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ABSTRACT

Graph neural networks (GNNs) have achieved remarkable success in graph repre-
sentation learning and have been widely adopted across various domains. However,
real-world graphs often contain sensitive personal information, such as user pro-
files in social networks, raising serious privacy concerns when applying GNNs to
such data. Consequently, locally private graph learning has gained considerable
attention. This framework leverages local differential privacy (LDP) to provide
strong privacy guarantees for users’ local data. Despite its promise, a key challenge
remains: how to preserve high utility for downstream tasks (e.g., node classification
accuracy) while ensuring rigorous privacy protection. In this paper, we propose
TOGL, a Task-Oriented Graph Learning framework that enhances utility under
LDP constraints. Unlike prior approaches that blindly perturb all attributes, TOGL
first targets task-relevant attributes before applying perturbation, enabling more
informed and effective privacy mechanisms. It unfolds in three phases: locally
private feature perturbation, task-relevant attribute analysis, and task-oriented
private learning. This structured process enables TOGL to provide strict privacy
protection while significantly improving the utility of graph learning. Extensive ex-
periments on real-world datasets demonstrate that TOGL substantially outperforms
existing methods in terms of privacy preservation and learning effectiveness.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Wu et al., 2020; Kipf & Welling, 2017) have emerged as powerful
tools for learning representations from graph-structured data, achieving remarkable success in diverse
applications such as social network analysis (Li et al., 2019; Wu et al., 2022; Sankar et al., 2021),
recommendation systems (Ying et al., 2018; Sharma et al., 2024), and bioinformatics (Fout et al.,
2017; Bessadok et al., 2022). Despite these successes, applying GNNs to real-world graphs often
involves processing sensitive user data, such as profiles and behavioral logs on social networks. This
raises substantial privacy risks, as recent studies have shown that adversaries can exploit trained GNNs
to recover private information (Zhang et al., 2022; Meng et al., 2023; Wang & Wang, 2022; Yuan
et al., 2024; Zhang et al., 2024b). Therefore, it is imperative to design an efficient privacy-preserving
GNN framework that protects users’ private information throughout the learning process.

Recently, locally private graph learning (Sajadmanesh & Gatica-Perez, 2021; Lin et al., 2022; Pei
et al., 2023; Li et al., 2024; He et al., 2025a) has garnered considerable attention from the security and
privacy research community. In this framework (as illustrated in Fig. 1(a)), each user independently
perturbs their original node features using a local differential privacy (LDP) (Dwork et al., 2006)
mechanism. The privacy level is governed by a parameter ϵ, known as the privacy budget, where a
smaller ϵ implies stronger privacy guarantees. The perturbed node features are then transmitted to
an untrusted third-party server, which performs private graph learning on the noisy data to support
downstream tasks such as node classification (Kipf & Welling, 2017) and link prediction (Zhang &
Chen, 2018). LDP ensures that even if the transmitted data is intercepted, an adversary cannot reliably
infer an individual’s true input, thereby providing strong privacy guarantees in the local setting.

However, striking a balance between privacy and utility remains a significant challenge. Users’ node
features are typically high-dimensional and composed of multiple distinct attributes. Given a total
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Figure 1: Comparison of prior works with ours. (a) Prior work adopts a “random-then-perturb”
paradigm, where a random subset of attributes (e.g., ❷ and ❹) is selected for perturbation while the
rest are discarded (zeroed out), potentially overlooking task-relevant information. (b) In contrast, our
work follows a “target-then-perturb” paradigm, which explicitly identifies task-relevant attributes
(e.g., ❶ and ❸) and perturbs them to enhance learning utility under the same privacy guarantee.

privacy budget ϵ (which is usually small), naïvely dividing ϵ equally across all feature dimensions
and perturbing each leads to substantial utility loss. To mitigate this, as shown in Fig. 1(a), recent
state-of-the-art approaches (Sajadmanesh & Gatica-Perez, 2021; Lin et al., 2022; Pei et al., 2023;
Li et al., 2024; Jin & Chen, 2022; He et al., 2025a) adopt a “random-then-perturb” paradigm: a
small subset of attributes is randomly selected, and the entire ϵ is evenly allocated among them, while
the remaining unselected attributes are zeroed out. This strategy helps preserve the quality of the
selected attributes by reducing the per-dimension noise under the same privacy guarantee (same ϵ).
Nevertheless, LDP mechanisms based on this paradigm still suffer from limited utility in practice.

In this paper, as illustrated in Fig. 1(b), we propose TOGL, a Task-Oriented Graph Learning framework
designed to enhance utility under LDP constraints. TOGL is motivated by the realistic observation
that, in realistic graph learning scenarios, the utility of downstream tasks often relies on only a small
subset of attributes within the high-dimensional node features. For example, in a node classification
task like credit risk prediction (Wang et al., 2021), the model may primarily rely on a few critical
attributes (such as income, repayment history, and employment), while other attributes contribute
little. Leveraging this insight, TOGL introduces a novel “target-then-perturb” paradigm for LDP. In
contrast to existing methods that randomly select attributes to perturb, TOGL first targets task-relevant
attributes and then applies perturbation specifically to them. This targeted perturbation strategy
facilitates more accurate privacy preservation and achieves improved learning utility.

Achieving the above objective is highly non-trivial due to several key challenges. First, identifying
task-relevant attributes under LDP constraints is inherently difficult, as the available data has already
been perturbed, obscuring useful patterns. Second, the key attribute selection process itself must be
privacy-preserving and must not weaken the privacy guarantees compared to existing methods, further
complicating the extraction of informative task signals. Third, naively maximizing task relevance can
be counterproductive: overemphasizing task-specific attributes may impair the graph’s topological
distinguishability, thereby degrading the model’s ability to capture structural patterns essential for
generalization. These challenges highlight the need for a careful balance among task utility, attribute
privacy, and structural information, along with clear metrics to guide this trade-off.

To address these challenges, TOGL follows a three-phase pipeline: ① Locally Private Feature
Perturbation. Each user perturbs their node features using an LDP mechanism and uploads the
perturbed features to the server. The server denoises features via multi-hop aggregation to enable
more accurate attribute analysis. ② Task-Relevant Attribute Analysis. We introduce two methods to
identify task-relevant attributes: Fisher Discriminant Analysis (FDA), which captures discriminative
signals across classes, and Sparse Model Attribution (SMA), which highlights sparse, high-impact
features based on model behavior. ③ Task-Oriented Private Learning. The model selectively perturbs
a combination of task-relevant attributes and randomly sampled attributes to balance task consistency
and topological distinguishability. Throughout the pipeline, TOGL ensures strict end-to-end LDP
guarantees while significantly enhancing the utility of private graph learning.

Contributions. The key contributions are as follows. ① We introduce a novel task-oriented perspec-
tive for studying locally private graph learning. ② We propose TOGL, a Task-Oriented Graph Learning
framework that enhances utility while adhering to LDP constraints. ③ Extensive experiments on six
real-world datasets demonstrate substantial utility improvements over existing baselines.
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2 PRELIMINARIES

In this section, we first define the problem (Sec. 2.1), then present the essential background of local
differential privacy (Sec. 2.2), and finally introduce the framework of locally private graph learning
(Sec. 2.3). Important notations are summarized in Appendix A.

2.1 PROBLEM DEFINITION

Consider a graph G = (V, E), where V is the set of nodes and E is the set of edges. Let X ∈ R|V|×d

denote the node feature matrix, where each node v ∈ V is associated with a d-dimensional feature
vector xv ∈ [α, β]d containing sensitive user information1. Each node is also associated with a
label yv ∈ Y , where Y = {y1, y2 · · · , yC} denotes the set of possible classes. The objective is to
train a GNN model to perform tasks such as node classification (Kipf & Welling, 2017) using graph
data. However, uploading such data to an untrusted server for GNN-based graph learning introduces
significant privacy risks (Zhang et al., 2022; Meng et al., 2023; Zhang et al., 2024b; Wang & Wang,
2022; Yuan et al., 2024). To address this, locally private graph learning (Sajadmanesh & Gatica-
Perez, 2021; Lin et al., 2022; Pei et al., 2023; Li et al., 2024; He et al., 2025a; Jin & Chen, 2022)
seeks to leverage LDP (Yang et al., 2024) to protect individual node privacy while maintaining high
utility (e.g., node classification accuracy) in graph learning tasks. This paper proposes to optimize
existing LDP perturbation mechanisms from a task-oriented perspective, thereby promoting a more
utility-efficient framework for locally differentially private graph learning.

2.2 LOCAL DIFFERENTIAL PRIVACY

LDP (Yang et al., 2024) is a rigorous privacy framework that enables meaningful data analysis while
protecting individual privacy. It has been widely adopted in various decentralized data collection and
distribution settings (Duchi et al., 2013; Kairouz et al., 2014; 2016; Cormode et al., 2018; Wang et al.,
2019a;b). By introducing randomized noise into the data processing pipeline, LDP offers strong
privacy guarantees for users’ raw data. Under the LDP paradigm, each user locally perturbs their
data x using a randomized mechanismM before transmitting it to potentially untrusted servers for
downstream tasks. The mechanismM must satisfy the following definition:
Definition 1 (ϵ-LDP). A randomized algorithmM : X → Z , where X is the domain of all input x,
satisfies ϵ-local differential privacy (ϵ-LDP) if for any two inputs x, x′ ∈ X and any output z ∈ Z ,

Pr[M(x) = z] ≤ eϵ · Pr[M(x′) = z], ϵ > 0. (1)

The parameter ϵ, known as the privacy budget, quantifies the trade-off between privacy and utility. A
smaller ϵ implies thatM offers stronger privacy protection, but typically at the cost of reduced utility.
The two most commonly studied properties (Dwork et al., 2014) of LDP are as follows:
Theorem 1 (Sequential Composition). IfMi : X 7→ Zi satisfies ϵi-LDP for each i ∈ {1, 2, . . . , n},
then the composed mechanismM = (M1,M2, . . . ,Mn) : X 7→

∏n
i=1Zi satisfies (

∑n
i=1 ϵi)-LDP.

Theorem 2 (Post-Processing Invariance). Let A : X 7→ Z satisfies ϵ-LDP, and let F : Z 7→ Z ′ be
any (possibly randomized) mapping. Then the composed mechanism A ◦ F : X 7→Z ′ satisfies ϵ-LDP.

