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Abstract

Deep learning models are often vulnerable to privacy risks and adversarial
attacks, rendering them un-trustworthy on crowd-sourced tasks. However,
these risks are rarely resolved jointly, despite the fact that there are sep-
arate solutions in the security community and the privacy community. In
this work, we propose the practical adversarial training with differential
privacy (DP-Adv), to combine the backbones from both communities and
deliver robust and private models with high accuracy. Our algorithm is
concise by design and capable of taming technical advances from both com-
munities into our framework. For example, DP-Adv works with all existing
DP optimizers and attacking methods off-the-shelf. In particular, DP-Adv
is as private as non-robust DP training, and as efficient as non-DP adver-
sarial training. Our experiments on multiple datasets show that DP-Adv
outperforms state-of-the-art methods that preserve robustness and privacy
simultaneously. Furthermore, we observe that adversarial training and DP
can notably worsen the calibration, but the mis-calibration can be mitigated
by pre-training.

1 Introduction

Deep learning models have demonstrated amazing performance in classification problems,
especially on the computer vision and natural language processing tasks. However, these
neural networks are known to be vulnerable to privacy risks and adversarial attacks: an
adversary may extract sensitive information from the training data and/or use small per-
turbations to fool the model’s prediction. These urgent risks have prohibited people to truly
trust deep learning models in the sense of both privacy and security.

On one hand, many privacy attacks have been studied to demonstrate the risk of leaking
private information. For example, an adversary can conduct membership inference attack
(Shokri et al., 2017; Carlini et al., 2019) to guess whether a data point belongs to the training
data, e.g. a dataset collecting information from patients with a specific disease. Therefore,
knowing whether a person’s medical record belongs to this dataset implies whether this
person has such disease. Another concerning attack is the extraction attack (Carlini et al.,
2020), including re-identifying anonymized users in a dataset (e.g. the anonymized Movie-
Lens dataset is re-identified and leads to the cancellation of the second NetFlix Prize com-
petition (Narayanan & Shmatikov, 2006)) and extracting the training features (e.g. name,
address, phone number from the generative model GPT-2 (Radford et al., 2019)).

On the other hand, various adversarial attacks have posed significant threat on the robust-
ness of deep learning models. For example, the projected gradient descent (PGD) attack
by Madry et al. (2017) can worsen an advanced network, ResNet50, from 95% accuracy to
around 8% using a small perturbation of L∞ magnitude 0.25 on CIFAR10, as well as from
76% accuracy to around 3% using a perturbation of L2 magnitude 0.5 on ImageNet. In fact,
Su et al. (2019) shows that sometimes the adversary only needs to perturb one pixel out of
the hundreds in an image to make the neural network predict wrongly.

To protect the privacy with a theoretical guarantee, one line of work proposes to use dif-
ferential privacy (DP) (Dwork et al., 2006), a gold standard in the privacy regime. In the
seminal work by Abadi et al. (2016), differential privacy has been applied to deep learning by
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leveraging DP optimizers, e.g. DP-SGD or DP-Adam, and achieved strong performance in
later work that refines the DP learning (Bu et al., 2020; Papernot et al., 2020). As an exam-
ple, non-DP models can achieve test accuracy over 95% on CIFAR10 and DP models achieve
around 60% without pre-training (or > 70% with pre-training on CIFAR100). In particular,
DP deep learning uses the same training procedure and neural network architecture, and
the only difference is the use of DP optimizers instead of regular optimizers. Algorithmically
speaking, DP optimizers are randomized by adding independent Gaussian noises to clipped
gradients (see Algorithm 1 for details). Therefore, DP deep learning is different from the
regular learning in terms of the optimizer of the same optimization problem.

To protect the adversarial robustness, another line of work studies the adversarial training
(Kurakin et al., 2016; Madry et al., 2017) with the adversarial examples, which is nowa-
days the workhorse in the robustness community. The intuition is straight-forward: instead
of training on the original but vulnerable data, one can train the neural network on the
adversarial examples that are known to cause robustness issues, thus expecting the neural
network to become immune to the adversarial attacks. Therefore, we can view the adversar-
ial examples as a type of data pre-processing. In fact, adversarial training is different from
the regular learning in terms of the objective function in the optimization problem.

