
Published in Transactions on Machine Learning Research (06/2024)

Online Tensor Max-Norm Regularization via Stochastic
Optimization

Tong Wu wutong@bigai.ai
Beijing Institute for General Artificial Intelligence

Reviewed on OpenReview: https: // openreview. net/ forum? id= 1iDpP3GWmS

Abstract

The advent of ubiquitous multidimensional arrays poses unique challenges for low-rank
modeling of tensor data due to higher-order relationships, gross noise, and large dimen-
sions of the tensor. In this paper, we consider online low-rank estimation of tensor data
where the multidimensional data are revealed sequentially. Induced by the recently pro-
posed tensor-tensor product (t-product), we rigorously deduce the tensor max-norm and
formulate the tensor max-norm into an equivalent tensor factorization form, where the fac-
tors consist of a tensor basis component and a coefficient one. With this formulation, we
develop an online max-norm regularized tensor decomposition (OMRTD) method by alter-
natively optimizing over the basis component and the coefficient tensor. The algorithm
is scalable to the large-scale setting and the sequence of the solutions produced by OM-
RTD converges to a stationary point of the expected loss function asymptotically. Further,
we extend OMRTD for tensor completion. Numerical experiments demonstrate encourag-
ing results for the effectiveness and robustness of our algorithm. The code is available at
https://github.com/twugithub/2024-TMLR-OMRTD.

1 Introduction

In the last decade or so, we have witnessed an explosion in data generation due to the development of
new, affordable consumer electronics and advances in data storage and communication technologies. Many
information processing tasks involve data samples that are naturally structured as multidimensional arrays,
also known as tensors. Examples of tensor data include images, videos, hyperspectral images, tomographic
images and multichannel electroencephalography data. Low-rank tensor estimation has attracted increasing
attention in the research community owing to its successful applications within computer vision (Zhang
et al., 2014), data mining (Franz et al., 2009), and signal processing (Sidiropoulos et al., 2017). In this work,
specifically, we consider an observed three-way data tensor Z, and we attempt to learn a low-rank tensor
X that best approximates grossly corrupted observations. This problem typically involves minimizing a
weighted combination of the approximation error and a penalty for the tensor rank.

This problem is well studied in the matrix domain, where the goal is to optimize the rank of the predic-
tion matrix and this problem is likely to be computationally infeasible. The nuclear norm (Recht et al.,
2010) and the max-norm (Srebro et al., 2004) are the two commonly used convex relaxations of the rank
function (NP-hard). However, different from matrices, there are many tensor rank definitions because a
tensor can be factorized in many ways. Common tensor decompositions include CANDECOMP/PARAFAC
(CP) decomposition (Kolda & Bader, 2009), Tucker decomposition (Tucker, 1966), HOSVD decomposition
(Lathauwer et al., 2000), tensor-train decomposition (Oseledets, 2011). All these decompositions consider
low-rank structure in the original domain. However, there is an increasing realization that exploitation of
low-rank structure in the frequency domain can lead to improved performance of many tasks (Lu et al.,
2019; Song et al., 2020). In particular, a new tensor decomposition method called tensor singular value
decomposition (t-SVD) (Kilmer et al., 2013; 2021) has demonstrated that after conducting Discrete Fourier
Transform (DFT) along the 3rd mode, a 3-way tensor can exhibit strong low-rankness in the Fourier domain.

1

https://openreview.net/forum?id=1iDpP3GWmS
https://github.com/twugithub/2024-TMLR-OMRTD

Published in Transactions on Machine Learning Research (06/2024)

Several works for tensor robust principal component analysis (RPCA) relying on these decompositions are
proposed (Anandkumar et al., 2016; Yang et al., 2020; Lu et al., 2020; Gao et al., 2021). While these ap-
proaches have been incredibly successful in many applications, an important shortcoming is that they are
not scalable to large-scale tensor data because the memory requirements increase rapidly with the size of
data. Moreover, such methods are all implemented in a batch manner, which cannot efficiently capture the
dynamics of streaming data.

Motivated by the t-product (Kilmer & Martin, 2011), we rigorously deduce a new tensor max-norm for
tensor decomposition. By utilizing the tensor factorization form of the proposed max-norm, we develop
an efficient algorithm, termed online max-norm regularized tensor decomposition (OMRTD), to solve tensor
max-norm regularized problem. OMRTD processes only one sample per time instance, making it scalable
to large-scale tensor data. We also extend OMRTD for the tensor completion problem, where low-rank
tensor data recovery is carried out in the presence of missing data. Extensive experimental results on the
tensor subspace recovery task illustrate that the proposed tensor max-norm always performs better than the
tensor nuclear norm in dealing with a large fraction of corruption. Effectiveness of the proposed algorithm
is evaluated through online background subtraction.

The rest of this paper is organized as follows. Section 2 briefly discusses related work and Section 3 introduces
some mathematical notations and tensor basics. Section 4 presents the proposed OMRTD method in the
presence of complete and missing data. We present experimental results in Section 5 and provide concluding
remarks in Section 6.

2 Related Work

Low-rank models find applications in collaborative filtering (Srebro et al., 2004), hyperspectral image restora-
tion (He et al., 2016), and background subtraction (Candès et al., 2011). To handle data contaminated by
gross corruption, the matrix RPCA (Candès et al., 2011) decomposes the observed matrix into a low-rank
component and a sparse component using nuclear norm regularization. The work in Srebro et al. (2004) con-
sidered collaborative prediction and learned low-max-norm matrix factorizations by solving a semi-definite
program. To establish the connection between the max-norm and the nuclear norm, Srebro & Shraibman
(2005) considered collaborative filtering as an example and proved that the max-norm variant enjoys a lower
generalization bound than the nuclear norm. In the large-scale setting, there are some efforts that attempted
to develop efficient algorithms to solve max-norm regularized or constrained problems (Rennie & Srebro,
2005; Lee et al., 2010; Fang et al., 2018). Yet, the applicability of such batch optimization methods is prob-
lematic because of their high memory cost. To alleviate this issue, online learning approaches that are based
on nuclear norm and max-norm matrix decomposition using stochastic optimization have been proposed in
Feng et al. (2013) and Shen et al. (2017), respectively. However, all these approaches are devised for 2-way
data, thus limiting their abilities to exploit the intrinsic structure of tensors.

Besides the tensor max-norm used in this paper, there exist several different tensor rank definitions due to
the complex multilinear structure of tensors. The CP rank (Kiers, 2000) is defined as the smallest number
of rank one tensor decomposition. However, the CP rank and its convex relaxation are NP-hard to compute
(Hillar & Lim, 2013). To alleviate this issue, the tractable Tucker rank (Tucker, 1966) is more flexible because
it explores the low-rank structure in all modes. The sum-of-nuclear-norms (SNN) is defined as the sum of
the nuclear norms of unfolding matrices (Liu et al., 2013), which is served as a convex surrogate for the
Tucker rank. The effectiveness of this idea has been well studied in Goldfarb & Qin (2014) and Huang et al.
(2014). But it was proved in Romera-Paredes & Pontil (2013) that SNN is not the tightest convex relaxation
of the Tucker rank. Recently, based on the tensor-tensor product and tensor singular value decomposition
(t-SVD) scheme (Kilmer et al., 2013), a new tensor rank called tensor tubal rank (Kilmer et al., 2013) is
defined as the number of nonzero singular tubes of the singular value tensor in t-SVD. Correspondingly, a
new tensor nuclear norm is proposed and applied in tensor completion (Zhang & Aeron, 2017), tensor robust
PCA (Lu et al., 2020), and tensor data clustering (Zhou et al., 2021; Wu, 2023). As a tensorial generalization
of k-support norm (Argyriou et al., 2012), the ∗L-spectral k-support norm is proposed in Wang et al. (2021)
to exploit low-rankness in the spectral domain and has been applied for tensor recovery.

2

Published in Transactions on Machine Learning Research (06/2024)

Nonetheless, all these methods require memorizing all the samples in each iteration and they cannot pro-
cess samples in a sequential way. To address this concern, several online methods have been developed for
streaming tensor data analysis (Yu et al., 2015; Mardani et al., 2015; Zhang et al., 2016; Kasai, 2019; Li
et al., 2019; Gilman et al., 2022). Among these works, Mardani et al. (2015) and Kasai (2019) obtain multi-
way decompositions of low-rank tensors with missing entries using the CP decomposition, whereas both
Zhang et al. (2016) and Gilman et al. (2022) rely on the t-SVD framework. Note that Zhang et al. (2016)
implements online tensor robust PCA using tensor nuclear-norm regularization, while our work adopts our
proposed tensor max-norm for tensor decomposition. Indeed, since the tensor max-norm is a more com-
plicated mathematical entity, the development of online methods for the max-norm regularization requires
more attention. Based on the tensor factorization form of the proposed tensor max-norm, we convert the
problem into a constrained tensor factorization problem that is amenable to online implementation.

