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ABSTRACT

We propose a real-world image super-resolution framework that leverages a pre-
trained text-to-image Stable Diffusion model optimized for single-step sampling.
Unlike traditional multi-step diffusion-based methods, which are computationally
intensive, our approach enables fast inference while preserving high perceptual
quality. To this end, we integrate a lightweight image enhancement module trained
jointly with the diffusion model under a Maximum A Posteriori (MAP) formula-
tion. The optimization includes a compound Markov Random Field (MRF) prior,
derived from the anticipated discontinuity line field energy, which functions as
a structural regularizer to preserve fine image details and facilitate deblurring.
Existing single-step diffusion approaches often rely on distillation or noise map
estimation, which limits their ability to generate rich pixel-space details. In con-
trast, our method explicitly models high-frequency line field consistency between
the low- and high-resolution domains, guiding the image enhancer to reconstruct
sharp outputs. By preserving and enhancing structural features such as edges
and textures, our framework effectively handles complex degradations commonly
encountered in real-world scenarios. Experimental results demonstrate that our
method achieves performance that is comparable to or exceeds that of state-of-
the-art single-step and multi-step diffusion-based image super-resolution methods
qualitatively, quantitatively, and computationally.

1 INTRODUCTION

Image super-resolution (ISR)|Chen et al.|(2023a); |[Liang et al.|(2022a); Wang et al. (2018); Liang
et al.[(2021)); Zhang et al|(2018};[2022);|Geman & Geman|(1984)) is a fundamentally important and
inherently ill-posed inverse problem that has been actively studied since before the advent of deep
learning, and continues to remain a compelling and challenging research topic. The objective of ISR
is to reconstruct a high-quality (HQ) image from its corresponding low-quality (LQ) counterpart,
which typically suffers degradation due to factors such as noise, blur, and aliasing—Ileading to the
loss of high-frequency details critical for perceptual quality. Early ISR methods|Dong et al.|(2014);
Liang et al.[(2021)); |[Zhang et al.| (2022; |2018)) typically assumed a simplified degradation model
comprising a fixed sequence of operations—namely, blurring, downsampling, and the addition of
white Gaussian noise. However, such models often fail when confronted with complex, unknown
degradations, particularly when the degradation process is nonlinear or contains highly uncertain
combinations of distortions. To address this limitation and move closer to real-world scenarios,
the field has increasingly shifted toward real-world image super-resolution (Real-ISR) Zhang et al.
(2021); |Wang et al.|(2021), which acknowledges that real image degradations are far more complex
and diverse. In this setting, reconstructing an HQ image from an LQ input becomes significantly
more challenging due to substantial information loss—especially in the high-frequency content of
RGB images and aliasing. To simulate such real-world degradations during training, pioneering
works such as BSRGAN [Zhang et al.| (2021) and Real-ESRGAN Wang et al.| (2021) proposed
degradation pipelines involving multiple sequential high-order distortions applied in random order.
As a result, the trained model can better generalize to unseen, complex degradations and infer a
plausible high-resolution reconstruction. The core objective of real-ISR in such settings is to remove
blur, suppress noise, and perform accurate upsampling with anti-aliasing, thereby recovering fine



Under review as a conference paper at ICLR 2026

structural details. It is now well recognized that training with simple pixel-wise loss functions is
insufficient; although such losses may reduce noise and perform upsampling, they often result in
overly smoothed and perceptually unconvincing reconstructions [Ledig et al,| (2017); [Wang et al.
(2018)). To effectively capture the statistics of natural HQ images, early deep learning-based ISR
methods introduced various architectural innovations |Dong et al.[(2018)) along with specialized loss
functions. With the rise of generative models, particularly Generative Adversarial Networks (GANs),
the super-resolution community adopted adversarial training frameworks for real-ISR [Ledig et al.
(2017); Wang et al.|(2021); [Liang et al.|(2022a)); Wei et al.| (2020). In this paradigm, the generator
network is trained to produce HQ images, while the discriminator evaluates the realism of these
outputs, encouraging the generator to synthesize images that closely approximate natural textures
and structures. The incorporation of GANs brought substantial improvements in visual fidelity and
realism of super-resolved outputs. However, adversarial training also introduced new challenges:
the generated images sometimes contained hallucinated details or artifacts that were inconsistent
with the underlying ground truth, potentially deviating from the true image content and introducing
misleading features.

The subsequent evolution of generative models has been significantly shaped by diffusion models |[Ho
et al.| (2020); Song et al.| (2020b), which have gained prominence due to their superior training
stability and more reliable image generation compared to GANs. The adaptation of diffusion models
to operate in latent space has further enabled high-resolution image synthesis, while introducing
modular conditioning mechanisms—such as text, sketches, or semantic maps—that enhance control
over the generative process Rombach et al.|(2022)); Saharia et al.|(2022)). As a result, super-resolution
tasks have also benefited from these advancements, enabling finer control over image restoration with
an emphasis on preserving specific features. Among diffusion-based frameworks, Stable Diffusion
(SD) Rombach et al.| (2022) stands out for being trained on a large-scale dataset of text-image
pairs, thereby capturing rich natural image priors. Its capacity to generate photorealistic images has
opened up opportunities to adapt and modularize the model for Real-ISR. Building on this, several
methods Wang et al.| (2024a); Lin et al.[(2024); Wu et al.| (2024b); |Yang et al.|(2024); |Yu et al.|(2024)
have leveraged pretrained SD pipelines to improve the perceptual realism and structural fidelity
of Real-ISR outputs, pushing the performance beyond the limitations of GAN-based approaches.
Despite these advancements, a significant limitation of diffusion-based methods lies in the slow
inference time and uncontrolled image sharpening inherent to DDPM Ho et al.|(2020). Achieving
high-fidelity image generation typically necessitates a large number of iterative denoising steps,
resulting in a computationally intensive and time-consuming sampling process during inference—an
undesirable characteristic for practical applications. Although alternatives like the DDIM [Song et al.
(2020a)) mitigate this by removing the Markovian assumption and reducing sampling time, they
often compromise image quality, especially when using fewer sampling steps. Thus, there exists an
inherent trade-off between sampling efficiency and the perceptual quality of the generated images in
diffusion-based Real-ISR.