Contributions To develop truly safe deep learning models, it is necessary to preserve
both privacy and security simultaneously. Yet, most existing researches work on the two
problems separately. We take one step further towards this goal (see Table 1 and Figure 1):

• We propose a unified, flexible and practical framework — the DP-Adv training in
Algorithm 1. Our approach can incorporate any advances in both the adversarial
robustness community (e.g. new defense methods or faster adversarial training) and
the differential privacy community (e.g. new privacy accountant or DP optimizers).

• Our DP-Adv method is compatible with existing optimizers for both the outer min-
imization and inner maximization in (3.1). In addition, DP-Adv can be efficiently
trained, adding little overhead to speed or memory in comparison to adversarial
training and DP learning. This covers many deep learning tasks such as multi-label
classification, data generation and federated learning.

• We conduct a rigorous DP analysis for our DP-Adv method and show it is exactly
as private as traditional DP learning.

• Numerous experiments demonstrate that DP-Adv outperforms state-of-the-art meth-
ods that preserve both privacy and robustness. Especially, we give the first empirical
study of calibration issue in the private and robust regime.
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Figure 1: Flow charts of regular training ( 2○ 3○), differentially private training ( 2○ 4○),
adversarial training ( 1○ 2○ 3○) and DP-Adv training ( 1○ 2○ 4○).

Trade-off between differential privacy and adversarial robustness Previous re-
search has focused on either testing the privacy risk of adversarially robust but non-DP
models (Song et al., 2019) or testing the robustness of DP but non-robust models (Boenisch
et al., 2021; Tursynbek et al., 2020; Han et al., 2021). A trade-off between privacy and
robustness has been empirically observed. In the non-DP regime, Song et al. (2019) demon-
strates that non-robust models can have an empirically low privacy risk while adversarially
robust models are even much more vulnerable to privacy attacks, increasing a privacy at-
tacker’s accuracy by 25% on CIFAR10 than that of non-robust models. From the other end,
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Boenisch et al. (2021) demonstrates empirically via MNIST dataset that DP models can be
more vulnerable to adversarial attacks, when using large noise and large clipping norm: the
attack success rate being ≈ 90% for DP models and ≈ 40% for non-DP models.

Nevertheless, it remains unclear how combining DP and adversarial robustness affects this
trade-off. Especially, since it is well-known that the cost of preserving DP or robustness in
deep learning is the accuracy, it is significant to understand whether such combination will
lead to an accuracy too bad to be useful.

Connection between differential privacy and adversarial robustness To clear any
possible confusion, we point out that a series of work including (Lecuyer et al., 2019; Li
et al., 2019; Cohen et al., 2019) connects DP and adversarial robustness in a totally different
manner than ours. To be specific, these work proposes the randomized smoothing algorithm
to preserve certified adversarial robustness but such algorithm is not privacy-preserving. In
fact, DP itself is not connected to adversarial robustness directly, but it motivates another
notion ‘pixelDP’ (see Lecuyer et al. (2019), which does not protect the privacy of data) that
leads to the certified robustness.

Models Vanilla Adversarial DP DP-Adv
training training training training

Clean accuracy High High High High
Robust accuracy Low High Low High

Privacy protection Low Low High High
Computation Efficiency High Low High Low

Memory Efficiency High High Low Low

Table 1: Performance of different training procedures.

Concurrent but different work We acknowledge the StoBatch algorithm (Phan et al.,
2020, restated in Algorithm 2) which simultaneously preserve DP and adversarial robust-
ness, through adversarial training and DP training. StoBatch (1) adds Laplacian noise
to the input as pre-processing (2) uses an auto-encoder to learn DP benign examples; (3)
attacks the benign examples with a random perturbation bound γ to obtain DP adversarial
examples; (4) privately trains on both DP benign and DP adversarial examples. The au-
thors achieve mediocre robust accuracy under weak attacks: around 85% robust accuracy
on MNIST with Fast Gradient Sign Method (FGSM, γ = 0.2). However, the clean accuracy
is low (10% lower than our DP-Adv) and the performance degrades severely on CIFAR10
or strong attacks. See the comparison in Section 4. Another related work is SecureSGD
(Phan et al., 2019), which provides adversarial robustness via the randomized smoothing of
a DP model. I.e., SecureSGD is a non-adversarial-training-based method. This approach is
empirically less competitive than StoBatch. In contrast to the state-of-the-art StoBatch,
our DP-Adv training is fundamentally different by removing all unnecessary randomness
to avoid harming the accuracy and to provide straight-forward privacy analysis: e.g. we
need no auto-encoder and we only train on the adversarial examples, same as the modern
adversarial training.