3 Notations and Preliminaries

In this section, we introduce notations and some basic facts about t-SVD that will be used throughout this
paper. More related tensor facts can be found in Kilmer et al. (2013; 2021). Throughout this paper, we
use lowercase, bold lowercase, bold uppercase, and bold calligraphic letters for scalars, vectors, matrices,
and tensors, respectively. For a three-way tensor A ∈ Rn1×n2×n3 , its (i, j, k)-th entry is denoted as Ai,j,k.
We use Matlab notation A(i, :, :), A(:, i, :) and A(:, :, i) or A(i) to denote the i-th horizontal, lateral and
frontal slices, respectively. Any lateral slice of size n1 × 1 × n3 is denoted as −→

A. In particular, we also use−→
Ai to denote the i-th lateral slice of A. The (i, j)-th mode-3 fiber is denoted by A(i, j, :). The transpose
AT ∈ Rn2×n1×n3 is obtained by transposing each frontal slice of A and then reversing the order of the
transposed frontal slices 2 through n3. We use A = fft(A, [], 3) to denote the Discrete Fourier transform
along mode-3 of A. Similarly, A can be computed from A using A = ifft(A, [], 3). The inner product
between two tensors A and B in Rn1×n2×n3 is defined as ⟨A, B⟩ =

∑
i,j,k Ai,j,kBi,j,k. The ℓ1 and Frobenius

norms of A are defined as ∥A∥1 =
∑

i,j,k |Ai,j,k| and ∥A∥F =
√∑

i,j,k |Ai,j,k|2, respectively. For a matrix
A, its (i, j)-th entry is denoted as Ai,j . The i-th row and i-th column of A are denoted by a(i) and ai,
respectively. The conjugate transpose of a matrix A is denoted by AH . The ℓ2,∞ norm of A is defined as the
maximum ℓ2 row norm, i.e., ∥A∥2,∞ = maxi ∥a(i)∥2. The matrix nuclear norm of A is ∥A∥∗ =

∑
i σi(A),

where σi(A)’s are the singular values of A.

Besides, for a tensor A ∈ Rn1×n2×n3 , we define the block vectorizing and its inverse operation as bvec(A) =
[A(1); A(2); · · · ; A(n3)] ∈ Rn1n3×n2 and bvfold(bvec(A)) = A, respectively. We denote A ∈ Cn1n3×n2n3 as
a block diagonal matrix with its i-th block on diagonal being the i-th frontal slice of A, i.e.,

A = bdiag(A) =

A(1)

. . .
A(n3)

 .

Finally, the block circulant matrix bcirc(A) ∈ Rn1n3×n2n3 is defined as

bcirc(A) =


A(1) A(n3) . . . A(2)

A(2) A(1) . . . A(3)

...
...

. . .
...

A(n3) A(n3−1) . . . A(1)

 .

Definition 1 (t-product (Kilmer & Martin, 2011)). The t-product between two tensors A ∈ Rn1×n2×n3 and
B ∈ Rn2×n4×n3 is defined as

C = A ∗ B = bvfold(bcirc(A) · bvec(B)) ∈ Rn1×n4×n3 . (1)

The t-product in the spatial domain corresponds to matrix multiplication of the frontal slices in the Fourier
domain; that is, C = A ∗ B is equivalent to C = AB (Kilmer & Martin, 2011). Note that when n3 = 1, the
operator ∗ reduces to matrix multiplication.

3

Published in Transactions on Machine Learning Research (06/2024)

Algorithm 1 t-SVD for third-order tensors
Input: A ∈ Rn1×n2×n3 .

1: A = fft(A, [], 3).
2: for k = 1, . . . , n3 do
3: [U, S, V] = SVD(A(k)).
4: U(k) = U, S(k) = S, V(k) = V.
5: end for
6: U = ifft(U , [], 3), S = ifft(S, [], 3), V = ifft(V , [], 3).

Output: U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 and S ∈ Rn1×n2×n3 such that A = U ∗ S ∗ VT .

Definition 2 (Identity tensor (Kilmer & Martin, 2011)). The identity tensor In ∈ Rn×n×n3 is a tensor
whose first frontal slice is the n × n identity matrix and all other frontal slices are zeros.
Definition 3 (Orthogonal tensor (Kilmer & Martin, 2011)). A tensor Q ∈ Rn×n×n3 is orthogonal if Q ∗
QT = QT ∗ Q = In.

Now we introduce the t-SVD for third-order tensors.
Definition 4 (t-SVD (Kilmer et al., 2013)). Let A ∈ Rn1×n2×n3 , then it can be factorized as A = U ∗S∗VT ,
where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors and S ∈ Rn1×n2×n3 is a tensor whose
frontal slices are diagonal matrices.

One can obtain t-SVD efficiently by performing matrix SVDs in the Fourier domain as shown in Algorithm 1.
Again, t-SVD reduces to the matrix SVD when n3 = 1.
Definition 5 (Tensor average and tubal rank (Lu et al., 2020)). For any A ∈ Rn1×n2×n3 , the tensor average
rank of A is defined as

ranka(A) def= 1
n3

rank(A) = 1
n3

rank(bcirc(A)).

The tensor tubal rank rankt(A) is defined as the number of nonzero singular tubes of S, i.e.,

rankt(A) = #{i : S(i, i, :) ̸= 0},

where S is from the t-SVD of A = U ∗ S ∗ VT .
Definition 6 (Tensor nuclear norm (Lu et al., 2020)). Let A = U ∗S ∗VT be the t-SVD of A ∈ Rn1×n2×n3 .
The tensor nuclear norm of A is defined as ∥A∥∗ = ⟨S, I⟩ =

∑r
i=1 Si,i,1, where r = rankt(A).

It is known that the tensor nuclear norm is the convex envelope of the tensor average rank within the unit
ball of the tensor spectral norm (Lu et al., 2020).

4 Method

In this section, we describe our approach for online max-norm regularized tensor decomposition. We begin
our discussion by introducing our proposed tensor max-norm and mathematically formulating the problem.

4.1 Problem Formulation

In this paper, we consider the problem of online recovering of low tubal rank tensor from sparsely corrupted
observations. Before going to the online scenario, we start with the batch setting. Suppose we are given
a third-order tensor Z ∈ Rn1×N×n3 consisting of N samples that can be decomposed as a low tubal-rank
component X and a sparse noise tensor E. Our goal is to estimate the two components X and E by solving
the following convex program:

min
X ,E

∥X ∥2
max + λ1∥E∥1 s.t. Z = X + E, (2)

4

Published in Transactions on Machine Learning Research (06/2024)

where ∥ · ∥max is the tensor max-norm defined later that encourages X to be low-rank, and λ1 > 0 is a
penalty parameter.

Recall that both the matrix max and nuclear norms are alternative convex surrogates for the rank of a
matrix. Bounding the matrix rank corresponds to constraining the dimensionality of each row of L and
R in the factorization X = LRH (Srebro & Shraibman, 2005). The nuclear norm encourages low-rank
approximation by constraining the average row-norms of L and R, whereas the max-norm, which is defined
as ∥X∥max = minL,R:X=LRH ∥L∥2,∞∥R∥2,∞, promotes low-rankness by constraining the maximal row-norms
of L and R. Note that the t-product in the spatial domain corresponds to matrix multiplication in the Fourier
domain, i.e., X = LRH . Based on the property that ∥X ∥∗ = 1

n3
∥X∥∗ (Lu et al., 2020) and the matrix nuclear

norm has an equivalent form ∥X∥∗ = minL,R:X=LRH
1
2 (∥L∥2

F +∥R∥2
F) (Recht et al., 2010), the tensor nuclear

norm can be written as the following tensor factorization form:

∥X ∥∗ = min
L∈Rn1×r×n3

R∈RN×r×n3

{1
2(∥L∥2

F + ∥R∥2
F) = 1

2n3
(∥L∥2

F + ∥R∥2
F) : X = L ∗ RT }, (3)

where r is an upper bound on the tensor tubal rank of X . As a theoretical foundation of the work Srebro et al.
(2004), Srebro & Shraibman (2005) provided the relationships between the rank, nuclear norm and max-
norm as complexity measures of matrices, which gave us some intuition on why the max-norm regularizer
could outperform the nuclear-norm regularizer in some applications, e.g., Lee et al. (2010) and Fang et al.
(2018). Motivated by this advantage, we propose to define the max-norm of the tensor X ∈ Rn1×N×n3 using
the same tensor factorization form by constraining all rows of L and R to have small ℓ2 norms as follows:
Definition 7 (Tensor max-norm). The tensor max-norm of X ∈ Rn1×N×n3 is defined as

∥X ∥max
def= min

L∈Rn1×r×n3

R∈RN×r×n3

{∥L∥2,∞ · ∥R∥2,∞ : X = L ∗ RT }, (4)

where r is an upper bound on the tensor tubal rank of X . We also have ∥X ∥max = ∥X∥max.