To strike a balance between inference speed and output image quality, we propose Discontinuity
Preserving MAP-optimized Image Super-Resolution (DMAPSR), a framework that enables high-
quality image generation using a single diffusion step. This is achieved by introducing an additional
module, termed the image quality enhancer, which operates alongside a pretrained SD model. To
address the challenge of oversmoothed or low-detail outputs typically associated with fast inference
in diffusion models, we incorporate a Markov Random Field (MRF) energy term with appropriate
relaxation to the original image content into the pipeline. This MRF prior acts as a structural
regularizer, encouraging the preservation of fine-grained details in the low-quality input and promoting
alignment with known natural image priors learned by the pretrained model. Specifically, the line-
field based regularization within the MRF prior enforces the retention of important discontinuities
and edges, ensuring that critical structures in the low-resolution image are preserved and enhanced
in the final output. The image quality enhancer is trained jointly with the frozen noise predictor
from SD, optimizing a loss that encourages the corrected sample to yield accurate noise estimates
and visually rich reconstructions. This combination enables a single-step sampling process that
significantly accelerates inference while maintaining fidelity and perceptual quality. Extensive
experiments demonstrate that our approach achieves strong quantitative and qualitative performance
in super-resolution tasks, still offering over a 100 x speedup compared to conventional multi-step
diffusion models.
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2 RELATED WORK

Deep learning and GAN-based ISR. Early deep learning-based ISR methods |Chen et al.[ (2021}
2023bjal); Dai et al.[(2019); Zhang et al.[(2022) primarily addressed the problem under fixed and
simplistic degradation models, which limited their applicability in real-world scenarios. In response
to the need for more realistic modeling, BSRGAN [Zhang et al.|(2021)) and Real-ESRGAN [Wang
et al.| (2021) introduced more sophisticated GAN-based frameworks designed to handle complex
and diverse degradation patterns encountered in practice. These advancements led to a notable
improvement in visual quality and subsequently inspired a series of follow-up studies |Chen et al.
(2022a)); Liang et al.| (2022aib); |Xie et al.[(2023) exploring variations of GANS tailored for real-ISR.
While these approaches demonstrated improvements, GAN-based models inherently suffer from
instability during training due to the adversarial learning framework, which involves simultaneous
optimization of generator and discriminator networks. Additionally, the HQ images produced often
contain unnatural textures and hallucinated artifacts, which undermine their fidelity and realism.

Diffusion prior for real-ISR. Diffusion models, formulated either through stochastic differential
equations (SDEs) [Song et al.|(2020b) or denoising diffusion probabilistic models (DDPMs) Ho et al.
(2020), have demonstrated impressive results in text-to-image generation and have subsequently
been adapted for a variety of image restoration tasks. With the emergence of SD, which leverages
latent-space modeling and text-conditioned priors, the pretrained text-to-image (T2I) Stable Diffusion
pipeline Rombach et al.|(2022)) has been increasingly adopted for Real-ISR tasks Lin et al.| (2024);
Wang et al.| (2024a); |Yang et al.| (2024)); Wu et al.| (2024b); |Yu et al.| (2024). Some of these methods
generate high-resolution images directly from noise using fine-tuned adapters|Zhang et al.| (2023)),
conditioning on LQ inputs in the latent space. Another set of methods, including DDRM Kawar
et al.[(2022), CCDF|Chung et al.|(2022), and DDNM |Yang et al.|(2021), as well as others |Chen et al.
(2023a); Csiszar (1975);[Wang et al.[(2022); Zhang et al.|(2023), explore optimization within the latent
space by applying controlled degradations to the LQ image and reconstructing HQ outputs. However,
these approaches often involve lengthy sampling procedures and are limited by their dependence
on fixed degradation models, reducing their flexibility in real-world settings. Despite the progress
achieved by these methods, most diffusion-based super-resolution pipelines remain computationally
intensive due to their reliance on multi-step sampling procedures, and they often fail to match the
level of fine-grained detail produced by comprehensive multi-step diffusion processes.

One step Real-ISR. Several methods have attempted to extend multi-step inference-based Real-ISR
pipelines to single-step alternatives by incorporating additional refinement strategies. For instance,
SinSR Wang et al.| (2024b)) reduces the four-step ResShift process to a single-step inference by
employing a distillation technique that preserves structural information. However, it still falls short
in reproducing the fine details typically obtained through multi-step diffusion priors. Similarly,
OSEDiff Wu et al.| (2024a)) leverages variational score distillation as a regularizer to fine-tune SD
using LoRA-based adaptation. Another line of work, known as InvSR [Yue et al.| (2024)), focuses
on optimizing a set of noise maps that the model can learn to estimate. At inference time, these
maps are used to perform the reverse diffusion in a single step. DDIM [Song et al.| (2020a)) was
the first method to relax the Markovian assumption inherent in standard diffusion models, enabling
the sampling process to incorporate information from both the previous time step and an estimated
denoised sample. This reformulation results in a more deterministic and controllable sampling
trajectory, thereby significantly improving sampling efficiency and reducing inference time. Building
on this, BIRD |Chihaoui et al.|(2024) further accelerated the DDIM framework by omitting updates
to intermediate latent representations during the reverse process, once an initial noise estimate is
obtained. Despite these innovations, most of these approaches primarily focus on tweaking internal
image representations or conditioning and often fail to deliver perceptually compelling results for
high-quality Real-ISR, particularly in scenarios requiring fine structural and texture detail.

3 METHOD

3.1 ONE-STEP DIFFUSION:

Denoising Diffusion Probabilistic Models (DDPMs) generate high-quality images by modeling a
forward diffusion process in which an initial clean image z( is gradually transformed into pure
Gaussian noise x7 ~ A(0,1) through a sequence of intermediate states{x;}7_;. This is achieved by
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Figure 1: The overall framework of DMAPSR is illustrated as follows: the LQ image is first processed by a
VAE encoder and an image enhancer, which together map the image into a latent space tailored for one-step
diffusion. The image enhancer is trained to preserve structural discontinuities by minimizing a MAP-optimized
MREF energy, complementing the generative capacity of the pretrained SD model. For noise estimation, only the
residual noise is learned by the image enhancer, obtained by subtracting the noise predicted by the pretrained SD
model. Prior to inputting into SD, both the latent representation from the SD autoencoder and the features from
the image enhancer are scaled appropriately to ensure compatibility. Box with the dotted line of the left side is
defined elaborately on right side.

incrementally injecting noise at each time step ¢ € [1, T']. To reverse this process and reconstruct the
original image, a neural network ey is trained to predict the noise component at each diffusion step.
In our framework, we begin with a pretrained noise prediction model eg(z¢, t) such as SD, trained
via denoising score matching. During training, the model is optimized by minimizing the following

objective:
Volle — eg(vVazro + /1 — age, t)||?