2.3 LOCALLY PRIVATE GRAPH LEARNING

Locally private graph learning consists of two steps: perturb and learn, where data perturbation is
performed on the user side, and graph learning is carried out on the server side.

• Perturb. To protect the privacy of node features, three state-of-the-art LDP mechanisms have
been proposed: the piecewise mechanism (PM) (Pei et al., 2023; Wang et al., 2019a), the multi-bit
mechanism (MB) (Lin et al., 2022; Sajadmanesh & Gatica-Perez, 2021; Jin & Chen, 2022), and
the square wave mechanism (SW) (Li et al., 2024; 2020). Given the high dimensionality of node
features, blindly perturbing each attribute can significantly impair data utility. To mitigate this,
these mechanisms adopt a “random-then-perturb” paradigm (Fig. 1(a)) to balance privacy with
utility. The general ingestion process consists of two steps. First, m values are randomly selected

1This paper focuses on protecting users’ node features, which are often the most sensitive and critical for
downstream learning tasks. Our approach is orthogonal to existing privacy-preserving techniques for neighbor
lists (Hidano & Murakami, 2024; Zhu et al., 2023a), and can be seamlessly integrated with them. While we
do not directly consider link-level privacy in this work, TOGL remains effective, and additional experiments in
Appendix D.5 demonstrate that it maintains strong performance even when neighbor lists are locally perturbed.
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Figure 2: The overview of TOGL consists of three successive phases: locally private feature perturba-
tion, task-relevant attribute analysis, and task-oriented private learning. Specifically, in Phase I, TOGL
utilizes a LDP mechanism to collect initial node features and perform aggregation denoising, enabling
subsequent attribute analysis. In Phase II, task-relevant attributes are scored using the FDA or SMA
methods to identify the top-m key attribute set S⋆. Finally, in Phase III, TOGL conducts task-oriented
private graph learning guided by S⋆ to solve downstream tasks such as node classification.

without replacement from the d-dimensional feature space [d]. Then, an ϵ/m-LDP perturbation is
applied to each of the m selected dimensions, while the remaining d−m dimensions are zeroed.
Specifically, for the PM in the one-dimensional setting (see App. B for more details on MB and SW),
the input domain is [α, β], and the output range is [−B,B], where B = eϵ/2+1

eϵ/2−1
. Given an original

input value x, the perturbed value x′ is sampled from the following probability density function:

Pr[x′ = c|x] =
{
p, if c ∈ [l(x), r(x)]

p/eϵ, if c ∈ [−B, l(x)) ∪ (r(x),B] , (2)

where p = eϵ−eϵ/2

2eϵ/2+2
, l(x) = B+1

2 · x−
B−1
2 , and r(x) = l(x) + B − 1.

• Learn. After collecting all perturbed node features, the server performs private graph learning using
a GNN model for downstream tasks such as node classification. The GNN iteratively updates node
embeddings by aggregating local neighborhood information. At layer k, each node v ∈ V first
aggregates the embeddings from its neighbors N (v), and then applies a learnable update function:

hk
N (v) = AGGREGATEk

({
hk−1
u | u ∈ N (v)

})
, hk

v = UPDATEk

(
hk
N (v)

)
, (3)

where hk−1
u is the embedding of node u ∈ N (v) from the previous layer. The aggregation function

AGGREGATE(·) (e.g., mean, sum, or max) combines information from neighboring nodes, while
the update function UPDATE(·) (e.g., a neural network layer) refines the representation. The process
is initialized with h0

v = xv , where xv denotes the input feature vector of node v ∈ V .

3 METHODOLOGY

In this section, we detail the Task-Oriented Graph Learning (TOGL) framework under LDP constraints.
TOGL is designed to optimize the initial LDP perturbation process for graph learning from a task-
oriented perspective, thereby enhancing the utility of downstream learning tasks. Fig. 2 illustrates the
overview of TOGL, and Alg. 2 presents the details.

3.1 LOCALLY PRIVATE FEATURE PERTURBATION

This phase begins with applying LDP perturbation to privately collect user node features, followed
by aggregation denoising to enable attribute analysis in later phases.

LDP Perturbation. In TOGL, we aim to analyze the node features xv ∈ [α, β]d of all users v ∈ V to
identify a top-m set of attributes, denoted as S⋆, that are most relevant to the downstream learning
task. However, under privacy constraints, direct access to the original node features is not available.
Therefore, we first apply an LDP mechanism to perturb xv and obtain its privatized version. As
discussed in Sec. 2.3, we consider three state-of-the-art LDP mechanisms (PM, MB, and SW) suitable
for protecting high-dimensional node features. These mechanisms are unified into a general LDP
perturbation protocol Π, as presented in Alg. 1. The inputs to this protocol are xv and ϵ.
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Algorithm 1 LDP Perturbation Protocol Π

Input: Node feature xv∈[α, β]d, privacy budget ϵ>0.
Output: Perturbed node feature x′

v ∈ [−B,B]d.
1: m← max(1,min(d, ⌊δ · ϵ⌋). ▷ perturbation size
2: Let x̃v ←< 0, 0, · · · , 0 >.
3: Let S ⊂ [d] denote a subset of m distinct dimen-

sions selected uniformly at random without replace-
ment from the index set {1, 2, . . . , d}.

4: for each sampled dimension i ∈ S do
5: Feed xv[i] and ϵ/m as input to one-dimensional

LDP mechanisms (e.g., Eq. (2)), and obtain x̃tmp.
6: x̃v[i]← x̃tmp. ▷ LDP perturbation
7: end for
8: x′

v ← RECT(x̃v, ϵ,m, d). ▷ unbiased rectification
9: return Perturbed node feature x′

v ∈ [−B,B]d.

Specifically, in Π, the optimal perturbation
size m is determined based on the feature
dimension d, coefficient δ, and privacy bud-
get ϵ (line 1). The coefficients are theoret-
ically derived to minimize estimation error:
δ = 2/5 for PM, 5/11 for MB, and 2/5
for SW (please see Appendix B for details).
Then, among the d dimensions, a random
subset S ⊂ [d] of the m dimensions is
selected for the perturbation, while the re-
maining dimensions are zeroed out (lines
2–7). Finally, the perturbed vector x̃v is
processed using the RECT(·) function to en-
sure unbiased estimation, i.e., E[x′

v] = xv ,
which helps to further reduce the impact
of noise (line 8). The final output is the
perturbed node feature x′

v .

Aggregation Denoising. Once all the perturbed node features x′
v are collected, the server proceeds

with task-related attribute analysis. However, directly analyzing x′
v may yield suboptimal results

due to substantial noise. To mitigate this issue, we consider the aggregation operation (Eq. (3)) and
introduce the following proposition.
Proposition 1. Let hN (v) denote the true aggregated embedding over the neighborhood N (v), and
let hN (v) be its locally perturbed counterpart. Then the discrepancy Υ between the two decays
inversely with the size of the neighborhood, i.e.,

∥∥Υ 〈hN (v) − hN (v)

〉∥∥ ∝ 1/|N (v)|.

Proposition 1 (see Appendix C.1 for details) indicates that increasing the neighborhood size |N (v)|
reduces the discrepancy with the true aggregated embedding, thereby calibrating the error and
improving subsequent attribute analysis. To this end, we perform K recursive aggregation steps
AGGREGATE(·) without applying any non-linear transformation, as defined below.

h
k

N (v) = AGGREGATEk({h
k−1

u | u ∈ N (v)}), k ∈ {1, 2, · · · ,K}. (4)

The process is initialized with h
0

v = x′
v , and the final estimated node embedding is denoted by hv .

3.2 TASK-RELEVANT ATTRIBUTE ANALYSIS

After completing Phase I and obtaining the estimated node embeddings for all nodes v ∈ V (denoted
as H = {h1,h2, · · · ,h|V|}), the server then utilizes them for key attribute analysis to identify the
top-m task-relevant attributes2, denoted as S⋆. In Phase II, we propose two task-relevant attribute
analysis methods: Fisher Discriminant Analysis (FDA) and Sparse Model Attribution (SMA). FDA is
grounded in classical statistical pattern recognition theory, evaluating each attribute independently
based on its class separability (inter-class vs. intra-class variance). This makes FDA computationally
efficient and robust when features are relatively independent. In contrast, SMA adopts a model-
driven approach, using sparse logistic regression with L1 regularization to capture task-adaptive
feature dependencies. By learning which attributes jointly contribute to correct predictions, SMA can
identify relevant features even when their importance arises from interactions rather than individual
discriminative power. These two methods provide complementary perspectives: FDA offers statistical
separability analysis, while SMA captures learned task-specific patterns.

Fisher Discriminant Analysis (FDA). Drawing inspiration from the classical Fisher discriminant
criterion (Mika et al., 1999), we propose the FDA, which leverages statistical pattern recognition to
quantify the task relevance of each individual attribute dimension. Specifically, given the aggregated
embeddings H = {hv}v∈V and their corresponding labels y = {yv}v∈V , we evaluate each dimension
j of the feature vector by measuring its ability to distinguish between different classes.

Formally, for each class c ∈ {1, 2, . . . , C}, we compute the class-conditional mean µ
(c)
j and variance

σ
(c)
j of dimension j ∈ {1, 2, . . . , d}, based on the set of embeddings hv where yv = c. The overall

2The task-specific signals required by TOGL are broadly defined and not limited to explicit node labels. See
Appendix F for a detailed discussion on their practical availability across different learning settings.
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class-weighted mean µ̄j is given by: µ̄j =
∑C

c=1(Nc/|V|) ·µ(c)
j , where Nc is the number of nodes in

class c and |V| is the total number of nodes. The inter-class (between-class) variance and intra-class
(within-class) variance for dimension j are computed as:

SB(j) =
∑C

c=1
Nc

|V| (µ
(c)
j − µ̄j)

2, SW (j) =
∑C

c=1
Nc

|V|σ
(c)
j . (5)

We then define the Fisher discriminative score for the dimension j as: ΨFDA(j) =
SB(j)

SW (j)+ς , where
ς > 0 is a small smoothing constant to ensure numerical stability. Intuitively, this criterion favors
dimensions whose values are well-separated across classes (high between-class variance) and consis-
tent within each class (low within-class variance). The top-m dimensions with the highest ΨFDA(j)
scores are selected as candidates for task-relevant attributes, serving as the input to the final selection
in Phase III (Sec. 3.3). This process is formalized in Eq. (6) and yields the final attribute set S⋆.

