DISCONTINUITY-PRESERVING IMAGE SUPER-RESOLUTION VIA MAP-REGULARIZED ONE-STEP DIFFUSION

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033 034

035

037

038

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

We propose a real-world image super-resolution framework that leverages a pretrained text-to-image Stable Diffusion model optimized for single-step sampling. Unlike traditional multi-step diffusion-based methods, which are computationally intensive, our approach enables fast inference while preserving high perceptual quality. To this end, we integrate a lightweight image enhancement module trained jointly with the diffusion model under a Maximum A Posteriori (MAP) formulation. The optimization includes a compound Markov Random Field (MRF) prior, derived from the anticipated discontinuity line field energy, which functions as a structural regularizer to preserve fine image details and facilitate deblurring. Existing single-step diffusion approaches often rely on distillation or noise map estimation, which limits their ability to generate rich pixel-space details. In contrast, our method explicitly models high-frequency line field consistency between the low- and high-resolution domains, guiding the image enhancer to reconstruct sharp outputs. By preserving and enhancing structural features such as edges and textures, our framework effectively handles complex degradations commonly encountered in real-world scenarios. Experimental results demonstrate that our method achieves performance that is comparable to or exceeds that of state-ofthe-art single-step and multi-step diffusion-based image super-resolution methods qualitatively, quantitatively, and computationally.

1 Introduction

Image super-resolution (ISR) Chen et al. (2023a); Liang et al. (2022a); Wang et al. (2018); Liang et al. (2021); Zhang et al. (2018; 2022); Geman & Geman (1984) is a fundamentally important and inherently ill-posed inverse problem that has been actively studied since before the advent of deep learning, and continues to remain a compelling and challenging research topic. The objective of ISR is to reconstruct a high-quality (HQ) image from its corresponding low-quality (LQ) counterpart, which typically suffers degradation due to factors such as noise, blur, and aliasing—leading to the loss of high-frequency details critical for perceptual quality. Early ISR methods Dong et al. (2014); Liang et al. (2021); Zhang et al. (2022; 2018) typically assumed a simplified degradation model comprising a fixed sequence of operations—namely, blurring, downsampling, and the addition of white Gaussian noise. However, such models often fail when confronted with complex, unknown degradations, particularly when the degradation process is nonlinear or contains highly uncertain combinations of distortions. To address this limitation and move closer to real-world scenarios, the field has increasingly shifted toward real-world image super-resolution (Real-ISR) Zhang et al. (2021); Wang et al. (2021), which acknowledges that real image degradations are far more complex and diverse. In this setting, reconstructing an HQ image from an LQ input becomes significantly more challenging due to substantial information loss—especially in the high-frequency content of RGB images and aliasing. To simulate such real-world degradations during training, pioneering works such as BSRGAN Zhang et al. (2021) and Real-ESRGAN Wang et al. (2021) proposed degradation pipelines involving multiple sequential high-order distortions applied in random order. As a result, the trained model can better generalize to unseen, complex degradations and infer a plausible high-resolution reconstruction. The core objective of real-ISR in such settings is to remove blur, suppress noise, and perform accurate upsampling with anti-aliasing, thereby recovering fine

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

880

089 090

091

092

093

094

095

096

098

100

101

102

103

104

105

106 107 structural details. It is now well recognized that training with simple pixel-wise loss functions is insufficient; although such losses may reduce noise and perform upsampling, they often result in overly smoothed and perceptually unconvincing reconstructions Ledig et al. (2017); Wang et al. (2018). To effectively capture the statistics of natural HQ images, early deep learning-based ISR methods introduced various architectural innovations Dong et al. (2018) along with specialized loss functions. With the rise of generative models, particularly Generative Adversarial Networks (GANs), the super-resolution community adopted adversarial training frameworks for real-ISR Ledig et al. (2017); Wang et al. (2021); Liang et al. (2022a); Wei et al. (2020). In this paradigm, the generator network is trained to produce HQ images, while the discriminator evaluates the realism of these outputs, encouraging the generator to synthesize images that closely approximate natural textures and structures. The incorporation of GANs brought substantial improvements in visual fidelity and realism of super-resolved outputs. However, adversarial training also introduced new challenges: the generated images sometimes contained hallucinated details or artifacts that were inconsistent with the underlying ground truth, potentially deviating from the true image content and introducing misleading features.

The subsequent evolution of generative models has been significantly shaped by diffusion models Ho et al. (2020); Song et al. (2020b), which have gained prominence due to their superior training stability and more reliable image generation compared to GANs. The adaptation of diffusion models to operate in latent space has further enabled high-resolution image synthesis, while introducing modular conditioning mechanisms—such as text, sketches, or semantic maps—that enhance control over the generative process Rombach et al. (2022); Saharia et al. (2022). As a result, super-resolution tasks have also benefited from these advancements, enabling finer control over image restoration with an emphasis on preserving specific features. Among diffusion-based frameworks, Stable Diffusion (SD) Rombach et al. (2022) stands out for being trained on a large-scale dataset of text-image pairs, thereby capturing rich natural image priors. Its capacity to generate photorealistic images has opened up opportunities to adapt and modularize the model for Real-ISR. Building on this, several methods Wang et al. (2024a); Lin et al. (2024); Wu et al. (2024b); Yang et al. (2024); Yu et al. (2024) have leveraged pretrained SD pipelines to improve the perceptual realism and structural fidelity of Real-ISR outputs, pushing the performance beyond the limitations of GAN-based approaches. Despite these advancements, a significant limitation of diffusion-based methods lies in the slow inference time and uncontrolled image sharpening inherent to DDPM Ho et al. (2020). Achieving high-fidelity image generation typically necessitates a large number of iterative denoising steps, resulting in a computationally intensive and time-consuming sampling process during inference—an undesirable characteristic for practical applications. Although alternatives like the DDIM Song et al. (2020a) mitigate this by removing the Markovian assumption and reducing sampling time, they often compromise image quality, especially when using fewer sampling steps. Thus, there exists an inherent trade-off between sampling efficiency and the perceptual quality of the generated images in diffusion-based Real-ISR.

To strike a balance between inference speed and output image quality, we propose **D**iscontinuity Preserving MAP-optimized Image Super-Resolution (DMAPSR), a framework that enables highquality image generation using a single diffusion step. This is achieved by introducing an additional module, termed the image quality enhancer, which operates alongside a pretrained SD model. To address the challenge of oversmoothed or low-detail outputs typically associated with fast inference in diffusion models, we incorporate a Markov Random Field (MRF) energy term with appropriate relaxation to the original image content into the pipeline. This MRF prior acts as a structural regularizer, encouraging the preservation of fine-grained details in the low-quality input and promoting alignment with known natural image priors learned by the pretrained model. Specifically, the linefield based regularization within the MRF prior enforces the retention of important discontinuities and edges, ensuring that critical structures in the low-resolution image are preserved and enhanced in the final output. The image quality enhancer is trained jointly with the frozen noise predictor from SD, optimizing a loss that encourages the corrected sample to yield accurate noise estimates and visually rich reconstructions. This combination enables a single-step sampling process that significantly accelerates inference while maintaining fidelity and perceptual quality. Extensive experiments demonstrate that our approach achieves strong quantitative and qualitative performance in super-resolution tasks, still offering over a 100× speedup compared to conventional multi-step diffusion models.

2 Related work

108

109 110

111

112

113

114

115 116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137 138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154 155 156

157158

159

160

161

Deep learning and GAN-based ISR. Early deep learning-based ISR methods Chen et al. (2021; 2023b;a); Dai et al. (2019); Zhang et al. (2022) primarily addressed the problem under fixed and simplistic degradation models, which limited their applicability in real-world scenarios. In response to the need for more realistic modeling, BSRGAN Zhang et al. (2021) and Real-ESRGAN Wang et al. (2021) introduced more sophisticated GAN-based frameworks designed to handle complex and diverse degradation patterns encountered in practice. These advancements led to a notable improvement in visual quality and subsequently inspired a series of follow-up studies Chen et al. (2022a); Liang et al. (2022a;b); Xie et al. (2023) exploring variations of GANs tailored for real-ISR. While these approaches demonstrated improvements, GAN-based models inherently suffer from instability during training due to the adversarial learning framework, which involves simultaneous optimization of generator and discriminator networks. Additionally, the HQ images produced often contain unnatural textures and hallucinated artifacts, which undermine their fidelity and realism.

