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Abstract

Real-time decoding of neural activity is central to neuroscience and neurotech-
nology applications, from closed-loop experiments to brain-computer interfaces,
where models are subject to strict latency constraints. Traditional methods, includ-
ing simple recurrent neural networks, are fast and lightweight but often struggle
to generalize to unseen data. In contrast, recent Transformer-based approaches
leverage large-scale pretraining for strong generalization performance, but typically
have much larger computational requirements and are not always suitable for low-
resource or real-time settings. To address these shortcomings, we present POSSM, a
novel hybrid architecture that combines individual spike tokenization via a cross-
attention module with a recurrent state-space model (SSM) backbone to enable (1)
fast and causal online prediction on neural activity and (2) efficient generalization
to new sessions, individuals, and tasks through multi-dataset pretraining. We evalu-
ate POSSM’s decoding performance and inference speed on intracortical decoding
of monkey motor tasks, and show that it extends to clinical applications, namely
handwriting and speech decoding in human subjects. Notably, we demonstrate that
pretraining on monkey motor-cortical recordings improves decoding performance
on the human handwriting task, highlighting the exciting potential for cross-species
transfer. In all of these tasks, we find that POSSM achieves decoding accuracy
comparable to state-of-the-art Transformers, at a fraction of the inference cost (up
to 9× faster on GPU). These results suggest that hybrid SSMs are a promising
approach to bridging the gap between accuracy, inference speed, and generalization
when training neural decoders for real-time, closed-loop applications.

1 Introduction

Neural decoding – the process of mapping neural activity to behavioural or cognitive variables – is
a core component of modern neuroscience and neurotechnology. As neural recording techniques
evolve and datasets grow in size, there is increasing interest in building generalist decoders that scale
and flexibly adapt across subjects and experiments. Several important downstream applications –
including closed-loop neuroscience experiments and brain-computer interfaces (BCIs) – require fine-
grained, low-latency decoding for real-time control [1]. Advances in these technologies would enable
next-generation clinical interventions in motor decoding [2], speech prostheses [3], and closed-loop
neuromodulation [4, 5]. Building towards these applications will require neural decoders that meet
three requirements: (1) robust and accurate predictions, (2) causal, low-latency inference that is
viable in an online setting, and (3) flexible generalization to new subjects, tasks, and experimental
settings. Although recent developments in machine learning (ML) have enabled significant strides in
each of these axes, building a neural decoder that achieves all three remains an open challenge.
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Figure 1: Existing deep learning models for
neural decoding. (a) Recurrent neural net-
works (RNNs). (b) Attention-based models
such as Transformers.

Recurrent neural networks (RNNs) [6] and attention-
based models such as Transformers [7] have shown
significant promise for neural decoding tasks [8–10].
RNNs (Figure 1a) offer fast, low-latency inference on
sequential data and strong performance when trained
on specific tasks [10]. However, their ability to gen-
eralize to new subjects is limited due to their rigid
input format. Specifically, their reliance on fixed-size,
time-binned inputs means that they typically cannot
learn from new sessions with different neuron iden-
tities or sampling rates without full re-training and/or
modifying the architecture. In contrast, Transformer-
based architectures (Figure 1b) offer greater flexibility thanks to more adaptable neural tokenization
approaches [11–13]. Nonetheless, they struggle with applications involving real-time processing
due to their quadratic computational complexity, in addition to the overall computational load of
the attention mechanism. Recent efforts in sequence modelling with large language models have
explored hybrid architectures that combine recurrent layers, such as gated recurrent units (GRUs) [14]
or state-space models (SSMs) [15–18], with attention layers. These models show encouraging gains
in long-context understanding and computational efficiency [19–21]. While hybrid attention-SSM
approaches offer a promising solution for real-time neural decoding, to the best of our knowledge,
they remain unexplored in this area.

We address this gap with POSSM1, a hybrid model that combines the flexible input-processing of
Transformers [22] with the efficient, online inference capabilities of a recurrent SSM backbone.
Unlike traditional methods that rely on rigid time-binning, POSSM operates at a millisecond-level
resolution by tokenizing individual spikes. In essence, POSSM builds on a POYO-style cross-attention
encoder [13] that projects a variable number of spike tokens to a fixed-size latent space. The resulting
output is then fed to an SSM that updates its hidden state across consecutive chunks in time. This
architecture, as illustrated in Figure 2, offers two key benefits: (1) the recurrent backbone allows for
lightweight, constant-time predictions over consecutive chunks of time and (2) by adopting POYO’s
spike tokenization, encoding, and decoding schemes, POSSM can effectively generalize to different
sessions, tasks, and subjects.

In this paper, we introduce the POSSM architecture and evaluate its performance on intracortical
recordings of spiking activity from experiments in both non-human primates (NHPs) and humans.
Although our current evaluations are conducted offline, POSSM is designed for real-time inference
and can be readily implemented for online experiments. Finally, while this paper is concerned with
invasive electrophysiology recordings, this method could be extended further to other modalities
using POYO-style tokenization (see Section 5 for a discussion). Our contributions are summarized as
follows:

• Performance and efficiency: We evaluate POSSM against other popular models using NHP
datasets that contain multiple sessions, subjects, and different reaching tasks (centre-out,
random target, maze, etc.). We find that POSSM matches or outperforms other models on all
these tests, doing so with greater speed and significantly reduced computational cost.

• Multi-dataset pretraining improves performance: Through large-scale pretraining, we
find that POSSM delivers improved performance on NHP datasets across sessions, subjects,
and even tasks.

• Cross-species transfer learning: Pretraining on diverse NHP datasets and then finetuning
POSSM leads to state-of-the-art performance when decoding imagined handwritten letters
from human cortical activity [23]. This cross-species transfer not only outlines the remark-
able transferability of neural dynamics across different primates, but also shows the potential
for leveraging abundant non-human data to augment limited human datasets for improved
decoding performance.

• Long sequence complex decoding: When trained on human motor-cortical data during
attempted speech [3], POSSM achieves strong decoding performance. In contrast, attention-
based models struggle with the task’s long-context demands, making them computationally
prohibitive.

1POSSM stands for POYO-SSM, and is pronounced like the animal (“possum”; IPA: /"p6s9m/).
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Figure 2: An architecture for generalizable, real-time neural decoding. POSSM combines individual
spike tokenization [12] and input-output cross-attention [22] with a recurrent SSM backbone. In this
paper, we typically consider k = 3 and Tc = 50 ms.

2 Methods

We focus on decoding neuronal spiking activity, which consists of discrete events triggered when
excitatory input to a neuron exceeds a certain threshold. The timing and frequency of spikes encode
information conveyed to other neurons throughout the brain, underlying a communication system
that is central to all neural function [24, 25]. However, their sparse nature [26] requires an effective
input representation that can handle their temporal irregularity. Furthermore, there exists no direct
mapping between the neurons of one living organism to another, highlighting the non-triviality of the
alignment problem when training across multiple individuals. In this section, we describe how POSSM
is designed to sequentially process sub-second windows of these spikes for the online prediction of
behaviour, while maintaining a flexible input framework that allows it to efficiently generalize to an
entirely new set of neurons during finetuning.

2.1 Input processing

Streaming neural activity as input. Our focus is on real-time performance, which requires minimal
latency between the moment that neural activity is observed and when a corresponding prediction is
generated. This constraint significantly limits the time duration, and consequently the amount of data,
that a model can use for each new prediction. To this end, POSSM maintains a hidden state as data is
streamed in, allowing it to incorporate past information without reprocessing previous inputs. In each
chunk, the number of spikes varies, meaning each input is represented as a variable-length sequence
of spikes. While POSSM generally uses contiguous 50 ms time chunks here, we also demonstrate
strong performance with 20 ms chunks (see Section D.1). In theory, these windows could even be
shorter or longer (and even overlapping) depending on the task, with the understanding that there
would be some trade-off between temporal resolution and computational complexity.