where the noisy sample is defined as: z; ~ \/a;xo + v/1 — & e. From this, we obtain an estimate
of the original clean sample % as, £g ~ \/%(xt — /T — aye). Given a pretrained noise predictor

€g (x4, t), the reverse diffusion step in a typicél DDPM is expressed as:

1 1-0{15
Ty 1 = Ty — T, t) | + oz = T, t) + 02 1
t—1 \/@<t 1_dt60(t )) Ot po(xe,t) + o (D
Here z ~ N(0,1) and 07 = 1;_5‘7&;1(1 — ay). Here pg(x¢,t) represents the predicted mean of the

denoised distribution. In contrast, DDIM modify this sampling process to be non-Markovian and
potentially deterministic. The DDIM update rule is given by:

Ty — /1 — Qreg(x, t _
Ti—1 = Oét—1< i dt o (@ )> + /1 — a1 —ofeg(xs,t) + ov2z )
t

By setting o0; = 0, becomes a deterministic process, enabling faster sampling. In this case, the
estimate % and the subsequent update simplifies to:

B = - 1\/%’569(%,1?) , @1 = /a_120 + /1 — d_y - = /1 \/agtxo (3)
To further accelerate the generation process, we propose a single-step formulation by approximating
x¢ directly from the final noisy sample x. Specifically, we define: z(; = 1 + orge(z7) Where
g 1s a learnable image enhancement network that refines the noisy input 7 to approximate the
clean sample x(. Rather than predicting the noise e for multiple diffusion steps, we aim to directly
map x7 to a corrected sample xg such that the pretrained noise predictor €y accurately estimates the
corresponding noise. The final loss used to train g, is defined as:

Ly = |le — eo(xr — orgy(xr), T)|? “)

which ensures that the modified input x7 4 o g¢(xT) yields a consistent noise estimate under the
frozen pretrained model €y. This approach effectively collapses the multi-step DDIM sampling into a
single forward pass of g4, enabling significantly faster inference while maintaining image fidelity
through alignment with the original noise prediction objective.
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3.2 REAL-ISR AS MAP ESTIMATION:

Degradation and MAP formulation. We formulate the real-ISR as Maximum A Posteriori (MAP)

estimation, where the goal is to recover the most probable HQ image X € R* =Wz gijyen a LQ
observation Y € R*Hs*Wy The MAP estimate seeks to maximize the aposteriori :
Xnyap = arg max logP(X[|Y) = arg max log P(Y|X) + log P(X) 5)

Here, H, = H,/k,W, = W,/k, where k € {2,4,8} and ¢ € {R,G,B}. P(Y|X) denotes
the likelihood and P(X) denotes the apriori. Real-ISR problem takes the generalized degradation
operator|Gao & Zhuang (2022) as Y = Dy, (H (X)) ©N Where Dy, is a parameterized downsampling
kernel, H includes aliasing, smoothing, and sparsity priors, and A" ~ (u, 02) denotes additive white
Gaussian noise, assumed independent of the underlying Markov structure. The operator ® denotes
element-wise application, which may reduce to addition|Gao & Zhuang|(2022)) in practical scenarios.

Prior as an MRF: Gibbs Distribution over Pixel-Line Lattice. We model the image prior P(X) as
a MRF|Geman & Geman|(1984)); Rajagopalan & Chaudhuri| (2002) defined over a lattice comprising
both image pixel sites and their corresponding dual line sites, with dependencies captured through
horizontal and vertical discontinuity fields, referred to as the respective line fields. Let Z,,, denote
the set of image pixel-sites with each channel of intensity values {F; ; = f; ;; (i,j) € Zp,} denoted
as {F = f}. Here, F = {F,;,(i,j) € Zp} denote the neighborhood system, where, F; ; =
{(k,1); (k,l) C Z,,} is the neighbour of (7, j). then {F, Z,,} forms an MRF. The full site set is
defined as § = Z,,, U D,,,, where D,,, represents line-sites capturing spatial transitions. Hence
we get an extended neighborhood system {G = G,, s € S}, and express the joint prior over both
pixel and dual line variables (f,1) as a Gibbs distribution: P(F = f,L = 1) = Le ¢/l where
E(f,1) = > cce Ve(f,1) is the energy function over cliques C of the graph G, and V. is the clique
potential deﬁned over elements s € c. The partition function Z ensures proper normalization:

Z=3m . Hence the the posterior distribution becomes: P(f,{|m) o e~ €7D with
m = {Dy, H, N } and corresponding posterior Gibbs distribution over {S, G}, with energy,

The second term enforces consistency between the prior and the likelihood, analogous to variational
inference, by minimizing the KL divergence.

]PY\X(m|f7 l)
HDX(fv l)

Where C' = log % We interpret this as the MRF consistency loss, which enforces alignment
between the prior distribution and the likelihood.

EMRchonsis‘cency = EY|X[5X(f7 l) —&y (f’ l)] )

To regularize the prior, we use a patch energy term that enforces local consistency between pixel
sites and the line sites features. Let '}, and F; denote the extracted pixel site and line site features
from the pixel lattice and line lattices (Geman & Geman)| (1984)); Rajagopalan & Chaudhuri (2002)),
respectively, and let 8(+, -) be a concatenation or fusion operator acting on co-located features. The
patch energy is defined as,

KL[Pyx (m|f, DI|Px(f,1)] = Ey~pyx)llog | =Eyx[&x(f,1) =& (f, D] +C

Epmen = Eucar, [|BEY. B3 ®)

This term promotes spatial coherence by penalizing local feature disparities.

MRF energy: To model spatial discontinuities in the image, we define horizontal and vertical
difference operators for the c-th i image channel X, € {XR, Xa, XB} The horizontal and Vertlcal
differences at spatial index (4, j) are given by, Af (2 ;) = @7 ; — 7 ;y and Af (v, 5) = 2, — x5, .
These differences are used to define the line ﬁelds—blnary dlSCOIltlnLIlty 1ndlcators—for each channel

via a hard threshold 7. The horizontal (vf ;) and vertical (I{ ;) line fields are given as:

po = L i IA (i) > T e L ifA (@) > T
“ 710, otherwise ’ %10, otherwise

&)
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The resulting binary fields L and V serve as indicators of vertical and horizontal discontinuities,
respectively. Gibbs prior distribution over each channel prior combining these line fields as: P(X =
z,L =1,V =v|c) x exp{—E(x¢,1°v°)}. The associated energy is given by a first-order weak-
membrane energy Rajagopalan & Chaudhuri| (2002):

EmRr (2°,19,0°) = Z[(l - /Uf‘j)(A;/l(fo/]))Q + (1 - Uf,jfl)(Agz(xf,jfl))Q
.
H(L =15 (A5 )% + (L= 1) (A (@i 1)) v Y [vf; +0f 0 +15; +15 ;1] (10)
,j v\l j i,j—1 v\, j—1 v 1, i,j—1 ,J 3,j—1
.
The final term acts as a penalty that discourages the introduction of excessive discontinuities in the
recovered image. Setting v = 0 eliminates this constraint, leading to a trivial solution in which the

MREF tends to introduce discontinuities indiscriminately, including in regions where such transitions
are unlikely.

