbf{h}}_{i,j} - \mathbf{h}_{i,j}| \geq \lambda] = \Pr \left[\left| \sum_{i=1}^{|\mathcal{N}(v)|} \{\mathbf{x}'_{i,j} - \mathbf{x}_{i,j}\} \right| \geq |\mathcal{N}(v)| \cdot \lambda \right] \quad (15)$$

$$944 \leq 2 \cdot \exp \left\{ -\frac{(|\mathcal{N}(v)| \cdot \lambda)^2}{2 \sum_{i=1}^{|\mathcal{N}(v)|} \text{Var}[\mathbf{x}'_{i,j}] + \frac{2}{3} \cdot |\mathcal{N}(v)| \cdot \lambda \cdot \frac{d}{m} \cdot \frac{e^{\epsilon/2m} + 1}{e^{\epsilon/2m} - 1}} \right\}. \quad (16)$$

947 Then, we can obtain:

$$949 \Pr [|\bar{\mathbf{h}}_{i,j} - \mathbf{h}_{i,j}| \geq \lambda] \leq 2 \cdot \exp \left\{ -\frac{(\lambda |\mathcal{N}(v)|)^2}{\mathcal{O}(\frac{md}{\epsilon^2}) + \lambda \mathcal{O}(\frac{d}{\epsilon})} \right\}. \quad (17)$$

951 By applying the union bound, we have:

$$953 \Pr \left[\max_{j \in \{1, \dots, d\}} |\bar{\mathbf{h}}_{i,j} - \mathbf{h}_{i,j}| \geq \lambda \right] = \bigcup_{j=1}^d \Pr [|\bar{\mathbf{h}}_{i,j} - \mathbf{h}_{i,j}| \geq \lambda] \quad (18)$$

$$956 \leq \sum_{j=1}^d \Pr [|\bar{\mathbf{h}}_{i,j} - \mathbf{h}_{i,j}| \geq \lambda] = 2d \cdot \exp \left\{ -\frac{\lambda^2 |\mathcal{N}(v)|}{\mathcal{O}(\frac{md}{\epsilon^2}) + \lambda \mathcal{O}(\frac{d}{\epsilon})} \right\}. \quad (19)$$

959 To ensure that $\max_{j \in \{1, \dots, d\}} |\bar{\mathbf{h}}_{i,j} - \mathbf{h}_{i,j}| < \lambda$ holds with at least $1 - \varrho$ probability, it is sufficient to
 960 set

$$962 \varrho = 2d \cdot \exp \left\{ -\frac{\lambda^2 |\mathcal{N}(v)|}{\mathcal{O}(\frac{md}{\epsilon^2}) + \lambda \mathcal{O}(\frac{d}{\epsilon})} \right\}. \quad (20)$$

964 Solving the above for λ , we get:

$$966 \lambda = \mathcal{O} \left(\frac{\sqrt{d \log(d/\varrho)}}{\epsilon \sqrt{|\mathcal{N}(v)|}} \right), \quad (21)$$

969 which proves that: $\|\Upsilon \langle \bar{\mathbf{h}}_{\mathcal{N}(v)} - \mathbf{h}_{\mathcal{N}(v)} \rangle\| \propto 1/|\mathcal{N}(v)|^{1/2}$, we conservatively upper bound it by
 970 $1/|\mathcal{N}(v)|$. This characterization indicates that increasing the neighborhood size $|\mathcal{N}(v)|$ reduces
 971 the discrepancy with the true aggregated node embedding, thereby calibrating the estimation error
 introduced by local perturbation. \square

972 C.2 COMPLEXITY ANALYSIS
973

974 The overall computational complexity of our method primarily arises from the K -hop neighborhood
975 aggregation in Phase I and the attribute relevance analysis in Phase II. Specifically, the aggregation
976 step costs $\mathcal{O}(K \cdot |\mathcal{E}| \cdot d)$, where $|\mathcal{E}|$ is the number of edges and d is the feature dimension. For attribute
977 analysis, FDA requires $\mathcal{O}(|\mathcal{V}| \cdot d + d \log d)$, while SMA requires $\mathcal{O}(|\mathcal{V}| \cdot d \cdot I + d \log d)$, where I is
978 the number of training iterations of the sparse logistic regression. The computational complexity of
979 TOGL scales linearly with both the graph size and feature dimensionality, ensuring that it remains
980 practical and scalable for large-scale graphs with high-dimensional data. Furthermore, common
981 acceleration strategies such as graph pruning (Yu et al., 2022; Liu et al., 2023) and GPU-based sparse
982 matrix operations (Lee et al., 2020) can be directly applied to further reduce runtime overhead.
983

984 C.3 PROOF OF THEOREM 3
985

986 Figure 10: Examples of Aggregation Strategies. Fig. (a) illustrates the original aggregation process
987 without perturbation. Fig. (b) shows an extreme task-oriented aggregation strategy, which emphasizes
988 task-relevant attributes but compromises the overall utility of graph learning due to the loss of
989 topological distinguishability. Fig. (c) presents a trade-off example between task and topology.
990

991 *Proof.* Let $f_\Theta : \mathbb{R}^d \rightarrow \mathbb{R}^C$ be a GCN-like classifier trained under LDP-perturbed inputs $\{\mathbf{x}'_v\}_{v \in \mathcal{V}}$,
992 where each \mathbf{x}'_v is obtained by retaining only a subset of dimensions $\mathcal{S} \subset [d]$. Let $\bar{\mathbf{h}}_v \in \mathbb{R}^d$ denote the
993 output representation of node v after K -hop message passing.