Diffusion prior for real-ISR. Diffusion models, formulated either through stochastic differential equations (SDEs) Song et al. (2020b) or denoising diffusion probabilistic models (DDPMs) Ho et al. (2020), have demonstrated impressive results in text-to-image generation and have subsequently been adapted for a variety of image restoration tasks. With the emergence of SD, which leverages latent-space modeling and text-conditioned priors, the pretrained text-to-image (T2I) Stable Diffusion pipeline Rombach et al. (2022) has been increasingly adopted for Real-ISR tasks Lin et al. (2024); Wang et al. (2024a); Yang et al. (2024); Wu et al. (2024b); Yu et al. (2024). Some of these methods generate high-resolution images directly from noise using fine-tuned adapters Zhang et al. (2023), conditioning on LQ inputs in the latent space. Another set of methods, including DDRM Kawar et al. (2022), CCDF Chung et al. (2022), and DDNM Yang et al. (2021), as well as others Chen et al. (2023a); Csiszár (1975); Wang et al. (2022); Zhang et al. (2023), explore optimization within the latent space by applying controlled degradations to the LQ image and reconstructing HQ outputs. However, these approaches often involve lengthy sampling procedures and are limited by their dependence on fixed degradation models, reducing their flexibility in real-world settings. Despite the progress achieved by these methods, most diffusion-based super-resolution pipelines remain computationally intensive due to their reliance on multi-step sampling procedures, and they often fail to match the level of fine-grained detail produced by comprehensive multi-step diffusion processes.

One step Real-ISR. Several methods have attempted to extend multi-step inference-based Real-ISR pipelines to single-step alternatives by incorporating additional refinement strategies. For instance, SinSR Wang et al. (2024b) reduces the four-step ResShift process to a single-step inference by employing a distillation technique that preserves structural information. However, it still falls short in reproducing the fine details typically obtained through multi-step diffusion priors. Similarly, OSEDiff Wu et al. (2024a) leverages variational score distillation as a regularizer to fine-tune SD using LoRA-based adaptation. Another line of work, known as InvSR Yue et al. (2024), focuses on optimizing a set of noise maps that the model can learn to estimate. At inference time, these maps are used to perform the reverse diffusion in a single step. DDIM Song et al. (2020a) was the first method to relax the Markovian assumption inherent in standard diffusion models, enabling the sampling process to incorporate information from both the previous time step and an estimated denoised sample. This reformulation results in a more deterministic and controllable sampling trajectory, thereby significantly improving sampling efficiency and reducing inference time. Building on this, BIRD Chihaoui et al. (2024) further accelerated the DDIM framework by omitting updates to intermediate latent representations during the reverse process, once an initial noise estimate is obtained. Despite these innovations, most of these approaches primarily focus on tweaking internal image representations or conditioning and often fail to deliver perceptually compelling results for high-quality Real-ISR, particularly in scenarios requiring fine structural and texture detail.

3 Method

3.1 ONE-STEP DIFFUSION:

Denoising Diffusion Probabilistic Models (DDPMs) generate high-quality images by modeling a forward diffusion process in which an initial clean image x_0 is gradually transformed into pure Gaussian noise $x_T \sim \mathcal{N}(0, \mathbf{I})$ through a sequence of intermediate states $\{x_t\}_{t=1}^T$. This is achieved by

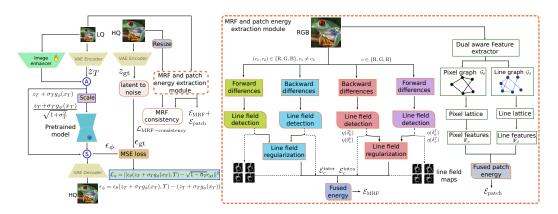


Figure 1: The overall framework of DMAPSR is illustrated as follows: the LQ image is first processed by a VAE encoder and an image enhancer, which together map the image into a latent space tailored for one-step diffusion. The image enhancer is trained to preserve structural discontinuities by minimizing a MAP-optimized MRF energy, complementing the generative capacity of the pretrained SD model. For noise estimation, only the residual noise is learned by the image enhancer, obtained by subtracting the noise predicted by the pretrained SD model. Prior to inputting into SD, both the latent representation from the SD autoencoder and the features from the image enhancer are scaled appropriately to ensure compatibility. Box with the dotted line of the left side is defined elaborately on right side.

incrementally injecting noise at each time step $t \in [1,T]$. To reverse this process and reconstruct the original image, a neural network ϵ_{θ} is trained to predict the noise component at each diffusion step. In our framework, we begin with a pretrained noise prediction model $\epsilon_{\theta}(x_t,t)$ such as SD, trained via denoising score matching. During training, the model is optimized by minimizing the following objective:

$$\nabla_{\theta} ||\epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t)||^2$$

where the noisy sample is defined as: $x_t \simeq \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$. From this, we obtain an estimate of the original clean sample \hat{x}_0 as, $\hat{x}_0 \simeq \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon)$. Given a pretrained noise predictor $\epsilon_{\theta}(x_t,t)$, the reverse diffusion step in a typical DDPM is expressed as:

$$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right) + \sigma_t z = \mu_{\theta}(x_t, t) + \sigma_t z \tag{1}$$

Here $z \sim \mathcal{N}(0, I)$ and $\sigma_t^2 = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} (1 - \alpha_t)$. Here $\mu_{\theta}(x_t, t)$ represents the predicted mean of the denoised distribution. In contrast, DDIM modify this sampling process to be non-Markovian and potentially deterministic. The DDIM update rule is given by:

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(x_t, t)}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \epsilon_{\theta}(x_t, t) + \sigma_t z$$
 (2)

By setting $\sigma_t = 0$, becomes a deterministic process, enabling faster sampling. In this case, the estimate \hat{x}_0 and the subsequent update simplifies to:

$$\hat{x}_0 = \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(x_t, t)}{\sqrt{\bar{\alpha}_t}} , \quad x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{x}_0 + \sqrt{1 - \bar{\alpha}_{t-1}} \cdot \frac{x_t - \sqrt{\bar{\alpha}_t} \hat{x}_0}{\sqrt{1 - \bar{\alpha}_t}}$$
(3)

To further accelerate the generation process, we propose a single-step formulation by approximating x_0 directly from the final noisy sample x_T . Specifically, we define: $x_0' = x_T + \sigma_T g_\phi(x_T)$ where g_ϕ is a learnable image enhancement network that refines the noisy input x_T to approximate the clean sample x_0 . Rather than predicting the noise ϵ for multiple diffusion steps, we aim to directly map x_T to a corrected sample x_0 such that the pretrained noise predictor ϵ_θ accurately estimates the corresponding noise. The final loss used to train g_ϕ is defined as:

$$\mathcal{L}_{\phi} = ||\epsilon - \epsilon_{\theta}(x_T - \sigma_T g_{\phi}(x_T), T)||^2 \tag{4}$$

which ensures that the modified input $x_T + \sigma_T g_\phi(x_T)$ yields a consistent noise estimate under the frozen pretrained model ϵ_θ . This approach effectively collapses the multi-step DDIM sampling into a single forward pass of g_ϕ , enabling significantly faster inference while maintaining image fidelity through alignment with the original noise prediction objective.