Discontinuity preservation: To generalize the MRF energy to RGB images, and enable optimal
discontinuity modeling, we replace binary line fields with continuous, differentiable soft line fields:
n(6) = o(a(|6| — 7)), where o(-) is the sigmoid function, «v controls the sharpness. Let the forward
differences across spatial sites be defined as:

8 (Xe) = {Af(zi )|k € {R,G, B}, (i,4) € (0,--- Hy) x (0,---W,)}
51{(XC) = {Aﬁ(l‘l,j)‘k € {R7G7B}= (Z,j) € (07 o H:z:) X (07 o Ww)}

with backward differences defined as, 6! = —6}{ and 6° = —6/. The intra-channel compound MRF
energy for channel c is given by:

EMTA = Bpaia[(1 = 0(5])) - (61)2 + (1 = n(8])) - (61)%] + Espaia[(1 — 0(8%)) - (35)*
+(1=n(82)) - (62)* ]+~ (11)

where 7 is the mean soft line field value. Inter-channel energy terms eg?tgg are similarly computed

using differences between different color channels. The overall MRF energy across all channels is
then:

1 intra 1 inter
Emrr(X) = 3 E EM+ 3 E Eey oo (12)
CE{R,G,B} (C],Cg)E;R,G,B}
C17#C2

Combining {6} [7]and [8] the final objective function becomes:
L= £¢> + gMRF + )\pgpatch + )\TACMRchonsistency (13)

Overall architecture is shown in Fig. [T}

4 EXPERIMENTS

EXPERIMENTAL DETAILS:

Training and testing dataset: Previous works Wang et al.| (2024a); Lin et al.| (2024); |Wu et al.
(2024b); |Yue et al.[(2023) have employed a variety of datasets for the x4 Real-ISR task. In line
with |Wu et al.| (2024bga); [Yue et al.| (2024), we use the LSDIR [Li et al.| (2023)) dataset and the first
10,000 face images from FFHQ |[Karras et al.| (2019) for training our model. LQ images are generated
using the degradation pipeline proposed in Real-ESRGAN |Wang et al.|(2021). The model is trained
using the Adam optimizer with a batch size of 64 for 90,000 iterations and a fixed learning rate of
Se-5. We evaluate DMAPSR on both real-world datasets, including RealSR |Cai et al.| (2019) and
DRealSR [Wei et al.[(2020), as well as on the synthetic DIV2K validation set /Agustsson & Timofte
(2017). The hyperparameters \,, .., and «y are set to 1, 1, and 0.1, respectively.

Compared Methods. We compare our proposed method against a range of state-of-the-art ap-
proaches, including GAN-based BSRGAN |Zhang et al| (2021), as well as diffusion-based meth-
ods such as StableSR [Wang et al.| (2024a), DiffBIR [Lin et al.| (2024)), SeeSR |Wu et al.| (2024b)),
ResShift | Yue et al.[(2023)), SinSR |Wang et al.| (2024b)), OSEDiff|Wu et al.| (2024a)), InVSR |Yue et al.



Under review as a conference paper at ICLR 2026

Zoomed LR GT ResShift StableSR InvSR OSEDiff PassionSR DMAPSR

N e e i

Figure 2: Qualitative visual comparisons of Real-ISR methods. Please zoom in for a better view.

Datasets ‘ Methods ‘ Evaluation Metrics

| | PSNRT SSIMT LPIPS, MUSIQt CLIPIQA+ DISTS| FIDJ NIQE| MANIQA 1

BSRGAN 21.87 0.5539  0.4136  59.11 0.5183 0.2737 64.28 47615 0.4834
DiffBIR-50 | 23.64 0.5647 03524  65.81 0.6704 0.2128 30.72 4.7042  0.6210
StableSR-50 | 23.26 0.5726 03113  65.92 0.6771 0.2048 24.44 4.7581  0.6192
DIV2K- | SeeSR-50 23.68 0.6043 03194  68.67 0.6936 0.1968 25.90 4.8102  0.6240
Val ResShift-4 24.65 0.6181 03349  61.09 0.6071 0.2213 36.11 6.8212  0.5454
SinSR-1 24.41 0.6018 03240  62.82 0.6471 0.2066 35.57 6.0159  0.5386
OSED:iff-1 23.72 0.6108  0.2941 67.97 0.6683 0.1976 26.32 4.7097  0.6148
PassionSR-1 | 24.34 0.7097 03440  51.19 0.4802 0.2075 28.45 7.039 0.2267
DMAPSR 24.58 0.6112 0.2938  68.52 0.6842 0.1962 27.19 4.6721  0.6416
BSRGAN 28.75 0.8031  0.2883  57.14 0.4915 0.2142 155.63 65192 0.4878
DiffBIR-50 | 26.71 0.6571  0.4557  61.07 0.6395 0.2748 166.79  6.3124  0.5930
StableSR-50 | 28.03 0.7536  0.3284  58.51 0.6356 0.2269 14898  6.5239  0.5601
DRealSR | SeeSR-50 28.17 0.7691 03189  64.93 0.6804 0.2315 14739 6.3967  0.6042
ResShift-4 28.46 0.7673  0.4006  50.60 0.5342 0.2656 17226 8.1249  0.4586
SinSR-1 28.36 0.7515 03665  55.33 0.6383 0.2485 170.57  6.9907  0.4884
OSEDiff-1 27.92 0.7835  0.2968  64.65 0.6963 0.2165 13530  6.4902  0.5899
DMAPSR-1 | 28.32 0.7842 02957  64.97 0.6975 0.2096 139.75 6.3245  0.6172
BSRGAN 26.39 0.7654 02670  63.21 0.5001 0.2121 141.28  5.6567  0.5399
DiffBIR-50 | 24.75 0.6567 03636  64.98 0.6463 0.2312 128.99 55346  0.6246
StableSR-50 | 24.70 0.7085 03018  65.78 0.6178 0.2288 128.51 59122 0.6221
RealSR | SeeSR-50 25.18 0.7216 03009  69.77 0.6612 0.2223 125.55 5.4081  0.6442
ResShift-4 26.31 0.7421 03460  58.43 0.5444 0.2498 141.71  7.2635  0.5285
SinSR-1 26.28 0.7347 03188  60.80 0.6122 0.2353 13593  6.2872  0.5385
OSEDiff-1 25.15 0.7341  0.2921 69.09 0.6693 0.2128 12349 5.6476  0.6326
PassionSR-1 | 22.52 0.6255 0.4913 4321 0.3089 0.3185 129.54  5.706 0.2396
DMAPSR-1 | 26.29 0.7426  0.2918  69.81 0.6651 0.2178 127.92 54104  0.6492