994 Our goal is to bound the generalization error
995

$$\Delta := \mathbb{E}_i[\mathcal{L}(f_\Theta(\bar{\mathbf{h}}_i), y_i)] - \mathbb{E}_i[\mathcal{L}(f^*(\mathbf{h}_i^*), y_i)], \quad (22)$$

996 where f^* is the oracle classifier on clean embeddings \mathbf{h}_i^* . Applying the triangle inequality and
997 assuming Lipschitz continuity of $\mathcal{L} \circ f$, we have
998

$$\Delta \leq \mathbb{E}_i[\mathcal{L}(f_\Theta(\bar{\mathbf{h}}_i), y_i)] + L_f \cdot \mathbb{E}_i\|\bar{\mathbf{h}}_i - \mathbf{h}_i^*\|, \quad (23)$$

999 where L_f is the Lipschitz constant.
1000

1001 Under GCN propagation
1002

$$\mathbf{H}^{(k)} = \sigma(\mathbf{A}\mathbf{H}^{(k-1)}\mathbf{W}^{(k)}), \quad \mathbf{H}^{(0)} = \mathbf{X}', \quad (24)$$

1003 the node embeddings gradually converge. Since all perturbed features \mathbf{x}'_v share the same support \mathcal{S} ,
1004 the variance among neighbors reduces. We define the Dirichlet energy
1005

$$\Phi(\mathbf{H}^{(K)}) := \sum_{(i,j) \in \mathcal{E}} \|\bar{\mathbf{h}}_i - \bar{\mathbf{h}}_j\|^2, \quad (25)$$

1006 which captures topological distinguishability. When \mathbf{x}'_v are restricted to the same \mathcal{S} , the aggregated
1007 embeddings collapse: $\Phi(\mathbf{H}^{(K)}) \rightarrow 0$.
1008

1009 We introduce coefficients $\gamma(m, \mathcal{S})$ and $\omega(m, \mathcal{S})$ to explicitly reflect the impact of the number of
1010 perturbed dimensions $m = |\mathcal{S}|$ and the feature selection strategy \mathcal{S} . Specifically, $\gamma(m, \mathcal{S})$ increases
1011 when excessive noise or poor selection reduces signal quality, and $\omega(m, \mathcal{S})$ increases with greater
1012 inter-node variance from task-aware selections, capturing enhanced topological distinguishability.
1013 Then we have
1014

$$\mathbb{E}_i\|\bar{\mathbf{h}}_i - \mathbf{h}_i^*\|^2 \leq \omega(m, \mathcal{S}) \cdot \Phi(\mathbf{H}^{(K)}), \quad (26)$$

1026 absorbing remaining constants into $\gamma(m, \mathbb{S})$. Consequently,
 1027

$$\Delta \leq \gamma(m, \mathbb{S}) \cdot \underbrace{\mathbb{E}_i[\mathcal{L}(f_\Theta(\bar{\mathbf{h}}_i), y_i)]}_{\text{task consistency}} + \omega(m, \mathbb{S}) \cdot \underbrace{\mathbb{E}_{(i,j) \in \mathcal{E}} \|\bar{\mathbf{h}}_i - \bar{\mathbf{h}}_j\|^2}_{\text{topological distinguishability}}. \quad (27)$$

1031 This bound shows that both the number of perturbed features m and the selection strategy \mathbb{S} directly
 1032 influence the trade-off between task consistency and topological distinguishability. \square
 1033

1034 Figure 10(a) illustrates the original feature aggregation process, while Figure 10(c) presents an
 1035 example of aggregation under a task-topology trade-off. In addition, we have the following corollary:
 1036

1037 **Corollary 2.** *If all nodes use the same fixed subset \mathcal{S} in Alg. 1, then: $\|\bar{\mathbf{h}}_i - \bar{\mathbf{h}}_j\|^2 \approx 0, \forall (i, j) \in \mathcal{E}$, and
 1038 the propagation operator (e.g., GCN) reduces to mean-pooling, weakening structural discrimination.*

1040 *Proof.* Let $\mathbf{x}'_v \in \mathbb{R}^d$ be the perturbed node feature vector for node $v \in \mathcal{V}$, where only dimensions
 1041 in the fixed subset $\mathcal{S} \subset [d]$ are perturbed and retained, and all others are zeroed out (as depicted in
 1042 Figure 10(b)):

$$\mathbf{x}'_v[j] = \begin{cases} \text{LDP-perturbed}(x_v[j]), & \text{if } j \in \mathcal{S}, \\ 0, & \text{otherwise.} \end{cases} \quad (28)$$

1043 Let $\mathbf{H}^{(0)} = \mathbf{X}' \in \mathbb{R}^{|\mathcal{V}| \times d}$ be the feature matrix, and consider a GCN propagation rule:
 1044

$$\mathbf{H}^{(k+1)} = \sigma(\hat{\mathbf{A}} \mathbf{H}^{(k)} \mathbf{W}^{(k)}), \quad \text{with } \mathbf{H}^{(0)} = \mathbf{X}', \quad (29)$$

1045 where $\hat{\mathbf{A}}$ is the normalized adjacency matrix and σ is an activation function.

1046 Since all feature vectors \mathbf{x}'_v lie in the same $|\mathcal{S}|$ -dimensional subspace of \mathbb{R}^d , the *initial variance
 1047 between nodes is significantly reduced*. When the same propagation operator is applied uniformly
 1048 over this low-variance input, the representations $\mathbf{H}^{(k)}$ begin to *converge across neighbors*:

$$\|\mathbf{H}_i^{(k)} - \mathbf{H}_j^{(k)}\| \rightarrow 0, \quad \text{as } k \text{ increases, } (i, j) \in \mathcal{E}. \quad (30)$$

1049 This phenomenon is known as over-smoothing (Keriven, 2022), and it occurs when graph convolution
 1050 reduces inter-node variance due to repeated mixing over similar signals. As a result, in the limit, the
 1051 GCN essentially performs an average over identical feature subspaces:

$$\mathbf{H}^{(K)} \approx \hat{\mathbf{A}}^K \mathbf{X}' \approx \mathbf{1} \mathbf{u}^\top, \quad (31)$$

1052 *i.e.*, a *rank-one representation*, which is equivalent to *mean pooling*. Hence, the model loses its ability
 1053 to discriminate structurally different nodes. \square
 1054