3.2 REAL-ISR AS MAP ESTIMATION:

 Degradation and MAP formulation. We formulate the real-ISR as Maximum A Posteriori (MAP) estimation, where the goal is to recover the most probable HQ image $\mathbf{X} \in \mathbb{R}^{c \times H_x \times W_x}$ given a LQ observation $\mathbf{Y} \in \mathbb{R}^{c \times H_y \times W_y}$. The MAP estimate seeks to maximize the aposteriori:

$$\hat{\mathbf{X}}_{\text{MAP}} = \arg \max_{\mathbf{X}} \log \mathbb{P}(\mathbf{X}|\mathbf{Y}) = \arg \max_{\mathbf{X}} \log \mathbb{P}(\mathbf{Y}|\mathbf{X}) + \log \mathbb{P}(\mathbf{X})$$
 (5)

Here, $H_y = H_x/k$, $W_y = W_x/k$, where $k \in \{2,4,8\}$ and $c \in \{R,G,B\}$. $\mathbb{P}(\mathbf{Y}|\mathbf{X})$ denotes the likelihood and $\mathbb{P}(\mathbf{X})$ denotes the apriori. Real-ISR problem takes the generalized degradation operator Gao & Zhuang (2022) as $\mathbf{Y} = \mathcal{D}_{\psi}(H(\mathbf{X})) \odot \mathcal{N}$ Where \mathcal{D}_{ψ} is a parameterized downsampling kernel, H includes aliasing, smoothing, and sparsity priors, and $\mathcal{N} \sim (\mu, \sigma^2)$ denotes additive white Gaussian noise, assumed independent of the underlying Markov structure. The operator \odot denotes element-wise application, which may reduce to addition Gao & Zhuang (2022) in practical scenarios.

Prior as an MRF: Gibbs Distribution over Pixel-Line Lattice. We model the image prior $\mathbb{P}(\mathbf{X})$ as a MRF Geman & Geman (1984); Rajagopalan & Chaudhuri (2002) defined over a lattice comprising both image pixel sites and their corresponding dual line sites, with dependencies captured through horizontal and vertical discontinuity fields, referred to as the respective line fields. Let Z_m denote the set of image pixel-sites with each channel of intensity values $\{F_{i,j} = f_{i,j}; (i,j) \in Z_m\}$ denoted as $\{F = f\}$. Here, $\mathcal{F} = \{\mathcal{F}_{i,j}, (i,j) \in Z_m\}$ denote the neighborhood system, where, $\mathcal{F}_{i,j} = \{(k,l); (k,l) \subseteq Z_m\}$ is the neighbour of (i,j). then $\{\mathcal{F}, Z_m\}$ forms an MRF. The full site set is defined as $\mathcal{S} = Z_m \cup D_m$, where D_m represents line-sites capturing spatial transitions. Hence we get an extended neighborhood system $\{\mathcal{G} = \mathcal{G}_s, s \in S\}$, and express the joint prior over both pixel and dual line variables (f,l) as a Gibbs distribution: $\mathbb{P}(F = f, L = l) = \frac{1}{Z}e^{-\mathcal{E}(f,l)}$, where $\mathcal{E}(f,l) = \sum_{c \in \mathcal{C}} V_c(f,l)$ is the energy function over cliques \mathcal{C} of the graph \mathcal{G} , and V_c is the clique potential defined over elements $s \in c$. The partition function \mathcal{Z} ensures proper normalization: $\mathcal{Z} = \sum_{(f,l)} e^{-\mathcal{E}(f,l)}$. Hence the the posterior distribution becomes: $\mathbb{P}(f,l|m) \propto e^{-\mathcal{E}^P(f,l)}$, with $m = \{\mathcal{D}_{\psi}, H, \mathcal{N}\}$ and corresponding posterior Gibbs distribution over $\{\mathcal{S}, \mathcal{G}^P\}$, with energy,

$$\mathcal{E}^{P}(f, l) = \mathcal{E}(f, l) + \text{KL}[\mathbb{P}_{\mathbf{Y}|\mathbf{X}}(m|f, l)||\mathbb{P}_{\mathbf{X}}(f, l)]$$
(6)

The second term enforces consistency between the prior and the likelihood, analogous to variational inference, by minimizing the KL divergence.

$$\mathrm{KL}[\mathbb{P}_{\mathbf{Y}|\mathbf{X}}(m|f,l)||\mathbb{P}_{\mathbf{X}}(f,l)] = \mathbb{E}_{\mathbf{Y} \sim \mathbb{P}(\mathbf{Y}|\mathbf{X})}[\log \frac{\mathbb{P}_{\mathbf{Y}|\mathbf{X}}(m|f,l)}{\mathbb{P}_{\mathbf{X}}(f,l)}] = \mathbb{E}_{\mathbf{Y}|\mathbf{X}}[\mathcal{E}_{\mathbf{X}}(f,l) - \mathcal{E}_{\mathbf{Y}}(f,l)] + C$$

Where $C = \log \frac{Z_X}{Z_Y}$. We interpret this as the MRF consistency loss, which enforces alignment between the prior distribution and the likelihood.

$$\mathcal{L}_{\text{MRF-consistency}} = \mathbb{E}_{\mathbf{Y}|\mathbf{X}} [\mathcal{E}_{\mathbf{X}}(f,l) - \mathcal{E}_{\mathbf{Y}}(f,l)]$$
 (7)

To regularize the prior, we use a patch energy term that enforces local consistency between pixel sites and the line sites features. Let \mathbf{F}_p and \mathbf{F}_d denote the extracted pixel site and line site features from the pixel lattice and line lattices Geman & Geman (1984); Rajagopalan & Chaudhuri (2002), respectively, and let $\beta(\cdot, \cdot)$ be a concatenation or fusion operator acting on co-located features. The patch energy is defined as,

$$\mathcal{E}_{\text{patch}} = \mathbb{E}_{u \in \Omega_x} \left[\|\beta(\mathbf{F}_p^{(b)}, \mathbf{F}_d^{(b)})_u\|_2^2 \right]$$
 (8)

This term promotes spatial coherence by penalizing local feature disparities.

MRF energy: To model spatial discontinuities in the image, we define horizontal and vertical difference operators for the c-th image channel $\mathbf{X}_c \in \{\mathbf{X}_R, \mathbf{X}_G, \mathbf{X}_B\}$. The horizontal and vertical differences at spatial index (i,j) are given by, $\Delta_h^c(x_{i,j}) = x_{i,j}^c - x_{i,j+1}^c$ and $\Delta_v^c(x_{i,j}) = x_{i,j}^c - x_{i+1,j}^c$. These differences are used to define the line fields—binary discontinuity indicators—for each channel via a hard threshold τ . The horizontal $(v_{i,j}^c)$ and vertical $(l_{i,j}^c)$ line fields are given as:

$$v_{i,j}^c = \begin{cases} 1, & \text{if } |\Delta_h^c(x_{i,j})| > \tau \\ 0, & \text{otherwise} \end{cases}, \quad l_{i,j}^c = \begin{cases} 1, & \text{if } |\Delta_v^c(x_{i,j})| > \tau \\ 0, & \text{otherwise} \end{cases}$$
(9)

The resulting binary fields \mathbf{L} and \mathbf{V} serve as indicators of vertical and horizontal discontinuities, respectively. Gibbs prior distribution over each channel prior combining these line fields as: $\mathbb{P}(\mathbf{X} = x, \mathbf{L} = l, \mathbf{V} = v | c) \propto \exp\{-\mathcal{E}(x^c, l^c, v^c)\}$. The associated energy is given by a first-order weak-membrane energy Rajagopalan & Chaudhuri (2002):

$$\mathcal{E}_{\text{MRF}}(x^c, l^c, v^c) = \sum_{i,j} [(1 - v_{i,j}^c)(\Delta_h^c(x_{i,j}^c))^2 + (1 - v_{i,j-1}^c)(\Delta_h^c(x_{i,j-1}^c))^2 + (1 - l_{i,j}^c)(\Delta_v^c(x_{i,j}^c))^2 + (1 - l_{i,j-1}^c)(\Delta_v^c(x_{i,j-1}^c))^2] + \gamma \sum_{i,j} [v_{i,j}^c + v_{i,j-1}^c + l_{i,j}^c + l_{i,j-1}^c]$$
(10)

The final term acts as a penalty that discourages the introduction of excessive discontinuities in the recovered image. Setting $\gamma=0$ eliminates this constraint, leading to a trivial solution in which the MRF tends to introduce discontinuities indiscriminately, including in regions where such transitions are unlikely.

