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Abstract

Thermal image building segmentation is essen-
tial for monitoring energy consumption and sup-
porting environmental protection. Current seg-
mentation methods are predominantly designed
for RGB images, posing challenges for thermal
images, especially when segmenting buildings
of varied shapes from aerial views, due to their
lower resolution, lack of detailed features, and
channel differences. To address these challenges,
we propose an unsupervised segmentation method
Thermal-SAM, specifically for a new aerial ther-
mal dataset from Turin, Italy. We enhance this
method by incorporating color aerial images from
the same region as an auxiliary modality to gener-
ate pseudo labels for unsupervised training. Our
approach introduces an adversarial prompt-based
pseudo-label generation method, utilizing several
vision-language models, along with positive and
negative prompts. Extensive experiments demon-
strate that Thermal-SAM, surpasses state-of-the-
art methods by more than 10%.

1. Introduction

Global warming intensifies environmental challenges such
as hurricanes and floods. Reducing energy consumption
is crucial to mitigating these effects (Rogelj et al., 2013).
Buildings account for 40% of global energy use and emis-
sions due to construction, heating, cooling, etc, (Nejat et al.,
2015). Monitoring building temperatures with Unmanned
Aerial Vehicle (UAV) infrared cameras is a promising ap-
proach to estimate energy use intensity (EUI) (Ham &
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Figure 1. Images captured by aircraft in both spectrum.

Golparvar-Fard, 2013). Thus, efficient building segmen-
tation is vital. However, accurately segmenting buildings
in UAV-captured thermal images is difficult since current
segmentation methods are mainly designed for RGB images
(Kirillov et al., 2023; Chen et al., 2020).

Visible cameras capture light in the RGB spectrum, provid-
ing detailed object information. In contrast, thermal images,
captured by infrared cameras, consist of a single channel
representing infrared intensity (Gade & Moeslund, 2014).
Detailed visual data is crucial for object segmentation to
classify objects and identify pixel-level edges, making RGB
images more suitable for these tasks (He et al., 2017; Kir-
illov et al., 2023). Figure 1 shows the difference: buildings
and cars are easily segmented in visible images, but diffi-
cult to discern in infrared images due to the lack of color
information. The lower intensity of infrared radiation limits
thermal image detail and resolution, posing challenges for
accurate building segmentation and precise EUI prediction.

Current challenges for thermal image segmentation include
a lack of thermal-based datasets and well-pretrained segmen-
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tation models. Most existing image segmentation datasets
focus on RGB images from visible cameras (Zhou et al.,
2017; Lin et al., 2014), leading to the development of pow-
erful pretrained encoders for semantic and instance seg-
mentation across various categories (Strudel et al., 2021;
Kirillov et al., 2023). In contrast, thermal image segmenta-
tion mainly targets pedestrians (Wang & Bai, 2019; Altay
& Velipasalar, 2022) and vehicles (Yang & Park, 2015;
Masouleh & Shah-Hosseini, 2019), as these are easier to
annotate. Segmenting buildings in thermal images presents
challenges, including low resolution, variable shapes, and
unclear boundaries, resulting in a lack of annotated datasets
and well-pretrained models. Therefore, these challenges
highlight the need for innovative, unsupervised segmenta-
tion methods tailored to this domain.

Based on this intuition, we propose Thermal-SAM, an unsu-
pervised building thermal image segmentation model using
a new constructed aerial thermal image dataset from Turin
city. This model leverages adversarial prompts to enhance
segmentation. This work focuses on Step I: extracting
pixel-accurate thermal building footprints from mid-wave
IR mosaics. Step 2—using those masks as inputs to predict
building-level energy-use intensity (EUI)—is treated in a
separate manuscript, currently under review. By isolating
the segmentation stage here, we provide a stand-alone, re-
producible baseline that downstream energy models can
directly adopt.

Contribution scope. This paper tackles Step I in a two-
stage pipeline: extracting pixel-accurate thermal building
footprints from mid-wave IR mosaics. Step 2—Ilinking those
masks to building-level EUI—is covered in a companion
manuscript now under review. Downstream energy models
can directly adopt the isolated segmentation results.