1066 C.4 PRIVACY ANALYSIS

1067 In TOGL, a total of two sequential perturbation steps (defined as Π_1 and Π_2) are performed under
 1068 the LDP perturbation protocol Π , each satisfying $\epsilon/2$ -LDP. By the sequential composition theorem
 1069 of local differential privacy (Theorem 4), the overall privacy guarantee is bounded by ϵ -LDP. Fur-
 1070 thermore, as shown in Theorem 5, the subsequent GNN training phase operates solely on perturbed
 1071 data and involves no further access to raw features, thus preserving the established ϵ -LDP guarantee
 1072 throughout the entire pipeline, formalized as:
 1073

$$\Pi_1 \text{ and } \Pi_2 \text{ are each } \epsilon/2\text{-LDP} \Rightarrow \Pi_2 \circ \Pi_1 \text{ is } \epsilon\text{-LDP.} \quad (32)$$

1074 **Theorem 4** (Sequential Composition). *If $\mathcal{M}_i : \mathcal{X} \mapsto \mathcal{Z}_i$ satisfies ϵ_i -LDP for each $i \in \{1, 2, \dots, n\}$,
 1075 then the composed mechanism $\mathcal{M} = (\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_n) : \mathcal{X} \mapsto \prod_{i=1}^n \mathcal{Z}_i$ satisfies $(\sum_{i=1}^n \epsilon_i)$ -LDP.*

1076 **Theorem 5** (Post-Processing Invariance). *Let $\mathcal{A} : \mathcal{X} \mapsto \mathcal{Z}$ satisfies ϵ -LDP, and let $\mathcal{F} : \mathcal{Z} \mapsto \mathcal{Z}'$ be
 1077 any (possibly randomized) mapping. Then the composed mechanism $\mathcal{A} \circ \mathcal{F} : \mathcal{X} \mapsto \mathcal{Z}'$ satisfies ϵ -LDP.*

1080 **D MORE DETAILS ON THE EXPERIMENTS**
10811082 **D.1 DATASETS**
10831084 We evaluate our proposed method TOGL on six widely used real-world graph datasets (The key
1085 statistics of these datasets are summarized in Table 1), three *citation networks* (Cora, Citeseer, and
1086 Pubmed) and three *social networks* (LastFM, Twitch, and Facebook), as described below:
1087

- 1088 •
- Cora*
- (Yang et al., 2016): The Cora dataset is a citation network where each node represents a
-
- 1089 scientific publication and each edge indicates a citation between two papers. Node features are
-
- 1090 constructed from paper contents using a bag-of-words model, and the task is to classify papers into
-
- 1091 one of seven categories.
-
- 1092 •
- Citeseer*
- (Yang et al., 2016): Similar to Cora, Citeseer is another citation network consisting of
-
- 1093 scientific articles. Each article is described by a sparse word vector, and the objective is to classify
-
- 1094 the publications into one of six classes. Compared to Cora, Citeseer has a more sparse feature
-
- 1095 matrix and a less connected graph structure.
-
- 1096 •
- Pubmed*
- (Yang et al., 2016): The Pubmed dataset is a large-scale citation graph in the biomedical
-
- 1097 domain. Each node corresponds to a scientific paper, represented by TF-IDF weighted word vectors
-
- 1098 from the abstract, and the goal is to categorize papers into one of three medical topics. It contains
-
- 1099 significantly more nodes and edges than Cora and Citeseer.
-
- 1100 •
- LastFM*
- (Rozemberczki & Sarkar, 2020): LastFM is a user-user interaction graph derived from the
-
- 1101 Last.fm
- ⁴
- music platform. Each node represents a user, and edges denote social relationships. Node
-
- 1102 features are based on music listening histories, and labels indicate user groups based on country.
-
- 1103 This dataset presents a more realistic social recommendation scenario.
-
- 1104 •
- Twitch*
- (Rozemberczki et al., 2021): The Twitch dataset is collected from the Twitch
- ⁵
- streaming
-
- 1105 platform. Nodes correspond to users, and edges indicate mutual follows. Features are extracted
-
- 1106 from user activities and preferences, and the classification task typically involves predicting user
-
- 1107 affiliations such as language or game preference.
-
- 1108 •
- Facebook*
- (Rozemberczki et al., 2021): This dataset represents anonymized ego-networks from
-
- 1109 Facebook
- ⁶
- , where each node is a user and edges represent friendships. Node features are derived
-
- 1110 from user profiles, and the classification task involves predicting user categories based on social
-
- 1111 behavior. The graph is large and dense, making it suitable for evaluating scalability.
-
- 1112

1113 **D.2 GNN MODELS**
11141115 To evaluate the effectiveness and generalizability of our method, we consider seven representative
1116 GNN models: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic
1117 et al., 2018), GIN (Xu et al., 2019), APPNP (Klicpera et al., 2019), SGC (Wu et al., 2019), and
1118 SSGC (Zhu & Koniusz, 2021). Each model consists of two graph convolution layers with 64
1119 neurons in each hidden layer, utilizing ReLU as the activation function Klambauer et al. (2017) and
1120 dropout Baldi & Sadowski (2013) for regularization. The GAT model employs four parallel attention
1121 heads. For APPNP, SGC, and SSGC, we follow their original designs, using fixed propagation steps
1122 and linear classifiers. All models are implemented in PyTorch using the PyTorch-Geometric (PyG)
1123 library⁷. The experiments are carried out on a server running Ubuntu 22.04 LTS, equipped with dual
1124 Intel® Xeon® Gold 6348 CPUs, 100 GB RAM, and an NVIDIA® A800 GPU. Specifically as follows:
1125

- 1126 •
- GCN*
- ⁸
- (Kipf & Welling, 2017): Graph Convolutional Networks (GCNs) are a foundational GNN
-
- 1127 model that performs neighborhood aggregation via spectral graph convolutions. It introduces
-
- 1128 layer-wise propagation to aggregate and transform node features from adjacent nodes using the
-
- 1129 normalized graph Laplacian.
-
- 1130

⁴<https://www.last.fm/>⁵<https://www.twitch.tv/>⁶<https://www.facebook.com/>⁷<https://www.pyg.org>⁸https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.models.GCN.html