2 Background and Notations

In this section, we introduce the background knowledge and notations used throughout this
paper. Consider n samples xi, i ∈ [n], and an arbitrary classifier f(x; θ) : Rp → Rm, where
p is feature size (e.g. number of pixels in one image for computer vision) and m is the
number of classes. This classifier is parameterized by its weights and biases θ and outputs
the continuous logits from its input x. The actual classifier which outputs discrete classes is
F (x; θ) ≡ argmaxk[f(x; θ)]k ∈ [m]. True labels are denoted as y and the loss function as L.

2.1 Adversarial Robustness

Definition 2.1. Given a model f , the adversarial example of x is x+ ∆∗, where ∆∗ is the
optimal perturbation in the perturbation set U (e.g. U = {u ∈ Rp : ‖u‖p ≤ γ} for p = 0, 1, 2
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or ∞):

∆∗(x) := argmax∆∈UL(f(x + ∆; θ), y) (2.1)

A model is adversarially robust against an attack on U if such attack fails as F (x +
∆∗(x); θ) = F (x; θ). The robust (or adversarial) accuracy is

∑
i I(F (xi+∆∗(xi); θ) = yi)/n

and the clean accuracy is
∑
i I(F (xi; θ) = yi)/n.

Adversarial training, depicted in Algorithm 1 by removing step 6 and 8, is the backbone
of learning robust deep neural networks (Kurakin et al., 2016; Tramèr et al., 2017; Madry
et al., 2017; Athalye et al., 2018). We highlight that some sub-areas in adversarial training,
including new attackers and faster computation (Shafahi et al., 2019), are compatible with
our DP-Adv framework.

2.2 Differential Privacy

Differential privacy (Dwork et al., 2006) is a strong and mathematically rigorous guarantee
against privacy risks via randomized mechanisms.

Definition 2.2. A randomized algorithm M is (ε, δ)-DP, if for any two neighboring datasets
S, S′ that differ in an arbitrary single sample and for any event E,

P[M(S) ∈ E] ≤ exp(ε)P [M (S′) ∈ E] + δ.

In words, adding or removal an arbitrary sample from the dataset S has indistinguishable
effect on the final parameters of the neural networks. Needless to say, smaller (ε, δ) is
preferred. Algorithmically, DP optimizers add independent Gaussian noise to the gradients
in order to achieve DP. This is known as the Gaussian mechanism.

Lemma 2.3 (Theorem A.1 Dwork et al. (2014)). The `2 sensitivity of g is defined as ∆g =
supS,S′ ‖g(S) − g(S′)‖2 over all pairs of neighboring (S, S′). The Gaussian mechanism
ĝ(S) = g(S) + σ∆g · N (0, I) is (ε(σ, n, δ), δ)-DP, depending on the privacy accountant.

DP training, depicted in Algorithm 1 by removing step 4, has been widely applied in the deep
learning community, including image datasets (Abadi et al., 2016; Zhang et al., 2021), NLP
tasks, and federated learning (McMahan et al., 2017). We highlight that new techniques in
DP can be seamlessly merged into DP-Adv, e.g. new privacy accountants (Dong et al., 2021;
Gopi et al., 2021; Zhu et al., 2021) and new DP optimizers (Bu et al., 2021b;a).

3 Differentially private adversarial training

3.1 DP-Adv optimization problem

Since pre-processing of data (or data augmentation) does not affect the privacy of models,
DP-Adv in fact solves exactly the same optimization problem as the traditional adversarial
training (Madry et al., 2017, Equation (2.1)), training only on adversarial examples:

min
θ

max
∆:‖∆‖≤γ

L(f(x+ ∆; θ), y). (3.1)

For the inner maximization problem, we still utilize the non-DP regular optimizers, also
known as the attackers, to learn ∆. Some examples include FGSM (Goodfellow et al.,
2014), PGD (Madry et al., 2017) and OnePixel attack (Su et al., 2019),

attacker(xi, yi, f) := xi + ∆∗

where ∆∗ is the optimal perturbation defined in (2.1) and xi+∆∗ is the adversarial example
for the benign example xi. For the outer minimization problem, we apply the DP optimizers
such as DP-SGD or DP-Adam to learn θ. For instance, DP-SGD can be written as