S⋆ ← TOP-Kj∈[d]ΨFDA(j), |S⋆| = m. (6)
Sparse Model Attribution (SMA). While FDA evaluates each attribute dimension independently
based on class separability statistics, it does not capture potential interactions among features. As a
complementary perspective, we consider a model-informed scoring strategy that reflects the joint
contribution of attributes under a sparse predictive model. We train a multi-class logistic regression
(LR) (LaValley, 2008) with L1-regularization on H={hv} and y={yv}. The objective is:

W∗ = arg min
W∈RC×d

(1/|V|) ·
∑|V|

i=1 ℓ(yi,Whi) + λ∥W∥1, (7)

Algorithm 2 Task-Oriented Graph Learning

Input: Graph G, privacy budget ϵ, LDP Protocol
Π, hyperparameters K, ρ, etc.

Output: Trained GNN model fΘ.
/** Phase I: Locally Private
Feature Perturbation **/

1: for each node v ∈ V in parallel do
2: x′

v ← Π(xv, ϵ/2). ▷ See Alg. 1
3: end for
4: H← AGGREGATEK({x′

v}). ▷ Eq. (4)
/** Phase II: Task-Relevant
Attribute Analysis **/

5: S⋆ ← FDA or SMA. ▷ See Sec. 3.2
/** Phase III: Task-Oriented
Private Learning **/

6: for each node v ∈ V in parallel do
7: Obtain Sv based on S⋆ and ρ. Eq. (8)
8: x′

v ← Π(xv, ϵ/2,Sv). ▷ See Alg. 1
9: end for

10: Train fΘ on {x′
v} for downstream tasks.

11: return Trained GNN model fΘ.

where ℓ is the softmax cross-entropy loss, and
λ > 0 controls sparsity. After training, the attri-
bution score for feature dimension j is defined as:
ΨSMA(j) = (1/C)

∑C
c=1 |W ∗

c,j |. In Algorithm 2,
Line 5, when SMA is selected for attribute anal-
ysis, we solve Eq. (7) to obtain W∗, compute
ΨSMA(j) for all dimensions, and select the top-m
dimensions to form S⋆. This procedure favors
features that consistently contribute to correct
predictions across classes, while suppressing re-
dundant or noisy dimensions. Compared to FDA,
it accounts for task-adaptive feature dependencies
and can be more robust when class boundaries
are non-linearly entangled.

3.3 TASK-ORIENTED PRIVATE LEARNING

After identifying the task-relevant attribute set
S⋆ via FDA or SMA, a new round of LDP pertur-
bation is optimized under its guidance to enable
fine-grained noise injection, thereby enhancing
the private graph learning utility. However, the
performance of graph learning is influenced by
both task relevance and the level of topological
distinguishability (Theorem 3). Directly setting the set S in Alg. 1 to S⋆ ensures task consistency but
undermines the topological smoothness of the graph (Corollary 1), diminishing the topology-aware
noise calibration achieved via the message-passing of GNNs. To address this, given the global top-m
attribute set S⋆, we define each node v’s personalized perturbation subset Sv as:

Sv = TOP-m⋆(S⋆)︸ ︷︷ ︸
task-relevant

∪RANDOMSAMPLE([d] \ Sfixed, m−m⋆)︸ ︷︷ ︸
randomized diversity

, (8)

where m⋆ = ⌊ρ · m⌋ and ρ ∈ [0, 1] is a hyperparameter controlling the trade-off between task
consistency and topological distinguishability, with Sfixed denoting the subset of attribute dimensions
that are deterministically selected based on task relevance—that is, the top-m⋆ attributes in S⋆.

Complexity Analysis. The computational complexity primarily arises from the K-hop neighborhood
aggregation in Phase I and the attribute analysis (FDA or SMA) in Phase II. These cost O(K · |E| · d)
and O(|V| · d · I + d log d) respectively (I is the number of iteration rounds of LR training), both
scaling linearly with graph size and feature dimension. More details are provided in Appendix C.2.
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4 THEORETICAL ANALYSIS

Task–Topology Tradeoff. As in Theorem 3 and Corollary 1, the utility of private graph learning is
influenced not only by task consistency, but also by the preservation of topological distinguishability.

Theorem 3. Let fΘ : Rd → RC be a GCN-like node classifier trained under LDP-constrained inputs
{x′

v}v∈V , where each node v ∈ V perturbs only a fixed dimension subset S ⊂ [d]. Then the upper
bound of expected generalization error ∆ satisfies:

∆ ≤ γ(m, S) · Ei[L(fΘ(hi), yi)]︸ ︷︷ ︸
Task consistency

+ω(m, S) · E(i,j)∈E∥hi − hj∥2︸ ︷︷ ︸
Topological distinguishability

, (9)

where γ(m,S), ω(m,S)>0 are coefficients depending on the number of perturbed features m and
the selection strategy S, and h is the aggregated representation. See Appendix C.3 for more details.

Corollary 1. If all nodes use the same fixed subset S in Alg. 1, then: ∥hi−hj∥2 ≈ 0,∀(i, j) ∈ E , and
the propagation operator (e.g., GCN) reduces to mean-pooling, weakening structural discrimination.

Privacy Analysis. A total of two rounds of ϵ/2-perturbation based on Π are sequentially applied in
TOGL, yielding an overall guarantee of ϵ-LDP by the Theorem 1. Furthermore, by the Theorem 2, the
subsequent GNN training does not degrade the privacy guarantee. See Appendix C.4 for more details.

5 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of our method. Sec. 5.1 details the
experimental setup, while Sec. 5.2 reports and analyzes the results in detail. Additional results on
extended datasets and ablations are provided in Appendix D.5, including evaluations on large-scale
datasets, robustness under noisy or sparse labels, robustness under structural privacy, and empirical
resistance to inference attacks, among others.

5.1 EXPERIMENTAL SETTINGS
Table 1: Statistics of datasets.

Type Dataset Nodes Edges Features Classes

Citation
Network

Cora 2,708 5,278 1,433 7
Citeseer 3,327 4,552 3,703 6
Pubmed 19,717 44,324 500 3

Social
Network

LastFM 7,624 27,806 7,842 18
Twitch 4,648 61,706 128 2
Facebook 22,470 170,912 4,714 4

Datasets. We conduct extensive ex-
periments on six representative real-
world datasets spanning two domains:
citation networks (Cora, Citeseer, and
Pubmed (Yang et al., 2016)) and social
networks (LastFM (Rozemberczki &
Sarkar, 2020), Twitch (Rozemberczki
et al., 2021), and Facebook (Rozember-
czki et al., 2021)). The key statistics of
these datasets are summarized in Table 1. Refer to Appendix D.1 for more details.

GNN Models. We consider seven representative GNN models: GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018), GIN (Xu et al., 2019), APPNP (Klicpera
et al., 2019), SGC (Wu et al., 2019), and SSGC (Zhu & Koniusz, 2021). Each model consists of
two graph convolution layers with 64 neurons in each hidden layer, utilizing ReLU as the activation
function (Klambauer et al., 2017) and dropout (Baldi & Sadowski, 2013) for regularization. Please
refer to Appendix D.2 for more details. By default, GCN is used as the backbone model.

LDP Mechanisms. We consider six LDP mechanisms for protecting node features. Among them,
three state-of-the-art (SOTA) baselines: the piecewise mechanism (PM) (Pei et al., 2023; Wang et al.,
2019a), the multi-bit mechanism (MB) (Sajadmanesh & Gatica-Perez, 2021; Lin et al., 2022; Jin
& Chen, 2022), and the square wave mechanism (SW) (Li et al., 2024; 2020). The other three are
classical baselines: the 1-bit mechanism (1B) (Ding et al., 2017), the Laplace mechanism (LP) (Phan
et al., 2017), and the Analytic Gaussian mechanism (AG) (Balle & Wang, 2018). These mechanisms
inject random noise into the original node features based on a predefined privacy budget ϵ > 0,
providing formal LDP guarantees. All six mechanisms are implemented independently according
to their original formulations, not by modifying any specific baseline framework. The three SOTA
mechanisms (PM, MB, SW) are unified under the general LDP perturbation protocol Π presented in
Alg. 1, while the three classical mechanisms are implemented following their standard definitions in
Appendix D.3. For clarity, LPGNN refers specifically to the framework proposed by Sajadmanesh &
Gatica-Perez (2021) using the MB mechanism, which is included as one of our baselines. Unless
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otherwise specified, PM is used as the default LDP perturbation mechanism. In Figures 4, 5, and 6,
"SOTA" specifically refers to PM, which generally achieves the best or near-best performance among
the three state-of-the-art mechanisms (PM, MB, SW) across most experimental settings.

Parameter Settings. For all datasets, we randomly split the nodes into training, validation, and test
sets using a 50%/25%/25% ratio. Regarding the privacy budget ϵ, note that the perturbation size m for
the three LDP mechanisms (PM, MB, and SW) is constrained by a coefficient δ (see Sec. 3.1 for details).
To ensure m > 1 for meaningful evaluation, we set ϵ to values in the set {5.0, 7.5, 10.0, 12.5, 15.0},
corresponding to m ∈ {2, 3, 4, 5, 6}, respectively. For experiments and discussions where m = 1 (i.e.,
0 < ϵ < 5.0), refer to Appendix D.5. The parameter ρ is selected from the set {0, 0.3, 0.5, 0.7, 1.0},
and the denoising aggregation parameter K is varied over {0, 1, 2, 3, 4, 5}. Unless otherwise specified,
the default ϵ is set to 10.0. Additional hyperparameter configurations are provided in Appendix D.4.

Evaluation Metrics. We conduct experiments on two fundamental and widely adopted tasks in
graph learning: node classification (NC) and link prediction (LP). These two tasks serve as the
cornerstone of numerous downstream applications and are the primary benchmarks for evaluating
graph representation methods. For evaluation, we use classification accuracy on the test set for
the NC task, and the area under the ROC curve (AUC) for the LP task. Accuracy and AUC are
standard and widely adopted metrics that effectively reflect model performance in NC and ranking
tasks, respectively. The default task is node classification. We report the mean performance and 95%
confidence intervals over 10 independent runs, calculated using bootstrapping with 1000 resamples.