- *GraphSAGE*⁹ (Hamilton et al., 2017): Graph Sample and Aggregate (GraphSAGE) is an inductive GNN that learns node embeddings by sampling and aggregating feature information from local neighborhoods. It supports various aggregator functions such as mean, LSTM, or pooling, making it more flexible for large-scale and dynamic graphs.
- *GAT*¹⁰ (Velickovic et al., 2018): Graph Attention Networks (GATs) enhance message passing by introducing attention mechanisms that learn the importance of neighboring nodes. This allows for adaptive weighting of neighbors during aggregation and improves performance in graphs with noisy or unbalanced neighborhoods.
- *GIN*¹¹ (Xu et al., 2019): Graph Isomorphism Networks (GINs) are designed to maximally distinguish graph structures and are proven to be as powerful as the Weisfeiler-Lehman graph isomorphism test. GINs use MLPs and sum aggregation to capture rich structural information.
- *APPNP*¹² (Klicpera et al., 2019): Approximate Personalized Propagation of Neural Predictions (APPNP) decouples feature transformation and propagation using personalized PageRank (Gleich, 2015). It first applies a shallow neural network for feature transformation, followed by multiple propagation steps that enhance long-range information flow while mitigating oversmoothing.
- *SGC*¹³ (Wu et al., 2019): Simple Graph Convolution (SGC) simplifies the GCN by removing nonlinearities and collapsing weight matrices between layers. This leads to a linear and more efficient model, while retaining competitive performance.
- *SSGC*¹⁴ (Zhu & Koniusz, 2021): Simplified Spatial Graph Convolution (SSGC) enhances SGC (Wu et al., 2019) by combining it with residual connections and spatial message passing. It introduces a tunable residual propagation mechanism that strengthens representation learning across multiple hops, improving performance while retaining the efficiency and simplicity of linear models.

D.3 CLASSICAL LDP MECHANISMS

We consider three widely adopted classical LDP mechanisms in our framework and baseline comparisons (Section 5.1): the *1-bit mechanism* (1B) (Ding et al., 2017), *Laplace mechanism* (LP) (Phan et al., 2017), and *Analytic Gaussian mechanism* (AG) (Balle & Wang, 2018). These mechanisms are commonly used for perturbing scalar or vector-valued data under strong local privacy guarantees.

- *1-bit Mechanism* (Sajadmanesh & Gatica-Perez, 2021). The 1-bit mechanism perturbs a one-dimensional input $x \in [\alpha, \beta]$ by mapping it probabilistically to either $+1$ or -1 , using an encoding based on the input value and privacy budget ϵ . Specifically, the output $x' \in \{-1, 1\}$ is sampled as:

$$\Pr[x' = c|x] = \begin{cases} \frac{1}{e^\epsilon + 1} + \frac{x - \alpha}{\beta - \alpha} \cdot \frac{e^\epsilon - 1}{e^\epsilon + 1}, & \text{if } c = 1 \\ \frac{e^\epsilon}{e^\epsilon + 1} - \frac{x - \alpha}{\beta - \alpha} \cdot \frac{e^\epsilon - 1}{e^\epsilon + 1}, & \text{if } c = -1 \end{cases} \quad (33)$$

- *Laplace Mechanism* (Phan et al., 2017). The Laplace mechanism adds noise sampled from a Laplace distribution to the original input. For a scalar value $x \in [\alpha, \beta]$, the perturbed value is:

$$x' = x + \text{Lap}(2/\epsilon), \quad (34)$$

where $\text{Lap}(b)$ denotes a Laplace distribution with scale b .

- *Analytic Gaussian Mechanism* (Balle & Wang, 2018). The Analytic Gaussian mechanism introduces noise drawn from a calibrated Gaussian distribution. For input $x \in [\alpha, \beta]$, the output is:

$$x' = x + \mathcal{N}(0, \sigma^2), \quad (35)$$

where σ is chosen based on the privacy parameters ϵ and δ using the analytic calibration procedure described in. For example:

$$\sigma^2 = \frac{2 \ln(1.25/\delta)}{\epsilon^2} \quad (36)$$

ensures that the mechanism satisfies (ϵ, δ) -LDP. Compared to Laplace noise, the AG mechanism provides tighter tail bounds and better utility under high-dimensional settings.

⁹https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.models.GraphSAGE.html

¹⁰https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATConv.html

¹¹https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GINConv.html

¹²https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.APPNP.html

¹³https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html

¹⁴https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SSGConv.html

1188 For a d -dimensional vector, these mechanisms apply perturbation to each dimension with a privacy
 1189 budget of ϵ/d , thereby ensuring overall ϵ -LDP.
 1190

1191 D.4 PARAMETER SETTINGS 1192

1193 For all datasets, we randomly split the nodes into training set, validation set, and test set using
 1194 a 50%/25%/25% ratio. Regarding the privacy budget ϵ , note that the perturbation size m for the
 1195 three LDP mechanisms (PM, MB, and SW) is constrained by a coefficient δ . To ensure $m > 1$ for
 1196 meaningful evaluation, we set ϵ to values in the set $\{5.0, 7.5, 10.0, 12.5, 15.0\}$, corresponding to
 1197 $m \in \{2, 3, 4, 5, 6\}$, respectively. The parameter ρ is selected from the set $\{0, 0.3, 0.5, 0.7, 1.0\}$, and
 1198 the denoising aggregation parameter K is varied over $\{0, 1, 2, 3, 4, 5\}$. Unless otherwise specified,
 1199 the default ϵ is set to 10.0. We perform hyperparameter tuning via grid search. The learning rate is
 1200 drawn from $\{10^{-1}, 10^{-2}, 10^{-3}\}$, weight decay from $\{0, 10^{-5}, 10^{-4}, 10^{-3}\}$, and dropout rate from
 1201 $\{0, 10^{-3}, 10^{-2}, 10^{-1}\}$. All models are optimized with Adam (Kingma & Ba, 2014) for a maximum
 1202 of 300 epochs. The model yielding the lowest validation loss is selected for final evaluation.
 1203

1203 D.5 MORE EXPERIMENTAL RESULTS 1204

1205 To provide a more comprehensive evaluation of TOGL, we conducted additional experiments that
 1206 examine its robustness, scalability, privacy protection, etc. The results are summarized as follows.
 1207