θt+1 = θt −
ηt
n

(∑
i

∇θL(f(xi, θt), yi)

max{1, ‖∇θL(f(xi, θt), yi)‖2/R}
+ σR · N (0, I)

)
where the hyperparameters can be found in Algorithm 1. Interestingly, our DP-Adv problem
is similar but different to DP GAN which learns minG maxD L(G,D) where G is the genera-
tor and D is the discriminator. Note that only D is learned privately. At high level, DP-Adv
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is learning minD maxG L(G,D) and also only D is learned privately. The difference is that
the output of G in data-dependent in DP-Adv and D is learning data-label pairs instead of
pairs of examples (hence D is a classifier but not a discriminator).

Remark 3.1. The combination of DP and adversarial training requires extra caution. For
example, no batch normalization can be used in the network as it violates DP. Another line
of adversarial training (Kurakin et al., 2016) uses both benign and adversarial examples for
training: for some constant ξ ≥ 1, the loss function is

L̂(B,Badv, θ) =
1

|B|+ ξ|B|adv

( ∑
xi∈B

L
(
f(xi, θ), yi

)
+ ξ

∑
xadv
j ∈Badv

L
(
f(xadv

j , θ), yj
))
.

This makes the privacy accounting difficult due to the complicated sensitivity analysis.

3.2 DP-Adv training algorithm

Combining the two optimization procedures above, we propose the complete DP-Adv training
algorithm. Here we only present the special case of DP-SGD in Algorithm 1. We leave the
more general case (e.g. with DP-Adam) and a fully-detailed version with PGD attack in
Appendix A.

Algorithm 1 Differentially Private Adversarial Training [DP-Adv]

Parameters: initial weights θ0, learning rate ηt, subsampling probability q, number of
iterations T , perturbation bound γ, noise scale σ, gradient norm bound R.

1: for t = 0, . . . , T − 1 do
2: Subsample a batch Bt ⊆ {1, . . . , n} with subsampling probability q
3: for i ∈ Bt do
4: xi ← attacker(xi, yi, f ; γ) . Generate adversarial example
5: gi ← ∇θL(f(xi, θt), yi)
6: gi ← gi ·min

{
1, R/‖gi‖2

}
. Clip the per-sample gradient

7: gt ←
∑
i∈Bt

gi
8: gt ← gt + σR · N (0, I) . Apply Gaussian mechanism
9: θt+1 ← θt − ηt

|Bt|gt

The choices of adversarial attack and DP optimizer are flexible. In particular, one only
needs to change line 5-9 in Algorithm 1 to use another DP optimizer, or line 4 to use
another attacker. In comparison, we present StoBatch in Phan et al. (2020).

Algorithm 2 StoBatch

Parameters: initial weights θ0 and W0, learning rate ηt, number of iterations T , neural
network f with randomized first hidden layer (adding Noise2 to the forward propagation).

1: for t = 0, . . . , T − 1 do
2: Subsample a batch Bt ⊆ {1, . . . , n} and a sub-batch bt ⊆ Bt
3: for i ∈ Bt do
4: x̄i ← xi + Noise1

5: gi ← ∇θL(f(x̄i, θt), yi)
6: hi ← w>t x̄i, h̄i = hi + 2 ·Noise1 . Perturbed hidden layer representation

7: for i ∈ bt do
8: Draw random perturbation bound γ ∈ (0, 1].
9: x̄advi ← attacker(x̄i, yi, f ; γ) . Generate adversarial example

10: gadv
i ← ∇θL(f(x̄adv

i , θt), yi)

11: gt ←
∑
i∈Bt

gi
12: gadv

t ←
∑
i∈bt g

adv
i

13: θt+1 ← θt − ηt
|Bt|+ξ|bt| (gt + ξgadv

t ) + Noise3 . Descend of neural network

14: Wt+1 ←Wt − ηt
∑
x∈{x̄i,x̄adv

i }
∂R(x;h̄,Wt)

∂Wt
. Descend of linear auto-encoder

where R(xi; h̄i,W ) :=
∑
j∈[p]

1
2Wj h̄i− x̄iWh̄i is the reconstruction error of the linear auto-

encoder and Wthi is the reconstruction of xi.
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3.3 Privacy Guarantee

Theorem 1. DP adversarial training (DP-Adv) is as (ε, δ)-DP as regular DP training.