Now assume that the samples Z(:, i, :), i = 1, . . . , N , are observed sequentially, our objective is to efficiently
learn the low-rank component X and error tensor E in an online fashion. To facilitate online optimization,
instead of solving the constrained problem (2) directly, we relax the constraint by regarding it as a quadratic
penalty, resulting in

min
L,R,E

1
2∥Z − L ∗ RT − E∥2

F + λ1

2 ∥L∥2
2,∞∥R∥2

2,∞ + λ2∥E∥1, (5)

where λ1 and λ2 balance the importance of each term in (5). Intuitively, the variable L corresponds to a
basis for the clean data and each horizontal slice of R corresponds to the coefficients associated with each
sample. Notice that the size of the coefficient tensor R is proportional to N . In order to compute the optimal
coefficients for the i-th sample, we need to compute the gradient of ∥R∥2,∞. Moreover, each horizontal slice
of R corresponds to one sample, hence the computation of such gradient requires to access all the data.
Fortunately, we have the following proposition that alleviates the inter-dependencies among the horizontal
slices of R, so that we can optimize them sequentially.
Proposition 1. Problem (5) is equivalent to the following constrained program:

min
L,R,E

1
2∥Z − L ∗ RT − E∥2

F + λ1

2 ∥L∥2
2,∞ + λ2∥E∥1 s.t. ∥R∥2

2,∞ ≤ 1. (6)

Here, “equivalent” means the optimal values of the objective functions in (5) and (6) are the same. Moreover,
there exists an optimal solution (L⋆, R⋆, E⋆) attained such that ∥R⋆∥2,∞ = 1.

In the constrained program (6), the coefficients associated with each individual sample (i.e., one horizontal
slice of the coefficient tensor) are now uniformly and separately constrained. Let −→

Z i,
−→
Ri and −→

E i be the i-th
lateral slices of tensors Z, RT and E, respectively. We define

ℓ̃(−→Z , L,
−→
R,

−→
E) def= 1

2∥
−→
Z − L ∗

−→
R −

−→
E ∥2

F + λ2∥
−→
E ∥1.

5

Published in Transactions on Machine Learning Research (06/2024)

Algorithm 2 Online Max-Norm Regularized Tensor Decomposition
Input: Observed samples Z ∈ Rn1×N×n3 , and parameters λ1 and λ2.
Initialize: Random basis L0 ∈ Rn1×r×n3 , A0 = B0 = 0.

1: for t = 1, 2, . . . , N do
2: Access the t-th sample −→

Z t.
3: Update {

−→
R⋆

t ,
−→
E ⋆

t } by solving (10).
4: Update the accumulation tensors:

At = At−1 + −→
R⋆

t ∗
−→
R⋆T

t ,

Bt = Bt−1 + (−→Z t −
−→
E ⋆

t) ∗
−→
R⋆T

t .

5: Update the basis Lt (equivalently, Lt) by optimizing the surrogate function:

Lt = arg min
L

1
tn3

(1
2tr

(
LHLAt

)
− tr

(
LHBt

))
+ λ1

2t
∥L∥2

2,∞.

6: end for
Output: Optimal basis LN .

Equipped with Proposition 1, we can rewrite the original problem (5) as the following, with each sample
being separately processed:

min
L

min
R,E

N∑
i=1

ℓ̃(−→Z i, L,
−→
Ri,

−→
E i) + λ1

2 ∥L∥2
2,∞ s.t. ∀i = 1, . . . , N, k = 1, . . . , n3, ∥

−→Ri

(k)
∥2

2 ≤ 1, (7)

where −→
Ri = fft(−→Ri, [], 3) and −→Ri

(k)
denotes the k-th frontal slice of −→

Ri. This is indeed equivalent to
optimizing the empirical loss function:

fN (L) def= 1
N

N∑
i=1

ℓ(L,
−→
Z i) + λ1

2N
∥L∥2

2,∞, (8)

where ℓ(L,
−→
Z) = min−→

R∈P,
−→
E ℓ̃(−→Z , L,

−→
R,

−→
E) with P = {

−→
R ∈ Rr×1×n3 : ∀k, ∥

−→R
(k)

∥2
2 ≤ 1}. We assume

that each sample is drawn independently and identically distributed from some unknown distribution. In
stochastic optimization, one is usually interested in the minimization of the expected loss function

f(L) def= E[ℓ(L,
−→
Z)] = lim

N→+∞
fN (L). (9)

In this work, we first establish a surrogate function for this expected cost and then optimize the surrogate
function for obtaining the basis in an online fashion.

4.2 Online Implementation of OMRTD

We now describe our online algorithm for minimizing the empirical loss function (8). The detailed algorithm
is summarized in Algorithm 2. We start with an initial random dictionary L0. The key idea is that at each
iteration t, we first minimize the loss function with respect to {

−→
Rt,

−→
E t} given the previous Lt−1 by solving

(7), and then further refine the dictionary Lt by minimizing the cumulative loss.

Optimize
−→
R and

−→
E : Given Lt−1 in the previous iteration, we obtain the optimal solution {

−→
R⋆

t ,
−→
E ⋆

t } by
solving

{
−→
R⋆

t ,
−→
E ⋆

t } = arg min
−→
R∈P,

−→
E

1
2∥

−→
Z t − Lt−1 ∗

−→
R −

−→
E ∥2

F + λ2∥
−→
E ∥1. (10)

6

Published in Transactions on Machine Learning Research (06/2024)

We employ a block coordinate descent algorithm which alternatively updates one variable at a time with the
other being fixed until some stopping criteria is satisfied. For the sake of exposition, we omit the subscript
t here. According to Bertsekas (1999), this alternating minimization procedure is guaranteed to converge
when the objective function is strongly convex with respect to each block variable. It can be observed from
(10) that the strong convexity holds for −→

E and it holds for −→
R if and only if L is full tubal rank. For

computational efficiency, we actually append a small jitter ϵ
2 ∥

−→
R∥2

F to the objective if necessary so as to
guarantee the convergence (we set ϵ = 0.01 in our experiments). We first compute an initial guess of −→

R by

−→
Rcand = (LT ∗ L + ϵIr)−1 ∗ LT ∗ (−→Z −

−→
E). (11)

If this initial guess −→
Rcand satisfies the constraint that −→

Rcand ∈ P, we will use −→
Rcand as the new iterate for

−→
R. Otherwise, for each k, if ∥

−→R
(k)
cand∥2 > 1, we will introduce a positive dual variable η(k) and solve

max
η(k)

min
−→R

(k)

1
2∥

−→Z
(k)

− L−→R
(k)

−
−→E

(k)
∥2

2 + η(k)

2 (∥−→R
(k)

∥2
2 − 1) s.t. η(k) > 0, ∥

−→R
(k)

∥2 = 1. (12)

The closed-form solution of (12) is given by

−→R
(k)

= (L(k)H

L(k) + η(k)Ir)−1L(k)H

(−→Z
(k)

−
−→E

(k)
),

where Ir denotes the r × r identity matrix. According to Proposition 2 of Shen et al. (2017), for each k,
∥
−→R

(k)
∥2 is a strictly monotonically decreasing function with respect to η(k). This allows us to search the

optimal −→R
(k)

as well as the dual variable η(k) using bisection method. To be concrete, we denote

−→R
(k)

(η) = (L(k)H

L(k) + ηIr)−1L(k)H

(−→Z
(k)

−
−→E

(k)
)

and maintain a lower bound η1 and an upper bound η2 such that ∥
−→R

(k)
(η1)∥2 ≥ 1 and ∥

−→R
(k)

(η2)∥2 ≤ 1.
This ensures that the optimal η(k) lies within the interval [η1, η2] and we can find this value efficiently using
bisection method outlined in Algorithm 5 in Appendix A.2. By comparing ∥

−→R
(k)

(η(k))∥2 at η(k) = (η1+η2)/2
with 1, we can either increase η1 or decrease η2 until ∥

−→R
(k)

(η(k))∥2 equals one. Note that ∥
−→R

(k)
cand∥2 > 1,

which implies that the optimal value for η(k) is greater than ϵ, thus we can easily set η1 = 0. Once −→
R is

found, we can update −→
E using the soft-thresholding operator (Donoho, 1995): −→

E = Sλ2 [−→Z − L ∗
−→
R]. For

completeness, we list our method for updating the coefficient tensor and the noise tensor in Algorithm 4 in
Appendix A.2.