1208 **Effect of small privacy budgets.** When the privacy budget is small ($0 < \epsilon < 5$), the local perturbation mechanism
 1209 restricts the perturbation size to $m = 1$ due to the influence
 1210 of the coefficient δ . In this setting, we consider two ex-
 1211 treme perturbation strategies: ① the task-consistent (TC)
 1212 extreme, where all nodes perturb the same task-relevant
 1213 attribute, and ② the topology-distinguishability (TD) ex-
 1214 treme, where each node independently perturbs a random
 1215 dimension from the full feature space $[d]$, regardless of
 1216 task relevance. As shown in Fig. 3, the latter strategy sur-
 1217 prisingly yields significantly higher accuracy under tight
 1218 privacy constraints. This phenomenon arises because en-
 1219 forcing task consistency across all nodes collapses the
 1220 feature diversity in the graph: since every node shares the
 1221 same perturbed dimension, their representations become
 1222 indistinguishable after message passing. In contrast, the
 1223 random strategy—while individually suboptimal—preserves sufficient variance across the graph,
 1224 maintaining topological distinguishability that benefits the downstream GNN learning process.
 1225

1226 **Robustness under noisy or sparse labels.** We examined TOGL’s performance when node labels
 1227 are privatized for protection. Specifically, each label $y \in \{1, \dots, C\}$ is perturbed via randomized
 1228 response (Kairouz et al., 2016), where the privatized label \tilde{y} follows:

$$1229 \mathbb{P}[\tilde{y} = y] = \frac{e^{\epsilon_{\text{label}}}}{e^{\epsilon_{\text{label}}} + C - 1}, \quad \mathbb{P}[\tilde{y} = y'] = \frac{1}{e^{\epsilon_{\text{label}}} + C - 1}, \quad \forall y' \neq y, \quad (37)$$

1230 with ϵ_{label} controlling the privacy level. To mitigate excessive noise, we apply Drop training (Sajad-
 1231 manesh & Gatica-Perez, 2021) to smooth labels across the graph before task-relevant attribute analysis.
 1232 As shown in Table 4, TOGL consistently outperforms the baseline (PM) even under noisy supervision
 1233 ($\epsilon_{\text{label}} = 1.0$). Furthermore, Table 5 demonstrates that TOGL maintains robustness across varying
 1234 label privacy levels $\epsilon_{\text{label}} \in \{1.0, 2.0, 3.0, \infty\}$, with only gradual degradation as ϵ_{label} decreases.
 1235

Table 4: Performance under label privacy.

Method	Cora	LastFM
Baseline	75.9	76.2
TOGL	78.2	78.9

Table 5: Impact of varying ϵ_{label} on Cora.

ϵ_{label}	1.0	2.0	3.0	∞
Baseline	75.9	77.3	78.1	79.4
TOGL	78.2	80.1	80.5	81.6

1241 **Fairness analysis.** Beyond utility and privacy, an important concern in practical deployment is
 whether the proposed perturbation mechanism introduces unintended biases across different groups.
 1242

Table 3: Performance comparison between the task-consistency (TC) extreme and the topology-distinguishability (TD) extreme (Cora dataset, PM mechanism).

To investigate this, we conduct a fairness analysis. Since datasets such as Cora do not contain explicit sensitive attributes (*e.g.*, gender or race), we adopt *node degree* as a proxy sensitive feature, which is commonly regarded as a structural indicator of potential group disparity. We then compute the Pearson correlation (Benesty et al., 2009) between TOGL’s top-5 selected attributes and node degree for both TOGL and the baseline (PM). As shown in Table 6, both methods maintain similarly low correlations (all below 0.1). These results indicate that task-oriented attribute selection does not introduce additional fairness concerns compared to random selection, as neither approach systematically favors high-degree or low-degree nodes, thereby mitigating potential structural bias.

Scalability evaluation. In addition to accuracy and fairness, a key requirement for practical deployment is scalability: the method should remain efficient when applied to large graphs. To evaluate this, we conducted experiments on two representative large-scale datasets, covering both feature-rich graphs (Co-Phy (Shchur et al., 2018)) and large-scale citation networks (Ogbn-arxiv (Hu et al., 2020)). Dataset statistics are summarized in Table 7. Both TOGL and the PM baseline were evaluated under identical experimental settings on a machine equipped with dual Intel® Xeon® Gold 6348 CPUs, 100 GB RAM, and an NVIDIA® A800 GPU. The runtime and peak GPU memory usage are reported in Table 8. As shown, TOGL introduces only moderate computational overhead compared with the baseline, confirming that it remains practical for large-scale graph learning.

Table 7: Statistics of large-scale datasets used for scalability evaluation.

Dataset	Nodes	Edges	Features	Classes
Co-Phy (Shchur et al., 2018)	34,493	247,962	8,415	5
Ogbn-arxiv (Hu et al., 2020)	169,343	1,166,243	128	40

Table 8: Runtime and memory overhead on large-scale datasets.

Dataset	Method	Runtime (s)	Peak GPU (GB)
Co-Phy	Baseline	21	1.2
	TOGL	24	1.3
Ogbn-arxiv	Baseline	57	2.1
	TOGL	64	2.4

Stability of attribute selection. To assess the stability of TOGL’s attribute selection, we ran the method 10 times on Cora and measured the Jaccard similarity (Niwattanakul et al., 2013) of the top-5 selected attributes as well as the variance in classification accuracy. Results in Table 9 show high consistency (0.78 Jaccard) and low performance variance ($\pm 0.3\%$). These results indicate that the selected attribute subsets are highly consistent, and that small variations in selection do not lead to significant drops in performance, confirming the robustness of TOGL’s attribute selection process.

Attribute-level sensitivity. To gain deeper insights into TOGL’s per-attribute behavior, we examined both task utility and privacy protection at the attribute level on the Cora with $\epsilon = 5.0$. Specifically, for each attribute, we measured: ① *classification accuracy* (CA%) obtained when the attribute is used in the task, and ② *attribute inference attack accuracy* (AA%) on the perturbed attribute. We also recorded whether each attribute was selected by TOGL’s task-oriented selection module. Table 10 summarizes the results. We observe that TOGL preferentially selects attributes that contribute more to task utility after perturbation (*e.g.*, A5), while all attributes maintain similarly low attack accuracy, indicating that per-attribute privacy protection is consistently enforced. These findings confirm that TOGL effectively balances utility and privacy: it prioritizes attributes with high task relevance without compromising the rigorous LDP guarantees applied uniformly across all features.