Spike tokenization. We adopt the tokenization scheme from the original POYO model, where each
neuronal spike is represented using two pieces of information: (1) the identity of the neural unit which
it came from and (2) the timestamp at which it occurred (see Figure 2). The former corresponds to a
unique learnable unit embedding for each neuron, while the latter is encoded with a rotary position
embedding (RoPE) [27] that allows the tokens to be processed based on their relative timing rather
than their absolute timestamps. For example, a spike from some neuron with integer ID i that occurs
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at time tspike would be represented as a D-dimensional token x, given by:
x = (UnitEmb(i), tspike) ,

where UnitEmb : Z → RD is the unit embedding map and D is a hyperparameter. As tokenization
is an element-wise operation, a time chunk with N spikes will yield N spike tokens. We opt to use
the general term “neural unit”, as spikes could be assigned at a coarser specificity than an individual
neuron (e.g., multi-unit activity on a single electrode channel) depending on the dataset and task at
hand. This flexibility, coupled with the model’s ability to handle a variable number of units, facilitates
both training and efficient finetuning (see Section 2.3) on multiple sessions and even across datasets.

2.2 Architecture

Input cross-attention. We employ the original POYO [12] encoder, where a cross-attention module
inspired by the PerceiverIO architecture [22] compresses a variable-length sequence of input spike
tokens into a fixed-size latent representation. Unlike POYO, however, the encoder is applied on short
50 ms time chunks, each of which is mapped to a single latent vector. This is achieved by setting the
spike tokens as the attention keys and values, and using a learnable query vector q ∈ R1×M , where
M is a hyperparameter. Given a sequence Xt = [x0,x1, ...,xN ]⊤ ∈ RN×D of N spike tokens from
some chunk of time indexed by t, the latent output of the cross-attention module is computed as such:

z(t) = softmax

(
qK⊤

t√
D

)
Vt,

where Kt = XtWk and Vt = XtWv, with Wk,Wv ∈ RD×M , are the projections of the input
token sequence, following standard Transformer notation. Following POYO, our implementation also
uses the standard Transformer block with pre-normalization layers and feed-forward networks.

Recurrent backbone. The output of the cross-attention z(t) is then fed to an SSM (or another
variety of RNN), which we refer to as the recurrent backbone. The hidden state of the recurrent
backbone is updated as follows:

h(t) = fSSM(z(t),h(t−1)).

While the input cross-attention captures local temporal structure (i.e., within the 50 ms chunk), the
SSM integrates this information with historical context through its hidden state, allowing POSSM to
process information at both local and global timescales. We run experiments with three different
backbone architectures: diagonal structured state-space models (S4D) [15], GRU [14], and Mamba
[16]. However, we wish to note that this method is compatible with any other type of recurrent model.
Specifics regarding each of these backbone architectures can be found in Section B.2.

Output cross-attention and readout. To decode behaviour, we select the k most recent hidden
states {h(t−k+1):(t)} (k = 3 in our experiments), and use a cross-attention module to query them for
behavioural predictions. For a given time chunk t, we generate P queries, one for each timestamp at
which we wish to predict behaviour. Each query encodes the associated timestamp (using RoPE),
along with a learnable session embedding that captures latent factors of the recording session. The
design of our output module enables flexibility in several ways: (1) we can predict multiple outputs
per time chunk, enabling a denser and richer supervision signal, (2) we are not required to precisely
align behaviour to chunk boundaries, and (3) we can predict behaviour beyond the current chunk,
allowing us to account for lags between neural activity and behavioural action (see Section D.5).

2.3 Generalizing to unseen data with pretrained models

Given a pretrained model, we outline two strategies for adapting it to a new set of neural units, with a
trade-off between efficiency and decoding accuracy.

Unit identification. To enable efficient generalization to previously unseen neural units, we adopt
unit identification (UI), a finetuning strategy enabled by the spike tokenization scheme adopted from
POYO [12]. In UI, new neural units can be processed by a model simply by learning new embeddings.
Using this approach, we freeze the model weights, initialize new unit and session embeddings, and
then train them on the data from the new session while the rest of the model is kept unchanged.
This allows us to preserve the neural dynamics learned during pretraining, resulting in an efficient
generalization strategy that typically updates less than 1% of the model’s total parameters.
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Figure 3: Task schematics and outputs. (a) Centre-out (CO) task with a manipulandum. (b)
Random target (RT) task with a manipulandum. (c) RT task with a touchscreen. (d) Maze task with a
touchscreen. (e) Ground truth vs. predicted behaviour outputs from a held-out CO session. (f) Same
as (e) but for an RT session. (g) Human handwriting decoding task. (h) Human speech decoding task.

Full finetuning. While unit identification is an efficient finetuning method, it does not reliably
match the performance of models trained end-to-end on individual sessions. To address this, we also
explored full finetuning (FT), a complementary approach which uses a gradual unfreezing strategy.
We begin by only doing UI for some number of epochs before unfreezing the entire model and
training end-to-end. This allows us to retain the benefits of pretraining while gradually adapting to the
new session. As shown below, full finetuning consistently outperforms both single-session training
and unit identification across all tasks explored, demonstrating effective transfer to new animals,
tasks, and remarkably, across species.

3 Experiments

We evaluate POSSM across three categories of cortical activity datasets: NHP reaching tasks, human
imagined handwriting, and human attempted speech. For the NHP reaching tasks, we highlight
the benefits of scale by introducing o-POSSM, a POSSM variant pretrained on multiple datasets. We
compare it to single-session models on held-out sessions with varying similarity with the training
data, demonstrating improved decoding accuracy with pretraining. Next, we show that o-POSSM
achieves powerful downstream decoding performance on a human handwriting task, illustrating the
POSSM framework’s capacity for cross-species transfer. Finally, we demonstrate that POSSM effectively
leverages its recurrent architecture to efficiently decode human speech – a long-context task that can
become computationally expensive for standard Transformer-based models with quadratic complexity.
In each of these tasks, we see that POSSM consistently matches or outperforms other architectures in a
causal evaluation setting, with performance improving as model size and pretraining scale increase.

3.1 Non-human primate reaching

We first evaluate POSSM on the task of decoding two-dimensional hand velocities in monkeys perform-
ing various reaching tasks (shown in Figure 3a-f). Each training sample consists of 1 s of spiking
activity paired with the corresponding 2D hand velocity time series over that same interval. This 1 s
window is split up into 20 non-overlapping chunks of 50 ms, which are fed sequentially to POSSM (see
Section D.1 for results on 20 ms chunks). This streaming setup enables efficient real-time decoding,
where only the most recent 50 ms chunk is processed at each step. In sharp contrast, the original POYO
model reprocesses an entire 1 s window of activity with each new input, resulting in significantly
higher computational cost.

Experimental Setup. We use a similar experimental setup to POYO [12]. The pretraining dataset
includes four NHP reaching datasets collected by different laboratories [28–31], covering three types
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Table 1: Behavioural decoding results on NHP reaching tasks. Values are reported as mean R2

(↑) ± SD over sessions. The number of sessions in each dataset is contained in (·). C, T, and H
are subject identifiers. SS: Single-session; UI: Unit identification; FT: Full finetuning. The top
performing models in each category are indicated in boldface (1st) and underlined (2nd).