5.2 RESULTS & DISCUSSION

Effectiveness. We comprehensively evaluate our method across six benchmark datasets under varying
noise scales (ϵ), comparing it with six baselines. As shown in Fig. 3, our approach consistently
achieves higher node classification accuracy than all baselines, with particularly notable improvements
over classical methods such as 1B, LP, and AG, demonstrating enhanced task utility. Fig. 4 further
confirms the generalizability of our method across various GNN architectures (Cora dataset), where
it outperforms SOTA baselines. Furthermore, Fig. 5 presents link prediction results, showing that
the effectiveness of our method extends beyond node classification by surpassing existing SOTA
methods. Together, these experiments validate that our approach significantly enhances the utility of
locally private graph learning across multiple tasks, datasets, and models.

Scalability Evaluation. To assess TOGL’s practicality on large graphs, we evaluated its runtime
and memory usage on two representative large-scale datasets: Co-Phy (Shchur et al., 2018) and
Ogbn-arxiv (Hu et al., 2020) (see Appendix D.5 ‘Scalability evaluation’ for details). As reported in
Table 8, TOGL introduces only moderate computational overhead compared with the PM baseline,
demonstrating that it remains efficient and scalable for large-scale graph learning.

Ablation Studies. In this experiment, we assess two key components of our framework: task-relevant
attribute analysis and aggregation denoising. Fig. 6 compares two attribute analysis strategies: Fisher
Discriminant Analysis (FDA) and Sparse Model Attribution (SMA), with more detailed statistics
provided in Table 17. Both outperform the SOTA baseline, with SMA slightly ahead. This modest
advantage of SMA likely stems from its ability to capture feature interactions through learned model
weights, whereas FDA treats each dimension independently. However, the performance gap between
FDA and SMA remains small, indicating that TOGL is not highly sensitive to the choice of attribution
method. Both successfully identify task-relevant attributes that improve utility compared to random
selection, demonstrating that our framework’s effectiveness stems from the general principle of
task-oriented selection rather than reliance on a specific attribution technique. Fig. 7 evaluates the
effect of the aggregation parameter K. Without aggregation (K = 0), utility is limited. Moderate
aggregation (e.g., K = 3 for Cora dataset) boosts performance by improving the quality of selected
features. However, large K values degrade utility due to over-smoothing, where node representations
lose distinction. Overall, these results underscore the importance of both components and highlight
the need to balance aggregation and analysis strategy for optimal privacy-utility trade-offs.

Parameter Analysis. In this experiment, we examine how the privacy budget ϵ and the task-topology
trade-off parameter ρ affect model performance. Fig. 8 shows that increasing ϵ steadily improves
accuracy, as weaker noise preserves more informative features, enhancing utility. Fig. 9 explores
the impact of ρ. Performance first rises then falls with increasing ρ, indicating the need for balance:
low ρ weakens task relevance due to random feature selection, while high ρ reduces structural
diversity. Further analysis is available in Appendix D.5 (Analysis of the Parameter ρ). For real-world
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Figure 3: Performance comparison between our proposed TOGL (Ours) and existing baselines on the
node classification task. The x-axis denotes the privacy budget ϵ, and the y-axis indicates the test
accuracy (%). Our method consistently improves the performance of all LDP mechanisms across
different privacy levels. Please see Appendix D.5 for more experimental results and analysis.

GCN

GraphSAGE
GAT

GIN

APPNP

SGC
SSGC

78.0
80.0

81.0

SOTA Ours

Figure 4: Comparison of accu-
racy (%) between our method
and the SOTA baseline under dif-
ferent GNN models. The results
show that our approach consis-
tently outperforms the existing
SOTA baseline across all cases.

Cora

CiteseerPubmed

LastFM

Twitch Facebook

10.0

50.0

90.0

SOTA Ours

Figure 5: Comparison of AUC
(%) between our method and the
SOTA baseline on the link pre-
diction (LP) task. The results
indicate that our method consis-
tently achieves superior perfor-
mance across all datasets.

Cora

CiteseerPubmed

LastFM

Twitch Facebook
SOTA FDA SMA

Figure 6: Comparison of nor-
malized accuracy (0 ∼ 1) using
two our proposed task-relevant
attribute analysis methods, FDA
and SMA, within our framework
across different datasets, in com-
parison with the SOTA baseline.

deployment, the optimal ρ values typically lie within [0.3, 0.7] across our experiments, reflecting an
effective balance between task consistency and topological distinguishability. We recommend using
ρ = 0.5 as a robust default choice, which consistently achieves near-optimal or optimal performance
across all six datasets without requiring validation-based tuning. When validation data is available and
computational resources permit, a lightweight grid search over {0.3, 0.5, 0.7} can further optimize
performance with minimal overhead.

6 RELATED WORK

This section provides a brief overview of local differential privacy and locally private graph learning.
Additional details and extended discussions are available in Appendix E.
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Figure 7: Comparison of model
performance under varying val-
ues of the parameter K.
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Figure 8: Comparison of model
performance under varying val-
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Figure 9: Comparison of model
performance under varying val-
ues of the hyperparameter ρ.

Local Differential Privacy. LDP (Dwork et al., 2006) is a rigorous privacy notion that enables users
to perturb their data locally before sharing it, thereby eliminating the need for a trusted aggregator.
Due to its strong privacy guarantees, LDP has been widely adopted in diverse data collection and
analysis scenarios (Jia & Gong, 2019; Li et al., 2020; Wang et al., 2017; 2019a; Asi et al., 2022).

Locally Private Graph Learning. Recently, locally private graph learning (Sajadmanesh & Gatica-
Perez, 2021; Lin et al., 2022; Pei et al., 2023; Li et al., 2024; He et al., 2025a; Jin & Chen, 2022) has
emerged as a promising research area within the privacy and security community. To support this
paradigm, researchers have developed several mechanisms for perturbing node features under LDP
constraints. For instance, (Sajadmanesh & Gatica-Perez, 2021) extended the one-bit mechanism (Ding
et al., 2017) to high-dimensional node features via the multi-bit (MB) mechanism. Follow-up work
proposed the piecewise (PM) (Pei et al., 2023) and square wave (SW) (Li et al., 2024) mechanisms to
further enhance utility. While these methods have demonstrated effectiveness in tasks such as node
classification (Kipf & Welling, 2017; Lin et al., 2022), their utility remains limited. To address this
challenge, we propose a task-oriented framework for locally private graph learning. To the best of our
knowledge, this is the first work to incorporate task-awareness into LDP-constrained graph learning,
significantly enhancing utility while preserving strong privacy guarantees.

7 CONCLUSION

In this work, we propose TOGL, a novel task-oriented framework for locally private graph learning.
The framework operates in three phases: ① locally private feature perturbation, ② task-relevant
attribute analysis, and ③ task-oriented private learning. This structured design enables the explicit
identification of feature dimensions most relevant to the downstream task prior to perturbation, thereby
maximizing the retention of informative signals while ensuring strong local differential privacy
guarantees. Extensive experiments on six representative real-world graph datasets demonstrate that
TOGL consistently outperforms existing methods in terms of both utility and privacy preservation.
For a discussion of broader impact, limitations, and the use of LLMs, please refer to Appendix G.

ETHICS STATEMENT

This work fully complies with the ICLR Code of Ethics. It raises no ethical concerns: all experiments
are conducted on publicly available benchmark datasets (e.g., Cora (Yang et al., 2016)) that contain
no personally identifiable information. No human subjects, sensitive attributes, or private data beyond
these open datasets are involved. Our proposed methods are designed to enhance privacy-preserving
graph learning under LDP, thereby strengthening privacy guarantees rather than introducing risks.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. ① The proposed framework,
algorithms, and theoretical analyses are described in detail in Sections 3 and 4, with complete proofs
provided in Appendix C. ② Experimental settings, including GNN models, LDP mechanisms, and
hyperparameters, are documented in Section 5, Appendix B, and Appendix D. ③ All benchmark
datasets (e.g., Cora) used in our experiments are publicly available, and we provide detailed de-
scriptions in Appendix D.1. ④ An anonymous implementation of our framework is included in the
supplementary material to facilitate replication of our results.
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A NOTATIONS

We summarize the important notations of our paper in Table 2.

Table 2: Notations.

Notation Description
V, E ,X,Y Node set V , edge set E , feature matrix X, label set Y = {y1, y2, · · · , yC}
G A graph defined on V, E , X, and Y
xv The original feature vector of user v ∈ V
yv Label of node v ∈ V
Π LDP perturbation protocol for node features

M,A,F LDP mechanism
d The number of feature dimensions
m The number of sampled dimensions
ϵ Privacy budget
B Perturbed feature scale
x′
v The perturbed feature vector of user v

N (v) The set of neighbors of v
AGGREGATE(·) The aggregation function

UPDATE(·) The update function
hk
v Original node embedding of node v after k aggregation steps

h
k

v Estimated node embedding of node v after k aggregation steps
K Aggregation denoising step
S Set of perturbed attributes
S⋆ Set of task-relevant attributes
ρ Task-topology trade-off parameter
E[·] Expectation

B SOTA LDP MECHANISMS

In Sec. 2.3, we introduce three state-of-the-art (SOTA) LDP mechanisms designed to protect node
features: the piecewise mechanism (PM) (Pei et al., 2023; Wang et al., 2019a), the multi-bit mechanism
(MB) (Lin et al., 2022; Sajadmanesh & Gatica-Perez, 2021; Jin & Chen, 2022), and the square wave
mechanism (SW) (Li et al., 2024; 2020). Below, we provide detailed formulations for MB and SW3:

• MB: The one-dimensional multi-bit mechanism perturbs a real-valued input x ∈ [α, β] by
randomly outputting a binary value x′ ∈ {−1, 1} according to the following probability
distribution function:

Pr[x′ = c | x] =

{
1

eϵ+1 + x−α
β−α ·

eϵ−1
eϵ+1 , if c = 1

eϵ

eϵ+1 −
x−α
β−α ·

eϵ−1
eϵ+1 , if c = −1 . (10)

This mechanism achieves ϵ-LDP while preserving the relative position of the input through
a probabilistic encoding over two discrete values.