Empirical resistance to inference attacks. To empirically evaluate TOGL’s privacy protection beyond its formal LDP guarantee, we conducted a preliminary attribute inference attack experiment (Meng et al., 2023). In this setting, an attacker observes the perturbed features of a target

Table 6: Correlation between selected attributes and node degree.

Dataset	Baseline	TOGL
Cora	0.08	0.07
Pubmed	0.09	0.09

Table 9: Stability analysis on Cora.

Metric	Value
Avg. Jaccard similarity	0.78
Accuracy (mean \pm std)	$81.2 \pm 0.3\%$

node’s neighbors and attempts to infer the target’s sensitive attribute via majority voting, leveraging homophily (McPherson et al., 2001) in the graph. We compared TOGL (with $\epsilon = 5.0$) against a non-private baseline (NonPriv) on two representative datasets, Cora and LastFM. Attack accuracy (%) is reported in Table 11, where lower values indicate stronger privacy protection. As shown, TOGL reduces the attacker’s success rate to below 20% on both datasets, representing a substantial improvement over the non-private setting, where attack accuracy exceeds 90%. These results demonstrate that TOGL provides strong empirical resistance to attribute inference attacks, complementing its formal LDP guarantees and confirming its practical privacy effectiveness.

Table 10: Attribute-level sensitivity analysis.

Attribute	CA (%)	AA (%)	Selected
A5	81.2	17.9	✓
A14	79.3	18.1	✗

Table 11: Attribute inference attack accuracy (%).

Method	Cora	LastFM
NonPriv	97.2	96.5
TOGL	18.7	17.5

Generalizability to different LDP variants. TOGL is designed to be compatible with a wide range of LDP mechanisms. Beyond the six classical feature-level LDP mechanisms evaluated in Sec. 5.1, we further tested TOGL under two additional variants: *Condensed Local Differential Privacy* (CLDP) (Gursoy et al., 2019; Zhang et al., 2025) and *Personalized Local Differential Privacy* (PLDP) (Li et al., 2022c; He et al., 2025c) on the Cora dataset. Table 12 reports the results, showing that TOGL consistently outperforms the corresponding baselines (PM) across both variants. This demonstrates that TOGL generalizes well to diverse LDP paradigms, including classical and modern variants, making it a flexible and broadly applicable framework for privacy-preserving graph learning.

Table 12: Performance of TOGL under different LDP variants on Cora.

Variant	Baseline	TOGL
CLDP	79.8	81.9
PLDP	80.6	82.7

Table 13: Multi-task performance of TOGL on Cora dataset ($\epsilon = 5.0$).

Method	Classification ACC	Regression MAE
Baseline	78.7	0.184
TOGL	81.5	0.142

Robustness under structure privacy. While this paper primarily focuses on protecting users’ node features, which are often the most sensitive, our approach is orthogonal to existing privacy-preserving techniques for neighbor lists (Hidano & Murakami, 2024; Zhu et al., 2023a) and can be seamlessly integrated with them. To demonstrate this compatibility, we combined TOGL with the BLINK mechanism (Zhu et al., 2023a), which enforces link-level LDP via Bayesian estimation (Kruschke, 2013). Specifically, for a node $v \in \mathcal{V}$, let $\mathcal{N}(v)$ denote its true set of neighbors. Under link-level LDP with privacy budget ϵ_{link} , each potential edge (v, u) is independently perturbed:

$$\tilde{A}_{vu} = \begin{cases} 1, & \text{with probability } \frac{e^{\epsilon_{\text{link}}}}{e^{\epsilon_{\text{link}}} + 1}, \\ 0, & \text{otherwise,} \end{cases} \quad \forall u \in \mathcal{N}(v), \quad (38)$$

where \tilde{A}_{vu} is the perturbed adjacency entry. Non-neighbor edges are perturbed similarly, ensuring ϵ_{link} -LDP for all links. The perturbed graph \tilde{G} is then used as input to TOGL’s task-oriented attribute selection and perturbation pipeline, leaving the rest of the method unchanged.

We conducted experiments on Cora and LastFM with $\epsilon_{\text{feature}} = 5.0$ and $\epsilon_{\text{link}} = 5.0$. Table 14 reports classification accuracy. As shown, TOGL consistently outperforms the baseline even under combined feature and structure privacy, confirming that the method remains effective when neighbor lists are privatized. This demonstrates that TOGL’s contributions are *not diminished by structural privacy concerns*, but rather focus on a complementary and practically critical dimension of graph privacy.

Analysis of the Parameter ρ . As discussed in Section 5.2, Figure 9 illustrates a clear non-monotonic trend: performance peaks at moderate ρ values (0.3 or 0.5), but drops dramatically as $\rho \rightarrow 1$, while degrading more mildly as $\rho \rightarrow 0$. This asymmetry arises because exclusively selecting task-relevant attributes ($\rho = 1$) causes all nodes to perturb the same fixed dimensions \mathcal{S}^* , which eliminates topological distinguishability and leads to severe over-smoothing. As proven in Corollary 1, this causes graph convolution to degenerate into mean-pooling, losing structural discrimination capability

1350 and resulting in the dramatic drop to approximately 30% accuracy. In contrast, when ρ is small, the
 1351 selected attributes, though random and less task-aligned, still preserve structural diversity across
 1352 nodes, which helps stabilize GNN training and maintain moderate utility despite weaker task signals.
 1353 Selecting an intermediate ρ balances these effects, retaining enough task-relevant signal while
 1354 preserving structural diversity, thereby maximizing overall utility.