Table 1: We conduct a quantitative comparison of DMAPSR with state-of-the-art Real-ISR models based
on GAN and diffusion frameworks across various datasets with the reverse timestep after hyphen. The best-
performing method is highlighted in bold, while the second-best result is indicated with an underline.

(2024), and PassionSR |Zhu et al.|(2024])). For a fair comparison, we follow the official configurations
of each method. StableSR, DiffBIR, and SeeSR are evaluated using 50 sampling steps, as originally
proposed. ResShift is evaluated using 4 sampling steps, while SinSR, OSEDiff, PassionSR, and
InvSR are all evaluated using a single sampling step, in accordance with their respective official
implementations.
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Metrics | StableSR DiffBIR SeeSR ~ ResShift SinSR ~ OSEDiff InvSR ~ DMAPSR
Inference step 50 50 50 4 1 1 1 1
Inference time (s) 11.50 2.72 4.29 0.71 0.13 0.15 0.12 0.11
#Total Params(M) 1410 1717 2524 119 119 1775 1145 949
#Trainable Params(M) | 150 380 750 119 119 8.5 33.84 33.51

Table 2: Comparison of inference time and parameter count across different methods. All evaluations are
conducted on a single NVIDIA A-100 GPU with a maximum memory capacity of 80GB, for the x4(128 — 512)
SR task.

COMPARISON TO THE STATE OF THE ART:

Quantitative Comparisons. The quantitative comparison across three benchmarks is presented
in Table[I] In full-reference image quality assessment metrics, DMAPSR demonstrates superior
performance over existing methods, achieving the best or second-best scores in SSIM and the
perceptual quality metric LPIPS on both the RealSR and DRealSR benchmarks. Additionally, in the
structural similarity metric DISTS, DMAPSR consistently performs well across all benchmarks. In
terms of semantic and content-aware evaluation, CLIPIQA scores indicate that DMAPSR outperforms
all competing methods on all three datasets. For no-reference IQA metrics, while SeeSR and OSEDiff
exhibit strong performance, DMAPSR achieves comparable or better results in perceptual quality
metrics such as MUSIQ and MANIQA. In the FID score, SeeSR performs better due to the advantage
of multi-step generation in capturing global content alignment. ResShift yields strong results in
the pixel-wise PSNR metric, benefiting from end-to-end training from scratch, which facilitates
better alignment with pixel-level fidelity. However, it underperforms in perceptual and content-based
metrics. Overall, DMAPSR achieves leading performance among methods based on pretrained SD
priors, especially in the single-step inference setting, demonstrating a favorable trade-off between
efficiency and perceptual quality.

Qualitative Comparisons. Fig. |2| presents qualitative comparisons of our method against
several existing approaches. In the first example, ResShift, which is trained from scratch
without leveraging SD priors, produces a slightly blurred facial region with reduced detail.
Similarly, the prior-based StableSR exhibits some blur, indicating limitations in capturing
fine textures. PassionSR consistently produces over-sharpened and over-brightened outputs
across examples, likely due to post-training quantization effects. While InvSR and OSED-
iff benefit from SD priors and generally perform well, they tend to introduce unnatural de-
tails, particularly noticeable in the third example, thereby deviating from the ground truth.
In contrast, DMAPSR, despite being ZoomedLx  Zoomed noisy LR invsr oseoif omaPsR

a single-step diffusion method, pro-
duces visually faithful reconstructions
that are both texture-rich and aligned
with the natural properties of the orig-
inal image across all examples. No-
tably, in the third and fifth examples,
OSED:iff fails to reconstruct fine tex-
tures, underscoring the limitations of
approaches that depend exclusively
on prompt-based supervision. Fur-
thermore, while OSEDiff requires text
prompts during training, it struggles

to maintain reconstruction quality dur- Fi 3 itat . ¢ diffusi hod
ing inference in the absence of such 1gure 3: Qualitative comparison of one-step diffusion methods un-

external guidance. Overall, DMAPSR der the setting where the LQ input is further degraded with additive

e noise. Please zoom in for a better view.
demonstrates the ability to generate

natural, high-fidelity results without relying on prompt-based training, offering a significant advan-
tage in generating realistic textures in a single-step inference setting. More qualitative results are
provided in the supplementary.

Runtime and computational overhead. Table[2]presents the runtime performance and computational
overhead of our method compared to existing approaches, evaluated on a single NVIDIA A-100
GPU using 512 x 512 images from the DRealSR benchmark. Among all one-step diffusion models,
DMAPSR achieves the second lowest trainable parameter count and the fastest inference speed, while
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Methods | PSNRT LPIPS| MUSIQ1 CLIPIQA 1 Methods | PSNRT LPIPS| MUSIQ? CLIPIQA 1
iwfoconsist. | 2607 02959  69.21 0.6581 ConvNeX{Liu et al.|(2022) 2597 03189 68.96 0.6541
iiwopaich | 2604 02947  69.15 0.6581 RestormefZamir et al. |(2021) 2544 03147 6852 0.6581
iiMRF-IC | 2596 03046  68.92 0.6542 ResUNefDiakogiannis et al[(2020] | 25.26 03226  68.33 0.6522
vwlointer | 26.14 02963  69.62 0.6627 NAFNe{Chen et al.[(2022b} 2568 03043 6831 0.6467
vDMAPSR | 2629 02918 6931 0.6651 VQGAN-HEsser et al.|(2020) 2629 02918  69.81 0.6651
Table 3: Comparison of different Table 4: Ablation on the image enhancer network on the
losses on RealSR dataset. RealSR dataset.

also outperforming multi-step methods. Specifically, DMAPSR provides nearly 100 x faster inference
than the multi-step StableSR, while requiring only one-fifth the number of trainable parameters.
It is also approximately 6 x faster than ResShift and 1.3 x faster than the single-step OSEDiff, all
while maintaining superior output quality. Although OSEDiff has the smallest number of trainable
parameters, DMAPSR significantly reduces the overall parameter count—almost by half—making it
more suitable for deployment scenarios due to its compactness and higher efficiency.