• SW: The one-dimensional square wave mechanism perturbs original input x ∈ [α, β] within
an expanded domain [−b− 1, b+ 1], where the parameter b is defined as:

b =
ϵeϵ − eϵ + 1

eϵ(eϵ − ϵ− 1)
. (11)

The perturbed output x′ is then sampled from the following distribution:

Pr[x′ = c | x] =
{
p, if c ∈ [x− b, x+ b]

p/eϵ, if c ∈ [−b− 1, x− b) ∪ (x+ b, b+ 1]
, (12)

3PM, MB, and SW are pure LDP mechanisms, i.e., they satisfy ϵ-LDP and therefore do not involve a (ϵ, δ)-style
guarantee.
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where p = eϵ

2beϵ+2 . This mechanism constructs a localized uniform distribution centered
at x, with exponentially decaying probability for values farther from x, thereby balancing
privacy and estimation accuracy.

C PROOFS & THEORETICAL ANALYSIS

C.1 PROOF OF PROPOSITION 1

Proof. We consider a d-dimensional feature vector xi for each node vi, and assume that each attribute
xi,j , j ∈ [d] is perturbed independently using the PM mechanism. (The proof process for the other
mechanisms follows the same procedure.) Let x′

i,j be the perturbed value and define the discrepancy
along dimension j for node vi as: zi,j := x′

i,j − xi,j . According to PM, each zi,j satisfies:

|zi,j | ≤
d

m
· e

ϵ/2 + 1

eϵ/2 − 1
. (13)

Let the neighborhood of vi be N (vi). The true and perturbed mean embeddings in dimension j are:

hi,j :=
1

|N (vi)|
∑

u∈N (vi)

xu,j , hi,j :=
1

|N (vi)|
∑

u∈N (vi)

x′
u,j . (14)

Considering Eqs. (13), (14) and E[zi,j ] = 0, and apply Bernstein’s inequality (Mhammedi et al.,
2019), we have:

Pr
[∣∣hi,j − hi,j

∣∣ ≥ λ
]
= Pr

∣∣∣∣∣∣
|N (v)|∑
i=1

{
x′
i,j − xi,j

}∣∣∣∣∣∣ ≥ |N (v)| · λ

 (15)

≤ 2 · exp

{
− (|N (v)| · λ)2

2
∑|N (v)|

i=1 Var[x′
i,j ] +

2
3 · |N (v)| · λ · d

m ·
eϵ/2m+1
eϵ/2m−1

}
. (16)

Then, we can obtain:

Pr
[∣∣hi,j − hi,j

∣∣ ≥ λ
]
≤ 2 · exp

{
− (λ |N (v)|)2

O(md
ϵ2 ) + λO(dϵ )

}
. (17)

By applying the union bound, we have:

Pr

[
max

j∈{1,...,d}

∣∣hi,j − hi,j

∣∣ ≥ λ

]
=

d⋃
j=1

Pr
[∣∣hi,j − hi,j

∣∣ ≥ λ
]

(18)

≤
d∑

j=1

Pr
[∣∣hi,j − hi,j

∣∣ ≥ λ
]
= 2d · exp

{
− λ2|N (v)|
O(md

ϵ2 ) + λO(dϵ )

}
. (19)

To ensure that maxj∈{1,...,d}
∣∣hi,j − hi,j

∣∣ < λ holds with at least 1− ϱ probability, it is sufficient to
set

ϱ = 2d · exp

{
− λ2|N (v)|
O(md

ϵ2 ) + λO(dϵ )

}
. (20)

Solving the above for λ, we get:

λ = O

(√
d log(d/ϱ)

ϵ
√
|N (v)|

)
, (21)

which proves that:
∥∥Υ 〈hN (v) − hN (v)

〉∥∥ ∝ 1/|N (v)|1/2, we conservatively upper bound it by
1/|N (v)|. This characterization indicates that increasing the neighborhood size |N (v)| reduces
the discrepancy with the true aggregated node embedding, thereby calibrating the estimation error
introduced by local perturbation.
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C.2 COMPLEXITY ANALYSIS

The overall computational complexity of our method primarily arises from the K-hop neighborhood
aggregation in Phase I and the attribute relevance analysis in Phase II. Specifically, the aggregation
step costsO(K · |E| ·d), where |E| is the number of edges and d is the feature dimension. For attribute
analysis, FDA requires O(|V| · d+ d log d), while SMA requires O(|V| · d · I + d log d), where I is
the number of training iterations of the sparse logistic regression. The computational complexity of
TOGL scales linearly with both the graph size and feature dimensionality, ensuring that it remains
practical and scalable for large-scale graphs with high-dimensional data. Furthermore, common
acceleration strategies such as graph pruning (Yu et al., 2022; Liu et al., 2023) and GPU-based sparse
matrix operations (Lee et al., 2020) can be directly applied to further reduce runtime overhead.

C.3 PROOF OF THEOREM 3

�

(a) Original Feature Aggregation

 � 
�

★
 

★

★★

(b) Extreme Task-Orientation

 � 

★

★

★ ★

�

★

★

★★

(c) Task–Topology Tradeoff

 � 

Task-Relevant

�

Task consistency Topological 
distinguishability

Figure 10: Examples of Aggregation Strategies. Fig. (a) illustrates the original aggregation process
without perturbation. Fig. (b) shows an extreme task-oriented aggregation strategy, which emphasizes
task-relevant attributes but compromises the overall utility of graph learning due to the loss of
topological distinguishability. Fig. (c) presents a trade-off example between task and topology.

Proof. Let fΘ : Rd → RC be a GCN-like classifier trained under LDP-perturbed inputs {x′
v}v∈V ,

where each x′
v is obtained by retaining only a subset of dimensions S ⊂ [d]. Let hv ∈ Rd denote the

output representation of node v after K-hop message passing.

Our goal is to bound the generalization error

∆ := Ei[L(fΘ(hi), yi)]− Ei[L(f∗(h∗
i ), yi)], (22)

where f∗ is the oracle classifier on clean embeddings h∗
i . Applying the triangle inequality and

assuming Lipschitz continuity of L ◦ f , we have

∆ ≤ Ei[L(fΘ(hi), yi)] + Lf · Ei∥hi − h∗
i ∥, (23)

where Lf is the Lipschitz constant.

Under GCN propagation

H(k) = σ(AH(k−1)W(k)), H(0) = X′, (24)

the node embeddings gradually converge. Since all perturbed features x′
v share the same support S,

the variance among neighbors reduces. We define the Dirichlet energy

Φ(H(K)) :=
∑

(i,j)∈E

∥hi − hj∥2, (25)

which captures topological distinguishability. When x′
v are restricted to the same S, the aggregated

embeddings collapse: Φ(H(K))→ 0.

We introduce coefficients γ(m,S) and ω(m,S) to explicitly reflect the impact of the number of
perturbed dimensions m = |S| and the feature selection strategy S. Specifically, γ(m,S) increases
when excessive noise or poor selection reduces signal quality, and ω(m,S) increases with greater
inter-node variance from task-aware selections, capturing enhanced topological distinguishability.
Then we have

Ei∥hi − h∗
i ∥2 ≤ ω(m,S) · Φ(H(K)), (26)
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absorbing remaining constants into γ(m, S). Consequently,

∆ ≤ γ(m, S) · Ei[L(fΘ(hi), yi)]︸ ︷︷ ︸
task consistency

+ω(m,S) · E(i,j)∈E∥hi − hj∥2︸ ︷︷ ︸
topological distinguishability

. (27)

This bound shows that both the number of perturbed features m and the selection strategy S directly
influence the trade-off between task consistency and topological distinguishability.

Figure 10(a) illustrates the original feature aggregation process, while Figure 10(c) presents an
example of aggregation under a task-topology trade-off. In addition, we have the following corollary:

Corollary 2. If all nodes use the same fixed subset S in Alg. 1, then: ∥hi−hj∥2 ≈ 0,∀(i, j) ∈ E , and
the propagation operator (e.g., GCN) reduces to mean-pooling, weakening structural discrimination.

Proof. Let x′
v ∈ Rd be the perturbed node feature vector for node v ∈ V , where only dimensions

in the fixed subset S ⊂ [d] are perturbed and retained, and all others are zeroed out (as depicted in
Figure 10(b)):

x′
v[j] =

{
LDP-perturbed(xv[j]), if j ∈ S,
0, otherwise.

(28)

Let H(0) = X′ ∈ R|V|×d be the feature matrix, and consider a GCN propagation rule:

H(k+1) = σ
(
ÂH(k)W(k)

)
, with H(0) = X′, (29)

where Â is the normalized adjacency matrix and σ is an activation function.

Since all feature vectors x′
v lie in the same |S|-dimensional subspace of Rd, the initial variance

between nodes is significantly reduced. When the same propagation operator is applied uniformly
over this low-variance input, the representations H(k) begin to converge across neighbors:

∥H(k)
i −H

(k)
j ∥ → 0, as k increases, (i, j) ∈ E . (30)

This phenomenon is known as over-smoothing (Keriven, 2022), and it occurs when graph convolution
reduces inter-node variance due to repeated mixing over similar signals. As a result, in the limit, the
GCN essentially performs an average over identical feature subspaces:

H(K) ≈ ÂKX′ ≈ 1u⊤, (31)

i.e., a rank-one representation, which is equivalent to mean pooling. Hence, the model loses its ability
to discriminate structurally different nodes.

C.4 PRIVACY ANALYSIS

In TOGL, a total of two sequential perturbation steps (defined as Π1 and Π2) are performed under
the LDP perturbation protocol Π, each satisfying ϵ/2-LDP. By the sequential composition theorem
of local differential privacy (Theorem 4), the overall privacy guarantee is bounded by ϵ-LDP. Fur-
thermore, as shown in Theorem 5, the subsequent GNN training phase operates solely on perturbed
data and involves no further access to raw features, thus preserving the established ϵ-LDP guarantee
throughout the entire pipeline, formalized as:

Π1 and Π2 are each ϵ/2-LDP⇒ Π2 ◦Π1 is ϵ-LDP. (32)

Theorem 4 (Sequential Composition). IfMi : X 7→ Zi satisfies ϵi-LDP for each i ∈ {1, 2, . . . , n},
then the composed mechanismM = (M1,M2, . . . ,Mn) : X 7→

∏n
i=1Zi satisfies (

∑n
i=1 ϵi)-LDP.

Theorem 5 (Post-Processing Invariance). Let A : X 7→ Z satisfies ϵ-LDP, and let F : Z 7→ Z ′ be
any (possibly randomized) mapping. Then the composed mechanism A ◦ F : X 7→Z ′ satisfies ϵ-LDP.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D MORE DETAILS ON THE EXPERIMENTS

D.1 DATASETS

We evaluate our proposed method TOGL on six widely used real-world graph datasets (The key
statistics of these datasets are summarized in Table 1), three citation networks (Cora, Citeseer, and
Pubmed) and three social networks (LastFM, Twitch, and Facebook), as described below:

• Cora (Yang et al., 2016): The Cora dataset is a citation network where each node represents a
scientific publication and each edge indicates a citation between two papers. Node features are
constructed from paper contents using a bag-of-words model, and the task is to classify papers into
one of seven categories.