1355 **Multi-task learning with task-specific attributes.** TOGL
 1356 can naturally accommodate multi-task learning scenarios by
 1357 assigning task-specific attribution scores to each feature and
 1358 aggregating them before feature selection and perturbation.
 1359 Its fully pluggable and differentiable attribution modules
 1360 (FDA and SMA) allow independent evaluation for each task.
 1361 To validate this capability, we conducted a multi-task ex-
 1362 periment on Cora, where each node is associated with: ① a
 1363 classification task predicting the paper’s category, and ② a regression task predicting the ℓ_2 -norm of
 1364 the node’s feature vector, serving as a proxy for content complexity. Feature attribution scores were
 1365 computed separately for each task and combined via weighted averaging. Results under $\epsilon = 5.0$ using
 1366 GCN with separate task heads are summarized in Table 13. TOGL achieves superior performance on
 1367 both tasks, demonstrating its flexibility in handling conflicting or partially overlapping task-specific
 1368 attributes and validating its generality in multi-task private learning.

1369 **Effect of K -hop denoising on baseline and TOGL.** To examine whether incorporating K -hop
 1370 denoising into baseline methods alters the comparative performance, we conducted experiments
 1371 applying the same denoising procedure ($K' = 3$) to both TOGL and the PM baseline. The denoised
 1372 variants are denoted TOGL* and Baseline*, respectively. Table 15 and Table 16 report the classification
 1373 accuracy (%) on Cora and LastFM. While denoising improves performance for both methods, TOGL*
 1374 consistently outperforms Baseline*, demonstrating that task-oriented perturbation provides additional
 1375 utility beyond standard denoising. These results highlight the complementary benefits of TOGL’s
 1376 selective attribute perturbation and graph-aware denoising.

1377 Table 15: Classification accuracy (%) without
 1378 denoising.

Method	Cora	LastFM
Baseline	79.4	80.7
TOGL	81.6	81.2

1379 Table 16: Classification accuracy (%) with
 1380 K -hop denoising ($K' = 3$).

Method	Cora	LastFM
Baseline*	83.7	85.6
TOGL*	85.1	86.3

1381 Table 17: Detailed ablation study results comparing FDA and SMA methods with the SOTA baseline
 1382 (PM). All values are classification accuracy (%) on the test set.

Method	Cora	Citeseer	Pubmed	LastFM	Twitch	Facebook
Baseline	79.4	63.5	69.8	80.7	53.9	86.8
FDA	81.4	65.2	71.1	81.8	55.3	89.0
SMA	81.6	65.4	71.3	82.4	55.7	89.3

1383 **Comparison with alternative feature selection methods.** To further validate our choice of FDA and
 1384 SMA as task-relevant attribute analysis methods, we conducted additional ablation studies comparing
 1385 them with three other representative feature selection algorithms commonly used in machine learning:
 1386

- 1387 • *Mutual Information (MI)* (Peng et al., 2005): Measures the mutual dependence between
 1388 each feature and the class labels, capturing both linear and non-linear relationships.
- 1389 • *Chi-Square (χ^2)* (Liu & Setiono, 1995): A statistical test that evaluates the independence
 1390 between features and labels, widely used for classification tasks.
- 1391 • *PCA-based selection (PCA)* (Jolliffe & Cadima, 2016): Selects features based on their
 1392 contributions to the top principal components that explain the most variance.

1393 The comparative results across all six datasets are presented in Table 18. Our methods (FDA and
 1394 SMA) consistently outperform the alternative baselines across all six datasets by 1.0-1.7% on average.
 1395

1396 Table 14: Classification accuracy (%)
 1397 under combined feature and link-level
 1398 LDP ($\epsilon_{\text{feature}} = 5.0$, $\epsilon_{\text{link}} = 5.0$).

Method	Cora	LastFM
Baseline + BLINK	76.5	75.9
TOGL + BLINK	79.8	78.6

This advantage stems from their design considerations for LDP-perturbed data: FDA explicitly models class separability under noise through inter-class and intra-class variance analysis, while SMA leverages task-specific model weights through sparse logistic regression. In contrast, MI and χ^2 rely on statistical dependencies that can be obscured by LDP noise, and PCA prioritizes variance explanation rather than task relevance. These results validate that FDA and SMA represent well-motivated and effective choices for task-oriented attribute selection under LDP constraints.

Table 18: Comparison of feature selection methods. All values are classification accuracy (%) on the test set under $\epsilon = 10.0$ with the PM mechanism.

Method	Cora	Citeseer	Pubmed	LastFM	Twitch	Facebook	Avg.
MI (Peng et al., 2005)	80.3	64.1	70.5	81.1	54.3	87.5	72.97
χ^2 (Liu & Setiono, 1995)	80.1	63.8	70.3	80.8	54.1	87.2	72.72
PCA (Jolliffe & Cadima, 2016)	79.8	63.9	70.1	80.9	54.0	87.0	72.62
FDA (Ours)	81.4	65.2	71.1	81.8	55.3	89.0	73.97
SMA (Ours)	81.6	65.4	71.3	82.4	55.7	89.3	74.28

E RELATED WORKS

E.1 LOCAL DIFFERENTIAL PRIVACY

LDP (Dwork et al., 2006) is a rigorous privacy notion that enables users to perturb their data locally before sharing it, thereby eliminating the need for a trusted aggregator. Due to its strong privacy guarantees, LDP has been widely adopted in diverse data collection and analysis scenarios, including frequency estimation (Jia & Gong, 2019; Li et al., 2020; Wang et al., 2017), mean estimation (Asi et al., 2022; Ding et al., 2017; Wang et al., 2019a), heavy hitter detection (Jia & Gong, 2019; Zhu et al., 2023b; Wang et al., 2019c), and frequent itemset mining (Li et al., 2022a; Tong et al., 2024).

Beyond single-round protocols, several works have explored two-round or multi-round LDP mechanisms for various analytics tasks (Qin et al., 2017; Sun et al., 2019; Imola et al., 2021; 2022; Liu et al., 2022b; Huang et al., 2024; He et al., 2024b;a; 2025b). These protocols typically use the first round to collect noisy global statistics and the second to refine or calibrate the result. However, they are primarily designed for *aggregate statistical estimation*, and do not involve *private learning or attribute-level decision-making*. In contrast, TOGL is the first to introduce a task-oriented two-round LDP pipeline for private graph learning, where the second round performs selective perturbation of task-relevant attributes—rather than uniformly or randomly perturbing all attributes. This setting poses unique challenges: attribute selection must be conducted over noisy data, without violating local privacy guarantees, and must account for utility-preserving structure in the graph. Our modular three-phase design addresses these challenges in a principled way and extends beyond the typical two-round estimation frameworks seen in prior work.