Proof of Theorem 1. By Lemma 2.3, it suffices to show that the `2 sensitivity of
∑
i g

(i)
t is

R, the same as in the regular DP. The rest of the proof follows since the noise magnitude
σR is proportional to R and thus (ε, δ) does not depend on R. The sensitivity of adversarial
examples is indeed guaranteed by the per-sample gradient clipping.

In other words, line 4 (the existence of adversarial example) does not affect DP: each benign
example is replaced by exactly one adversarial example and the sensitivity is bounded by the
gradient clipping. In contrast, Stobatch (Phan et al., 2020) also uses the benign examples in
training. Additional noises are required to make them private at the cost of lower accuracy.

To be specific, we consider two commonly applied privacy accountants: moments accountant
(Abadi et al., 2016) and Gaussian DP (Dong et al., 2021; Bu et al., 2020).

Corollary 3.2 (adapted from Theorem 1, Abadi et al., 2016). There exist constants c1 and
c2 so that given the sampling probability q = |Bt|/n and the number of iterations T , for any

ε < c1q
2T , DP-Adv is (ε, δ)-DP, for any δ > 0 if we choose σ ≥ c2q

√
T log(1/δ)/ε.

Corollary 3.3 (adapted from Bu et al., 2020). Given the sampling probability q = |Bt|/n
and the number of iterations T , DP-Adv is asymptotically µ-GDP with µ = q

√
T (e1/σ2 − 1).

Equivalently, DP-Adv is (ε, δ)-DP for any δ > 0 and δ = Φ(− ε
µ + µ

2 ) + eεΦ(− ε
µ −

µ
2 ).1

4 Experiments

We conduct experiments on MNIST, CIFAR10 and CelebA datasets to demonstrate the
superior performance of DP-Adv. We emphasize that our framework works flexibly with
other DP optimizers such as DP-Adam, DP-SGD-JL (Bu et al., 2021a), DP-SGD with
global clipping (Bu et al., 2021b), DP-FedSGD (McMahan et al., 2017), as well as other
attack methods, among which we cover FGSM and PGD (l2 and l∞, denoted in subscript).

4.1 Comparison with previous arts

We compare our DP-Adv training with the existing methods that guarantee both DP and ad-
versarial robustness on the MNIST dataset2: StoBatch by Phan et al. (2020) and SecureSGD
by Phan et al. (2019). We use FGSM attack for defense as reported in Phan et al. (2020) with
l∞(0.2), i.e. the perturbation set is ‖∆‖∞ ≤ 0.2. We highlight that in all four DP methods,
the DP optimizer is the DP-SGD from Abadi et al. (2016). Both SecureSGD and StoBatch
uses a two-layer CNN and hyperparameters from Phan et al. (2020) but other methods use
a different two-layer CNN (Abadi et al., 2016; Papernot et al., 2020) for best performance.
Here Adv means regular adversarial training. Experiment details are in Appendix B.

Method Clean accuracy Robust accuracy ε
SecureSGD 38.5% 39.1% 0.2
StoBatch 83.4% 82.7% 0.2
DP-SGD 94.5% 55.7% 0.2
DP-SGD 97.2% 63.0% 1
DP-SGD 97.6% 64.3% 2
DP-Adv 94.0% 74.0% 0.2
DP-Adv 97.3% 86.0% 1
DP-Adv 97.8% 89.1% 2

SGD 99.1% 67.8% ∞
Adv 99.2% 95.3% ∞

Table 2: Comparison of robustness and privacy by
different methods on MNIST, under FGSM l∞(0.2).
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Figure 2: Clean and robust ac-
curacy when ε = 0.2. The cross
means not DP.

1Here Φ is the cumulative distribution function of standard normal distribution.
2MNIST is a black-white image dataset of digits with 60000 training and 10000 testing examples,

each of dimension 28 × 28.
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Further experiments on MNIST demonstrate that SecureSGD achieves 62% and 77% robust
accuracy at ε = 1 and 2, respectively; StoBatch achieves 84% and 89% robust accuracy
at the same privacy levels. From Table 2, we see from the viewpoint of robust accuracy
that, our DP-Adv improves on StoBatch and much more on SecureSGD, while being slightly
lower than non-DP adversarial training. In particular, DP-Adv significantly outperforms
the state-of-the-art StoBatch on the clean accuracy by > 10%, due to our concise design
without adding 3 types of noises as in StoBatch, Algorithm 2.