Discontinuity preservation: To generalize the MRF energy to RGB images, and enable optimal discontinuity modeling, we replace binary line fields with continuous, differentiable soft line fields: $\eta(\delta) = \sigma(\alpha(|\delta| - \tau))$, where $\sigma(\cdot)$ is the sigmoid function, α controls the sharpness. Let the forward differences across spatial sites be defined as:

$$\delta_h^f(\mathbf{X}_c) = \{ \Delta_h^k(x_{i,j}) | k \in \{ \mathbf{R}, \mathbf{G}, \mathbf{B} \}, (i,j) \in (0, \dots H_x) \times (0, \dots W_x) \}$$

$$\delta_v^f(\mathbf{X}_c) = \{ \Delta_v^k(x_{i,j}) | k \in \{ \mathbf{R}, \mathbf{G}, \mathbf{B} \}, (i,j) \in (0, \dots H_x) \times (0, \dots W_x) \}$$

with backward differences defined as, $\delta_h^b = -\delta_h^f$ and $\delta_v^b = -\delta_v^f$. The intra-channel compound MRF energy for channel c is given by:

$$\mathcal{E}_{c}^{\text{intra}} = \mathbb{E}_{\text{spatial}}[(1 - \eta(\delta_{h}^{f})) \cdot (\delta_{h}^{f})^{2} + (1 - \eta(\delta_{v}^{f})) \cdot (\delta_{v}^{f})^{2}] + \mathbb{E}_{\text{spatial}}[(1 - \eta(\delta_{h}^{b})) \cdot (\delta_{h}^{b})^{2} + (1 - \eta(\delta_{v}^{b})) \cdot (\delta_{v}^{b})^{2}] + \gamma \bar{\eta}$$
(11)

where $\bar{\eta}$ is the mean soft line field value. Inter-channel energy terms $\mathcal{E}_{c_1,c_2}^{\mathrm{inter}}$ are similarly computed using differences between different color channels. The overall MRF energy across all channels is then:

$$\mathcal{E}_{MRF}(\mathbf{X}) = \frac{1}{3} \sum_{c \in \{R,G,B\}} \mathcal{E}_c^{intra} + \frac{1}{3} \sum_{\substack{(c_1,c_2) \in \{R,G,B\} \\ c_1 \neq c_2}} \mathcal{E}_{c_1,c2}^{inter}$$
(12)

Combining 4,6, 7 and 8, the final objective function becomes:

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{E}_{MRF} + \lambda_{p} \mathcal{E}_{patch} + \lambda_{r} \mathcal{L}_{MRF-consistencv}$$
 (13)

Overall architecture is shown in Fig. 1.

4 EXPERIMENTS

EXPERIMENTAL DETAILS:

Training and testing dataset: Previous works Wang et al. (2024a); Lin et al. (2024); Wu et al. (2024b); Yue et al. (2023) have employed a variety of datasets for the $\times 4$ Real-ISR task. In line with Wu et al. (2024b;a); Yue et al. (2024), we use the LSDIR Li et al. (2023) dataset and the first 10,000 face images from FFHQ Karras et al. (2019) for training our model. LQ images are generated using the degradation pipeline proposed in Real-ESRGAN Wang et al. (2021). The model is trained using the Adam optimizer with a batch size of 64 for 90,000 iterations and a fixed learning rate of 5e-5. We evaluate DMAPSR on both real-world datasets, including RealSR Cai et al. (2019) and DRealSR Wei et al. (2020), as well as on the synthetic DIV2K validation set Agustsson & Timofte (2017). The hyperparameters λ_p , λ_r , and γ are set to 1, 1, and 0.1, respectively.

Compared Methods. We compare our proposed method against a range of state-of-the-art approaches, including GAN-based BSRGAN Zhang et al. (2021), as well as diffusion-based methods such as StableSR Wang et al. (2024a), DiffBIR Lin et al. (2024), SeeSR Wu et al. (2024b), ResShift Yue et al. (2023), SinSR Wang et al. (2024b), OSEDiff Wu et al. (2024a), InVSR Yue et al.

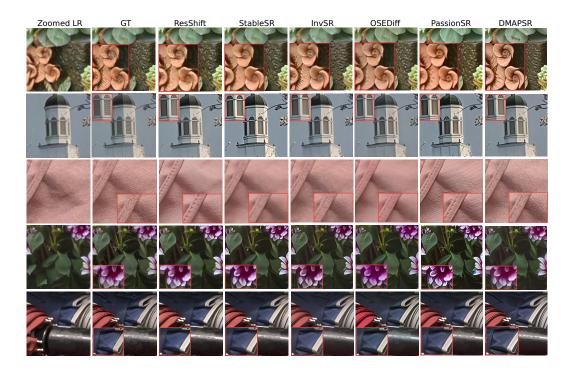


Figure 2: Qualitative visual comparisons of Real-ISR methods. Please zoom in for a better view.

Datasets	Methods	Evaluation Metrics								
		PSNR↑	SSIM ↑	LPIPS ↓	MUSIQ ↑	CLIPIQA ↑	DISTS↓	FID↓	NIQE ↓	MANIQA ↑
	BSRGAN	21.87	0.5539	0.4136	59.11	0.5183	0.2737	64.28	4.7615	0.4834
	DiffBIR-50	23.64	0.5647	0.3524	65.81	0.6704	0.2128	30.72	4.7042	0.6210
	StableSR-50	23.26	0.5726	0.3113	65.92	0.6771	0.2048	24.44	4.7581	0.6192
DIV2K-	SeeSR-50	23.68	0.6043	0.3194	68.67	0.6936	0.1968	25.90	4.8102	0.6240
Val	ResShift-4	24.65	0.6181	0.3349	61.09	0.6071	0.2213	36.11	6.8212	0.5454
	SinSR-1	24.41	0.6018	0.3240	62.82	0.6471	0.2066	35.57	6.0159	0.5386
	OSEDiff-1	23.72	0.6108	0.2941	67.97	0.6683	0.1976	26.32	4.7097	0.6148
	PassionSR-1	24.34	0.7097	0.3440	51.19	0.4802	0.2075	28.45	7.039	0.2267
	DMAPSR	24.58	0.6112	0.2938	68.52	0.6842	0.1962	27.19	4.6721	0.6416
	BSRGAN	28.75	0.8031	0.2883	57.14	0.4915	0.2142	155.63	6.5192	0.4878
	DiffBIR-50	26.71	0.6571	0.4557	61.07	0.6395	0.2748	166.79	6.3124	0.5930
	StableSR-50	28.03	0.7536	0.3284	58.51	0.6356	0.2269	148.98	6.5239	0.5601
DRealSR	SeeSR-50	28.17	0.7691	0.3189	64.93	0.6804	0.2315	147.39	6.3967	0.6042
	ResShift-4	28.46	0.7673	0.4006	50.60	0.5342	0.2656	172.26	8.1249	0.4586
	SinSR-1	28.36	0.7515	0.3665	55.33	0.6383	0.2485	170.57	6.9907	0.4884
	OSEDiff-1	27.92	0.7835	0.2968	64.65	0.6963	0.2165	135.30	6.4902	0.5899
	DMAPSR-1	28.32	0.7842	0.2957	64.97	0.6975	0.2096	139.75	6.3245	0.6172
	BSRGAN	26.39	0.7654	0.2670	63.21	0.5001	0.2121	141.28	5.6567	0.5399
	DiffBIR-50	24.75	0.6567	0.3636	64.98	0.6463	0.2312	128.99	5.5346	0.6246
	StableSR-50	24.70	0.7085	0.3018	65.78	0.6178	0.2288	128.51	5.9122	0.6221
RealSR	SeeSR-50	25.18	0.7216	0.3009	69.77	0.6612	0.2223	125.55	5.4081	0.6442
	ResShift-4	26.31	0.7421	0.3460	58.43	0.5444	0.2498	141.71	7.2635	0.5285
	SinSR-1	26.28	0.7347	0.3188	60.80	0.6122	0.2353	135.93	6.2872	0.5385
	OSEDiff-1	25.15	0.7341	0.2921	69.09	0.6693	0.2128	123.49	5.6476	0.6326
	PassionSR-1	22.52	0.6255	0.4913	43.21	0.3089	0.3185	129.54	5.706	0.2396
	DMAPSR-1	26.29	0.7426	0.2918	69.81	<u>0.6651</u>	0.2178	127.92	<u>5.4104</u>	0.6492

Table 1: We conduct a quantitative comparison of DMAPSR with state-of-the-art Real-ISR models based on GAN and diffusion frameworks across various datasets with the reverse timestep after hyphen. The best-performing method is highlighted in bold, while the second-best result is indicated with an underline.