Noise removal. In the LQ image, we introduce additive noise to further challenge the reconstruction
process. We evaluate the noise removal capability of our method alongside other approaches, as
illustrated in Fig.[3] This evaluation highlights the effectiveness of our model in denoising. The results
demonstrate that our method outperforms other one-step diffusion frameworks, such as OSEDiff and
InvSR, both of which exhibit notable degradation in reconstruction quality under noisy conditions.

ABLATION EXPERIMENTS:

Loss function components. To assess the contribution of various loss terms in our framework, we
conduct an ablation study on the RealSR benchmark, with results presented in Table 3| Specifically,
we evaluate the performance under the following settings: (i) removing the MRF-consistency term,
(i1) excluding the patch-based energy term, (iii) computing MRF energy on a single grayscale channel
instead of full RGB, and (iv) omitting the inter-channel MRF energy term. These are compared
against the full model that incorporates all components of Equation[I3] The absence of either the
patch-based energy term or the MRF-consistency term leads to a notable decline in reference-based
PSNR. This indicates that both terms are essential for preserving fine-grained details in the LQ image
and maintaining accurate correspondence with the ground truth. When MRF energy is computed
solely on a grayscale channel, the model fails to capture the diverse local interactions present across
the RGB channels, resulting in degraded performance. Furthermore, excluding the inter-channel
component of the MRF energy significantly impairs the model’s ability to reconstruct rich textures
and color details, demonstrating its importance in modeling cross-channel dependencies.

Image enhancer architecture. We conduct an ablation study to investigate the effect of different
backbone architectures for the image enhancer module in our DMAPSR framework. The results,
reported in Table[d] are evaluated on the RealSR benchmark using both perceptual and fidelity-based
metrics with five backbone variants. Among these, the VQGAN |[Esser et al.[(2020) encoder-based
design achieves the best trade-off, yielding the highest PSNR. This superior performance highlights
the importance of preserving both structural and semantic features during latent-space transformation.
The VQGAN:-style downsampling blocks are particularly effective in capturing localized texture and
long-range dependencies while compressing the image representation, making them well-suited for
our one-step diffusion framework. Therefore, we adopt the VQGAN-based architecture as the default
image enhancer in our pipeline.

5 CONCLUSION

We propose DMAPSR, a single-step diffusion-based super-resolution method that explicitly preserves
image discontinuities while enabling efficient reconstruction. Our approach combines a lightweight
image enhancer with a pretrained diffusion backbone for structure-aware detail synthesis and robust
noise estimation. DMAPSR introduces a discontinuity-preserving line field energy, optimized via
a MRF formulation, which ensures the reconstruction of sharp structural edges. The model further
captures fine-grained information within and across RGB channels, enabling enhanced texture fidelity
alongside rapid sampling. Experimental results demonstrate that DMAPSR achieves comparable
or superior performance to both single-step and multi-step real-image super-resolution baselines in
terms of objective quality metrics and visual fidelity.



Under review as a conference paper at ICLR 2026

REFERENCES

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset
and study. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pp. 126135, 2017.

Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single
image super-resolution: A new benchmark and a new model. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 3086-3095, 2019.

Chaofeng Chen, Xinyu Shi, Yipeng Qin, Xiaoming Li, Xiaoguang Han, Tao Yang, and Shihui Guo.
Real-world blind super-resolution via feature matching with implicit high-resolution priors. In
Proceedings of the 30th ACM International Conference on Multimedia, pp. 1329-1338, 2022a.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing
Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 12299-12310, 2021.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
In European Conference on Computer Vision, pp. 572-589. Springer, 2022b.

Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong. Activating more pixels in
image super-resolution transformer. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 22367-22377, 2023a.

Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xiaokang Yang, and Fisher Yu. Dual aggregation
transformer for image super-resolution. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 12312-12321, 2023b.

Hamadi Chihaoui, Abdelhak Lemkhenter, and Paolo Favaro. Blind image restoration via fast diffusion
inversion. arXiv preprint arXiv:2405.19572, 2024.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating
conditional diffusion models for inverse problems through stochastic contraction. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12413-12422, 2022.

Imre Csiszar. I-divergence geometry of probability distributions and minimization problems. The
annals of probability, pp. 146158, 1975.

Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network
for single image super-resolution. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11065-11074, 2019.

Foivos I Diakogiannis, Francois Waldner, Peter Caccetta, and Chen Wu. Resunet-a: A deep learning
framework for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry
and Remote Sensing, 162:94-114, 2020.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional
network for image super-resolution. In Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13, pp. 184—199. Springer, 2014.

Weisheng Dong, Peiyao Wang, Wotao Yin, Guangming Shi, Fangfang Wu, and Xiaotong Lu. Denois-
ing prior driven deep neural network for image restoration. IEEE transactions on pattern analysis
and machine intelligence, 41(10):2305-2318, 2018.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. arXiv preprint arXiv:2012.09841, 2020.

Shangqi Gao and Xiahai Zhuang. Bayesian image super-resolution with deep modeling of image
statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(2):1405-1423,
2022.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence, (6):
721-741, 1984.

10



Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401-4410, 2019.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593-23606, 2022.

Christian Ledig, Lucas Theis, Ferenc Huszdr, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image
super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4681-4690, 2017.

Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun
Liu, Denis Demandolx, et al. Lsdir: A large scale dataset for image restoration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1775-1787, 2023.

Jie Liang, Hui Zeng, and Lei Zhang. Details or artifacts: A locally discriminative learning approach
to realistic image super-resolution. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5657-5666, 2022a.

Jie Liang, Hui Zeng, and Lei Zhang. Efficient and degradation-adaptive network for real-world image
super-resolution. In European Conference on Computer Vision, pp. 574-591. Springer, 2022b.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Im-
age restoration using swin transformer. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1833-1844, 2021.

Xingi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In
European Conference on Computer Vision, pp. 430—448. Springer, 2024.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. arXiv preprint arXiv:2201.03545, 2022.