Main contributions.

* Thermal-SAM. First unsupervised thermal-image
model that segments buildings without human labels.

* Vision-language synergy. Hierarchical captioning
supplies robust semantic cues for pseudo-labels.

¢ Adversarial prompt generation. A novel prompt
scheme expands SAM’s capabilities to distorted IR im-
agery and boosts IoU by +10 pp over strong baselines.

2. Related Works

The field of unsupervised image segmentation has advanced
significantly, addressing the challenges posed by reliance on
human labeling. Notable methods include CutLER (Wang
et al., 2023), which introduces MaskCut, leveraging self-
supervised learning with Vision Transformers (Dosovitskiy,
2020) and DINO (Caron et al., 2021) for class-agnostic

object segmentation. Similarly, STEGO (Hamilton et al.)
employs clustering on DINO-extracted features for semantic
segmentation, while U2Seg (Niu et al., 2024) bridges se-
mantic and instance segmentation using pseudo-labels from
MaskCut, DINO, and clustering. Despite these advance-
ments, extending such unsupervised methods to building
segmentation in thermal images remains largely unexplored
and challenging. This is primarily due to the scarcity of high-
quality, large-scale datasets of aerial-view thermal building
images, as existing ones predominantly focus on pedestrians
and vehicles (Liu et al., 2018; Li et al., 2020).

3. Methodology
3.1. Overview

As shown in Figure 2, Thermal-SAM adopt SAM, One-
Former, CLIP-Seg, and Sentence Transformers to achieve
robust unsupervised thermal building segmentation (descrip-
tions are illustrated in Appendix A).

3.2. Zero-Shot Panoptic Segmentation

We first present our Thermal-SAM for panoptic segmenta-
tion of color imagery. Given an UAV image in visible view
(color) I € RHXWx3 and a paired infrared view (thermal)
T € R¥*W  we map these two image by rotation 7 and
shift A:

I'=T(I)+ Ay, ey
where I’ is the transformed color image. Subsequently,
we crop and partition the color image and thermal image
into smaller patches PIS,I) and PIQ,T), respectively, where N
is number of patches, each of which retaining only valid
regions unobscured by black pixels in the thermal image.

Next, we pass each visible view patch PIS,I) into SAM,
which outputs an instance mask and a set of segmented
instance images:

M FO = sam(P), @)

where M z(vl ) denotes the instance mask, and F() =
{fL,.., I} represents the set of segmented instances ex-

tracted from Pi(? (with n being the total number of in-
stances).
Then, for each segmented instance f., we generate a coarse-

grained image label C’,(LI)(O) using OneFormer and fine-
grained image labels C,(,,I)(B) using BLIP2:

cPHB) cho) - BLIPZ(fT{),OneFormer(fé). 3)

The fine-grained labels include more details of the instance
description. Finally, we apply a Clip-Seg model to generate
the final accurate labels:

C{!) = argmax(Clip-Seg(f., [C@, CDPN)). @)
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Figure 2. Our unsupervised thermal image segmentation framework, Thermal-SAM, includes three modules: Zero-Shot Panoptic
Segmentation, Adversarial Prompts-based Pseudo Label Generation, and Unsupervised Fine-tuning for Thermal Image Segmentation.

The final step aggregates the labels of all instances in a
patch:
cy ={cf’,..chy. 5)

3.3. Adversarial Prompts-based Pseudo Label
Generation

Given that Thermal-SAM is designed to segment all build-
ings from thermal images, we employ an adversarial
prompts-based pseudo-label generation approach to select
only building-related instances in the color aerial image.

We first compile a list of building-related words to serve as
positive prompts S and a set of words that are semantically
similar but do not actually refer to buildings as negative
prompts S~. Then, we apply a Sentence Transformer to
filter out building-irrelevant labels from the image labels
C( using cosine similarity cos:

Y ={y" | cos(CP, 8%) > 7%}

(6)
N {y,(CI) \ COS(C,(f)7 Sty <171,

where Y]SI) = {yy), - y,il)}, with k < n, 77 is the thresh-
old for selecting building-relevant labels, and 7~ is the
threshold for filtering out building-irrelevant labels.