Same animal, other days New animal New dataset

Method C – CO 2016 (2) C – CO 2010 (5) T – CO (6) T – RT (6) H – CO (1)

F
R

O
M

S
C

R
A

T
C

H

MLP 0.9210 ± 0.0010 0.6946 ± 0.0912 0.7976 ± 0.0220 0.7007 ± 0.0774 0.4179
S4D 0.9381 ± 0.0083 0.6619 ± 0.0844 0.8526 ± 0.0243 0.7145 ± 0.0671 0.3942
Mamba 0.9287 ± 0.0034 0.6708 ± 0.1154 0.7692 ± 0.0235 0.6694 ± 0.1220 0.7231
GRU 0.9376 ± 0.0036 0.7308 ± 0.1089 0.8453 ± 0.0200 0.7279 ± 0.0679 0.8128
POYO-SS 0.9427 ± 0.0019 0.7381 ± 0.0887 0.8705 ± 0.0193 0.7156 ± 0.0966 0.4974
POSSM-S4D-SS 0.9515 ± 0.0021 0.7768 ± 0.0993 0.8838 ± 0.0171 0.7505 ± 0.0735 0.8163
POSSM-Mamba-SS 0.9550 ± 0.0003 0.7959 ± 0.0772 0.8747 ± 0.0173 0.7418 ± 0.0790 0.8350
POSSM-GRU-SS 0.9549 ± 0.0012 0.7930 ± 0.1028 0.8863 ± 0.0222 0.7687 ± 0.0669 0.8161

P
R

E
T

R
A

IN
E

D

NDT-2 (FT) 0.9258 ± 0.0031 0.7846 ± 0.1167 0.7173 ± 0.0443 0.6323 ± 0.1339 0.8233
POYO-1 (UI) 0.9580 ± 0.0033 0.7883 ± 0.0846 0.8181 ± 0.0428 0.7073 ± 0.0960 0.7861
POYO-1 (FT) 0.9580 ± 0.0038 0.8300 ± 0.0788 0.8859 ± 0.0317 0.7718 ± 0.0785 0.8601
o-POSSM-S4D (UI) 0.9603 ± 0.0029 0.7935 ± 0.0924 0.8763 ± 0.0259 0.7333 ± 0.0717 0.8394
o-POSSM-Mamba (UI) 0.9607 ± 0.0036 0.7504 ± 0.0959 0.8729 ± 0.0178 0.7388 ± 0.0702 0.7533
o-POSSM-GRU (UI) 0.9595 ± 0.0035 0.8022 ± 0.0818 0.8921 ± 0.0174 0.7464 ± 0.0692 0.8220
o-POSSM-S4D (FT) 0.9609 ± 0.0042 0.8216 ± 0.0945 0.9068 ± 0.0170 0.7605 ± 0.0619 0.8941
o-POSSM-Mamba (FT) 0.9615 ± 0.0056 0.8195 ± 0.0750 0.9001 ± 0.0131 0.7612 ± 0.0722 0.8838
o-POSSM-GRU (FT) 0.9614 ± 0.0029 0.8161 ± 0.0912 0.9024 ± 0.0159 0.7741 ± 0.0683 0.8743

of reaching tasks: centre-out (CO), random target (RT), and Maze. CO is a highly-structured task
involving movements from the centre of the screen to one of eight targets (Figure 3a). Conversely, the
RT (Figure 3b-c) and Maze (Figure 3d) tasks are behaviourally more complex, requiring movement
to randomly placed targets and navigating through a maze, respectively. The testing sessions include:
(1) new sessions from Monkey C which was seen during pretraining, (2) new sessions from Monkey
T, not seen during pretraining but collected in the same lab as Monkey C, and (3) a new session from a
dataset unseen during pretraining. We call our model pretrained on this dataset o-POSSM (see Section
B.3 for details). In total, o-POSSM was trained on 148 sessions comprising more than 670 million
spikes from 26,032 neural units recorded across the primary motor (M1), dorsal premotor (PMd),
and primary somatosensory (S1) cortices (see Section A for details). We also pretrain two baseline
models, NDT-2 [11] and POYO-1 [12]. Additionally, we report the results of single-session models
trained from scratch on individual sessions. This includes single-session variants of POSSM (across all
backbone architectures) and POYO, as well as other baselines such as a multi-layer perceptron (MLP)
[32], S4D [15], GRU [14], and Mamba [16].

Causal evaluation. To simulate real-world decoding scenarios, we adopt a causal evaluation
strategy for all models. This is straightforward for POSSM and the recurrent baselines we consider
– sequences are split into 50 ms time chunks and fed sequentially to the model. For the MLP and
POYO, we provide a fixed 1 s history of neural activity at each inference timestep, sliding forward in
small increments of 50 ms to collect predictions for all behavioural timestamps. For POYO, we only
recorded predictions for timestamps in the final 50 ms of each 1 s context window.

During training, the models are presented with contiguous and non-overlapping 1 s sequences, which
are not trial-aligned. However, we evaluate our models on entire trials, which are typically much
longer than a second. For example, in sessions from the Perich et al. [28] dataset, trials in the
validation and testing sets are at least 3× and up to 5× longer than the training sequences. This
means that a recurrent model must generalize to sequences longer than the ones seen during training.

Transfer to new sessions. In Table 1, we evaluate the transferability of our pretrained models to
new sessions, animals, and datasets, and compare them to single-session models. When trained on a
single session, POSSM is on par with or outperforms POYO on most sessions. When using pretrained
models, o-POSSM-S4D shows the best overall performance. Finally, we observe that FT is noticeably
better than UI when transferring to new animals or datasets. However, UI performs on par with or
better than several single-session models, and requires far fewer parameters to be trained.
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Figure 4: Sample and compute efficiency benchmarking. (a) Results on a held-out CO session
from Monkey C [28]. On the left, we show the sample efficiency of adapting a pretrained model
versus training from scratch. On the right, we compare training compute efficiency between these two
approaches. (b) Same as (a) but for a held-out RT session from Monkey T [28] – a new subject not
seen during training. (c) Comparing model performance and compute efficiency to baseline models.
Inference times are computed on a workstation-class GPU (NVIDIA RTX8000). For all these results,
we used a GRU backbone for POSSM.

Sample and training compute efficiency. A key motivation behind training neural decoders on
large, heterogeneous datasets is to enable efficient transfer to new individuals, tasks, or species with
minimal finetuning. To this end, we evaluated the effectiveness of our finetuning strategies through
few-shot experiments. Our results, shown in Figure 4a-b, demonstrate that o-POSSM outperforms
single-session models trained from scratch in low-data regimes. Notably, we observe that pretraining
results in a considerable initial boost in performance when adapting to a new session, even when
only unit and session embeddings are updated. In some cases, single-session models fail to match
the performance of a finetuned model, even after extensive training. Overall, our results are in line
with observations from Azabou et al. [12], supporting the idea that with the right tokenization and
data aggregation schemes, pretrained models can amortize both data and training costs, leading to
efficient adaptation to downstream applications.