Ambasamudram N Rajagopalan and Subhasis Chaudhuri. An mrf model-based approach to simulta-
neous recovery of depth and restoration from defocused images. IEEE transactions on pattern
analysis and machine intelligence, 21(7):577-589, 2002.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealis-
tic Text-to-Image Diffusion Models with Deep Language Understanding. Advances in neural
information processing systems, 35:36479-36494, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting
diffusion prior for real-world image super-resolution. International Journal of Computer Vision,
132(12):5929-5949, 2024a.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy.
Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the Euro-
pean conference on computer vision (ECCV) workshops, pp. 0-0, 2018.

11



Under review as a conference paper at ICLR 2026

Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind
super-resolution with pure synthetic data. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1905-1914, 2021.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. arXiv preprint arXiv:2212.00490, 2022.

Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang, Langing Guo, Lap-Pui Chau, Ziwei Liu,
Yu Qiao, Alex C Kot, and Bihan Wen. Sinsr: diffusion-based image super-resolution in a single
step. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
25796-25805, 2024b.

Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qixiang Ye, Wangmeng Zuo, and Liang Lin.
Component divide-and-conquer for real-world image super-resolution. In Computer Vision-ECCV
2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part VIII 16,
pp. 101-117. Springer, 2020.

Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network
for real-world image super-resolution. Advances in Neural Information Processing Systems, 37:
92529-92553, 2024a.

Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. Seesr:
Towards semantics-aware real-world image super-resolution. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 25456-25467, 2024b.

Liangbin Xie, Xintao Wang, Xiangyu Chen, Gen Li, Ying Shan, Jiantao Zhou, and Chao Dong. Desra:
detect and delete the artifacts of gan-based real-world super-resolution models. arXiv preprint
arXiv:2307.02457, 2023.

Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. Gan prior embedded network for blind face
restoration in the wild. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 672—681, 2021.

Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and Lei Zhang. Pixel-aware stable diffusion
for realistic image super-resolution and personalized stylization. In European Conference on
Computer Vision, pp. 74-91. Springer, 2024.

Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao,
and Chao Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image
restoration in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 25669-25680, 2024.

Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image
super-resolution by residual shifting. Advances in Neural Information Processing Systems, 36:
13294-13307, 2023.

Zongsheng Yue, Kang Liao, and Chen Change Loy. Arbitrary-steps image super-resolution via
diffusion inversion. arXiv preprint arXiv:2412.09013, 2024.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. arXiv preprint
arXiv:2111.09881, 2021.

Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation
model for deep blind image super-resolution. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 4791-4800, 2021.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 38363847, 2023.

Xindong Zhang, Hui Zeng, Shi Guo, and Lei Zhang. Efficient long-range attention network for image
super-resolution. In European conference on computer vision, pp. 649—-667. Springer, 2022.

12



Under review as a conference paper at ICLR 2026

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution
using very deep residual channel attention networks. In Proceedings of the European conference

on computer vision (ECCV), pp. 286-301, 2018.

Libo Zhu, Jianze Li, Haotong Qin, Wenbo Li, Yulun Zhang, Yong Guo, and Xiaokang Yang. Passionsr:
Post-training quantization with adaptive scale in one-step diffusion based image super-resolution.
arXiv preprint arXiv:2411.17106, 2024.

13



Under review as a conference paper at ICLR 2026

A  SUPPLEMENTARY MATERIAL

In the supplementary material, we provide the following additional details:

* A complete proof of the posterior energy formulation presented in the main paper.
* Visualizations of the line fields along with the corresponding images.

* Additional qualitative and quantitative results to further support our findings.

* Usage of LLM

PROOF OF THE MRF ENERGY OF THE POSTERIOR:

Theorem: Let the prior distribution P(X = w) be a Gibbs distribution defined over a neigh-
borhood {S,G} with corresponding energy £ and potential{Vo}: P(X = w) = e €@/Z,
E(w) = > ¢ Ve(w), where w = (f,1). Then, for any fixed observation g, the posterior distri-
bution P(X = w|G = g) is also a Gibbs distribution, defined over the neighborhood system {5, G},
with the posterior energy function given by:

1
EX(F,1) = E(F,1) + 55l — ®(g, Dy (H(F)))||* (14)
where G denotes the extended neighborhood system defined as:
P g87 ifS S Dm
= 15
gs {gsu”ﬂg\{s}, ifs e Zn (15)

proof: We start with the definition of the degradation operator, G = ¢(H(F)) ® N, where N ~
N (u, 0?) is additive white Gaussian noise, assumed independent of the MRF {S, G}. The operation
© is assumed to be invertible, such that we can write N' = ®(G, Dy, (H(F))) = {®s,s € Z,, }. Let
Hs, s € Z,, denote the set of pixels that affect the blurred image H (F') at s. For instance H s can be
a 3 x 3 window centered at s. {®g, s € Z,,, } depends only on g, and {f; : t € Hs}. Because of the
shift invariance of H, these neighborhoods satisty H, s = s+ H, where H,, C Z,,,s+r € Z,, and
s + H.,. intersects Z,,. If {#H,} is symmetric such that r € Hy = —r € H, then the collection
{H\{s},s € Z,,} forms a valid neighborhood system over Z,,. Let H? define the second-order
neighborhood system as:

7'[2 = UTEHSHT‘v‘S €Zm (16)
Then {2 >){ s}, s € Zy,} also defines a neighborhood system. We define the posterior neighborhood
system {GF = GF s € S} as,

P g87 ifS S Dm
= 1
gs {gsu”ﬂg\{s}, ifs e Zn a7
Applying Bayes’ rule, we express the posterior as:
P(G=¢glX =w) PX =w)
P(X =w|G=g) = (18)
(X =wlG =) o
¥ w = (f,1) and each g. Assuming P(X = w) = e~¥() /Z the likelihood term becomes:
P(G = gIX = w) = B(Dy(H(X)) O N = gIX = )
=PV = (g, Dy (H(X))))
1
= (2m0®) M2 exp{— o~ |n — ||} (19)
202
Again, P(X = w|G = g) = e £ @) /7P,
Case s € Z,,: The term ® does not cancel out. ®(g, Dy, (H(F))) = {®s, 5 € Z, }.
Taking Eq[I8and Eq.[T9 we can write,
PX=w|N=0)xPN=0|X =w) PX =w). (20)

14
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Taking the negative logarithm, the posterior energy becomes:

EP(f,1) = —logP(N' =@ | X =w) —logP(X = w). 21)
From Eq.[I9 we get,
1
~logPW =@ | X =w) = 55 > (@p(grs fo. t € Hy) — p)* + const. (22)
rE€ELm

Combining both terms, the full posterior energy becomes:

EX(LD =Y Volf,) + # ST (@lgei fe t €M) — ) (23)
C

r€Lm

_gP(w)/ZP —S(w)/Z

e e

P(Fs:fs‘Fr:fraT#S7r€Zm7L:laG:g)zz e_gp(w)/ZP:Z e*‘f(‘”)/Z
fs fs

o EFD =5k Tocs,, (Br—p)?