Optimize L: When {
−→
Z i,

−→
R⋆

i ,
−→
E ⋆

i }t
i=1 are available, we can update the basis Lt by optimizing the following

objective function

gt(L) = 1
t

t∑
i=1

ℓ̃(−→Z i, L,
−→
R⋆

i ,
−→
E ⋆

i) + λ1

2t
∥L∥2

2,∞. (13)

This is a surrogate function of the empirical cost function ft(L) defined in (9) in a sense that it provides an
upper bound for ft(L) : gt(L) ≥ ft(L) (Mairal et al., 2010; Feng et al., 2013; Shen et al., 2017). It is easy
to verify that the minimizer of (13) is given by

Lt = arg min
L

1
2t

∥Zt − L ∗ R⋆
t − E⋆

t ∥2
F + λ1

2t
∥L∥2

2,∞,

where Zt = [−→Z 1, . . . ,
−→
Z t] ∈ Rn1×t×n3 , R⋆

t = [−→R⋆
1, . . . ,

−→
R⋆

t] ∈ Rr×t×n3 and E⋆
t = [−→E ⋆

1, . . . ,
−→
E ⋆

t] ∈ Rn1×t×n3 .
Let Lt = bdiag(Lt), Zt = bdiag(Zt), R⋆

t = bdiag(R⋆
t) and E⋆

t = bdiag(E⋆
t). The above problem can be

7

Published in Transactions on Machine Learning Research (06/2024)

transformed into the Fourier domain as

Lt = arg min
L

1
2tn3

∥Zt − LR⋆
t − E⋆

t ∥2
F + λ1

2t
∥L∥2

2,∞

= arg min
L

1
tn3

(1
2tr

(
LHLAt

)
− tr

(
LHBt

))
+ λ1

2t
∥L∥2

2,∞. (14)

Here, At =
∑t

i=1
−→
R⋆

i ∗
−→
R⋆T

i ∈ Rr×r×n3 , Bt =
∑t

i=1(−→Z i −
−→
E ⋆

i) ∗
−→
R⋆T

i ∈ Rn1×r×n3 and tr(·) denotes the
trace operation. We again omit the subscript t in the rest of this paragraph. In order to derive the optimal
solution, we first need to compute the subgradient of the squared ℓ2,∞ norm, which can be done in a similar
way as in Shen et al. (2017). To be specific, let Θ denote the set of row indices corresponding to the rows
with maximum ℓ2 row norm of L. Define Q ∈ Rn1n3×n1n3 to be a positive semi-definite diagonal matrix
with Qi,i ̸= 0 if and only if i ∈ Θ and all other entries are zeros such that

∑n1n3
i=1 Qi,i = 1. The subgradient

of 1
2 ∥L∥2

2,∞ can be written as H = ∂(1
2 ∥L∥2

2,∞) = QL. We then use block coordinate descent (Bertsekas,
1999) to update the columns of L sequentially; see more details in Algorithm 6 in Appendix A.2. Note that
H is a diagonal matrix and off-diagonal blocks are zero matrices, we can write H as

H def=

H1
. . .

Hn3

 .

In this manner, the subgradient of the squared ℓ2,∞ norm of L with respect to L(k) is Hk. By assuming that
the objective function of (14) is strongly convex with respect to L, it is guaranteed that the solution of this
block coordinate descent scheme always converges to the global optimum.

4.3 Complexity and Convergence Analysis

Here, we provide further analysis on complexity and convergence of our method.

Computational Complexity. In each iteration, the computational burden is dominated by the cost for
solving (10). The computational complexity of (11) involves computing the inverse of n3 r × r matrices,
matrix multiplications, and the (inverse) Fast Fourier Transform, totally O(n1r2n3 + n1n3 log n3). For the
basis update, obtaining a subgradient of the squared ℓ2,∞ norm of L is O(n1rn3) and one-pass update for
the columns in L in Algorithm 6 requires O(n1r2n3).

Memory Cost. OMRTD requires O(n1rn3) to load Lt−1 and −→
Z t to obtain {

−→
Rt,

−→
E t}. To store the

accumulation tensor At, we need O(r2n3) memory while that for Bt is O(n1rn3). Finally, we find that only
At and Bt are needed for the computation of the new iterate Lt. Hence, the memory cost of OMRTD is
O(n1rn3), i.e., independent of N , making our algorithm appealing for large-scale streaming tensor data.

Convergence. In order to present the validity of the proposed algorithm, we make the following assump-
tions:

(A1) The observed samples are generated independent identically distributed from some distribution and
there exist two positive constants α0, α1, such that the conditions α0 ≤ ∥

−→
Z t∥F ≤ α1 holds almost surely for

all t ≥ 1. This assumption is quite natural for the realistic data such as images and videos.

(A2) The surrogate function gt(L) in (13) is strongly convex. Particularly, we assume that the smallest
singular value of the matrix 1

t At is not smaller than some positive constant β1.

(A3) The minimizer for ℓ(L,
−→
Z) is unique. Notice that ℓ̃(−→Z , L,

−→
R,

−→
E) is strongly convex with respect to −→

E
and convex with respect to −→

R. We can enforce this assumption by adding a term ϵ
2 ∥

−→
R∥2

F to the objective
function, where ϵ is a small positive constant.

Based on assumptions (A1), (A2) and (A3), we establish the main theoretical result of this work.

8

Published in Transactions on Machine Learning Research (06/2024)

Theorem 1. Assume (A1), (A2) and (A3). Let {Lt}t≥1 be the solution produced by Algorithm 2. Then the
sequence converges to a stationary point of the expected loss function f(L) when t tends to infinity.

The proof of Theorem 1 proceeds in the same following four steps as in Shen et al. (2017):

(I) We first show that all the stochastic variables {
−→
Rt,

−→
E t, Lt}∞

t=1 are uniformly bounded. This property is
important because it justifies that the problem we are solving is well-defined.

Proposition 2. Let {
−→
R⋆

t ,
−→
E ⋆

t , Lt}∞
t=1 be the sequence of optimal solutions produced by Algorithm 2. Then

1. The optimal solutions −→
R⋆

t and −→
E ⋆

t are uniformly bounded.

2. The tensors 1
t At and 1

t Bt are uniformly bounded.

3. Lt is supported on some compact set L , there exists a positive constant c1, such that for all t > 0,
we have ∥Lt∥F ≤ c1.

Corollary 1. Let {
−→
R⋆

t ,
−→
E ⋆

t , Lt}∞
t=1 be the sequence of optimal solutions produced by Algorithm 2. Then, for

all t ≥ 1, we have

1. ℓ̃(−→Z t, Lt,
−→
R⋆

t ,
−→
E ⋆

t) and ℓ(Lt,
−→
Z t) are uniformly bounded from above.

2. The surrogate function, gt(Lt) defined in (13), is uniformly bounded.

3. Moreover, gt(Lt) is uniformly Lipschitz over the compact set L .

(II) Next, we show that the positive stochastic process gt(Lt) defined in (13) converges almost surely. First,
we can easily show that gt+1(Lt+1) − gt(Lt) is upper bounded by ℓ(Lt,

−→
Z t+1)−ft(Lt)

t+1 . Then we show that
the set of measurable functions {ℓ(L,

−→
Z), L ∈ L } is P-Donsker (van der Vaart, 1998), and the difference

between the empirical loss and expected loss can be uniformly upper bounded by O(1/
√

t). Therefore,
following the proof in Shen et al. (2017, Theorem 4), we conclude that gt(Lt) is a quasi-martingale (Fisk,
1965) and converges almost surely.

(III) By establishing the numerical convergence of the basis sequence {Lt}∞
t=1, i.e., ∥Lt+1 − Lt∥F = O(1/t)

(this step corresponds to Shen et al. (2017, Proposition 10)), we can show that the empirical loss function,
ft(Lt) defined in (8) converges almost surely to the same limit of its surrogate gt(Lt). According to the
central limit theorem, ft(Lt) also converges almost surely to the expected loss f(Lt) defined in (9), implying
that gt(Lt) and f(Lt) converge to the same limit (this step corresponds to Shen et al. (2017, Theorem 5)).

(IV) Finally, using the expression L ∗
−→
R = bvfold(bcirc(L) · bvec(−→R)), we can derive that ∇f(L) is

uniformly Lipschitz on L. Consequently, by taking a simple Taylor expansion, it justifies that the gradient
of f(L) taking at Lt vanishes as t tends to infinity, which concludes Theorem 1.

4.4 Extension to Tensor Completion

In this subsection, we study OMRTD for the case of data having missing entries. To be specific, let W =
[0, 1] ∈ Rn1×N×n3 be a tensor such that Wi,j,k = 1 if Zi,j,k is observed and Wi,j,k = 0 otherwise. The
locations of the observed entries can be indexed by a set Ω = {(i, j, k) : Wi,j,k = 1}. We reformulate the
problem (2) for tensor completion by solving the following problem:

min
X ,E

1
2∥M − X − E∥2

F + λ1

2 ∥X ∥2
max + λ2∥E∥1 s.t. PΩ(M) = PΩ(Z), (15)

where PΩ(·) is the orthogonal projector onto the span of tensors vanishing outside Ω so that the (i, j, k)-th
entry of PΩ(M) is equal to Mi,j,k if (i, j, k) ∈ Ω and zero otherwise. We again minimize (15) by alternating

9

Published in Transactions on Machine Learning Research (06/2024)

Algorithm 3 Updating tensor columns of M, R and E
Input: Partially observed data sample PΦ(−→Z) ∈ Rn1×1×n3 , L ∈ Rn1×r×n3 , and parameter λ2.
Initialize:

−→
R(0) = −→

E (0) = −→
J (0) = 0, γ = 1.9, µ(0) = 0.1, µmax = 1010, ε = 10−6, and ζ = 0.