(2024), and PassionSR Zhu et al. (2024). For a fair comparison, we follow the official configurations of each method. StableSR, DiffBIR, and SeeSR are evaluated using 50 sampling steps, as originally proposed. ResShift is evaluated using 4 sampling steps, while SinSR, OSEDiff, PassionSR, and InvSR are all evaluated using a single sampling step, in accordance with their respective official implementations.

Metrics	StableSR	DiffBIR	SeeSR	ResShift	SinSR	OSEDiff	InvSR	DMAPSR
Inference step	50	50	50	4	1	1	1	1
Inference time (s)	11.50	2.72	4.29	0.71	0.13	0.15	0.12	0.11
#Total Params(M)	1410	1717	2524	119	119	1775	1145	949
#Trainable Params(M)	150	380	750	119	119	8.5	33.84	33.51

Table 2: Comparison of inference time and parameter count across different methods. All evaluations are conducted on a single NVIDIA A-100 GPU with a maximum memory capacity of 80GB, for the $\times 4(128 \rightarrow 512)$ SR task.

COMPARISON TO THE STATE OF THE ART:

Quantitative Comparisons. The quantitative comparison across three benchmarks is presented in Table 1. In full-reference image quality assessment metrics, DMAPSR demonstrates superior performance over existing methods, achieving the best or second-best scores in SSIM and the perceptual quality metric LPIPS on both the RealSR and DRealSR benchmarks. Additionally, in the structural similarity metric DISTS, DMAPSR consistently performs well across all benchmarks. In terms of semantic and content-aware evaluation, CLIPIQA scores indicate that DMAPSR outperforms all competing methods on all three datasets. For no-reference IQA metrics, while SeeSR and OSEDiff exhibit strong performance, DMAPSR achieves comparable or better results in perceptual quality metrics such as MUSIQ and MANIQA. In the FID score, SeeSR performs better due to the advantage of multi-step generation in capturing global content alignment. ResShift yields strong results in the pixel-wise PSNR metric, benefiting from end-to-end training from scratch, which facilitates better alignment with pixel-level fidelity. However, it underperforms in perceptual and content-based metrics. Overall, DMAPSR achieves leading performance among methods based on pretrained SD priors, especially in the single-step inference setting, demonstrating a favorable trade-off between efficiency and perceptual quality.

Qualitative Comparisons. Fig. 2 presents qualitative comparisons of our method against several existing approaches. In the first example, ResShift, which is trained from scratch without leveraging SD priors, produces a slightly blurred facial region with reduced detail. Similarly, the prior-based StableSR exhibits some blur, indicating limitations in capturing fine textures. PassionSR consistently produces over-sharpened and over-brightened outputs across examples, likely due to post-training quantization effects. While InvSR and OSED-iff benefit from SD priors and generally perform well, they tend to introduce unnatural details, particularly noticeable in the third example, thereby deviating from the ground truth.

In contrast, DMAPSR, despite being a single-step diffusion method, produces visually faithful reconstructions that are both texture-rich and aligned with the natural properties of the original image across all examples. Notably, in the third and fifth examples, OSEDiff fails to reconstruct fine textures, underscoring the limitations of approaches that depend exclusively on prompt-based supervision. Furthermore, while OSEDiff requires text prompts during training, it struggles to maintain reconstruction quality during inference in the absence of such external guidance. Overall, DMAPSR demonstrates the ability to generate

Figure 3: Qualitative comparison of one-step diffusion methods under the setting where the LQ input is further degraded with additive noise. Please zoom in for a better view.

natural, high-fidelity results without relying on prompt-based training, offering a significant advantage in generating realistic textures in a single-step inference setting. More qualitative results are provided in the supplementary.

Runtime and computational overhead. Table 2 presents the runtime performance and computational overhead of our method compared to existing approaches, evaluated on a single NVIDIA A-100 GPU using 512×512 images from the DRealSR benchmark. Among all one-step diffusion models, DMAPSR achieves the second lowest trainable parameter count and the fastest inference speed, while

Methods	PSNR↑	LPIPS \downarrow	$MUSIQ \uparrow$	CLIPIQA ↑
i.w/o consist.	26.07	0.2959	69.21	0.6581
ii.w/o patch	26.04	0.2947	69.15	0.6581
iii.MRF-1C	25.96	0.3046	68.92	0.6542
iv.w/o inter	26.14	0.2963	69.62	0.6627
v.DMAPSR	26.29	0.2918	69.81	0.6651

Methods	PSNR ↑	LPIPS \downarrow	$MUSIQ \uparrow$	CLIPIQA ↑
ConvNeXtLiu et al. (2022)	25.97	0.3189	68.96	0.6541
RestormerZamir et al. (2021)	25.44	0.3147	68.52	0.6581
ResUNetDiakogiannis et al. (2020)	25.26	0.3226	68.33	0.6522
NAFNetChen et al. (2022b)	25.68	0.3043	68.31	0.6467
VQGAN-EEsser et al. (2020)	26.29	0.2918	69.81	0.6651

Table 3: Comparison of different losses on RealSR dataset.

Table 4: Ablation on the image enhancer network on the RealSR dataset.

also outperforming multi-step methods. Specifically, DMAPSR provides nearly $100\times$ faster inference than the multi-step StableSR, while requiring only one-fifth the number of trainable parameters. It is also approximately $6\times$ faster than ResShift and $1.3\times$ faster than the single-step OSEDiff, all while maintaining superior output quality. Although OSEDiff has the smallest number of trainable parameters, DMAPSR significantly reduces the overall parameter count—almost by half—making it more suitable for deployment scenarios due to its compactness and higher efficiency.

Noise removal. In the LQ image, we introduce additive noise to further challenge the reconstruction process. We evaluate the noise removal capability of our method alongside other approaches, as illustrated in Fig. 3. This evaluation highlights the effectiveness of our model in denoising. The results demonstrate that our method outperforms other one-step diffusion frameworks, such as OSEDiff and InvSR, both of which exhibit notable degradation in reconstruction quality under noisy conditions.

ABLATION EXPERIMENTS:

Loss function components. To assess the contribution of various loss terms in our framework, we conduct an ablation study on the RealSR benchmark, with results presented in Table 3. Specifically, we evaluate the performance under the following settings: (i) removing the MRF-consistency term, (ii) excluding the patch-based energy term, (iii) computing MRF energy on a single grayscale channel instead of full RGB, and (iv) omitting the inter-channel MRF energy term. These are compared against the full model that incorporates all components of Equation 13. The absence of either the patch-based energy term or the MRF-consistency term leads to a notable decline in reference-based PSNR. This indicates that both terms are essential for preserving fine-grained details in the LQ image and maintaining accurate correspondence with the ground truth. When MRF energy is computed solely on a grayscale channel, the model fails to capture the diverse local interactions present across the RGB channels, resulting in degraded performance. Furthermore, excluding the inter-channel component of the MRF energy significantly impairs the model's ability to reconstruct rich textures and color details, demonstrating its importance in modeling cross-channel dependencies.

Image enhancer architecture. We conduct an ablation study to investigate the effect of different backbone architectures for the image enhancer module in our DMAPSR framework. The results, reported in Table 4, are evaluated on the RealSR benchmark using both perceptual and fidelity-based metrics with five backbone variants. Among these, the VQGAN Esser et al. (2020) encoder-based design achieves the best trade-off, yielding the highest PSNR. This superior performance highlights the importance of preserving both structural and semantic features during latent-space transformation. The VQGAN-style downsampling blocks are particularly effective in capturing localized texture and long-range dependencies while compressing the image representation, making them well-suited for our one-step diffusion framework. Therefore, we adopt the VQGAN-based architecture as the default image enhancer in our pipeline.