4.2 MNIST with further experiments

We further evaluate DP-Adv with various attacks on MNIST. We consider two most popular
l∞(0.2) attacks, FGSM and PGD. We also test l2(1) attacks such as PGD-L2 and CW, but
the latter is not effective even on neural networks without adversarial training. Omitted
experiments can be found in Appendix C. From Figure 3, non-robust training (SGD or DP-
SGD) has high clean accuracy above 96% but low robust accuracy, below 40%. In contrast,
DP-Adv preserves high clean accuracy and 80% robust accuracy with strong privacy ε = 1.
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Figure 3: Training against PGD∞(0.2) attack on MNIST, with ε = 1.

4.3 Transferability

We investigate the transferability and calibration of DP and/or adversarially robust algo-
rithms. Transferability is a measure of the robustness of models under various attacks,
especially those which the models have not been trained to defend against.

From Table 3, we observe that DP-Adv and Adv both enjoy transferable defense: for instance,
when adversarially trained with PGD∞, the models automatically learn to defend against
unseen attacks like BIM (Kurakin et al., 2016), APGD (Croce & Hein, 2020) and AutoAttack
(Croce & Hein, 2020). We only present l∞ attacks here and leave l2 attacks on MNIST in
Appendix C, where transferability of DP-Adv is consistently observed.

Defense/Attack Clean FGSM∞ PGD∞ BIM∞ APGD∞ AutoAttack∞
SGD 99.1% 67.8% 33.0% 40.6% 28.9% 27.7%

DP-SGD 97.2% 63.0% 28.0% 36.9% 20.6% 18.7%
Adv+FGSM∞ 99.2% 95.3% 92.4% 93.1% 92.2% 91.9%

DP-Adv+FGSM∞ 97.3% 86.0% 80.0% 81.5% 78.4% 78.3%
Adv+PGD∞ 99.2% 93.8% 92.3% 92.6% 91.8% 91.7%

DP-Adv+PGD∞ 97.4% 85.5% 81.4% 82.2% 80.6% 80.4%
Adv+PGD2 99.3% 92.5% 90.0% 90.6% 89.2% 89.0%

DP-Adv+PGD2 97.3% 83.9% 76.3% 78.1% 74.5% 74.1%

Table 3: Accuracy from different defense and l∞(0.2) attacks on MNIST, with ε = 1.

4.4 CIFAR10 with pre-training

We experiment with CIFAR103, a more challenging dataset on which deep learning models
deteriorate their robust accuracy close to zero, and the state-of-the-art accuracy with DP
is less than 60%. In fact, it is a common practice to pre-train DP models, thus boosting
about 10% DP accuracy on CIFAR10. In our experiments, we pre-train a two-layer CNN
from Abadi et al. (2016), see Appendix B.2, on CIFAR100 for 10 epochs before privately
train on CIFAR10.

3CIFAR10 is a colored image dataset of objects from 10 classes, with 50000 training examples
and 10000 testing ones, each of dimension 32 × 32.
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From Table 4, DP-Adv achieves moderately worse clean accuracy than other methods in
order to achieve the strong robustness and privacy guarantees. As a tradeoff, DP-Adv’s
robust accuracy is about 10% lower than non-DP Adv training. On the bright side, we
again observe the transferability of DP-Adv in Appendix C, preserving adversarial robustness
against PGD, APGD and AutoAttack.

Method SGD DP-SGD Adv DP-Adv Adv DP-Adv Adv DP-Adv
(FGSM) (FGSM) (PGD∞) (PGD∞) (PGD2) (PGD2)

Clean accuracy 69.0% 64.0% 64.3% 51.4% 66.9% 55.7% 63.3% 54.3%
Robust accuracy 17.7% 18.1% 41.5% 32.7% 40.0% 30.0% 44.5% 37.6%

Table 4: Accuracy by different methods on CIFAR10, under l∞(4/255) or l2(100/255).
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Figure 4: Training against PGD∞(4/255) attack on CIFAR10, with ε = 1.