1: while not converged do
2:

−→
M(ζ+1) = PΦ(L∗

−→
R(ζ)+−→

E (ζ)+µ
−→
Z −

−→
J (ζ)

µ+1) + PΦc(L ∗
−→
R(ζ) + −→

E (ζ)).
3: Update {

−→
R(ζ+1),

−→
E (ζ+1)} using Algorithm 4.

4:
−→
J (ζ+1) = −→

J (ζ) + µ(ζ)(PΦ(−→M(ζ+1)) − PΦ(−→Z)).
5: µ(ζ+1) = min(γµ(ζ), µmax).
6: Check the convergence conditions:
7: max(∥PΦ(−→M(ζ+1)) − PΦ(−→Z)∥F , ∥

−→
R(ζ+1) −

−→
R(ζ)∥F , ∥

−→
E (ζ+1) −

−→
E (ζ)∥F)/(n1n3) < ε.

8: ζ = ζ + 1.
9: end while

Output: Optimal −→
M⋆ = −→

M(ζ), −→
R⋆ = −→

R(ζ) and −→
E ⋆ = −→

E (ζ).

minimization strategy. At the t-th iteration, when Lt−1 is given, the update for {
−→
Mt,

−→
Rt,

−→
E t} corresponds

to solving

{
−→
M⋆

t ,
−→
R⋆

t ,
−→
E ⋆

t } = arg min
−→
M,

−→
R∈P,

−→
E

1
2∥

−→
M − Lt−1 ∗

−→
R −

−→
E ∥2

F + λ2∥
−→
E ∥1 s.t. PΩt

(−→M) = PΩt
(−→Z t), (16)

where Ωt = {(i, k)|(i, t, k) ∈ Ω}. This problem can now be solved by using the Alternating Direction Method
of Multipliers (ADMM) (Boyd et al., 2011). Specifically, the augmented Lagrangian function of (16) is

ℓ̂(−→M,
−→
D,

−→
R,

−→
E) = 1

2∥
−→
M − Lt−1 ∗

−→
R −

−→
E ∥2

F + λ2∥
−→
E ∥1

+ ⟨
−→
J , PΩt(

−→
M) − PΩt(

−→
Z t)⟩ + µ

2 ∥PΩt(
−→
M) − PΩt(

−→
Z t)∥2

F , (17)

where −→
J is the Lagrange multiplier and µ > 0 is a penalty parameter. The implementation of the ADMM

algorithm is outlined in Algorithm 3. Finally, we define Bt =
∑t

i=1(−→M⋆
i −

−→
E ⋆

i) ∗
−→
R⋆T

i and the update of Lt

is exactly the same as in OMRTD. We dub this approach robust OMRTD (rOMRTD) in our experiments.

5 Experiments

In this section, we present several experimental results on both synthetic and real data. All experiments are
conducted on a PC with an AMD Ryzen 9 5950X 3.40GHz CPU and 64GB RAM with Matlab R2023b. We
set λ1 = λ2 = 1/

√
n1 for OMRTD/rOMRTD, and we follow the default parameter settings for the baselines.

5.1 Synthetic Data Experiments

Data generation We generate the clean data tensor X = U ∗ VT , where the entries of U ∈ Rn1×r×n3 and
V ∈ RN×r×n3 are drawn i.i.d. from N (0, 1) distribution. Here, we set n1 = 50 and n3 = 20. The observed
data tensor Z is generated by Z = X + E, where E is a sparse tensor with a fraction of ρ non-zero entries.
The elements in E are from a uniform distribution over the interval of [−10, 10].

Evaluation metric We evaluate the fitness of the recovered tensor subspace L (with each frontal slice being
normalized) and the ground truth U based on the idea of Expressed Variance (EV) (Xu et al., 2010):

EV(U ; L) = ∥UT ∗ L∥2
F

∥U∥2
F

=
tr

(
(U ∗ UT ∗ L ∗ LT)(:, :, 1)

)
tr

(
(UT ∗ U)(:, :, 1)

) .

The value of EV ranges between 0 and 1 and a higher value indicates better recovery. The Monte Carlo
simulations are repeated 10 times and we report the averaged EV of these 10 random trials.

10

Published in Transactions on Machine Learning Research (06/2024)

0.08 0.16 0.24 0.32 0.4

0.5

0.4

0.3

0.2

0.1

(a) OMRTD

0.08 0.16 0.24 0.32 0.4

0.5

0.4

0.3

0.2

0.1

(b) OTRPCA

0.08 0.16 0.24 0.32 0.4

0.5

0.4

0.3

0.2

0.1

(c) TRPCA

Figure 1: Performance of tensor subspace recovery using complete data under different intrinsic dimensions
and corruptions. Brighter cells represent better performance.

Baselines For the complete data experiments, we compare the performance of OMRTD with OTRPCA
(Zhang et al., 2016) and TRPCA (Lu et al., 2020). For the case of data having missing entries, we choose an
approach that first performs tensor completion based on the tensor nuclear norm (TNN) (Zhang & Aeron,
2017; Lu et al., 2018) and then conducts TRPCA (Lu et al., 2020) on the recovered data (TNN+TRPCA)
as the baseline.

0.08 0.16 0.24 0.32 0.4

0.5

0.4

0.3

0.2

0.1

(a) rOMRTD (τ = 10%)

0.08 0.16 0.24 0.32 0.4

0.5

0.4

0.3

0.2

0.1

(b) rOMRTD (τ = 30%)

0.08 0.16 0.24 0.32 0.4

0.5

0.4

0.3

0.2

0.1

(c) rOMRTD (τ = 50%)

0.08 0.16 0.24 0.32 0.4

0.5

0.4

0.3

0.2

0.1

(d) TNN+TRPCA (τ = 10%)

0.08 0.16 0.24 0.32 0.4

0.5

0.4

0.3

0.2

0.1

(e) TNN+TRPCA (τ = 30%)

0.08 0.16 0.24 0.32 0.4

0.5

0.4

0.3

0.2

0.1

(f) TNN+TRPCA (τ = 50%)

Figure 2: Performance of tensor subspace recovery using missing data under different intrinsic dimensions
and corruptions. Brighter cells represent better performance.

5.1.1 Robustness

We first study the robustness of OMRTD in terms of EV value, and compare it to the tensor nuclear norm
based OTRPCA and the batch algorithm TRPCA. In this set of experiments, the total number of samples
N = 2000. We vary the true tubal rank from 0.08n1 to 0.4n1, with a step size 0.04n1, and the corruption
fraction ρ ranges from 0.05 to 0.5, with a step size 0.05. The results are represented in Figure 1. Since

11

Published in Transactions on Machine Learning Research (06/2024)

500 2000 3500 5000

number of samples

0.96

0.97

0.98

0.99

1

E
V

OMRTD
OTRPCA
TRPCA

(a) ρ = 0.05

500 2000 3500 5000

number of samples

0.95

0.96

0.97

0.98

0.99

1

E
V

OMRTD
OTRPCA
TRPCA

(b) ρ = 0.1

500 2000 3500 5000

number of samples

0.75

0.8

0.85

0.9

0.95

1

E
V

OMRTD

OTRPCA

TRPCA

(c) ρ = 0.3

500 2000 3500 5000

number of samples

0.5

0.6

0.7

0.8

0.9

1

E
V

OMRTD

OTRPCA

TRPCA

(d) ρ = 0.5

Figure 3: EV value against the number of samples under different corruption fractions.

TRPCA accesses all the data in each iteration, it always achieves the best performance. We observe that
both OMRTD and OTRPCA perform comparably in easy settings (i.e., few corruption and low tubal rank).
However, in tough cases, OMRTD outperforms OTRPCA. For example, when the true tubal rank is 12 and
ρ = 0.5, the EV values of OMRTD and OTRPCA are 0.8274 and 0.5840, respectively. In order to further
investigate this phenomenon, we plot the EV curve against the fraction of corruption for some given tubal
ranks in Figure 5 in Appendix A.3. Notably, when manipulating a low tubal rank tensor, OTRPCA exhibits
similar performance compared to OMRTD under a low level of noise, e.g., the true tubal rank is no more
than 8 and ρ is no more than 0.25. However, as the true tubal rank gets larger or the fraction of corruption
increases, OTRPCA degrades faster than OMRTD. This is possibly because the proposed tensor max-norm
is a tighter approximation to the tensor tubal rank.

Next, we study the effectiveness of rOMRTD in the missing data scenario, where we set the percentage of
missing entries τ to be 10%, 30% and 50%. Figure 2 indicates that TNN+TRPCA performs better than
rOMRTD when τ = 10%. When the number of missing entries increases, the EV values of TNN+TRPCA
drop rapidly, especially when the fraction of corruption becomes large. Finally, rOMRTD outperforms
TNN+TRPCA for almost all different tubal ranks and ρ’s when τ = 50%. The detailed plot of the EV
curve against the fraction of corruption under some specific tubal ranks for τ = 30% is shown in Figure 6 in
Appendix A.3.