5 CONCLUSION

We propose DMAPSR, a single-step diffusion-based super-resolution method that explicitly preserves image discontinuities while enabling efficient reconstruction. Our approach combines a lightweight image enhancer with a pretrained diffusion backbone for structure-aware detail synthesis and robust noise estimation. DMAPSR introduces a discontinuity-preserving line field energy, optimized via a MRF formulation, which ensures the reconstruction of sharp structural edges. The model further captures fine-grained information within and across RGB channels, enabling enhanced texture fidelity alongside rapid sampling. Experimental results demonstrate that DMAPSR achieves comparable or superior performance to both single-step and multi-step real-image super-resolution baselines in terms of objective quality metrics and visual fidelity.

REFERENCES

- Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*, pp. 126–135, 2017.
- Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single image super-resolution: A new benchmark and a new model. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3086–3095, 2019.
- Chaofeng Chen, Xinyu Shi, Yipeng Qin, Xiaoming Li, Xiaoguang Han, Tao Yang, and Shihui Guo. Real-world blind super-resolution via feature matching with implicit high-resolution priors. In *Proceedings of the 30th ACM International Conference on Multimedia*, pp. 1329–1338, 2022a.
- Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12299–12310, 2021.
- Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration. In *European Conference on Computer Vision*, pp. 572–589. Springer, 2022b.
- Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong. Activating more pixels in image super-resolution transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22367–22377, 2023a.
- Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xiaokang Yang, and Fisher Yu. Dual aggregation transformer for image super-resolution. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12312–12321, 2023b.
- Hamadi Chihaoui, Abdelhak Lemkhenter, and Paolo Favaro. Blind image restoration via fast diffusion inversion. *arXiv preprint arXiv:2405.19572*, 2024.
- Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating conditional diffusion models for inverse problems through stochastic contraction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12413–12422, 2022.
- Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. *The annals of probability*, pp. 146–158, 1975.
- Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network for single image super-resolution. In *Proceedings of the IEEE/CVF conference on computer vision* and pattern recognition, pp. 11065–11074, 2019.
- Foivos I Diakogiannis, François Waldner, Peter Caccetta, and Chen Wu. Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data. *ISPRS Journal of Photogrammetry and Remote Sensing*, 162:94–114, 2020.
- Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for image super-resolution. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13*, pp. 184–199. Springer, 2014.
- Weisheng Dong, Peiyao Wang, Wotao Yin, Guangming Shi, Fangfang Wu, and Xiaotong Lu. Denoising prior driven deep neural network for image restoration. *IEEE transactions on pattern analysis and machine intelligence*, 41(10):2305–2318, 2018.
- Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image synthesis. *arXiv preprint arXiv:2012.09841*, 2020.
- Shangqi Gao and Xiahai Zhuang. Bayesian image super-resolution with deep modeling of image statistics. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(2):1405–1423, 2022.
- Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. *IEEE Transactions on pattern analysis and machine intelligence*, (6): 721–741, 1984.

- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
 - Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4401–4410, 2019.
 - Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models. *Advances in Neural Information Processing Systems*, 35:23593–23606, 2022.
 - Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4681–4690, 2017.
 - Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun Liu, Denis Demandolx, et al. Lsdir: A large scale dataset for image restoration. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1775–1787, 2023.
 - Jie Liang, Hui Zeng, and Lei Zhang. Details or artifacts: A locally discriminative learning approach to realistic image super-resolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5657–5666, 2022a.
 - Jie Liang, Hui Zeng, and Lei Zhang. Efficient and degradation-adaptive network for real-world image super-resolution. In *European Conference on Computer Vision*, pp. 574–591. Springer, 2022b.
 - Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image restoration using swin transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1833–1844, 2021.
 - Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang, and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In *European Conference on Computer Vision*, pp. 430–448. Springer, 2024.
 - Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. *arXiv preprint arXiv:2201.03545*, 2022.
 - Ambasamudram N Rajagopalan and Subhasis Chaudhuri. An mrf model-based approach to simultaneous recovery of depth and restoration from defocused images. *IEEE transactions on pattern analysis and machine intelligence*, 21(7):577–589, 2002.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. *Advances in neural information processing systems*, 35:36479–36494, 2022.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020a.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020b.
 - Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting diffusion prior for real-world image super-resolution. *International Journal of Computer Vision*, 132(12):5929–5949, 2024a.
 - Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In *Proceedings of the European conference on computer vision (ECCV) workshops*, pp. 0–0, 2018.

- Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1905–1914, 2021.
 - Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion null-space model. *arXiv* preprint arXiv:2212.00490, 2022.
 - Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang, Lanqing Guo, Lap-Pui Chau, Ziwei Liu, Yu Qiao, Alex C Kot, and Bihan Wen. Sinsr: diffusion-based image super-resolution in a single step. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 25796–25805, 2024b.
 - Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qixiang Ye, Wangmeng Zuo, and Liang Lin. Component divide-and-conquer for real-world image super-resolution. In *Computer Vision–ECCV* 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16, pp. 101–117. Springer, 2020.
 - Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for real-world image super-resolution. *Advances in Neural Information Processing Systems*, 37: 92529–92553, 2024a.
 - Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. Seesr: Towards semantics-aware real-world image super-resolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 25456–25467, 2024b.
 - Liangbin Xie, Xintao Wang, Xiangyu Chen, Gen Li, Ying Shan, Jiantao Zhou, and Chao Dong. Desra: detect and delete the artifacts of gan-based real-world super-resolution models. *arXiv preprint arXiv:2307.02457*, 2023.
 - Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. Gan prior embedded network for blind face restoration in the wild. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 672–681, 2021.
 - Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and Lei Zhang. Pixel-aware stable diffusion for realistic image super-resolution and personalized stylization. In *European Conference on Computer Vision*, pp. 74–91. Springer, 2024.
 - Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, and Chao Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image restoration in the wild. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 25669–25680, 2024.
 - Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image super-resolution by residual shifting. *Advances in Neural Information Processing Systems*, 36: 13294–13307, 2023.
 - Zongsheng Yue, Kang Liao, and Chen Change Loy. Arbitrary-steps image super-resolution via diffusion inversion. *arXiv preprint arXiv:2412.09013*, 2024.
 - Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. *arXiv* preprint arXiv:2111.09881, 2021.
 - Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation model for deep blind image super-resolution. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4791–4800, 2021.
- Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3836–3847, 2023.
 - Xindong Zhang, Hui Zeng, Shi Guo, and Lei Zhang. Efficient long-range attention network for image super-resolution. In *European conference on computer vision*, pp. 649–667. Springer, 2022.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using very deep residual channel attention networks. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 286–301, 2018.

Libo Zhu, Jianze Li, Haotong Qin, Wenbo Li, Yulun Zhang, Yong Guo, and Xiaokang Yang. Passionsr: Post-training quantization with adaptive scale in one-step diffusion based image super-resolution. *arXiv* preprint arXiv:2411.17106, 2024.