Finally, we extract the building-related masks as segmenta-
tion labels for the next-step fine-tuning:

M = {m |y e vy andml) e M. (7)

3.4. Unsupervised Fine-tuning for Thermal Image
Segmentation

The building-only mask by using Eq (7) does not perfectly
align with thermal images due to distortions between visible
and infrared views. To address this, we use the masks
M ](VI * as pseudo labels to fine-tune SAM over a few epochs,
enhancing SAM’s ability to segment thermal images without
being compromised by the inaccuracies of the labels:

M =samm ", P 0), ®)

where 6 is the tunable parameter. Finally, we manually

select the best output between M " and M\ *. Refer to
Appendix A.1 for the detailed Thermal-SAM algorithm.

4. Experiments
4.1. Dataset Description

In this study, we captured aerial imagery of Turin, Italy, on
March 23, 2023. Thermal images were captured by FLIR
A8581 MWIR HD camera, concurrently, color aerial images
were captured from the same vantage (More description and
data preprocessing please refer to Appendix A.2 and A.3).

4.2. Baseline Models

We benchmark our approach against several methods: SAM,
a semantic segmentation model that does not assign labels
to individual segmented objects; MaskFormer (Cheng et al.,
2021) and OneFormer, both panoptic segmentation models
from which we retain only building-labeled masks. Addi-
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Figure 3. Qualitative Comparison of Building Segmentation: Thermal-SAM vs. Baseline Models

tionally, we evaluate Thermal-SAM, without fine-tuning
on pseudo labels (Thermal-SAM w/o FT). Reported results
are averaged over five runs with different random seeds.
Implementation details please refer to Appendix A.S.

Table 1. Evaluation Metrics for Comparative Models

Dice .. F1
Model IoU Coefficient Precision Recall Score
SAM 0.0003 0.0006  0.0003 0.1107 0.0006
MaskFormer 0.0981 0.1787  0.1821 0.1754 0.1787
OneFormer  0.1862 0.3140  0.6733 0.2047 0.3140
Thermal-SAM 0.2873  0.4463  0.4421 0.4506 0.4463
w/o FT 0.2659 0.4201 0.3544 0.5157 0.4201
5. Results

‘We conduct both quantitative and qualitative comparisons
with the state-of-the-art baselines and also comparison with
Microsoft-footprint in Appendix A.4 and A.6.

5.1. Quantitative Comparison of Segmentation Results

We evaluate Thermal-SAM against SAM, MaskFormer, and
OneFormer for building segmentation in Turinese thermal
images using standard metrics (Table 1). SAM’s poor per-
formance highlighted the need for supervision. MaskFormer
and OneFormer improved by over 17% with building-related
label selection; OneFormer nearly doubled MaskFormer’s
scores, benefiting from its task-conditioning and multi-task
architecture. In contrast, our Thermal-SAM, after pseudo-
label generation and fine-tuning with SAM-base, accurately
detects and segments individual building-related objects in
thermal images.
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Figure 4. Illustration of a segmented patch (left) and thermal infor-
mation used for EUI prediction (right).

5.2. Qualitative Comparison of Segmentation Results

Thermal segmentation. Figure 3 qualitatively compares
segmentation by Thermal-SAM against baselines. SAM
fails to identify individual instances, only grouping broad
classes. While MaskFormer and OneFormer preserve
building-related masks, MaskFormer lacks precision while
OneFormer lacks reval, which is consistent with quantitative
results. In contrast, Thermal-SAM, after pseudo-labeling
and fine-tuning SAM-base, accurately segments individual
building-related objects in thermal images.

Energy proxy. Figure 4 presents a segmented thermal
building image patch (left), used to examine how rooftop
surface temperature variations (core vs. periphery, via
ring circles) correlate with EUI prediction (right). Using
these masks, the mean roof—ambient temperature difference
(AT}o0r) for 857 buildings explains R? = 0.46 of the vari-
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ance in measured EPC-based EUIs. Our future work, by
adding five additional mask-derived features, increases this
explanatory power to R? = 0.78, underscoring the proposed
segmentation’s downstream value.