Inference efficiency. In addition to being efficient to train and finetune, we also evaluated whether
POSSM is efficient at inference time. In Figure 4c, we report parameter counts and inference time per
time chunk on a workstation-class GPU (NVIDIA RTX8000) for POSSM and several state-of-the-art
neural decoders. We find that our single and multi-session models achieve inference speeds that are
comparable to lightweight models like GRUs and MLPs and significantly lower than complex models
like NDT-2 and POYO, while retaining competitive performance. Single-session POSSM models (POSSM-
SS) contained the fewest parameters, and even o-POSSM, with about 8M parameters, maintained low
latency. These results held in a CPU environment (AMD EPYC 7502 32-Core) as well, with POSSM-
SS and o-POSSM achieving inference speeds of ∼2.44 ms/chunk and ∼5.65 ms/chunk, respectively.
Overall, our results show that POSSM’s inference time is well within the optimal real-time BCI
decoding latency of ≤ 10 ms [8], making it a viable option for real-time BCI decoding applications.

3.2 Human handwriting

Next, we evaluated POSSM on a human handwriting dataset [23]. This dataset contains 11 sessions
recorded from a single individual, where they imagined writing individual characters and drawing
straight lines (Figure 3g). Spike counts from multi-unit threshold crossings were recorded from two
96-channel microelectrode arrays implanted in the participant’s motor cortex [23]. These were then
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binned at 10 ms intervals. The models were trained to classify the intended characters or lines based
on this neural activity. For evaluation, we used 9 sessions, each containing 10 trials per character
class. Each individual trial consisted of a 1.6 s time-window centred around the “go” cue.

Table 2: Human handwriting decod-
ing results. Values are mean accuracy
± SD for classifying the intended
character or line, over 9 sessions and
3 seeds. ∗,∗∗: p ≤ 0.05, 0.01 for a
paired t-test vs. POSSM-GRU.

Method Acc. (%) ↑

F
R

O
M

S
C

R
A

T
C

H

PCA-KNN (SS) 81.36 ± 7.53
S4D 95.46 ± 5.02
Mamba 93.55 ± 4.53
GRU 93.57 ± 4.22
POYO 94.86 ± 3.53
POSSM-S4D 92.11 ± 6.66
POSSM-Mamba 92.95 ± 4.96
POSSM-GRU 95.82 ± 3.41

PR
E

T
R

A
IN

E
D

O
N

N
H

P

POYO-1 (FT) 95.82 ± 3.12
o-POSSM-S4D (FT) 97.25 ± 2.88*
o-POSSM-Mamba (FT) 97.73 ± 2.13**
o-POSSM-GRU (FT) 97.37 ± 2.32*

Results. We compared POSSM with five baselines: the pre-
viously published statistical method PCA-KNN [23], GRU
[14], S4D [15], Mamba [16] and POYO. For POSSM and all
baselines except POYO, we adopted the causal evaluation strat-
egy described in Section 3.1, training on 1 s intervals and
evaluating on full 1.6 s trials. For POYO, we followed the
evaluation scheme from the original paper, using fixed 1 s
context windows for both training and testing.

As shown in Table 2, POSSM-GRU outperforms all baseline
models when trained from scratch on the 9 sessions. Re-
markably, finetuning o-POSSM, which was only pretrained
on NHP data, led to significant performance gains: 2%
for POSSM-GRU and more than 5% for both POSSM-S4D and
POSSM-Mamba. All of the POSSM models achieve state-of-
the-art performance on this task, with the finetuned o-POSSM
variants considerably outperforming the baseline PCA-KNN,
achieving test accuracies that are about 16% greater.

These results establish a critical finding: neural dynamics
learned from NHP datasets can generalize across different
species performing distinct tasks. This is especially impactful
given the challenges of collecting large-scale human electrophysiology datasets, suggesting that the
abundance of NHP datasets can be used to effectively improve human BCI decoders.

3.3 Human speech

Table 3: Human speech decod-
ing results. We report the av-
erage phoneme error rate (PER)
over 3 seeds. All SDs < 0.1%.

Method PER (%) ↓

GRU (no aug.) 39.16
POSSM-GRU (no aug.) 29.70

GRU 30.06
S4D 35.99
Mamba 32.19
POSSM-GRU 27.32

GRU (mult.) 21.74
POSSM-GRU (mult.) 19.80

Finally, we evaluated POSSM on the task of human speech decod-
ing. Unlike the reaching and handwriting tasks, which involved
fixed-length context windows, speech decoding involves mod-
elling variable-length phoneme sequences that depend on both the
length of the sentence and the individual’s speaking pace. We used
a public dataset [3, 33] consisting of 24 sessions in which a human
participant with speech deficits attempted to speak sentences that
appeared on a screen (Figure 3h). Neural activity was recorded
from four 64-channel microelectrode arrays that covered the pre-
motor cortex and Broca’s area. Multi-unit spiking activity was
extracted and binned at a resolution of 20 ms, where the length of
each trial ranged from 2 to 18 seconds. This poses a problem for
Transformers like POYO that were designed for 1 s contexts, as the
quadratic complexity of the attention mechanism would result in
a substantial increase in computation for longer sentences.

Although both uni- and bi-directional GRUs were used in the
original study [3, 33], we focused primarily on the causal, uni-directional case, as it is more relevant
for real-time decoding. In line with Willett et al. [3], we z-scored the neural data and added Gaussian
noise as an augmentation. We used the phoneme error rate (PER) as our primary evaluation metric.
While prior work has successfully incorporated language models to leverage textual priors, we leave
this as a future research direction, instead focusing here on POSSM’s capabilities.

Previous work [33] has shown that Transformer-based decoders perform poorly on this task compared
to GRU baselines. Here, we demonstrate the value of instead integrating attention with a recurrent
model by using POSSM, specifically with a GRU backbone. However, since only normalized spike
counts (and not spike times) were available in the dataset, we were unable to use the POYO-style
tokenization as-is. Instead, we treated each multi-unit channel as a neural unit and encoded the
normalized spike counts with value embeddings. Furthermore, we replaced the output cross-attention
module with a 1D strided convolution layer to control the length of the output sequence. This
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approach significantly reduced the number of model parameters compared to the GRU baseline,
which used strided sliding windows of neural activity as inputs instead.

We found that a two-phase training procedure yielded the best results. In the first phase, we trained
the input cross-attention module along with the latent and unit embeddings by reconstructing the
spike counts at each individual time bin. In the second phase, we trained the entire POSSM model on
the target phoneme sequences using Connectionist Temporal Classification (CTC) [34] loss.

Results. POSSM achieved a significant improvement over all other baselines, as shown in Table 3.
Notably, POSSM maintained comparable performance even without the Gaussian noise augmentation,
while the performance of the baseline GRU was greatly impaired under the same conditions. Further-
more, we show in preliminary experiments with multiple input modalities (i.e., both spike counts
and spiking-band powers) that POSSM yet again outperforms the baseline. These results illustrate the
robustness of the POSSM architecture to variability in data preprocessing and its flexibility with respect
to input modalities, further strengthening its case as a feasible real-world decoder.