TS e tUD g Sez,, (B 24

s

= = Y Vel O (Rileri i t € Hy) o)

C:seC ris€H,
1 2
+ D Vel 55 D (lgrifi tEH) — ) (25)
C:s¢C ris¢H,

It can be seen that the last two terms in[25|does not involve f; and the ratio in[24|depends only on
the first two terms of 25| The first two terms depends only on the coordinate (f,[) for the sites in
Gs{s € C = C C G,} and the second term only on the sites in = U,..se 3, Hs = Upen, Hy = H2.
Hence we can say, GI' = G, U H2\ {s}.

Cases € D,,:
]P)(Ls :ls|Lr :lry""?éSﬂ" S DnuF:f:G:g)
e—SP(w)/ZP €—£(w)/Z

T e Ew P T Y e 7

The sum extends over all possible values of L; Hence we can say, G£ = Gs.

Thus, the posterior energy becomes,
1
EV(f,1) :E(f,l)+ﬁlluf<I>(g,2711)(H(F)))H2 (26)

Corollary: It can be observed that the second term is strictly positive. To generalize this further,
we note that this term can be interpreted as a discrepancy measure between the likelihood and the
prior. While the KL divergence is a common choice—being strictly positive—other discrepancy
measures may also be employed. To demonstrate the similarity between the second term and the KL
divergence, we proceed as follows:

B(G = gIX =) = oy expl—o s ln — B0, Dy (H(F))I)

(2m0?)
— 108P(G = gl X =w) = 5 llu ~ Blg, Dy(H(F))|I* + C
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Datasets | Methods | Evaluation Metrics

| PSNRT LPIPS| MUSIQt CLIPIQA+ SSIMt DISTS| FID| NIQE| MANIQA 1

S3Diff 23.40 0.2571 68.21 0.7007 0.5953 0.1730 1935  4.7391 0.4538
TSD-SR 23.02 0.2673 71.69 0.7416 0.5808 0.1821 29.16 43244  0.6192
DIV2K- | Add-SR 23.26 0.3623 63.39 0.5734 0.5902 0.2123 29.68  4.7610  0.5637
Val OSEDiff 23.72 0.2941 67.97 0.6683 0.6108 0.1976 2632 47097  0.6148
SinSR 24.41 0.3240 62.82 0.6471 0.6018 0.2066 35.57 6.0159  0.5386
PassionSR | 24.34 0.3440 51.19 0.4802 0.7097 0.2075 28.45 7.039 0.2267
DMAPSR | 24.58 0.2938 68.52 0.6842 0.6112 0.1962 27.19  4.6721  0.6416
S3Diff 25.03 0.2699 67.89 0.6722 0.7321 0.1996 108.88 5.3311  0.4563
TSD-SR 24.81 0.2743 71.19 0.7160 0.7172 0.2104 11445 51298  0.6347
RealSR | Add-SR 24.79 0.3091 66.18 0.5722 0.7077 0.2191 132.05 5.5440  0.6098
PassionSR | 22.52 0.4913 43.21 0.3089 0.6255 0.3185 129.54  5.706 0.2396
OSEDiff 25.15 0.2921 69.09 0.6693 0.7341 0.2128 123.49 5.6476  0.6326
SinSR 26.28 0.3188 60.80 0.6122 0.7347 0.2353 13593  6.2872  0.5385
DMAPSR | 26.29 0.2918 69.81 0.6651 0.7426 0.2178 127.92 54104  0.6492
S3Diff 26.89 0.3122 64.19 0.7122 0.7469 0.2120 119.86 6.1647  0.4508
TSD-SR 27.77 0.2967 66.62 0.7344 0.7559 0.2136 13498 59131  0.5874
DRealSR | Add-SR 27.77 0.3196 60.85 0.6188 0.7722 0.2242 150.18  6.9321  0.5490
SinSR 28.36 0.3665 55.33 0.6383 0.7515 0.2485 170.57 6.9907  0.4884
OSEDiff 27.92 0.2968 64.65 0.6963 0.7835 0.2165 13530 6.4902  0.5899
DMAPSR | 28.32 0.2957 64.97 0.6975 0.7842 0.2096 139.75 6.3245  0.6172

Table 5: We conduct a quantitative comparison of DMAPSR with state-of-the-art Real-ISR models based on
one-step diffusion frameworks across various datasets. The best-performing method is highlighted in bold, while
the second-best result is indicated with an underline.

Where C = — % log(2m0?) as X is independent of /. Now, taking (h(X)) = Ex[h(X)] we can
write the above as,
KL[P(X = w)[[P(G = g|X = w)] = (log P(X = w)) — (log P(G = g|X = w))
1 U(w
g llln = (0. D EHEN|) + ¢~ (- L)

- 2%2“'“ — (g, Dy(H(F)II") +C

Hence, effectively we can write the posterior energy as,
EV(f.1) = E(f,1) + KL[Pyx (91 f, DIIPx(f, )] @7)
ADDITIONAL RESULTS:

We present additional comparative results with existing diffusion model-based methods in Fig.
Our method demonstrates superior performance, particularly in recovering fine structures such as
artificial flower petals, leaf textures, and cloth patterns, under both ground truth and non-ground truth
scenarios. In addition, we provide further quantitative comparisons with state-of-the-art one-step
diffusion-based image super-resolution methods, as reported in Table[3

VISUALIZATION OF LINE FIELDS:

We present the horizontal and vertical line fields in forward and backward directions generated during
inference in Fig. [5

USAGE OF LARGE LANGUAGE MODEL:

We have utilized a large language model (LLM) solely for grammatical correction, word choice
refinement, and improving sentence phrasing.
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Zoomed LQ StableSR ResShift OSEDiff DMAPSR

Nikon| Nikon

SR

Figure 4: Qualitative visual comparisons of Real-ISR methods are presented. Note that the third example lacks
a corresponding high-quality ground truth image. Please zoom in for a clearer view.
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HQ Line field HQ Line fields

Figure 5: Horizontal and vertical line fields in both forward and backward directions are shown alongside the
generated HQ image. Please zoom in for a clearer view.
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