6. Conclusion and Future Works

We introduce Thermal-SAM, a novel unsupervised ther-
mal building segmentation method, specifically tailored for
Turin. Our approach combines zero-shot panoptic segmenta-
tion of color images with adversarial prompt-based pseudo-
label generation to extract building-related objects. These
labels then fine-tune SAM for thermal imagery, correcting
distortions between visible and infrared data. Evaluations
show Thermal-SAM outperforms all baselines and provides
more robust segmentation than Microsoft Footprints. Fur-
thermore, our method provides a generalizable framework
for segmenting thermal UAV imagery to support building-
level energy approximation. In future work, we aim to
extend our method to additional object categories, such as
vehicles and Vegetation (Fire prevention), and apply it to
broader geographic areas beyond Turin.

Impact Statement

This paper presents work whose goal is to advance the field
of energy consumption and machine learning. The dataset
will not be opened to the public due to the usage policy.
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A. Appendix
A.1. Preliminaries for Large-Scale Models

SAM (Kirillov et al., 2023) is a foundation model for image segmentation, which includes an image encoder, a flexible
prompt encoder, and a fast mask decoder. SAM accepts both sparse (points, boxes, text) and dense (masks) inputs and is
capable of segmenting any objects without labels in an image with the given prompts.

OneFormer (Jain et al., 2023) is a unified image segmentation model for instance segmentation, semantic segmentation,
and panoptic segmentation. By using different task prompts and contrastive learning, OneFormer achieved state-of-the-art
evaluation performance on diverse datasets.

BLIP2 (Li et al., 2023) is a versatile and efficient pretraining strategy for vision—language understanding that leverages
a lightweight query transformer. This transformer encodes visual features into image prompts that are aligned with the
language encoding space, enabling Large Language Models (LLMs) to more effectively process and understand multimodal
inputs.

CLIP-Seg (Liiddecke & Ecker, 2022) builds a segmentation decoder based on CLIP, which accepts both image and text
prompts for guiding query image segmentation. It can also be used to filter out the most appropriate classes from candidate
prompt lists for the input query image.

Sentence Transformers (Reimers & Gurevych, 2019) is built based on BERT (Devlin, 2018), while modifying the structure
of BERT. It uses siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be
compared using cosine similarity.

The implementation of SAM, OneFormer, BLIP2, and CLIP-Seg is based on Semantic-SAM!.

Algorithm 1 Thermal-SAM Framework for Thermal Image Building Segmentation

Require: UAV color image I € RHXWX3  thermal image T € RHEXW patch size h x w, thresholds 7+, 77, trainable

parameters 6
Ensure: Final building segmentation mask M
: Alignment: Obtain the aligned color image I’ using Eq. (1).

: Partitioning: Split I’ and T” into patches PJS,I) and PJS,T) .

(T)

1

2

3: for each image patch Pzirj ) do

4:  Segmentation: Run SAM on PI(VI ) to obtain the instance mask M ](VI ) and instances (1) (Eq. (2)).

5. for each instance f! € F) do

6 Generate pseudo label CT(LI) for the instance (Eqgs. (3) and (4)).

7 end for

8:  Aggregate instance labels to form CI(\P (Eq. (5)).

9: end for

10: Pseudo-label Generation: Filter C(1) using adversarial prompts S*, S~ thresholds 7" and 77, to obtain Y]\(,I)
(Eq. (6)).

11: Extract building-related masks M ](\f )* based on YJ\(,I) (Eq. (7).

12: SAM Fine Tuning:

13: while not converge do

14:  for mini-batch B do

15: Fine-tune SAM to generate the building mask
16: M\"* using Eq. (8).
17:  end for

18: end while

19: for each thermal image patch PIQ,T) do

20:  Manually select the best mask between M J(VT) and M ](VT)*.
21: end for

22: return M (7

'https://github.com/fudan-zvg/Semantic-Segment-Anything/tree/main

7
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Figure 5. Turin Aerial Imagery