4 Related Work

Neural decoding. Neural decoding for continuous tasks such as motor control in BCIs was tra-
ditionally accomplished using statistical models such as the Kalman filter [35–38]. While these
models are reliable and perform well for specific users and sessions, they require careful adaptation
to generalize to new days, users, and even tasks. Such adaptation is typically accomplished using
model fitting approaches to estimate the Kalman filter parameters [38–40], a process that requires
considerable new training data for each application. Traditional approaches to multi-session neural
decoding often consist of learning the decoder’s parameters on a specific day or session (e.g., the
first day), followed by learning models to align the neural activity on subsequent days to facilitate
generalization [41–43]. Given the recent availability of large, public neural recordings datasets [3, 23,
28–30], modern neural decoding approaches have attempted to leverage advances in large-scale deep
learning to build data-driven BCI decoders [11–13, 44–49]. For example, in the context of decoders
for neuronal spiking activity, NDT [44] jointly embeds spikes from a neural population into a single
token per time bin, spatiotemporal NDT (STNDT) [50] separately tokenizes across units and time and
learns a joint representation across these two contexts, NDT-2 [11] tokenizes spatiotemporal patches
of neural data akin to a ViT [51], and POYO [12] eschews bin-based tokenization, opting to tokenize
individual spikes and using a PerceiverIO [22] Transformer backbone to query behaviours from within
specific context windows. While several of these works excel at neural decoding, they do not focus on
enabling generalizable, online decoding in spike-based BCIs and closed-loop protocols. The BRAND
platform [8] enables the deployment of specialized deep learning models in real-time closed-loop
brain-computer interface experiments with invasive recordings, demonstrating suitable low-latency
neural decoding in other models such as LFADS [52]. Finally, we note other ML methods for neural
data processing other than direct behaviour decoding. Contrastive learning methods that aim to
identify joint latent variables between neural activity and behaviour can be useful for decoding but
work is needed for online use [53]. Diffusion-based approaches are promising for jointly forecasting
neural activity and behaviour, but again are not readily suited for online use [54].

Hybrid attention-recurrence models. Several works have attempted to combine self- and cross-
attention layers with recurrent architectures, usually with the goal of combining the expressivity of
attention over shorter timescales with the long-term context modelling abilities of recurrent models
such as structured SSMs [15–17]. While traditional SSMs have been used for several neuroscience
applications [55–58], modern SSMs and hybrid models remain underexplored in the field. Didolkar
et al. [59] propose an architecture comprising Transformer blocks which process information at
faster, shorter timescales while a recurrent backbone integrates information from these blocks over
longer timescales for long-term contextual modeling. A similar approach is the Block-Recurrent
Transformer [60], wherein a recurrent cell operates on a block of tokens in parallel, thus propagating
a block of state vectors through timesteps. Pilault et al. [61] propose the Block-State Transformer
architecture, which introduces a layer consisting of an SSM to process long input sequences, the
outputs of which are sent in blocks to several Transformers that process them in parallel to produce
output tokens. Furthermore, several recent works on high-throughput language modelling [19–21]
have leveraged hybrid models, where self-attention layers are replaced with SSM blocks to take
advantage of their subquadratic computational complexity.
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5 Discussion

Summary. We introduced POSSM, a scalable and generalizable hybrid architecture that pairs spike
tokenization and input-output cross-attention with SSMs. This architecture enables efficient online
decoding applications, achieving state-of-the-art performance for several neural decoding tasks while
having fewer parameters and faster inference compared to fully Transformer-based approaches. Our
model achieves high performance with millisecond-scale inference times on standard workstations,
even without GPUs, making it suitable for real-time deployment in clinical settings.

A key contribution of this work is demonstrating, to our knowledge, the first successful cross-species
transfer of learned neural dynamics for a deep learning-based decoder – from NHP motor cortex
to human clinical data (see [11, 62] for related efforts). This outlines a solution to a major clinical
hurdle, where obtaining sufficient data for large-scale modelling is challenging or impossible in
patient populations. We demonstrate that we can leverage the large corpus of existing non-human
experimental data to improve personalized clinical outcomes by finetuning pretrained models.

Future directions and applications. The POSSM architecture is applied here for motor neural
decoding, but it can be adapted to achieve a variety of outcomes. Our current model focuses on
processing spiking data from implanted arrays in the motor cortex of monkeys and human clinical
trial participants. However, our hybrid architecture is flexible and could readily accommodate data
of other neural data modalities through a variety of proven tokenization schemes (e.g., Calcium
imaging [13], EEG [45, 47, 63]). While in the present work we focus on decoding of behavioural
timestamps immediately following our input time chunks, our hybrid architecture is well-suited
towards forecasting over longer timescales. Further, in the future we plan to explore the ability of
POSSM to learn and generalize across different regions beyond the motor cortex.

Ultimately, we envision POSSM as a first step towards a fast, generalizable neural foundation model
for various neural interfacing tasks, with downstream applications such as clinical diagnostics and the
development of smart, closed-loop neuromodulation techniques that link predicted states to optimized
neural stimulators (e.g., [4, 5]). Future steps include multimodal pretraining and decoding [22, 49, 64,
65] as well as a principled self-supervised pretraining scheme. By enabling efficient inference and
flexible generalization through transfer learning, POSSM marks a new direction for general-purpose
neural decoders with real-world practicality.

Broader Impact

This research could potentially contribute to the development of neural decoders that are not only
accurate but also amenable to deployment in online systems, such as those found in neuroprosthetics
and other brain-computer interfaces. In addition to POSSM’s general performance, it reduces the need
for extensive individual calibration due to the pretraining/finetuning scheme. Additionally, the cross-
species transfer results on the handwriting task suggest that patients with limited availability of data
could benefit from models pretrained with larger datasets from different species. While the potential
downstream applications of POSSM are exciting, it is important to consider the ethical concerns that
exist for any medical technology, including but not limited to data privacy and humane data collection
from animals. Strict testing should be implemented before deployment in any human-related setting.
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Supplementary Material

A Dataset Details

Table 4: Summary of neural datasets used for pretraining and evaluation. Values represent totals
across training, validation, and testing subsets of the pretraining and evaluation datasets.

Dataset Regions Tasks # Indiv. # Sess. # Units # Spikes # Bhvr.

T
R

A
IN

IN
G Perich et al. [28] M1, PMd CO, RT 2 93 9040 96.8M 12.7M

O’Doherty et al. [29] M1, S1 RT 2 44 14 899 87.8M 10.4M
Churchland et al. [30] M1, PMd CO 2 10 1911 739M 85.0M
NLB Maze [31] M1, PMd Maze 1 1 182 3.64M 6.81M

E
V

A
L

U
A

T
IO

N Perich et al. [28] Monkey C M1, PMd CO 1 2 520 4.65M 221K
Perich et al. [28] Monkey T M1, PMd CO 1 6 336 1.53M 589K
Perich et al. [28] Monkey T M1, PMd RT 1 6 349 1.59M 551K
Flint et al. [66] Monkey C M1 CO 1 5 957 7.88M 318K
NLB Area2 [31] S1 CO 1 1 65 222K 50.7K

train validation test

session st = 0 t = Ttrials

Figure 5: Session-wise data splits for training, validation, and testing. Per session (across all
datasets), 10% of the trials were used for validation and 20% were used for testing. The remaining
data, including inter-trial segments, was used for training.

Dataset details. For all our experiments, we attempted to minimize dataset preprocessing, in line
with POYO [12]. The various datasets used during pretraining were collected from different labs using
different experimental setups, effectors, etc. However, we did not standardize the datasets in any
way and only excluded behavioural data based on a simple thresholding of acceleration values to
remove outliers. Thus, like POYO: (1) we did not filter units or reject multi-units; (2) we did not apply
identical spike sorting algorithms for all datasets (our training data consists of a mix of threshold
crossing units and spike sorted single units); and (3) we did not resample or process the velocity, i.e.,
the behavioural output to be decoded. Details on the datasets used and session-wise data splits are
provided in Table 4 and Figure 5 respectively. Note that for the NLB Area2 dataset [31], we did not
include perturbed trials.

B Architectural Details

B.1 Tokenization

For all our models, we used POYO-style tokenization [12], albeit with one key difference: unlike POYO,
we did not provide delimiter tokens (i.e., [START] and [END] tokens) to the model. This reduced the
total number of tokens passed as input to the model, thus increasing efficiency, but did not negatively
impact decoding performance in our experiments.