• Citeseer (Yang et al., 2016): Similar to Cora, Citeseer is another citation network consisting of
scientific articles. Each article is described by a sparse word vector, and the objective is to classify
the publications into one of six classes. Compared to Cora, Citeseer has a more sparse feature
matrix and a less connected graph structure.

• Pubmed (Yang et al., 2016): The Pubmed dataset is a large-scale citation graph in the biomedical
domain. Each node corresponds to a scientific paper, represented by TF-IDF weighted word vectors
from the abstract, and the goal is to categorize papers into one of three medical topics. It contains
significantly more nodes and edges than Cora and Citeseer.

• LastFM (Rozemberczki & Sarkar, 2020): LastFM is a user-user interaction graph derived from the
Last.fm4 music platform. Each node represents a user, and edges denote social relationships. Node
features are based on music listening histories, and labels indicate user groups based on country.
This dataset presents a more realistic social recommendation scenario.

• Twitch (Rozemberczki et al., 2021): The Twitch dataset is collected from the Twitch5 streaming
platform. Nodes correspond to users, and edges indicate mutual follows. Features are extracted
from user activities and preferences, and the classification task typically involves predicting user
affiliations such as language or game preference.

• Facebook (Rozemberczki et al., 2021): This dataset represents anonymized ego-networks from
Facebook6, where each node is a user and edges represent friendships. Node features are derived
from user profiles, and the classification task involves predicting user categories based on social
behavior. The graph is large and dense, making it suitable for evaluating scalability.

D.2 GNN MODELS

To evaluate the effectiveness and generalizability of our method, we consider seven representative
GNN models: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic
et al., 2018), GIN (Xu et al., 2019), APPNP (Klicpera et al., 2019), SGC (Wu et al., 2019), and
SSGC (Zhu & Koniusz, 2021). Each model consists of two graph convolution layers with 64
neurons in each hidden layer, utilizing ReLU as the activation function Klambauer et al. (2017) and
dropout Baldi & Sadowski (2013) for regularization. The GAT model employs four parallel attention
heads. For APPNP, SGC, and SSGC, we follow their original designs, using fixed propagation steps
and linear classifiers. All models are implemented in PyTorch using the PyTorch-Geometric (PyG)
library7. The experiments are carried out on a server running Ubuntu 22.04 LTS, equipped with dual
Intel® Xeon® Gold 6348 CPUs, 100 GB RAM, and an NVIDIA® A800 GPU. Specifically as follows:

• GCN8 (Kipf & Welling, 2017): Graph Convolutional Networks (GCNs) are a foundational GNN
model that performs neighborhood aggregation via spectral graph convolutions. It introduces
layer-wise propagation to aggregate and transform node features from adjacent nodes using the
normalized graph Laplacian.

4https://www.last.fm/
5https://www.twitch.tv/
6https://www.facebook.com/
7https://www.pyg.org
8https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.models.GCN.html
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• GraphSAGE9 (Hamilton et al., 2017): Graph Sample and Aggregate (GraphSAGE) is an inductive
GNN that learns node embeddings by sampling and aggregating feature information from local
neighborhoods. It supports various aggregator functions such as mean, LSTM, or pooling, making
it more flexible for large-scale and dynamic graphs.

• GAT10 (Velickovic et al., 2018): Graph Attention Networks (GATs) enhance message passing by
introducing attention mechanisms that learn the importance of neighboring nodes. This allows
for adaptive weighting of neighbors during aggregation and improves performance in graphs with
noisy or unbalanced neighborhoods.

• GIN11 (Xu et al., 2019): Graph Isomorphism Networks (GINs) are designed to maximally distin-
guish graph structures and are proven to be as powerful as the Weisfeiler-Lehman graph isomor-
phism test. GINs use MLPs and sum aggregation to capture rich structural information.

• APPNP12 (Klicpera et al., 2019): Approximate Personalized Propagation of Neural Predictions
(APPNP) decouples feature transformation and propagation using personalized PageRank (Gleich,
2015). It first applies a shallow neural network for feature transformation, followed by multiple
propagation steps that enhance long-range information flow while mitigating oversmoothing.

• SGC13 (Wu et al., 2019): Simple Graph Convolution (SGC) simplifies the GCN by removing
nonlinearities and collapsing weight matrices between layers. This leads to a linear and more
efficient model, while retaining competitive performance.

• SSGC14 (Zhu & Koniusz, 2021): Simplified Spatial Graph Convolution (SSGC) enhances SGC (Wu
et al., 2019) by combining it with residual connections and spatial message passing. It introduces a
tunable residual propagation mechanism that strengthens representation learning across multiple
hops, improving performance while retaining the efficiency and simplicity of linear models.

D.3 CLASSICAL LDP MECHANISMS

We consider three widely adopted classical LDP mechanisms in our framework and baseline compar-
isons (Section 5.1): the 1-bit mechanism (1B) (Ding et al., 2017), Laplace mechanism (LP) (Phan
et al., 2017), and Analytic Gaussian mechanism (AG) (Balle & Wang, 2018). These mechanisms are
commonly used for perturbing scalar or vector-valued data under strong local privacy guarantees.

• 1-bit Mechanism (Sajadmanesh & Gatica-Perez, 2021). The 1-bit mechanism perturbs a one-
dimensional input x ∈ [α, β] by mapping it probabilistically to either +1 or −1, using an encoding
based on the input value and privacy budget ϵ. Specifically, the output x′ ∈ {−1, 1} is sampled as:

Pr[x′ = c|x] =

{
1

eϵ+1 + x−α
β−α ·

eϵ−1
eϵ+1 , if c = 1

eϵ

eϵ+1 −
x−α
β−α ·

eϵ−1
eϵ+1 , if c = −1 . (33)

• Laplace Mechanism (Phan et al., 2017). The Laplace mechanism adds noise sampled from a
Laplace distribution to the original input. For a scalar value x ∈ [α, β], the perturbed value is:

x′ = x+ Lap (2/ϵ) , (34)
where Lap(b) denotes a Laplace distribution with scale b.

• Analytic Gaussian Mechanism (Balle & Wang, 2018). The Analytic Gaussian mechanism introduces
noise drawn from a calibrated Gaussian distribution. For input x ∈ [α, β], the output is:

x′ = x+N (0, σ2), (35)
where σ is chosen based on the privacy parameters ϵ and δ using the analytic calibration procedure
described in. For example:

σ2 =
2 ln(1.25/δ)

ϵ2
(36)

ensures that the mechanism satisfies (ϵ, δ)-LDP. Compared to Laplace noise, the AG mechanism
provides tighter tail bounds and better utility under high-dimensional settings.

9https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.models.GraphSAGE.html
10https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATConv.html
11https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GINConv.html
12https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.APPNP.html
13https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SGConv.html
14https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SSGConv.html

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

For a d-dimensional vector, these mechanisms apply perturbation to each dimension with a privacy
budget of ϵ/d, thereby ensuring overall ϵ-LDP.

D.4 PARAMETER SETTINGS

For all datasets, we randomly split the nodes into training set, validation set, and test set using
a 50%/25%/25% ratio. Regarding the privacy budget ϵ, note that the perturbation size m for the
three LDP mechanisms (PM, MB, and SW) is constrained by a coefficient δ. To ensure m > 1 for
meaningful evaluation, we set ϵ to values in the set {5.0, 7.5, 10.0, 12.5, 15.0}, corresponding to
m ∈ {2, 3, 4, 5, 6}, respectively. The parameter ρ is selected from the set {0, 0.3, 0.5, 0.7, 1.0}, and
the denoising aggregation parameter K is varied over {0, 1, 2, 3, 4, 5}. Unless otherwise specified,
the default ϵ is set to 10.0. We perform hyperparameter tuning via grid search. The learning rate is
drawn from {10−1, 10−2, 10−3}, weight decay from {0, 10−5, 10−4, 10−3}, and dropout rate from
{0, 10−3, 10−2, 10−1}. All models are optimized with Adam (Kingma & Ba, 2014) for a maximum
of 300 epochs. The model yielding the lowest validation loss is selected for final evaluation.

D.5 MORE EXPERIMENTAL RESULTS

To provide a more comprehensive evaluation of TOGL, we conducted additional experiments that
examine its robustness, scalability, privacy protection, etc. The results are summarized as follows.

80
85

1.0 2.0 3.0 4.0
Privacy Budget ( )

25

30
Ac

cu
ra

cy
 (%

)

TD TC

Table 3: Performance comparison be-
tween the task-consistency (TC) extreme
and the topology-distinguishability (TD)
extreme (Cora dataset, PM mechanism).

Effect of small privacy budgets. When the privacy bud-
get is small (0 < ϵ < 5), the local perturbation mechanism
restricts the perturbation size to m = 1 due to the influence
of the coefficient δ. In this setting, we consider two ex-
treme perturbation strategies: ① the task-consistent (TC)
extreme, where all nodes perturb the same task-relevant
attribute, and ② the topology-distinguishability (TD) ex-
treme, where each node independently perturbs a random
dimension from the full feature space [d], regardless of
task relevance. As shown in Fig. 3, the latter strategy sur-
prisingly yields significantly higher accuracy under tight
privacy constraints. This phenomenon arises because en-
forcing task consistency across all nodes collapses the
feature diversity in the graph: since every node shares the
same perturbed dimension, their representations become
indistinguishable after message passing. In contrast, the
random strategy—while individually suboptimal—preserves sufficient variance across the graph,
maintaining topological distinguishability that benefits the downstream GNN learning process.

Robustness under noisy or sparse labels. We examined TOGL’s performance when node labels
are privatized for protection. Specifically, each label y ∈ {1, . . . , C} is perturbed via randomized
response (Kairouz et al., 2016), where the privatized label ỹ follows:

P[ỹ = y] =
eϵlabel

eϵlabel + C − 1
, P[ỹ = y′] =

1

eϵlabel + C − 1
, ∀y′ ̸= y, (37)

with ϵlabel controlling the privacy level. To mitigate excessive noise, we apply Drop training (Sajad-
manesh & Gatica-Perez, 2021) to smooth labels across the graph before task-relevant attribute analysis.
As shown in Table 4, TOGL consistently outperforms the baseline (PM) even under noisy supervision
(ϵlabel = 1.0). Furthermore, Table 5 demonstrates that TOGL maintains robustness across varying
label privacy levels ϵlabel ∈ {1.0, 2.0, 3.0,∞}, with only gradual degradation as ϵlabel decreases.