A.2. Infrared View and Visible View

We use a UAV with a thermal camera to capture the dataset. During the UAV flight, skies were mostly clear with an ambient
temperature around 20 C, ensuring stable conditions for midwave infrared capture despite possible variability from clouds
or wind. Thermal images were captured by a FLIR A8581 MWIR HD camera (equipped in a UAV), shortly after sunset,
to minimize biases from solar heating, flying at or above 300m in a nadir orientation as legally mandated. This altitude
was chosen to balance coverage of our 2km? study region with achieving a fine ground sampling distance ( 20cm) for
distinguishing building rooftops. We also verified the camera’s + 1 C accuracy by referencing a known temperature target
on the ground before and after the flight. Midwave IR generally provides a higher spatial resolution than longwave IR,
resulting in a ground sampling distance of approximately 20cm—relatively fine for thermal imaging. However, due to the
lower photon energy compared to the visible spectrum (0.4-0.7 pm), a larger instantaneous field of view is required to
capture sufficient radiation, which can make thermal images coarser or noisier than their RGB counterparts. Nevertheless,
we produced a final orthomosaic of roughly 7,814 x 6,000 pixels, as shown in Figure 5. Concurrently, color aerial images
were captured from the same vantage, offering a higher resolution of 39,070 x 30,000 pixels, as shown by the purple overlay
in Figure 5. Although these RGB images exhibit sharper detail due to their shorter wavelengths, combining them with
midwave IR data allows us to capture both temperature patterns and fine-grained scene structure—a key advantage for
unsupervised segmentation tasks.

A.3. Data Preprocessing

Both the infrared and visible views underwent an orthorectification process to correct for perspective distortions and terrain
effects, ensuring that each pixel is accurately aligned with real-world coordinates in WGS84. We used standard aerial
triangulation and ground control points to refine the mosaics, then performed a global shift-rotation alignment of the
IR mosaic to match the RGB mosaic, ensuring that patches cover the same region. Although this alignment simplifies
subsequent patching and segmentation, it cannot entirely eliminate the minor distortions between corresponding buildings in
the two views.
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Figure 6. Qualitative Comparison of Building Segmentation: Thermal-SAM vs. Microsoft Footprints

A.4. Microsoft Footprints

Microsoft Footprint (MF) 2 is a global dataset released by Bing Maps that comprises 1.4 billion building footprints extracted
from imagery captured between 2014 and 2024. The building labels are generated by deep neural networks (DNN5s) trained
for semantic segmentation, which detect building pixels in color aerial images and convert these detections into polygonal
representations. Although these labels may not be perfectly accurate due to the absence of human annotation, we still use
the subset of Footprint data covering Turin, Italy, as an evaluation indicator for our quantitative evaluation.

A.5. Implementation Details

In our experiments, we utilized the PyTorch framework (version 2.0.1) within a CUDA 11.7 environment. We employed
the Adam optimizer with an initial learning rate of 1e~°, and a scheduled learning rate adjustment. The experiments
were conducted on high-performance NVIDIA Tesla V100 GPUs. For pseudo-label generation, we used SAM-huge,
OneFormer-large, and Clip-Seg-refined. For fine-tuning, we used SAM-base.

A.6. Qualitative Comparison of MF

In Section 4.3, although we employed Microsoft Footprints as an evaluation indicator to compute metrics, it is important to
note that these footprints do not represent the true mask labels. Therefore, in this section, we present three examples (A, B,
and C) to visually compare our results with Microsoft Footprints. The first two columns display the visible and infrared
views of three aerial images.

*https://github.com/microsoft/GlobalMLBuildingFootprints
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When comparing the segmentation results generated by our Thermal-SAM model with those of Microsoft Footprints,
our approach demonstrates higher precision by detecting more complete building structures and capturing finer details,
particularly evident in Example A. In this example, a large area in the lower portion of the visible view is easily misclassified
as farmland from visible view; Microsoft Footprints do not include labels for this region, whereas our Thermal-SAM
successfully segments the buildings using only the infrared view.

Furthermore, in Examples B and C, Microsoft Footprints assigns a single, large mask to high-density building areas,
failing to distinguish individual small buildings. In contrast, our model effectively segments each small building, with
Example B being particularly noteworthy. These results underscore our model’s effectiveness in achieving accurate building
segmentation in thermal imagery.
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