B.2 Recurrent backbones

In this section, we provide additional details on each of the recurrent backbones used by POSSM. It is
important to note that POSSM is theoretically agnostic to the type of recurrent architecture.

Gated recurrent unit (GRU). Like traditional recurrent neural networks, the GRU [14] maintains
a hidden state ht ∈ Rd that is governed by the input at the current timestep xt ∈ Rn and the previous
hidden state ht−1. At each timestep, the network calculates an update gate zt and a reset gate rt,
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defined as follows:
zt = σ(Wzxt +Uzht−1 + bz), rt = σ(Wrxt +Urht−1 + br),

where Wz,Wr ∈ Rd×n, Uz,Ur ∈ Rd×d, and bz,br ∈ Rd are the input weights, hidden state
weights, and biases, respectively. σ is the sigmoid activation function. A candidate hidden state is
then generated:

h̃t = tanh(Whxt +Uh(rt ⊙ ht−1) + bh),

where Wh ∈ Rd×n,Uh ∈ Rd×d,bh ∈ Rd are learnable parameters and ⊙ is the Hadamard product.

The final hidden state is calculated by weighing the candidate and previous hidden states by the
update and reset gates:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t.

Diagonal structured state-space models (S4D). Structured state-space models (S4) [15] are built
on the theory of linear time-invariant SSMs. Specifically, the hidden state x(t) ∈ Rd and output
y(t) ∈ R are calculated as follows:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

where A ∈ Rd×d, B ∈ Rd×1, and C ∈ R1×d are weight matrices and u(t) ∈ R is the input at time t.
An additional parameter, ∆, denotes the step size or the time-resolution of the input. For inputs with
multiple channels, the SSM is applied independently to each channel. To be applied to a discrete
input sequence (u0, u1, . . .) rather than a continuous function u(t), the above continuous-time SSM
can be discretized through a transformation of its parameters (A,B,C,∆), yielding (Ā, B̄,C) [15].
Unlike traditional RNNs that can only process sequences one element at a time, S4’s linear nature
allows it to formulate its output as a discrete convolution post discretization:

yt =

L∑
k=0

Kkut−k,

where L is the length of the sequence and K is a convolutional kernel parameterized as such:
Kk = CĀkB.

This powerful property allows the computation to be parallelized across elements of the sequence
during training, resulting in faster training than non-linear RNNs of the same size. Finally, in this
work, we use the Diagonal S4 version (S4D), which replaces the traditional HiPPO initialization [67]
with a diagonal-only version which is faster yet has been shown to retain similar performance.

Mamba. Building on the SSM neural network introduced by S4, Mamba [16] also aims to be a
recurrent architecture that allows for parallelizable inference during training. However, unlike S4, the
model learns dynamic weight matrices Bt and Ct that are now parameterized by position t in the
sequence (and are functions of the input). This allows Mamba to selectively compress information
into the hidden state, essentially discarding information that is deemed unimportant.

B.3 Non-human primate reaching

The hyperparameters changed between the single-session model and the pretrained (o-POSSM) models
are the input dimensionality (i.e., size of the spike and latent tokens), RNN hidden dimensionality, and
the number of RNN layers. While a set of hyperparameters was kept constant across single-session
and multi-session models (one set for each), the number of parameters that the model has varies
based on the choice of recurrent backbone. We find that S4D is the smallest and Mamba is the largest
when these three hyperparameters are kept constant. Details are provided in Table 5.

B.4 Human handwriting

Baselines. The statistical baseline PCA-KNN was implemented following Willett et al. [23]. A
Gaussian kernel was initially used to smooth the spikes, followed by PCA to reduce the dimensionality
to 15. Then, 7 time-warp factors were used to resample the PC-projected neural activity, and Euclidean
distances were calculated between the results of each time-warp factor and all other points in the
dataset. Finally, the minimum time-warp distances over all 7 factors were used to classify characters
using a k-nearest neighbours (KNN) classifier. The only difference here is that we considered 1.6 s
intervals of neural activity. For more details on this method, please refer to the original publication.
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Table 5: Hyperparameters and model sizes of POSSM variants used for NHP reaching tasks.

Backbone SS / FT Input Dim. RNN Hidden Dim. # RNN Layers # Params.

S4D SS 64 256 1 0.41M
FT 256 512 4 4.56M

GRU SS 64 256 1 0.47M
FT 256 512 4 7.96M

Mamba SS 64 256 1 0.68M
FT 256 512 4 8.96M

POSSM. We used the same POSSM architecture as the NHP reaching tasks.

B.5 Human speech

Baselines. We adopted the same hyperparameters as mentioned in Willett et al. [3] for the baseline
GRU, including block-wise normalization and two sources of Gaussian noise injection. Sliding
windows of 32 bins of normalized spike counts with a stride of 4 bins were used at the input for both
uni-directional and bi-directional models. For uni-directional and bi-directional GRUs, the number of
parameters were 55M and 133M, respectively. We also introduce two more binning-based baselines
by replacing the GRU backbone of the model with Mamba and S4D.

POSSM. We used POSSM with a GRU as the recurrent backbone (uni-directional and bi-directional
according to the problem setup) for this task. The encoder was a cross-attention module with a single
head, followed by a self-attention module with 2 heads, operating strictly within each 20 ms bin. We
used an input dimension of 64 and 4 latents per bin. At the output of the encoder, we concatenated
the latents from the same bin, resulting in a 256-dimensional vector that served as the input to the
GRU. As mentioned in the previous section, the baseline method processed sliding windows of neural
activity inputs, consisting of k bins (usually 14 or 32) with stride s (usually 4). Values of k and s
were chosen to control the length of the output sequence, with larger values of k being shown to help
performance [3]. In this paper, we instead set both k and s as 1 and utilized a convolutional layer
at the output to control the length of output sequences. This ensured that the emission frequency
of output phonemes from POSSM was identical to that of the baselines. The baseline method also
introduced a linear layer to map the concatenation of all k bins to a fixed hidden dimension, which
quickly became computationally expensive – especially when k was large. For POSSM, avoiding the
use of sliding windows led to a sizable parameter reduction (e.g., 24M fewer parameters than a GRU
with the above setup). For both uni-directional and bi-directional POSSM, the parameter counts were
32M and 86M, respectively.

C Training Details

C.1 Non-human primate reaching

As the prediction target is a two-dimensional time series of either hand or cursor velocity, the loss
function was chosen to be mean squared error. We increased the weight of the loss for centre-out
reaching segments by a factor of 5, following POYO. A maximum of 100 behaviour values were
provided as targets for each 1 s training sample. If the dataset had a behavioural sampling rate greater
than 100 Hz, 100 behaviour samples were randomly chosen within the second.

Baselines. We considered four single-session binning-based baselines for the reaching tasks: MLP,
GRU, S4, and Mamba. We used 50 ms bins to extract spike counts for these models, with step sizes of
50 ms and 10 ms for the MLP and the other models, respectively. All baselines were trained using the
AdamW optimizer [68] with a batch size of 128, a base learning rate of 0.004, and a cosine scheduler
for a total of 500 epochs.

In addition to the aforementioned models, both single-session and pretrained versions of POYO were
used as baselines. Following Azabou et al. [12], we used a context window of 1 s for POYO (and a step
size of 50 ms during evaluation, as described in Section 3.1). The model was trained using the LAMB
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optimizer [69] with a batch size of 128, base learning rates of 0.004 and 0.002 for single-session and
pretrained models respectively, and a cosine scheduler for a total of 500 epochs. During training, we
also applied a data augmentation scheme called unit dropout [12, 70], where we randomly drop out a
subset of units from the input along with all their spikes for each iteration. Both unit identification
and full finetuning used the same training hyperparameters as the single-session models, except with
a constant learning rate. For full finetuning, unit identification was first performed for 100 epochs
before the rest of the model was unfrozen and trained for another 400 epochs. All models were
trained for a total of 500 epochs.