Table 4: Performance under label privacy.

Method Cora LastFM

Baseline 75.9 76.2
TOGL 78.2 78.9

Table 5: Impact of varying ϵlabel on Cora.

ϵlabel 1.0 2.0 3.0 ∞
Baseline 75.9 77.3 78.1 79.4
TOGL 78.2 80.1 80.5 81.6

Fairness analysis. Beyond utility and privacy, an important concern in practical deployment is
whether the proposed perturbation mechanism introduces unintended biases across different groups.
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To investigate this, we conduct a fairness analysis. Since datasets such as Cora do not contain explicit
sensitive attributes (e.g., gender or race), we adopt node degree as a proxy sensitive feature, which is
commonly regarded as a structural indicator of potential group disparity. We then compute the Pearson
correlation (Benesty et al., 2009) between TOGL’s top-5 selected attributes and node degree for both
TOGL and the baseline (PM). As shown in Table 6, both methods maintain similarly low correlations
(all below 0.1). These results indicate that task-oriented attribute selection does not introduce
additional fairness concerns compared to random selection, as neither approach systematically favors
high-degree or low-degree nodes, thereby mitigating potential structural bias.

Table 6: Correlation between se-
lected attributes and node degree.

Dataset Baseline TOGL

Cora 0.08 0.07
Pubmed 0.09 0.09

Scalability evaluation. In addition to accuracy and fairness,
a key requirement for practical deployment is scalability: the
method should remain efficient when applied to large graphs.
To evaluate this, we conducted experiments on two represen-
tative large-scale datasets, covering both feature-rich graphs
(Co-Phy (Shchur et al., 2018)) and large-scale citation networks
(Ogbn-arxiv (Hu et al., 2020)). Dataset statistics are summa-
rized in Table 7. Both TOGL and the PM baseline were evaluated under identical experimental settings
on a machine equipped with dual Intel® Xeon® Gold 6348 CPUs, 100 GB RAM, and an NVIDIA®

A800 GPU. The runtime and peak GPU memory usage are reported in Table 8. As shown, TOGL
introduces only moderate computational overhead compared with the baseline, confirming that it
remains practical for large-scale graph learning.

Table 7: Statistics of large-scale datasets used for scalability evaluation.

Dataset Nodes Edges Features Classes

Co-Phy (Shchur et al., 2018) 34,493 247,962 8,415 5
Ogbn-arxiv (Hu et al., 2020) 169,343 1,166,243 128 40

Table 8: Runtime and memory overhead on large-scale datasets.

Dataset Method Runtime (s) Peak GPU (GB)

Co-Phy Baseline 21 1.2
TOGL 24 1.3

Ogbn-arxiv Baseline 57 2.1
TOGL 64 2.4

Table 9: Stability analysis on Cora.

Metric Value

Avg. Jaccard similarity 0.78
Accuracy (mean ± std) 81.2 ± 0.3 %

Stability of attribute selection. To assess the stability of
TOGL’s attribute selection, we ran the method 10 times on
Cora and measured the Jaccard similarity (Niwattanakul
et al., 2013) of the top-5 selected attributes as well as the
variance in classification accuracy. Results in Table 9 show
high consistency (0.78 Jaccard) and low performance vari-
ance (±0.3%). These results indicate that the selected
attribute subsets are highly consistent, and that small variations in selection do not lead to significant
drops in performance, confirming the robustness of TOGL’s attribute selection process.

Attribute-level sensitivity. To gain deeper insights into TOGL’s per-attribute behavior, we examined
both task utility and privacy protection at the attribute level on the Cora with ϵ = 5.0. Specifically,
for each attribute, we measured: ① classification accuracy (CA%) obtained when the attribute is used
in the task, and ② attribute inference attack accuracy (AA%) on the perturbed attribute. We also
recorded whether each attribute was selected by TOGL’s task-oriented selection module. Table 10
summarizes the results. We observe that TOGL preferentially selects attributes that contribute more
to task utility after perturbation (e.g., A5), while all attributes maintain similarly low attack accuracy,
indicating that per-attribute privacy protection is consistently enforced. These findings confirm that
TOGL effectively balances utility and privacy: it prioritizes attributes with high task relevance without
compromising the rigorous LDP guarantees applied uniformly across all features.

Empirical resistance to inference attacks. To empirically evaluate TOGL’s privacy protection
beyond its formal LDP guarantee, we conducted a preliminary attribute inference attack experi-
ment (Meng et al., 2023). In this setting, an attacker observes the perturbed features of a target
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node’s neighbors and attempts to infer the target’s sensitive attribute via majority voting, leveraging
homophily (McPherson et al., 2001) in the graph. We compared TOGL (with ϵ = 5.0) against a
non-private baseline (NonPriv) on two representative datasets, Cora and LastFM. Attack accuracy
(%) is reported in Table 11, where lower values indicate stronger privacy protection. As shown, TOGL
reduces the attacker’s success rate to below 20% on both datasets, representing a substantial improve-
ment over the non-private setting, where attack accuracy exceeds 90%. These results demonstrate that
TOGL provides strong empirical resistance to attribute inference attacks, complementing its formal
LDP guarantees and confirming its practical privacy effectiveness.

Table 10: Attribute-level sensitivity analysis.

Attribute CA (%) AA (%) Selected

A5 81.2 17.9 ✓
A14 79.3 18.1 ✗

Table 11: Attribute inference attack accuracy (%).

Method Cora LastFM

NonPriv 97.2 96.5
TOGL 18.7 17.5

Generalizability to different LDP variants. TOGL is designed to be compatible with a wide
range of LDP mechanisms. Beyond the six classical feature-level LDP mechanisms evaluated
in Sec. 5.1, we further tested TOGL under two additional variants: Condensed Local Differential
Privacy (CLDP) (Gursoy et al., 2019; Zhang et al., 2025) and Personalized Local Differential Privacy
(PLDP) (Li et al., 2022c; He et al., 2025c) on the Cora dataset. Table 12 reports the results, showing
that TOGL consistently outperforms the corresponding baselines (PM) across both variants. This
demonstrates that TOGL generalizes well to diverse LDP paradigms, including classical and modern
variants, making it a flexible and broadly applicable framework for privacy-preserving graph learning.

Table 12: Performance of TOGL under
different LDP variants on Cora.

Variant Baseline TOGL

CLDP 79.8 81.9
PLDP 80.6 82.7

Table 13: Multi-task performance of TOGL on
Cora dataset (ϵ = 5.0).

Method Classification ACC Regression MAE

Baseline 78.7 0.184
TOGL 81.5 0.142

Robustness under structure privacy. While this paper primarily focuses on protecting users’ node
features, which are often the most sensitive, our approach is orthogonal to existing privacy-preserving
techniques for neighbor lists (Hidano & Murakami, 2024; Zhu et al., 2023a) and can be seamlessly
integrated with them. To demonstrate this compatibility, we combined TOGL with the BLINK
mechanism (Zhu et al., 2023a), which enforces link-level LDP via Bayesian estimation (Kruschke,
2013). Specifically, for a node v ∈ V , let N (v) denote its true set of neighbors. Under link-level
LDP with privacy budget ϵlink, each potential edge (v, u) is independently perturbed:

Ãvu =

{
1, with probability eϵlink

eϵlink+1 ,

0, otherwise,
∀u ∈ N (v), (38)

where Ãvu is the perturbed adjacency entry. Non-neighbor edges are perturbed similarly, ensuring
ϵlink-LDP for all links. The perturbed graph G̃ is then used as input to TOGL’s task-oriented attribute
selection and perturbation pipeline, leaving the rest of the method unchanged.

We conducted experiments on Cora and LastFM with ϵfeature = 5.0 and ϵlink = 5.0. Table 14 reports
classification accuracy. As shown, TOGL consistently outperforms the baseline even under combined
feature and structure privacy, confirming that the method remains effective when neighbor lists are
privatized. This demonstrates that TOGL’s contributions are not diminished by structural privacy
concerns, but rather focus on a complementary and practically critical dimension of graph privacy.

Analysis of the Parameter ρ. As discussed in Section 5.2, Figure 9 illustrates a clear non-monotonic
trend: performance peaks at moderate ρ values (0.3 or 0.5), but drops dramatically as ρ→ 1, while
degrading more mildly as ρ→ 0. This asymmetry arises because exclusively selecting task-relevant
attributes (ρ = 1) causes all nodes to perturb the same fixed dimensions S⋆, which eliminates
topological distinguishability and leads to severe over-smoothing. As proven in Corollary 1, this
causes graph convolution to degenerate into mean-pooling, losing structural discrimination capability
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and resulting in the dramatic drop to approximately 30% accuracy. In contrast, when ρ is small, the
selected attributes, though random and less task-aligned, still preserve structural diversity across
nodes, which helps stabilize GNN training and maintain moderate utility despite weaker task signals.
Selecting an intermediate ρ balances these effects, retaining enough task-relevant signal while
preserving structural diversity, thereby maximizing overall utility.

Table 14: Classification accuracy (%)
under combined feature and link-level
LDP (ϵfeature = 5.0, ϵlink = 5.0).

Method Cora LastFM

Baseline + BLINK 76.5 75.9
TOGL + BLINK 79.8 78.6

Multi-task learning with task-specific attributes. TOGL
can naturally accommodate multi-task learning scenarios by
assigning task-specific attribution scores to each feature and
aggregating them before feature selection and perturbation.
Its fully pluggable and differentiable attribution modules
(FDA and SMA) allow independent evaluation for each task.
To validate this capability, we conducted a multi-task ex-
periment on Cora, where each node is associated with: ① a
classification task predicting the paper’s category, and ② a regression task predicting the ℓ2-norm of
the node’s feature vector, serving as a proxy for content complexity. Feature attribution scores were
computed separately for each task and combined via weighted averaging. Results under ϵ = 5.0 using
GCN with separate task heads are summarized in Table 13. TOGL achieves superior performance on
both tasks, demonstrating its flexibility in handling conflicting or partially overlapping task-specific
attributes and validating its generality in multi-task private learning.