5.1.2 Convergence Rate

We now examine the convergence of OMRTD in terms of the EV curve as a function of the number of
samples. We first fix the true tubal rank to be 0.2n1 = 10. The results are depicted in Figure 3. As
expected, TRPCA achieves the best performance since it is a batch method and it requires to access all
the data during optimization. OMRTD is comparable to OTRPCA when the corruption level is low (see
Figure 3a and Figure 3b) and the gap between the EV values for these two methods is below 0.04. When
data are grossly corrupted, OMRTD converges faster than OTRPCA (see Figure 3c and Figure 3d), which
again suggests that tensor max-norm might be a better fit than the tensor nuclear norm when the signal to
noise ratio is low.

We then compare the convergence rate of OMRTD and OTRPCA under different n1’s in Figure 4a and
Figure 4b. The tubal rank of data is set to be 0.1n1 and the error corruption ρ is fixed to be 0.3. We
observe that when n1 = 50, OMRTD is generally slightly worse than OTRPCA and the gap between the
EV values is below 0.004 for the same number of samples. However, when n1 = 100, OMRTD significantly
outperforms OTRPCA. It attains the EV value of 0.95 only with accessing 1000 samples, whereas OTRPCA
cannot obtain the same accuracy even using 20000 samples.

5.1.3 Computational Complexity

As we discussed, when we solve the dual problem to optimize −→
R, the initial solution −→

Rcand may violate the
constraint. Thus, OMRTD is inferior to OTRPCA in terms of computation. We plot the running time with
respect to the number of samples for n1 ∈ {50, 100} in Figure 4c and Figure 4d, which show that OTRPCA
is about 2.4 times faster than OMRTD. When n1 = 50, OMRTD and OTRPCA take 76 seconds to achieve

12

Published in Transactions on Machine Learning Research (06/2024)

0.05 0.4 0.8 1.2 1.6 2

number of samples 10
4

0.9

0.92

0.94

0.96

0.98

1

E
V

OMRTD
OTRPCA
TRPCA

(a) n1 = 50

0.05 0.4 0.8 1.2 1.6 2

number of samples 10
4

0.6

0.7

0.8

0.9

1

E
V

OMRTD

OTRPCA

TRPCA

(b) n1 = 100

0.05 0.4 0.8 1.2 1.6 2

number of samples 10
4

0

50

100

150

200

ti
m

e
 (

in
 s

e
c
o
n
d
s
) OMRTD

OTRPCA

(c) n1 = 50

0.05 0.4 0.8 1.2 1.6 2

number of samples 10
4

0
50

100
150
200
250
300
350
400
450
500

ti
m

e
 (

in
 s

e
c
o
n
d
s
) OMRTD

OTRPCA

(d) n1 = 100

Figure 4: (a)-(b) EV value as a function of the number of samples for n1 ∈ {50, 100}. The intrinsic dimension
is 0.1n1 and the corruption fraction ρ = 0.3. (c)-(d) Running time as a function of the number of samples
for n1 ∈ {50, 100}.

Table 1: Background subtraction results and algorithm running time (in seconds) on CAMO-UOW dataset.

Methods Metrics Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Video 7 Video 8 Video 9 Video 10

RPCA

Precision 0.7290 0.7873 0.6367 0.7698 0.6472 0.9883 0.9521 0.7343 0.7552 0.9646
Recall 0.2032 0.2237 0.2328 0.1903 0.1174 0.7209 0.1621 0.2334 0.1101 0.4262

F-measure 0.3038 0.3311 0.3337 0.2982 0.1941 0.8288 0.2608 0.3476 0.1628 0.5557
Time 264.1 130.1 255.5 258.9 265.5 247.3 207.9 359 265.3 382.2

TRPCA

Precision 0.5829 0.6281 0.5712 0.6632 0.6665 0.9541 0.7954 0.6021 0.7197 0.8734
Recall 0.1785 0.1019 0.1045 0.0926 0.0861 0.3865 0.0826 0.1037 0.0530 0.1786

F-measure 0.2599 0.1489 0.1673 0.1613 0.1483 0.5411 0.1460 0.1635 0.0949 0.2761
Time 1086 518.4 1111 1102 1121 1103 933.8 1526 979.9 1490

ORPCA

Precision 0.0435 0.1336 0.1711 0.0602 0.0404 0.1339 0.083 0.1226 0.0372 0.1528
Recall 0.1923 0.2859 0.4174 0.1990 0.1278 0.7105 0.2071 0.3010 0.1231 0.4325

F-measure 0.0669 0.1715 0.2311 0.0910 0.0593 0.2160 0.1118 0.1657 0.0536 0.2165
Time 23.13 12.17 20.75 21.51 30.99 19.32 11.47 54.31 20.63 21.73

OMRMD

Precision 0.6806 0.7073 0.6510 0.6162 0.6306 0.9038 0.6285 0.7052 0.6573 0.7801
Recall 0.1777 0.0888 0.1016 0.1184 0.0921 0.3038 0.1149 0.1239 0.0876 0.2070

F-measure 0.2657 0.1489 0.1718 0.1965 0.1500 0.4492 0.1798 0.1993 0.1437 0.3123
Time 8.74 4.28 8.73 8.73 8.90 8.88 6.91 11.76 7.49 11.56

OTRPCA

Precision 0.3580 0.4024 0.4636 0.5077 0.4260 0.9475 0.7607 0.5560 0.5543 0.8462
Recall 0.1595 0.0923 0.2526 0.1171 0.0693 0.5023 0.0575 0.1208 0.0561 0.2809

F-measure 0.2095 0.1328 0.3209 0.1862 0.1007 0.6493 0.1056 0.1853 0.0849 0.3991
Time 31.67 14.70 31.65 31.82 31.87 31.89 26.43 44.96 27.99 44.27

OMRTD

Precision 0.8663 0.8682 0.9638 0.7617 0.8200 0.9382 0.7992 0.8597 0.8221 0.8544
Recall 0.3769 0.3243 0.2573 0.2447 0.2446 0.4555 0.2823 0.3454 0.1925 0.3220

F-measure 0.5119 0.4657 0.3861 0.3624 0.3668 0.6103 0.4080 0.4830 0.2901 0.4552
Time 83.01 39.02 82.61 79.1 84.42 84.55 67.95 119.7 74.44 132.6

the EV values of 0.9963 (with 9500 samples) and 0.9995 (with 20000 samples), respectively. The caveat
here is that when n1 = 100, OMRTD and OTRPCA take 207 seconds to achieve the EV values of around
0.9945 (with a little bit more than 8000 samples) and 0.86 (with 20000 samples), respectively. We can
even expect that the gap between the EV values of these two methods will get even larger as n1 increases.
It is reasonable to conclude that the advantage of OMRTD over OTRPCA in terms of convergence rate
significantly outweighs the increase in computational complexity when n1 is moderately large.

5.2 Real Data Experiments

In this subsection, we compare the performance of OMRTD with OTRPCA (Zhang et al., 2016), TRPCA
(Lu et al., 2020), OMRMD (Shen et al., 2017), ORPCA (Feng et al., 2013) and robust PCA (RPCA) (Candès
et al., 2011) on the CAMO-UOW dataset (Li et al., 2017) for video background subtraction. The task is to
separate the moving foreground objects, which are usually sparsely distributed in the video frames, from a

13

Published in Transactions on Machine Learning Research (06/2024)

static background, which can be characterized by a low-rank matrix/tensor. The dataset contains 10 real
video sequences and we use all these sequences for both qualitative and quantitative analysis. To evaluate
the performance of OMRTD, the Precision, Recall, and F-measure, are used as basic evaluation metrics. The
upper bound of the rank of the clean data in OMRMD/ORPCA is set to be 5 and the upper bound of the
tubal rank of the clean tensor in OMRTD/OTRPCA is set to be 3. As can be seen from Table 1, OMRTD
achieves the highest F-measure scores for 8 videos. The visual comparison in Figure 7 in Appendix A.3
shows that our method is competent to extract the foreground from these videos.

6 Conclusion

In this paper, we have proposed a tensor max-norm for low-rank tensor modeling and developed an online
algorithm for the max-norm regularized tensor decomposition (OMRTD) problem. The main idea of OM-
RTD is to reformulate the objective function of max-norm regularized tensor decomposition as a constrained
problem using the tensor factorization form of the max-norm, which can be solved by stochastic optimiza-
tion. We further extended the proposed method to the missing data scenario. Comprehensive simulations
demonstrate the effectiveness of OMRTD and we conjecture that the tensor max-norm might be a tighter
relaxation of the tensor average rank compared to the tensor nuclear norm.

References
Anima Anandkumar, Prateek Jain, Yang Shi, and U. N. Niranjan. Tensor vs. matrix methods: Robust tensor

decomposition under block sparse perturbations. In International Conference on Artificial Intelligence and
Statistics, pp. 268–276, 2016.

Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with the k-support norm. In Advances
in Neural Information Processing Systems, pp. 1457–1465, 2012.

Dimitri P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning, 3(1):1–122, 2011.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis? Journal
of the ACM, 58(3):1–37, 2011.

David L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3):613–
627, 1995.

Ethan X. Fang, Han Liu, Kim-Chuan Toh, and Wen-Xin Zhou. Max-norm optimization for robust matrix
recovery. Mathematical Programming, 167:5–35, 2018.

Jiashi Feng, Huan Xu, and Shuicheng Yan. Online robust PCA via stochastic optimization. In Advances in
Neural Information Processing Systems, pp. 404–412, 2013.

Donald L. Fisk. Quasi-martingales. Transactions of the American Mathematical Society, 120(3):369–389,
1965.

Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab. TripleRank: Ranking semantic web data by
tensor decomposition. In International Semantic Web Conference, pp. 213–228, 2009.

Quanxue Gao, Pu Zhang, Wei Xia, Deyan Xie, Xinbo Gao, and Dacheng Tao. Enhanced tensor RPCA and
its application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(6):2133–2140, 2021.

Kyle Gilman, Davoud Ataee Tarzanagh, and Laura Balzano. Grassmannian optimization for online tensor
completion and tracking with the t-SVD. IEEE Transactions on Signal Processing, 70:2152–2167, 2022.

14

Published in Transactions on Machine Learning Research (06/2024)

Donald Goldfarb and Zhiwei Qin. Robust low-rank tensor recovery: Models and algorithms. SIAM Journal
on Matrix Analysis and Applications, 35(1):225–253, 2014.

Wei He, Hongyan Zhang, Liangpei Zhang, and Huanfeng Shen. Total-variation-regularized low-rank matrix
factorization for hyperspectral image restoration. IEEE Transactions on Geoscience and Remote Sensing,
54(1):178–188, 2016.

Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are NP-hard. Journal of the ACM, 60(6):
1–39, 2013.

Bo Huang, Cun Mu, Donald Goldfarb, and John Wright. Provable low-rank tensor recovery. Optimization-
Online, 4252:2, 2014.

Hiroyuki Kasai. Fast online low-rank tensor subspace tracking by CP decomposition using recursive least
squares from incomplete observations. Neurocomputing, 347:177–190, 2019.

Henk A. L. Kiers. Towards a standardized notation and terminology in multiway analysis. Journal of
Chemometrics, 14(3):105–122, 2000.

Misha E. Kilmer and Carla D. Martin. Factorization strategies for third-order tensors. Linear Algebra and
its Applications, 435(3):641–658, 2011.

Misha E. Kilmer, Karen Braman, Ning Hao, and Randy C. Hoover. Third-order tensors as operators on
matrices: A theoretical and computational framework with applications in imaging. SIAM Journal on
Matrix Analysis and Applications, 34(1):148–172, 2013.

Misha E. Kilmer, Lior Horesh, Haim Avron, and Elizabeth Newman. Tensor-tensor algebra for optimal
representation and compression of multiway data. Proceedings of the National Academy of Sciences, 118
(28), 2021.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):
455–500, 2009.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value decomposition.
SIAM Journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

Jason Lee, Benjamin Recht, Ruslan Salakhutdinov, Nathan Srebro, and Joel A. Tropp. Practical large-scale
optimization for max-norm regularization. In Advances in Neural Information Processing Systems, pp.
1297–1305, 2010.

Ping Li, Jiashi Feng, Xiaojie Jin, Luming Zhang, Xianghua Xu, and Shuicheng Yan. Online robust low-
rank tensor modeling for streaming data analysis. IEEE Transactions on Neural Networks and Learning
Systems, 30(4):1061–1075, 2019.

Shuai Li, Dinei Florencio, Yaqin Zhao, Chris Cook, and Wanqing Li. Foreground detection in camouflaged
scenes. In IEEE International Conference on Image Processing, 2017.

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for estimating missing values
in visual data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):208–220, 2013.

Canyi Lu, Jiashi Feng, Zhouchen Lin, and Shuicheng Yan. Exact low tubal rank tensor recovery from
Gaussian measurements. In International Joint Conference on Artificial Intelligence, pp. 2504–2510, 2018.

Canyi Lu, Xi Peng, and Yunchao Wei. Low-rank tensor completion with a new tensor nuclear norm induced
by invertible linear transforms. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5996–6004, 2019.

Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. Tensor robust principal
component analysis with a new tensor nuclear norm. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42(4):925–938, 2020.

15

Published in Transactions on Machine Learning Research (06/2024)

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix factorization and
sparse coding. Journal of Machine Learning Research, 11(2):19–60, 2010.

Morteza Mardani, Gonzalo Mateos, and Georgios B. Giannakis. Subspace learning and imputation for
streaming big data matrices and tensors. IEEE Transactions on Signal Processing, 63(10):2663–2677,
2015.

I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–2317, 2011.

Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

Jasson D. M. Rennie and Nathan Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In International Conference on Machine Learning, pp. 713–719, 2005.

Bernardino Romera-Paredes and Massimiliano Pontil. A new convex relaxation for tensor completion. In
Advances in Neural Information Processing Systems, pp. 2967–2975, 2013.

Jie Shen, Huan Xu, and Ping Li. Online optimization for max-norm regularization. Machine Learning, 106:
419–457, 2017.

Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Papalexakis, and
Christos Faloutsos. Tensor decomposition for signal processing and machine learning. IEEE Transactions
on Signal Processing, 65(13):3551–3582, 2017.

Guangjing Song, Michael K. Ng, and Xiongjun Zhang. Robust tensor completion using transformed tensor
singular value decomposition. Numerical Linear Algebra with Applications, 27(3):e2299, 2020.

Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Annual Conference on Learning
Theory, pp. 545–560, 2005.

Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakkola. Maximum-margin matrix factorization. In
Advances in Neural Information Processing Systems, pp. 1329–1336, 2004.

Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279–311,
1966.

A. W. van der Vaart. Asymptotic statistics. Cambridge University Press, 1998.

Andong Wang, Guoxu Zhou, Zhong Jin, and Qibin Zhao. Tensor recovery via ∗L-spectral k-support norm.
IEEE Journal of Selected Topics in Signal Processing, 15(3):522–534, 2021.

Tong Wu. Online tensor low-rank representation for streaming data clustering. IEEE Transactions on
Circuits and Systems for Video Technology, 33(2):602–617, 2023.

Huan Xu, Constantine Caramanis, and Shie Mannor. Principal component analysis with contaminated data:
The high dimensional case. In Annual Conference on Learning Theory, pp. 490–502, 2010.

Jing-Hua Yang, Xi-Le Zhao, Teng-Yu Ji, Tian-Hui Ma, and Ting-Zhu Huang. Low-rank tensor train for
tensor robust principal component analysis. Applied Mathematics and Computation, 367:124783, 2020.

Rose Yu, Dehua Cheng, and Yan Liu. Accelerated online low-rank tensor learning for multivariate spatio-
temporal streams. In International Conference on Machine Learning, pp. 238–247, 2015.

Zemin Zhang and Shuchin Aeron. Exact tensor completion using t-SVD. IEEE Transactions on Signal
Processing, 65(6):1511–1526, 2017.

Zemin Zhang, Gregory Ely, Shuchin Aeron, Ning Hao, and Misha Kilmer. Novel methods for multilinear data
completion and de-noising based on tensor-SVD. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3842–3849, 2014.

16

Published in Transactions on Machine Learning Research (06/2024)

Zemin Zhang, Dehong Liu, Shuchin Aeron, and Anthony Vetro. An online tensor robust PCA algorithm for
sequential 2D data. In IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.
2434–2438, 2016.

Pan Zhou, Canyi Lu, Jiashi Feng, Zhouchen Lin, and Shuicheng Yan. Tensor low-rank representation for
data recovery and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5):
1718–1732, 2021.

A Appendix

A.1 Some Proofs

We first present the proof of Proposition 1.

Proof. Let us denote κ = ∥R∥2,∞, which is positive as long as R is not a zero tensor. Otherwise the
recovered low tubal-rank component X = L ∗ RT is a zero tensor. Now we construct two variables L̃ = κL
and R̃ = 1

κ R, and replace L and R in (5) with 1
κ L̃ and κR̃, respectively. Our problem can be written as

min
L̃,R̃,E

1
2∥Z − (1

κ
L̃) ∗ (κR̃)T − E∥2

F + λ1

2 ∥ 1
κ

L̃∥2
2,∞∥κR̃∥2

2,∞ + λ2∥E∥1,

which is equivalent to solving

min
L̃,R̃,E

1
2∥Z − L̃ ∗ R̃

T
− E∥2

F + λ1

2 ∥L̃∥2
2,∞∥R̃∥2

2,∞ + λ2∥E∥1.