Finally, for NDT-2, we used the code provided by Ye et al. [11] and their default hyperparameters.
However, we pretrained and evaluated NDT-2 on the same datasets and splits used for POSSM.

POSSM. Single-session models were trained on a single NVIDIA RTX8000 GPU using LAMB with
a batch size of 128, a base learning rate of 0.004, and a cosine scheduler. Multi-dataset pretraining
was done on four NVIDIA H100 GPUs using LAMB with a batch size of 256, a base learning rate of
0.002, and a cosine scheduler. The unit dropout data augmentation scheme mentioned previously
was employed during training. Both unit identification and full finetuning used the same training
hyperparameters as the single-session models, except with a constant learning rate. For full finetuning,
unit identification was first performed for 100 epochs before the rest of the model was unfrozen and
trained for another 400 epochs. All models were trained for a total of 500 epochs. Single-session
models took less than 30 minutes to train, while multi-dataset pretraining took around 36 hours.

C.2 Human handwriting

Baselines. For the PCA-KNN baseline, we performed hyperparameter tuning on a validation set
for each session, selecting the number of neighbours from a range of 2 to 14. For the GRU, S4, and
Mamba, we provided non-overlapping 50 ms bins of spike counts as inputs.

POYO and POSSM. In this task, we used the unit dropout data augmentation scheme for POYO and
POSSM. As for POYO, aside from unit dropout, we applied an additional augmentation scheme called
random time-scaling, where the timestamps are randomly scaled at each iteration.

A gradual unfreezing strategy was used during finetuning for the handwriting task, where only the
unit embeddings, session embeddings, and the linear readout layer for the task were trained at the
beginning. Note that unfreezing the linear readout layer differentiates the finetuning strategy for
the handwriting task from the one used for the reaching tasks described previously. Training the
linear layer was necessary as handwriting decoding was not present in the pretraining datasets. We
finetuned POYO-1 for 600 epochs (unfrozen at epoch 40), while o-POSSM was finetuned for a total of
1000 epochs (unfrozen at epoch 50). All training hyperparameters for POYO followed the suggestions
of its original authors.

For POYO and POSSM trained from scratch, as well as finetuned POYO-1, training was performed on
a single NVIDIA RTX8000 GPU using LAMB with a batch size of 256, a base learning rate of
0.00256, and a cosine scheduler. When finetuning o-POSSM, the base learning rate was 0.008 instead.
We trained the models with three random seeds and reported the mean accuracy.

C.3 Human speech

Baselines. All baselines for speech decoding were trained on a single NVIDIA RTX8000 GPU
using AdamW with a batch size of 64 and a base learning rate of 0.02. For uni-directional models, a
linear decaying scheduler was applied to the base learning rate, while for bi-directional models, the
learning rate was kept constant.

POSSM. Both the uni-directional and bi-directional versions of POSSM were trained on a single
NVIDIA A100 GPU (80GB) with a batch size of 16. We conducted a hyperparameter sweep on
the learning rate schedule via cross-validation on the training split. In the uni-directional case, we
adopted a base learning rate of 0.0001 with a cosine scheduler. In the bi-directional case, we used a
base learning rate of 0.00004 with a two-phase one-cycle scheduler where the learning rate was first
increased to 0.00008 at epoch 50 then reduced with cosine annealing.

We trained all models for 100 epochs and with three random seeds, and reported the mean accuracy.
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D Additional Results

D.1 Performance on NHP reaching with 20 ms time chunks

We ran additional experiments comparing single-session models working with contiguous time chunks
of 20 ms as opposed to 50 ms. As shown in Table 6, we do not see drops in POSSM’s performance with
these smaller time chunks, and it continues to perform better than or on par with baseline methods. In
practice, given POSSM’s low inference times, it is possible to run POSSM in real-time with 50 ms time
chunks and a step size of 20 ms, if a quicker prediction frequency is desired.

Table 6: Behavioural decoding results on NHP reaching tasks with 20 ms time chunks. Best
performing models are in boldface (1st) and underlined (2nd).

Same animal, other days New animal New dataset

Method C – CO 2016 (2) C – CO 2010 (5) T – CO (6) T – RT (6) H – CO (1)

F
R

O
M

S
C

R
A

T
C

H

MLP 0.9269 ± 0.0044 0.5842 ± 0.2052 0.7940 ± 0.0341 0.6082 ± 0.3014 0.7602
S4D 0.9313 ± 0.0038 0.6842 ± 0.1017 0.8597 ± 0.0275 0.7120 ± 0.0764 0.4554
Mamba 0.9283 ± 0.0096 0.6840 ± 0.0936 0.7318 ± 0.0426 0.6653 ± 0.0978 0.7045
GRU 0.9435 ± 0.0069 0.7742 ± 0.0964 0.8389 ± 0.0248 0.7414 ± 0.0426 0.8101
POSSM-S4D-SS 0.9470 ± 0.0016 0.7611 ± 0.1179 0.8777 ± 0.0228 0.7369 ± 0.0691 0.7958
POSSM-Mamba-SS 0.9490 ± 0.0059 0.7691 ± 0.0786 0.8613 ± 0.0121 0.7300 ± 0.0719 0.7065
POSSM-GRU-SS 0.9514 ± 0.0010 0.7780 ± 0.0980 0.8724 ± 0.0190 0.7429 ± 0.0708 0.7816

P
R

E
T

R
A

IN
E

D

o-POSSM-S4D (UI) 0.9589 ± 0.0025 0.7835 ± 0.0839 0.8661 ± 0.0201 0.7256 ± 0.0740 0.8402
o-POSSM-Mamba (UI) 0.9588 ± 0.0006 0.7175 ± 0.1373 0.8483 ± 0.0247 0.7226 ± 0.0870 0.8102
o-POSSM-GRU (UI) 0.9551 ± 0.0070 0.7837 ± 0.0916 0.8619 ± 0.0304 0.7323 ± 0.0812 0.8087
o-POSSM-S4D (FT) 0.9601 ± 0.0062 0.8052 ± 0.0887 0.8991 ± 0.0229 0.7543 ± 0.0672 0.8834
o-POSSM-Mamba (FT) 0.9605 ± 0.0016 0.8034 ± 0.0971 0.8946 ± 0.0168 0.7508 ± 0.0816 0.8639
o-POSSM-GRU (FT) 0.9580 ± 0.0040 0.8110 ± 0.0753 0.8908 ± 0.0214 0.7561 ± 0.0727 0.8588

D.2 Effects of context length on handwriting decoding

In Figure 6, we plot imagined handwriting decoding accuracy against the context length that POSSM
receives. This shows that POSSM can make accurate predictions in a causal manner, given sufficient
context. More importantly, these results showcase POSSM’s applicability to real-time applications,
with time series data fed into the neural decoder in a streamlined fashion.
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Figure 6: Handwriting decoding accuracy given various context lengths. We plot mean accuracies
and 99% confidence intervals for each finetuned o-POSSM model, given an increasing amount of
neural activity as context. For each context length, POSSM makes a prediction at the last timestamp.
The plot’s x-axis is aligned with the “go” cue time.