Effect of K-hop denoising on baseline and TOGL. To examine whether incorporating K-hop
denoising into baseline methods alters the comparative performance, we conducted experiments
applying the same denoising procedure (K ′ = 3) to both TOGL and the PM baseline. The denoised
variants are denoted TOGL∗ and Baseline∗, respectively. Table 15 and Table 16 report the classification
accuracy (%) on Cora and LastFM. While denoising improves performance for both methods, TOGL∗

consistently outperforms Baseline∗, demonstrating that task-oriented perturbation provides additional
utility beyond standard denoising. These results highlight the complementary benefits of TOGL’s
selective attribute perturbation and graph-aware denoising.

Table 15: Classification accuracy (%) without
denoising.

Method Cora LastFM

Baseline 79.4 80.7
TOGL 81.6 81.2

Table 16: Classification accuracy (%) with
K-hop denoising (K ′ = 3).

Method Cora LastFM

Baseline∗ 83.7 85.6
TOGL∗ 85.1 86.3

Table 17: Detailed ablation study results comparing FDA and SMA methods with the SOTA baseline
(PM). All values are classification accuracy (%) on the test set.

Method Cora Citeseer Pubmed LastFM Twitch Facebook

Baseline 79.4 63.5 69.8 80.7 53.9 86.8
FDA 81.4 65.2 71.1 81.8 55.3 89.0
SMA 81.6 65.4 71.3 82.4 55.7 89.3

Comparison with alternative feature selection methods. To further validate our choice of FDA and
SMA as task-relevant attribute analysis methods, we conducted additional ablation studies comparing
them with three other representative feature selection algorithms commonly used in machine learning:

• Mutual Information (MI) (Peng et al., 2005): Measures the mutual dependence between
each feature and the class labels, capturing both linear and non-linear relationships.

• Chi-Square (χ2) (Liu & Setiono, 1995): A statistical test that evaluates the independence
between features and labels, widely used for classification tasks.

• PCA-based selection (PCA) (Jolliffe & Cadima, 2016): Selects features based on their
contributions to the top principal components that explain the most variance.

The comparative results across all six datasets are presented in Table 18. Our methods (FDA and
SMA) consistently outperform the alternative baselines across all six datasets by 1.0-1.7% on average.
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This advantage stems from their design considerations for LDP-perturbed data: FDA explicitly
models class separability under noise through inter-class and intra-class variance analysis, while
SMA leverages task-specific model weights through sparse logistic regression. In contrast, MI
and χ2 rely on statistical dependencies that can be obscured by LDP noise, and PCA prioritizes
variance explanation rather than task relevance. These results validate that FDA and SMA represent
well-motivated and effective choices for task-oriented attribute selection under LDP constraints.

Table 18: Comparison of feature selection methods. All values are classification accuracy (%) on the
test set under ϵ = 10.0 with the PM mechanism.

Method Cora Citeseer Pubmed LastFM Twitch Facebook Avg.

MI (Peng et al., 2005) 80.3 64.1 70.5 81.1 54.3 87.5 72.97
χ2 (Liu & Setiono, 1995) 80.1 63.8 70.3 80.8 54.1 87.2 72.72
PCA (Jolliffe & Cadima, 2016) 79.8 63.9 70.1 80.9 54.0 87.0 72.62

FDA (Ours) 81.4 65.2 71.1 81.8 55.3 89.0 73.97
SMA (Ours) 81.6 65.4 71.3 82.4 55.7 89.3 74.28

E RELATED WORKS

E.1 LOCAL DIFFERENTIAL PRIVACY

LDP (Dwork et al., 2006) is a rigorous privacy notion that enables users to perturb their data locally
before sharing it, thereby eliminating the need for a trusted aggregator. Due to its strong privacy
guarantees, LDP has been widely adopted in diverse data collection and analysis scenarios, including
frequency estimation (Jia & Gong, 2019; Li et al., 2020; Wang et al., 2017), mean estimation (Asi
et al., 2022; Ding et al., 2017; Wang et al., 2019a), heavy hitter detection (Jia & Gong, 2019; Zhu
et al., 2023b; Wang et al., 2019c), and frequent itemset mining (Li et al., 2022a; Tong et al., 2024).

Beyond single-round protocols, several works have explored two-round or multi-round LDP mech-
anisms for various analytics tasks (Qin et al., 2017; Sun et al., 2019; Imola et al., 2021; 2022; Liu
et al., 2022b; Huang et al., 2024; He et al., 2024b;a; 2025b). These protocols typically use the first
round to collect noisy global statistics and the second to refine or calibrate the result. However, they
are primarily designed for aggregate statistical estimation, and do not involve private learning or
attribute-level decision-making. In contrast, TOGL is the first to introduce a task-oriented two-round
LDP pipeline for private graph learning, where the second round performs selective perturbation of
task-relevant attributes—rather than uniformly or randomly perturbing all attributes. This setting
poses unique challenges: attribute selection must be conducted over noisy data, without violating
local privacy guarantees, and must account for utility-preserving structure in the graph. Our modular
three-phase design addresses these challenges in a principled way and extends beyond the typical
two-round estimation frameworks seen in prior work.

E.2 LOCALLY PRIVATE GRAPH LEARNING

Recently, locally private graph learning (Sajadmanesh & Gatica-Perez, 2021; Lin et al., 2022; Pei
et al., 2023; Li et al., 2024; Jin & Chen, 2022) has emerged as a promising research area within
the privacy and security community. To support this paradigm, researchers have developed several
mechanisms for perturbing node features under LDP constraints. For instance, (Sajadmanesh &
Gatica-Perez, 2021) extended the 1-bit mechanism (Ding et al., 2017) to high-dimensional node
features via the multi-bit (MB) mechanism. Follow-up work proposed the piecewise (PM) (Pei et al.,
2023) and square wave (SW) (Li et al., 2024) mechanisms to further enhance utility. While these
methods have demonstrated effectiveness in tasks such as node classification (Kipf & Welling, 2017),
their utility remains limited. To address this challenge, we propose a task-oriented framework for
locally private graph learning. To the best of our knowledge, this is the first work to incorporate
task-awareness into LDP-constrained graph learning, significantly enhancing utility while preserving
strong privacy guarantees. In addition, some studies have also addressed the privacy protection of
topological structures (Hidano & Murakami, 2024; Zhang et al., 2024a; Zhu et al., 2023a), focusing on
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obfuscating edges or degree information to prevent reconstruction attacks. Our method is orthogonal
to such techniques and can be seamlessly integrated.

E.3 KEY FEATURE SELECTION

Identifying key features (Wu et al., 2021; El Akadi et al., 2008; Lu et al., 2007; Duval & Malliaros,
2021; Ying et al., 2019; Li et al., 2017) is a long-standing problem in supervised learning, especially
when only a small subset of attributes contributes meaningfully to the prediction task. While extensive
research has been conducted on this topic, most existing methods assume full access to clean data
and are not applicable under strong privacy constraints.

In contrast, our approach focuses on identifying task-relevant attributes from LDP-perturbed data
in the graph learning setting. Unlike prior feature selection methods, we must operate without
access to raw features, and we explicitly consider the trade-off between task consistent and topology
distinguishability during selection. To the best of our knowledge, this is the first work to integrate
feature relevance estimation into locally private graph learning.

F PRACTICAL AVAILABILITY OF TASK SIGNALS

We clarify that the "task-specific signals" required by TOGL are broadly defined and not limited to
explicit node labels. This paper focuses on the widely adopted semi-supervised learning setting, where
training a GNN already requires a subset of labeled nodes. These existing labels are fully sufficient for
TOGL’s Phase II feature relevance estimation, and no additional supervision is introduced. Even under
stricter conditions such as label privacy or structural privacy, we evaluate TOGL in Appendix D.5
(Sections ‘Robustness under noisy or sparse labels’ and ‘Robustness under structure privacy’), and
the method remains effective. TOGL’s design principles are also compatible with other learning
paradigms such as self-supervised learning (Liu et al., 2022a), where gradients from contrastive or
predictive objectives can provide proxy task signals. Extending TOGL to these settings, however,
involves additional technical considerations and is thus left for future investigation.

G LIMITATIONS & BROADER IMPACTS

G.1 LIMITATIONS

The scope of this work focuses primarily on homophilic graphs, which represent the dominant setting
in privacy-preserving graph learning. Consequently, heterophilic graphs lie outside the main scope of
our current study, and the aggregation scheme in Phase I is designed with homophily assumptions
in mind. We acknowledge that naïve neighborhood aggregation may be less effective on strongly
heterophilic graphs, where connected nodes often belong to different classes. However, this limitation
affects only the efficiency of Phase I denoising, not the validity of our overall task-oriented LDP
framework, as Phases II and III remain independent of homophily assumptions and continue to
provide utility gains through selective attribute perturbation.

To address potential extensions to heterophilic settings, we have conducted a thorough survey
of heterophilic graph learning methods and identified several promising directions that could be
incorporated into TOGL in future work. These include higher-order neighborhood mixing (Abu-
El-Haija et al., 2019), ego-neighbor separation and combination of intermediate representations
designed for heterophily (Zhu et al., 2020), geometric convolutions (Pei et al., 2020), and global
attention architectures (Mostafa & Nassar, 2020). Incorporating these advanced aggregation schemes
into our denoising phase could further improve TOGL’s robustness across diverse graph structures
and represents an important direction for future research.

In addition, our current framework is designed for static graphs. Extending TOGL to dynamic
graphs (Pareja et al., 2020; Trivedi et al., 2019), where node features and graph structure evolve over
time, introduces additional challenges in privacy preservation, temporal consistency, and adaptive
feature selection.
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G.2 BROADER IMPACTS

This work contributes to the development of privacy-preserving graph learning by improving utility
under local differential privacy constraints. It may benefit applications involving sensitive graph-
structured data, such as healthcare (Li et al., 2022b) and social networks (Sankar et al., 2021), by
enabling safer and more effective learning without compromising user privacy.

G.3 USE OF LARGE LANGUAGE MODELS

LLMs were used only as assistive tools for language polishing. They did not contribute to research
ideation, experimental design, or theoretical development. All scientific content, including algorithms,
analyses, and results, was generated solely by the authors. The authors take full responsibility for all
content, and no LLM is listed as an author.
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