Since R̃ = 1
κ R, we have ∥R̃∥2,∞ = 1

κ ∥R∥2,∞ = 1. Therefore, we can reformulate our MRTD problem as a
constrained program:

min
L̃,R̃,E

1
2∥Z − L̃ ∗ R̃

T
− E∥2

F + λ1

2 ∥L̃∥2
2,∞ + λ2∥E∥1 s.t. ∥R̃∥2

2,∞ = 1.

To see why the above problem is equivalent to (6), we only need to show that any optimal solution
(L⋆, R⋆, E⋆) to (6) must satisfy ∥R⋆∥2,∞ = 1. Again, suppose that κ = ∥R⋆∥2,∞ < 1. Let L′ = κL⋆

and R′ = 1
κ R⋆. It is clear that (L′, R′, E⋆) are still feasible. However, the objective value now becomes

1
2∥Z − L′ ∗ R′T − E⋆∥2

F + λ1

2 ∥L′∥2
2,∞ + λ2∥E⋆∥1

=1
2∥Z − L⋆ ∗ R⋆T

− E⋆∥2
F + λ1

2 κ2∥L⋆∥2
2,∞ + λ2∥E⋆∥1

<
1
2∥Z − L⋆ ∗ R⋆T

− E⋆∥2
F + λ1

2 ∥L⋆∥2
2,∞ + λ2∥E⋆∥1,

which contradicts the assumption that (L⋆, R⋆, E⋆) is optimal. Thus we complete the proof.

Next, we prove Proposition 2.

Proof. (Sketch) Let us consider the optimization problem (6). −→
R⋆

t is uniformly bounded because of the
constraint that ∥R∥2

2,∞ ≤ 1. Plugging in the trivial solution {
−→
R′

t,
−→
E ′

t} = {0, 0}, we have ℓ̃(−→Z t, Lt−1, 0, 0) =
1
2 ∥

−→
Z t∥2

F . Therefore the optimal solution should satisfy

1
2∥

−→
Z t − Lt−1 ∗

−→
R⋆

t −
−→
E ⋆

t ∥2
F + λ2∥

−→
E ⋆

t ∥1 ≤ 1
2∥

−→
Z t∥2

F ,

17

Published in Transactions on Machine Learning Research (06/2024)

which implies ∥
−→
E ⋆

t ∥1 ≤ 1
2λ2

∥
−→
Z t∥2

F . Since −→
Z t is uniformly bounded (Assumption (A1)), −→

E ⋆
t is uniformly

bounded. The uniform boundedness of 1
t At and 1

t Bt follows immediately. Recall that Lt is the optimal
basis for (14). Thus, the subgradient of the objective function with respect to Lt should contain zero, i.e.,
1
t LtAt − 1

t Bt + λ1n3
t Ht = 0, where Ht is the subgradient of 1

2 ∥Lt∥2
2,∞. Since all of the eigenvalues of

1
t At are lower bounded by a positive constant (Assumption (A2)), 1

t At is invertible. Thus, Lt = (1
t Bt −

λ1n3
t Ht)(1

t At)−1. Following the proof of Shen et al. (2017, Proposition 7), Lt, and equivalently, Lt, can be
uniformly bounded.

We now prove Corollary 1 as follows.

Proof. Since −→
Z t, Lt,

−→
R⋆

t and −→
E ⋆

t are all uniformly bounded, it is easy to show ℓ̃(−→Z t, Lt,
−→
R⋆

t ,
−→
E ⋆

t) and
ℓ(Lt,

−→
Z t) are uniformly bounded from above. Thus, gt(Lt) is also bounded. To show that gt(L) is uniformly

Lipschitz, we first define ḡt(L) = gt(L) = 1
2tn3

∥Zt − LR⋆
t − E⋆

t ∥2
F + 1

t

∑t
i=1 λ2∥

−→
E ⋆

t ∥1 + λ1
2t ∥L∥2

2,∞, then the
subgradient of ḡt with respect to L is

∥∇Lḡt(L)∥F = ∥ 1
tn3

(LAt − Bt) + λ1

t
H∥F ≤ ∥ 1

tn3
(LAt − Bt)∥F + λ1∥L∥F ,

where H is the subgradient of 1
2 ∥L∥2

2,∞. Since L, 1
t At and 1

t Bt are all uniformly bounded, the subgradient
of ḡt is uniformly bounded. Notice that each entry of L (in other words, each entry on the main diagonal
block of L) is a linear combination of the entries in the same mode-3 fiber of L, where the corresponding
coefficients are the elements of the Discrete Fourier transform matrix. Thus the subgradient of gt(L) is also
uniformly bounded for all L ∈ L and gt(L) is Lipschitz.

A.2 Algorithm Details

Algorithm 4 Data Projection (Problem (10))

Input: Observed data sample −→
Z ∈ Rn1×1×n3 , L ∈ Rn1×r×n3 , and parameters λ2 and ϵ.

Initialize:
−→
E = 0.

1: while not converged do
2: Compute the potential solution −→

Rcand using (11).
3: if ∀k, ∥

−→R
(k)
cand∥2 ≤ 1 then

4: Set −→
R = −→

Rcand.
5: else
6: for k = 1, 2, . . . , n3 do
7: if ∥

−→R
(k)
cand∥2 ≤ 1 then

8: Set −→R
(k)

= −→R
(k)
cand.

9: else
10: Update −→R

(k)
by Algorithm 5.

11: end if
12: end for
13: end if
14:

−→
R = ifft(−→R, [], 3).

15:
−→
E = Sλ2 [−→Z − L ∗

−→
R].

16: end while
Output: Optimal −→

R⋆ and −→
E ⋆.

Let {
−→
R′,

−→
E ′} and {

−→
R′′,

−→
E ′′} be the two consecutive iterates. If max(∥−→

R′ −
−→
R′′∥F , ∥

−→
E ′ −

−→
E ′′∥F)/(n1n3) is

less than 10−6, or the number of iterations exceeds 100, we will terminate Algorithm 4.

18

Published in Transactions on Machine Learning Research (06/2024)

Algorithm 5 Bisection Method for Solving Problem (12)
Input: L ∈ Cn1×r, z ∈ Cn1 , e ∈ Cn1 .
Initialize: Set η1 = 0 and η2 to be large enough such that ∥

−→R
(k)

(η2)∥F ≤ 1.
1: repeat
2: Compute the middle point: η(k) = 1

2 (η1 + η2).

3: if ∥
−→R

(k)
(η(k))∥F < 1 then

4: Update η2 = η(k).
5: else
6: Update η1 = η(k).
7: end if
8: until ∥

−→R
(k)

∥F = 1

Output: Optimal −→R
(k)

and η(k).

Algorithm 6 The Update of L
Input: L ∈ Rn1×r×n3 in the previous iteration, accumulation tensors A and B, and parameter λ1.

1: L = fft(L, [], 3), A = fft(A, [], 3), and B = fft(B, [], 3).
2: Compute the subgradient of 1

2 ∥L∥2
2,∞: H = ∂(1

2 ∥L∥2
2,∞).

3: for k = 1, 2, . . . , n3 do
4: Ã = A(k), B̃ = B(k), H̃ = Hk.
5: for j = 1, 2, . . . , r do
6: L(:, j, k) = L(:, j, k) − 1

Ãj,j

(
1

n3

(
L(k)ãj − b̃j

)
+ λ1h̃j

)
.

7: end for
8: end for

Output: L = ifft(L, [], 3).

19

Published in Transactions on Machine Learning Research (06/2024)

For Algorithm 6, we find that a one-pass update on the dictionary L is sufficient to guarantee a desirable
accuracy, as we shown in the experiments. This is also observed in Mairal et al. (2010).

A.3 Supplementary Experimental Results

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

OMRTD

OTRPCA

TRPCA

(a) tubal rank = 4

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

OMRTD

OTRPCA

TRPCA

(b) tubal rank = 8

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

OMRTD

OTRPCA

TRPCA

(c) tubal rank = 12

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

OMRTD

OTRPCA

TRPCA

(d) tubal rank = 16

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

OMRTD

OTRPCA

TRPCA

(e) tubal rank = 20

Figure 5: EV value as a function of corruption fraction for different intrinsic dimensions of complete data.

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

rOMRTD

TNN+TRPCA

(a) tubal rank = 4

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

rOMRTD

TNN+TRPCA

(b) tubal rank = 8

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

rOMRTD

TNN+TRPCA

(c) tubal rank = 12

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

rOMRTD

TNN+TRPCA

(d) tubal rank = 16

0.05 0.2 0.35 0.5
0.5

0.6

0.7

0.8

0.9

1

E
V

rOMRTD

TNN+TRPCA

(e) tubal rank = 20

Figure 6: EV value as a function of corruption fraction for different intrinsic dimensions of missing data
when τ = 30%.

20

Published in Transactions on Machine Learning Research (06/2024)

Input Ground Truth RPCA TRPCA ORPCA OMRMD OTRPCA OMRTD

Figure 7: Examples of background subtraction using the CAMO-UOW dataset (Li et al., 2017). From top
to bottom are 10 sequences within the dataset.

21