D.3 Speech decoding with bi-directional models

We ran the bi-directional versions of the top competitors identified in the uni-directional case. As
shown in Table 7, both with and without noise augmentation, bi-directional models demonstrated
a consistent improvement of 2–3% over their uni-directional counterparts. This is expected as
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bi-directional models can utilize the full temporal sequence of neural activity for each phoneme
prediction. Similarly to the uni-directional case, we observed that POSSM outperformed the baseline
even without noise augmentation.

Table 7: Human speech decoding results with bi-directional model backbones. We report the
phoneme error rate (PER) averaged over 3 seeds. All SDs < 0.1%.

Method PER (%) ↓

BiGRU (no aug.) 37.18
POSSM-BiGRU (no aug.) 26.62

BiGRU 27.86
POSSM-BiGRU 25.80

D.4 Decoding behaviour from non-motor neural activity

To validate the applicability of POSSM to decoding behaviour from other, non-motor brain regions,
we ran a preliminary experiment with POSSM on 5 randomly selected sessions from the Allen Visual
Behaviour Neuropixels dataset [71], which tracked spiking activity in mice. Here, we attempted
to decode running speed from multi-region neural activity (visual cortex and several subcortical
areas, including visual thalamic areas, hippocampus, and midbrain). We found that a single-session
POSSM-GRU achieved an R2 of 0.9295 ± 0.0326, averaged over 5 sessions.

D.5 Predicting future behaviour at each time chunk

In order to demonstrate the flexibility of our output cross-attention module, we trained single-session
POSSM models to predict cursor velocities at timestamps that were 50 ms or 100 ms beyond the end of
each time chunk (denoted as “lags”). Thus, we queried the output module with timestamps beyond
those associated with the input time chunk. Our results in this setting were on par with, or only
slightly lower than, single-session POSSM performance with no lags (Table 8).

Table 8: Results on decoding cursor velocities at timestamps beyond the end of each time chunk.
We consider lags of 50 ms and 100 ms, and report the mean R2 ± SD over sessions.

Method C – CO 2016 (2) T – RT (6)

POSSM-GRU-SS (50 ms lag) 0.9495 ± 0.0045 0.7498 ± 0.0874
POSSM-GRU-SS (100 ms lag) 0.9368 ± 0.0027 0.7252 ± 0.0813

D.6 Ablating spike timing information

A key advantage of POYO-style tokenization, apart from facilitating pretraining and generalization, is
that it retains spike timing information unlike binning-based methods. To specifically test whether
this scheme yielded performance advantages over binning, we trained single-session POSSM models
without precise spike timing information, instead providing bin-level timestamps for all spikes. We
found that models receiving spike timing information consistently outperformed those receiving only
bin-level timestamps (Table 9), showing the advantage of precise spike times for neural decoding.

Table 9: Behavioural decoding results with and without precise spike times. We report the mean
R2 ± SD over sessions.

Method C – CO 2010 (5) T – RT (6) H – CO (1)

POSSM-Mamba-SS (w/ spike times) 0.7959 ± 0.0772 0.7418 ± 0.0790 0.8350
POSSM-Mamba-SS (w/ bin-level times) 0.7040 ± 0.0903 0.7275 ± 0.0734 0.5568
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D.7 Using feature mixer MLPs

While we did not use feature mixer MLPs after cross-attention and SSM layers in our experiments,
we conducted an experiment to test whether using them improved decoding performance. As shown
in Table 10, performance with feature mixers was comparable to or slightly better than our existing
single-session models. However, these improvements come at the cost of increased model size and
inference times. We leave a more detailed investigation on this for future work.

Table 10: Behavioural decoding results with and without feature mixer MLPs. We report the
mean R2 ± SD over sessions.

Method C – CO 2016 (2) T – RT (6)

POSSM-Mamba-SS (w/ mixers) 0.9560 ± 0.0018 0.7487 ± 0.0651
POSSM-Mamba-SS (no mixers) 0.9550 ± 0.0003 0.7418 ± 0.0790

D.8 Using a recurrent encoder instead of cross-attention

We conducted an experiment with single-session POSSM models using a recurrent encoder (GRU)
to encode spike tokens instead of the input cross-attention module. We maintained the same input
configuration as with the cross-attention, providing contiguous, non-overlapping 50 ms time chunks
as inputs to the model. The encoder’s hidden state was reinitialized for each chunk, although in
practice a state could be maintained across chunks for streaming neural activity. We did not use any
positional embeddings for the spikes, but they were ordered by spike times. Our results showed that
models with a recurrent encoder underperformed the standard POSSM models, but were superior to
those not receiving precise spike-timing information (Table 11).

Table 11: Behavioural decoding results with a recurrent encoder vs. a cross-attention encoder
with and without precise spike timing information. We report the mean R2 ± SD over sessions.

Method C – CO 2016 (2) T – RT (6)

POSSM-GRU-SS (w/ GRU encoder) 0.9396 ± 0.0066 0.7334 ± 0.0611
POSSM-GRU-SS (w/ spike times) 0.9549 ± 0.0012 0.7687 ± 0.0669
POSSM-GRU-SS (w/o spike times) 0.9026 ± 0.0135 0.7207 ± 0.0632

D.9 LoRA finetuning as an effective alternative to unit identification

In a preliminary experiment with o-POSSM-GRU, we showed that finetuning embeddings on held-out
sessions with low-rank adapters (LoRA) [72] could be an effective alternative to unit identification
(Table 12). This finetuning scheme trained fewer parameters and was quicker compared to unit
identification. A more detailed investigation is left for future work.

Table 12: Behavioural decoding results with LoRA finetuning compared to UI. We report the
mean R2 ± SD over sessions.

Method T – RT (6) Avg. # params. finetuned

o-POSSM-GRU (LoRA, r = 16, α = 16) 0.7478 ± 0.0634 9.16K
o-POSSM-GRU (UI) 0.7464 ± 0.0692 15.6K
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper includes both claims backed up by the experiments in the paper and
also aspirational claims that are stated as such.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the Discussion, we state that most of our tasks and data are associated with
the motor areas of the brain and that we currently only explore supervised training. We also
state that our model cannot process a diverse set of input modalities and that multimodal
neural decoding is an interesting direction for future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There are no theoretical results in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our code will be available publicly through the torch_brain Python
package. Additional details and configurations will be linked on our project page
(https://possm-brain.github.io). Details on our experiments and hyperparameter
configurations are also provided in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code and associated documentation will be available publicly through
the torch_brain Python package. Additional details and configurations will be linked on
our project page (https://possm-brain.github.io). All data used in this research is
publicly available and the source materials or repositories have been cited.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These details have been provided in the main paper and the Supplementary
Material. Additional details and configurations will also be linked on our project page
(https://possm-brain.github.io).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All bar plots and line plots include error bars or shading as appropriate.
Standard deviations and results of statistical significance tests, where required, have been
reported in tables.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: These details have been provided in the main paper and the Supplementary
Material. Additional details and configurations will also be linked on our project page
(https://possm-brain.github.io).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and affirm that the research conforms to the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: Both potential positive and negative societal impacts have been discussed in
the main text and in the Broader Impact section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have referenced the publications or source repositories for all datasets we
have used. Our code is based on and will be released publicly through the torch_brain
Python package, and the associated publication has been cited. Details on the datasets used
have been provided in the Supplementary Material and additional information on datasets
and code will be linked through our project page (https://possm-brain.github.io).
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code and associated documentation will be available publicly through the
torch_brain Python package. Additional details and configurations will be linked on our
project page (https://possm-brain.github.io).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not a component of the methods introduced or experiments con-
ducted as part of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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