A SUPPLEMENTARY MATERIAL

In the supplementary material, we provide the following additional details:

- A complete proof of the posterior energy formulation presented in the main paper.
- Visualizations of the line fields along with the corresponding images.
- Additional qualitative and quantitative results to further support our findings.
- Usage of LLM

PROOF OF THE MRF ENERGY OF THE POSTERIOR:

Theorem: Let the prior distribution $\mathbb{P}(X=\omega)$ be a Gibbs distribution defined over a neighborhood $\{S,\mathcal{G}\}$ with corresponding energy \mathcal{E} and potential $\{V_C\}$: $\mathbb{P}(X=\omega)=e^{-\mathcal{E}(\omega)}/Z$, $\mathcal{E}(\omega)=\sum_C V_C(\omega)$, where $\omega=(f,l)$. Then, for any fixed observation g, the posterior distribution $\mathbb{P}(X=\omega|G=g)$ is also a Gibbs distribution, defined over the neighborhood system $\{S,\mathcal{G}^P\}$, with the posterior energy function given by:

$$\mathcal{E}^{P}(f,l) = \mathcal{E}(f,l) + \frac{1}{2\sigma^{2}} ||\mu - \Phi(g, \mathcal{D}_{\psi}(H(F)))||^{2}$$
(14)

where \mathcal{G}^P denotes the extended neighborhood system defined as:

$$\mathcal{G}_s^P = \begin{cases} \mathcal{G}_s, & \text{if } s \in D_m \\ \mathcal{G}_s \cup \mathcal{H}_s^2 \setminus \{s\}, & \text{if } s \in Z_m \end{cases}$$
 (15)

proof: We start with the definition of the degradation operator, $G = \phi(H(F)) \odot \mathcal{N}$, where $\mathcal{N} \sim \mathcal{N}(\mu, \sigma^2)$ is additive white Gaussian noise, assumed independent of the MRF $\{S, \mathcal{G}\}$. The operation \odot is assumed to be invertible, such that we can write $\mathcal{N} = \Phi(G, \mathcal{D}_{\psi}(H(F))) = \{\Phi_s, s \in Z_m\}$. Let $\mathcal{H}_s, s \in Z_m$ denote the set of pixels that affect the blurred image H(F) at s. For instance \mathcal{H}_s can be a 3×3 window centered at s. $\{\Phi_s, s \in Z_m\}$ depends only on g_s and $\{f_t : t \in \mathcal{H}_s\}$. Because of the shift invariance of H, these neighborhoods satisfy $\mathcal{H}_{r+s} = s + \mathcal{H}_r$ where $\mathcal{H}_r \subseteq Z_m, s+r \in Z_m$ and $s + \mathcal{H}_r$ intersects Z_m . If $\{\mathcal{H}_s\}$ is symmetric such that $r \in \mathcal{H}_0 \implies -r \in \mathcal{H}_0$, then the collection $\{\mathcal{H}_s \setminus \{s\}, s \in Z_m\}$ forms a valid neighborhood system over Z_m . Let \mathcal{H}^2 define the second-order neighborhood system as:

$$\mathcal{H}_s^2 = \cup_{r \in \mathcal{H}_s} \mathcal{H}_r, s \in Z_m \tag{16}$$

Then $\{\mathcal{H}_s^2\setminus\{s\},s\in Z_m\}$ also defines a neighborhood system. We define the posterior neighborhood system $\{\mathcal{G}^P=\mathcal{G}_s^P,s\in S\}$ as,

$$\mathcal{G}_s^P = \begin{cases} \mathcal{G}_s, & \text{if } s \in D_m \\ \mathcal{G}_s \cup \mathcal{H}_s^2 \setminus \{s\}, & \text{if } s \in Z_m \end{cases}$$
 (17)

Applying Bayes' rule, we express the posterior as:

$$\mathbb{P}(X = \omega | G = g) = \frac{\mathbb{P}(G = g | X = \omega) \cdot \mathbb{P}(X = \omega)}{\mathbb{P}(G = g)}$$
(18)

 $\forall \omega = (f, l)$ and each g. Assuming $\mathbb{P}(X = \omega) = e^{-\mathcal{E}(\omega)}/Z$, the likelihood term becomes:

$$\mathbb{P}(G = g|X = \omega) = \mathbb{P}(\mathcal{D}_{\psi}(H(X)) \odot \mathcal{N} = g|X = \omega)$$

$$= \mathbb{P}(\mathcal{N} = \Phi(g, \mathcal{D}_{\psi}(H(X))))$$

$$= (2\pi\sigma^{2})^{-M/2} \exp\{-\frac{1}{2\sigma^{2}}||\mu - \Phi||^{2}\}$$
(19)

Again, $\mathbb{P}(X = \omega | G = g) = e^{-\mathcal{E}^P(\omega)}/Z^P$.

Case $s \in Z_m$: The term Φ does not cancel out. $\Phi(g, \mathcal{D}_{\psi}(H(F))) = \{\Phi_s, s \in Z_m\}.$

Taking Eq 18 and Eq. 19 we can write,

$$\mathbb{P}(X = \omega \mid \mathcal{N} = \Phi) \propto \mathbb{P}(\mathcal{N} = \Phi \mid X = \omega) \cdot \mathbb{P}(X = \omega). \tag{20}$$

Taking the negative logarithm, the posterior energy becomes:

$$\mathcal{E}^{P}(f, l) = -\log \mathbb{P}(\mathcal{N} = \Phi \mid X = \omega) - \log \mathbb{P}(X = \omega). \tag{21}$$

From Eq. 19 we get,

$$-\log \mathbb{P}(\mathcal{N} = \Phi \mid X = \omega) = \frac{1}{2\sigma^2} \sum_{r \in Z_m} \left(\Phi_r(g_r; f_t, t \in \mathcal{H}_r) - \mu \right)^2 + \text{const.}$$
 (22)

Combining both terms, the full posterior energy becomes:

$$\mathcal{E}^{P}(f,l) = \sum_{C} V_{C}(f,l) + \frac{1}{2\sigma^{2}} \sum_{r \in Z_{m}} (\Phi_{r}(g_{r}; f_{t}, t \in \mathcal{H}_{r}) - \mu)^{2}.$$
 (23)

$$\mathbb{P}(F_s = f_s \mid F_r = f_r, \ r \neq s, \ r \in Z_m, \ L = l, \ G = g) = \frac{e^{-\mathcal{E}^P(\omega)}/Z^P}{\sum_{f_s} e^{-\mathcal{E}^P(\omega)}/Z^P} = \frac{e^{-\mathcal{E}(\omega)}/Z}{\sum_{f_s} e^{-\mathcal{E}(\omega)}/Z} \\
= \frac{e^{-\mathcal{E}(f,l) - \frac{1}{2\sigma^2} \sum_{r \in Z_m} (\Phi_r - \mu)^2}}{\sum_{f_s} e^{-\mathcal{E}(f,l) - \frac{1}{2\sigma^2} \sum_{r \in Z_m} (\Phi_r - \mu)^2}} (24)$$

$$\Rightarrow \mathcal{E}^{P}(f,l) = \sum_{C:s \in C} V_{C}(f,l) + \frac{1}{2\sigma^{2}} \sum_{r:s \in \mathcal{H}_{r}} (\Phi_{r}(g_{r}; f_{t}, t \in \mathcal{H}_{r}) - \mu)^{2}$$

$$+ \sum_{C:s \notin C} V_{C}(f,l) + \frac{1}{2\sigma^{2}} \sum_{r:s \notin \mathcal{H}_{r}} (\Phi_{r}(g_{r}; f_{t}, t \in \mathcal{H}_{r}) - \mu)^{2}$$

$$(25)$$

It can be seen that the last two terms in 25 does not involve f_s and the ratio in 24 depends only on the first two terms of 25. The first two terms depends only on the coordinate (f,l) for the sites in $\mathcal{G}_s\{s\in C\implies C\subseteq\mathcal{G}_s\}$ and the second term only on the sites in $=\cup_{r:s\in\mathcal{H}_r}\mathcal{H}_s=\cup_{r\in\mathcal{H}_s}\mathcal{H}_r=\mathcal{H}_s^2$. Hence we can say, $\mathcal{G}_s^P=\mathcal{G}_s\cup\mathcal{H}_s^2\setminus\{s\}$.

Case $s \in D_m$:

$$\mathbb{P}(L_s = l_s | L_r = l_r, r \neq s, r \in D_m, F = f, G = g)$$

$$= \frac{e^{-\mathcal{E}^P(\omega)}/Z^P}{\sum_{l_s} e^{-\mathcal{E}^P(\omega)}/Z^P} = \frac{e^{-\mathcal{E}(\omega)}/Z}{\sum_{l_s} e^{-\mathcal{E}(\omega)}/Z}$$

The sum extends over all possible values of L_s Hence we can say, $\mathcal{G}_S^P = \mathcal{G}_S$.