4.5 Calibration

We also look into the calibration issue of modern neural networks (Guo et al., 2017), which
are known to suffer from over-confidence: predicting with high probability but only low
accuracy. Popular measures of calibration include negative log-likelihood (NLL)4, expected
calibration error (ECE) and maximum calibration error (MCE). It is empirically observed
that (1) DP models tend to be less calibrated (Bu et al., 2021b) and (2) pre-training mitigates
mis-calibration (Hendrycks et al., 2019). Our experiments support these observations in the
DP and robust regime. In addition, we find that adversarial training also worsens the
calibration in Figure 5, which can be significantly mitigated by pre-training in Figure 6.
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Figure 5: Reliability diagrams on MNIST (without pre-training). Left: non-DP SGD. Mid:
non-DP Adv by PGD∞. Right: DP-Adv by PGD∞.
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Figure 6: Reliability diagrams on CIFAR10 (with pre-training). Left: non-DP SGD. Mid:
non-DP Adv by PGD∞. Right: DP-Adv by PGD∞. For further comparison, see Figure 10.

In Table 6 and Table 5, we observe notable increase of NLL, ECE and MCE on MNIST by
DP and/or adversarial training, which is signicantly mitigated or even improved upon by
methods using pre-training on CIFAR10.

4In the optimization literature, NLL can be viewed as the loss function, e.g. cross-entropy or
mean squared error.

8



Under review as a conference paper at ICLR 2022

Method NLL ECE MCE
SGD 1.17 16.6% 27.6%

DP-SGD 1.39 16.5% 26.9%
Adv+FGSM 1.06 6.5% 13.5%

DP-Adv+FGSM 1.36 4.4% 9.8%
Adv+PGD∞ 0.96 5.7% 10.5%

DP-Adv+PGD∞ 1.33 3.5% 8.1%
Adv+PGD2 1.07 2.6% 9.2%

DP-Adv+PGD2 1.31 4.4% 11.8%

Table 5: Calibration metrics of different meth-
ods on CIFAR10, with ε = 1.

Method NLL ECE MCE
SGD 0.026 9.6% 37.5%

DP-SGD 0.027 6.4% 17.5%
Adv+FGSM 0.092 13.7% 67.5%

DP-Adv+FGSM 0.087 13.0% 67.5%
Adv+PGD∞ 0.099 14.2% 72.5%

DP-Adv+PGD∞ 0.091 10.1% 29.6%
Adv+PGD2 0.098 9.0% 29.6%

DP-Adv+PGD2 0.091 8.7% 17.0%

Table 6: Calibration metrics of different meth-
ods on MNIST, with ε = 1.

4.6 CelebA: Multi-label classification on Real Face dataset
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Figure 7: Robust accuracy of training against FGSM(0.1) attack on CelebA, with ε = 1.

To test our DP-Adv on real-world scenario, we experiment on the CelebA dataset5 containing
real human faces. Each face image is tagged with 40 labels describing the face: e.g. male
or female, smiling or not, young or old. Our model is two-layer CNN (see Appendix B). We
pre-process by resizing and center-crop to 64× 64 and normalizing the image. As expected,
non-adversarially-trained methods (SGD and DP-SGD) are not robust, for instance, giving
40-50% accuracy on predicting smiling or not under FGSM attack. DP-Adv achieves about
80-90% robust accuracy across all labels. We highlight that, unlike on CIFAR10, where
DP-Adv is usually 10% less in robust accuracy than Adv, the gap is much smaller on CelebA
(about 5% gap with high accuracy). This result implies the promising application of DP-Adv
in practice when there is a sufficient amount of data.

5 Conclusion
In this paper, we lay down the DP-Adv framework to simultaneously guarantee the privacy
and adversarial robustness in deep learning. Our framework is flexible to absorb other
attacking strategies (e.g. attacking optimizer, targeted or untargeted attack) and DP meth-
ods (e.g. new optimizer or privacy accountant). Especially, our method is practical in three
ways: DP-Adv is concise in design and outperforms existing methods in performance as well
as complexity; DP-Adv is as private as DP training and, in terms of wall-clock time, as fast as
adversarial training; DP-Adv demonstrates strong performance on large-scale real datasets
while being compatible to calibration techniques (e.g. pre-training and temperature scaling),
thus delivering accurate, private, robust and calibrated models.

5CelebA is a colored image dataset, with 200000 examples which we split into 180000 training
and 20000 testing examples. Each image is associated with 40 binary labels and of dimension
218 × 178.
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