E.2 LOCALLY PRIVATE GRAPH LEARNING

Recently, locally private graph learning (Sajadmanesh & Gatica-Perez, 2021; Lin et al., 2022; Pei et al., 2023; Li et al., 2024; Jin & Chen, 2022) has emerged as a promising research area within the privacy and security community. To support this paradigm, researchers have developed several mechanisms for perturbing node features under LDP constraints. For instance, (Sajadmanesh & Gatica-Perez, 2021) extended the 1-bit mechanism (Ding et al., 2017) to high-dimensional node features via the multi-bit (MB) mechanism. Follow-up work proposed the piecewise (PM) (Pei et al., 2023) and square wave (SW) (Li et al., 2024) mechanisms to further enhance utility. While these methods have demonstrated effectiveness in tasks such as node classification (Kipf & Welling, 2017), their utility remains limited. To address this challenge, we propose a task-oriented framework for locally private graph learning. To the best of our knowledge, this is the first work to incorporate task-awareness into LDP-constrained graph learning, significantly enhancing utility while preserving strong privacy guarantees. In addition, some studies have also addressed the privacy protection of topological structures (Hidano & Murakami, 2024; Zhang et al., 2024a; Zhu et al., 2023a), focusing on

1458 obfuscating edges or degree information to prevent reconstruction attacks. Our method is orthogonal
 1459 to such techniques and can be seamlessly integrated.
 1460

1461 E.3 KEY FEATURE SELECTION

1462 Identifying key features (Wu et al., 2021; El Akadi et al., 2008; Lu et al., 2007; Duval & Malliaros,
 1463 2021; Ying et al., 2019; Li et al., 2017) is a long-standing problem in supervised learning, especially
 1464 when only a small subset of attributes contributes meaningfully to the prediction task. While extensive
 1465 research has been conducted on this topic, most existing methods assume full access to clean data
 1466 and are not applicable under strong privacy constraints.
 1467

1468 In contrast, our approach focuses on identifying task-relevant attributes from LDP-perturbed data
 1469 in the graph learning setting. Unlike prior feature selection methods, we must operate without
 1470 access to raw features, and we explicitly consider the trade-off between task consistent and topology
 1471 distinguishability during selection. To the best of our knowledge, this is the first work to integrate
 1472 feature relevance estimation into locally private graph learning.
 1473

1474 F PRACTICAL AVAILABILITY OF TASK SIGNALS

1475 We clarify that the "*task-specific signals*" required by TOGL are broadly defined and not limited to
 1476 explicit node labels. This paper focuses on the widely adopted semi-supervised learning setting, where
 1477 training a GNN already requires a subset of labeled nodes. These existing labels are fully sufficient for
 1478 TOGL's Phase II feature relevance estimation, and no additional supervision is introduced. Even under
 1479 stricter conditions such as label privacy or structural privacy, we evaluate TOGL in Appendix D.5
 1480 (Sections '*Robustness under noisy or sparse labels*' and '*Robustness under structure privacy*'), and
 1481 the method remains effective. TOGL's design principles are also compatible with other learning
 1482 paradigms such as self-supervised learning (Liu et al., 2022a), where gradients from contrastive or
 1483 predictive objectives can provide proxy task signals. Extending TOGL to these settings, however,
 1484 involves additional technical considerations and is thus left for future investigation.
 1485

1486 G LIMITATIONS & BROADER IMPACTS

1487 G.1 LIMITATIONS

1488 The scope of this work focuses primarily on homophilic graphs, which represent the dominant setting
 1489 in privacy-preserving graph learning. Consequently, heterophilic graphs lie outside the main scope of
 1490 our current study, and the aggregation scheme in Phase I is designed with homophily assumptions
 1491 in mind. We acknowledge that naïve neighborhood aggregation may be less effective on strongly
 1492 heterophilic graphs, where connected nodes often belong to different classes. However, this limitation
 1493 affects only the efficiency of Phase I denoising, not the validity of our overall task-oriented LDP
 1494 framework, as Phases II and III remain independent of homophily assumptions and continue to
 1495 provide utility gains through selective attribute perturbation.
 1496

1497 To address potential extensions to heterophilic settings, we have conducted a thorough survey
 1498 of heterophilic graph learning methods and identified several promising directions that could be
 1499 incorporated into TOGL in future work. These include *higher-order neighborhood mixing* (Abu-
 1500 El-Haija et al., 2019), *ego-neighbor separation* and *combination of intermediate representations*
 1501 designed for heterophily (Zhu et al., 2020), *geometric convolutions* (Pei et al., 2020), and *global*
 1502 *attention architectures* (Mostafa & Nassar, 2020). Incorporating these advanced aggregation schemes
 1503 into our denoising phase could further improve TOGL's robustness across diverse graph structures
 1504 and represents an important direction for future research.
 1505

1506 In addition, our current framework is designed for static graphs. Extending TOGL to dynamic
 1507 graphs (Pareja et al., 2020; Trivedi et al., 2019), where node features and graph structure evolve over
 1508 time, introduces additional challenges in privacy preservation, temporal consistency, and adaptive
 1509 feature selection.
 1510

1512 **G.2 BROADER IMPACTS**
15131514 This work contributes to the development of privacy-preserving graph learning by improving utility
1515 under local differential privacy constraints. It may benefit applications involving sensitive graph-
1516 structured data, such as healthcare (Li et al., 2022b) and social networks (Sankar et al., 2021), by
1517 enabling safer and more effective learning without compromising user privacy.1518 **G.3 USE OF LARGE LANGUAGE MODELS**
15191520 LLMs were used only as assistive tools for language polishing. They did not contribute to research
1521 ideation, experimental design, or theoretical development. All scientific content, including algorithms,
1522 analyses, and results, was generated solely by the authors. The authors take full responsibility for all
1523 content, and no LLM is listed as an author.

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565