Thus, the posterior energy becomes,

$$\mathcal{E}^{P}(f,l) = \mathcal{E}(f,l) + \frac{1}{2\sigma^{2}} ||\mu - \Phi(g, \mathcal{D}_{\psi}(H(F)))||^{2}$$
(26)

Corollary: It can be observed that the second term is strictly positive. To generalize this further, we note that this term can be interpreted as a discrepancy measure between the likelihood and the prior. While the KL divergence is a common choice—being strictly positive—other discrepancy measures may also be employed. To demonstrate the similarity between the second term and the KL divergence, we proceed as follows:

$$\mathbb{P}(G = g | X = \omega) = \frac{1}{(2\pi\sigma^2)^{M/2}} \exp\{-\frac{1}{2\sigma^2} ||\mu - \Phi(g, \mathcal{D}_{\psi}(H(F)))||^2\}$$

$$\implies \log \mathbb{P}(G = g | X = \omega) = -\frac{1}{2\sigma^2} ||\mu - \Phi(g, \mathcal{D}_{\psi}(H(F)))||^2 + C$$

Datasets	Methods	Evaluation Metrics								
Dutusets		PSNR↑	LPIPS ↓	MUSIQ ↑	CLIPIQA ↑	SSIM ↑	DISTS ↓	FID ↓	NIQE ↓	MANIQA ↑
	S3Diff	23.40	0.2571	68.21	0.7007	0.5953	0.1730	19.35	4.7391	0.4538
	TSD-SR	23.02	0.2673	71.69	0.7416	0.5808	0.1821	29.16	4.3244	0.6192
DIV2K-	Add-SR	23.26	0.3623	63.39	0.5734	0.5902	0.2123	29.68	4.7610	0.5637
Val	OSEDiff	23.72	0.2941	67.97	0.6683	0.6108	0.1976	26.32	4.7097	0.6148
	SinSR	24.41	0.3240	62.82	0.6471	0.6018	0.2066	35.57	6.0159	0.5386
	PassionSR	24.34	0.3440	51.19	0.4802	0.7097	0.2075	28.45	7.039	0.2267
	DMAPSR	24.58	0.2938	68.52	0.6842	0.6112	0.1962	27.19	4.6721	0.6416
	S3Diff	25.03	0.2699	67.89	0.6722	0.7321	0.1996	108.88	5.3311	0.4563
	TSD-SR	24.81	0.2743	71.19	0.7160	0.7172	0.2104	114.45	5.1298	0.6347
RealSR	Add-SR	24.79	0.3091	66.18	0.5722	0.7077	0.2191	132.05	5.5440	0.6098
	PassionSR	22.52	0.4913	43.21	0.3089	0.6255	0.3185	129.54	5.706	0.2396
	OSEDiff	25.15	0.2921	69.09	0.6693	0.7341	0.2128	123.49	5.6476	0.6326
	SinSR	26.28	0.3188	60.80	0.6122	0.7347	0.2353	135.93	6.2872	0.5385
	DMAPSR	26.29	0.2918	69.81	0.6651	0.7426	0.2178	127.92	5.4104	0.6492
	S3Diff	26.89	0.3122	64.19	0.7122	0.7469	0.2120	119.86	6.1647	0.4508
	TSD-SR	27.77	0.2967	66.62	0.7344	0.7559	0.2136	134.98	5.9131	0.5874
DRealSR	Add-SR	27.77	0.3196	60.85	0.6188	0.7722	0.2242	150.18	6.9321	0.5490
	SinSR	28.36	0.3665	55.33	0.6383	0.7515	0.2485	170.57	6.9907	0.4884
	OSEDiff	27.92	0.2968	64.65	0.6963	0.7835	0.2165	135.30	6.4902	0.5899
	DMAPSR	28.32	0.2957	64.97	0.6975	0.7842	0.2096	139.75	6.3245	0.6172

Table 5: We conduct a quantitative comparison of DMAPSR with state-of-the-art Real-ISR models based on one-step diffusion frameworks across various datasets. The best-performing method is highlighted in bold, while the second-best result is indicated with an underline.

Where $C = -\frac{M}{2}\log(2\pi\sigma^2)$ as X is independent of \mathcal{N} . Now, taking $\langle h(X)\rangle = E_X[h(X)]$ we can write the above as.

$$\begin{split} \mathrm{KL}[\mathbb{P}(X=\omega)||\mathbb{P}(G=g|X=\omega)] &= \langle \log \mathbb{P}(X=\omega) \rangle - \langle \log \mathbb{P}(G=g|X=\omega) \rangle \\ &= \frac{1}{2\sigma^2} \langle ||\mu - \Phi(g,\mathcal{D}_{\psi}(H(F)))||^2 \rangle + C - \langle -\frac{U(\omega)}{Z} \rangle \\ &= \frac{1}{2\sigma^2} \langle ||\mu - \Phi(g,\mathcal{D}_{\psi}(H(F)))||^2 \rangle + C \end{split}$$

Hence, effectively we can write the posterior energy as,

$$\mathcal{E}^{P}(f, l) = \mathcal{E}(f, l) + \text{KL}[\mathbb{P}_{\mathbf{Y}|\mathbf{X}}(g|f, l)||\mathbb{P}_{\mathbf{X}}(f, l)]$$
(27)

ADDITIONAL RESULTS:

We present additional comparative results with existing diffusion model-based methods in Fig. 4. Our method demonstrates superior performance, particularly in recovering fine structures such as artificial flower petals, leaf textures, and cloth patterns, under both ground truth and non-ground truth scenarios. In addition, we provide further quantitative comparisons with state-of-the-art one-step diffusion-based image super-resolution methods, as reported in Table 5.

VISUALIZATION OF LINE FIELDS:

We present the horizontal and vertical line fields in forward and backward directions generated during inference in Fig. 5.

USAGE OF LARGE LANGUAGE MODEL:

We have utilized a large language model (LLM) solely for grammatical correction, word choice refinement, and improving sentence phrasing.

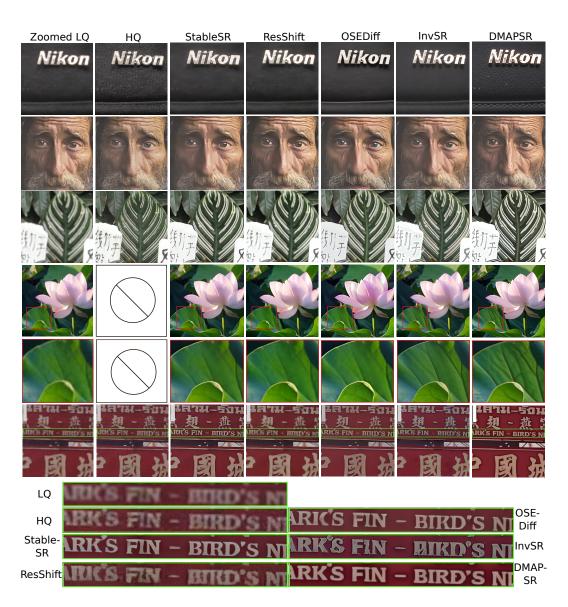


Figure 4: Qualitative visual comparisons of Real-ISR methods are presented. Note that the third example lacks a corresponding high-quality ground truth image. Please zoom in for a clearer view.

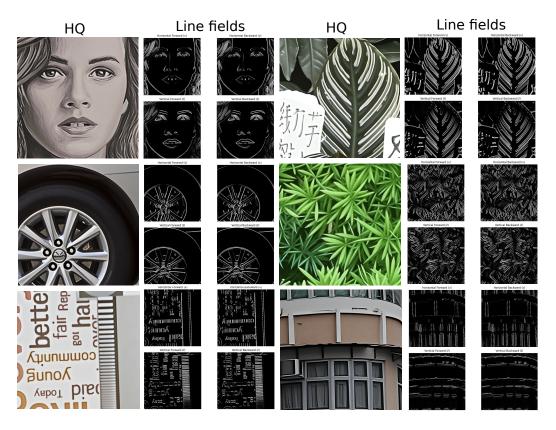


Figure 5: Horizontal and vertical line fields in both forward and backward directions are shown alongside the generated HQ image. Please zoom in for a clearer view.