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Abstract

The rapid advancement of perovskite solar cells001
(PSCs) has led to an exponential growth in re-002
search publications, creating an urgent need003
for efficient knowledge management and rea-004
soning systems in this domain. We present005
a comprehensive knowledge-enhanced system006
for PSCs that integrates three key components.007
First, we develop Perovskite-KG, a domain-008
specific knowledge graph constructed from009
1,517 research papers, containing 23,789 en-010
tities and 22,272 relationships. Second, we011
create two complementary datasets: Perovskite-012
Chat, comprising 55,101 high-quality question-013
answer pairs generated through a novel multi-014
agent framework, and Perovskite-Reasoning,015
containing 2,217 carefully curated materials016
science problems. Third, we introduce two017
specialized large language models: Perovskite-018
Chat-LLM is used for domain-specific knowl-019
edge assistance, and perovskite-Reasoning-020
LLM is used for scientific reasoning tasks. Ex-021
perimental results demonstrate that our system022
significantly outperforms existing models in023
domain-specific knowledge retrieval and sci-024
entific reasoning tasks, providing researchers025
with effective tools for literature review, exper-026
imental design, and complex problem solving027
in PSC research.028

1 Introduction029

Perovskite solar cells (PSCs) have emerged as one030

of the most promising next-generation photovoltaic031

technologies, achieving remarkable progress with032

power conversion efficiencies (PCEs) exceeding033

27.0% within just over a decade (National Re-034

newable Energy Laboratory, 2025; Snaith, 2018;035

Correa-Baena et al., 2017; Wu et al., 2021; Ang036

et al., 2022; Sathaye et al., 2011; Bogdanov et al.,037

2019). The rapid development of PSCs has gener-038

ated an exponential growth in research publications,039

making it increasingly challenging for researchers040

to efficiently access and utilize the vast amount of041

knowledge in this field. This challenge is partic- 042

ularly acute given the complex interplay between 043

material composition, fabrication processes, and 044

device structure that characterizes PSC research. 045

Traditional approaches to scientific knowledge 046

management, such as literature reviews and 047

databases, while valuable, are limited in their abil- 048

ity to capture the intricate relationships between dif- 049

ferent aspects of PSC research (Yang et al., 2024b; 050

Han et al., 2025). Furthermore, existing artificial 051

intelligence systems in materials science typically 052

focus on specific prediction tasks or general scien- 053

tific knowledge, lacking the specialized capability 054

to handle the unique characteristics of the research 055

of perovskite solar cells and more general mate- 056

rials science research (Han et al., 2025; Seifrid 057

et al., 2022; Mishra et al., 2024; Song et al., 2023a; 058

Schilling-Wilhelmi et al., 2025; Miret and Krish- 059

nan, 2024). This gap highlights the need for an 060

integrated system that can both systematically or- 061

ganize domain knowledge and provide intelligent 062

assistance to researchers. 063

To address these challenges, we present a com- 064

prehensive knowledge-enhanced system specifi- 065

cally designed for the perovskite solar cell domain, 066

consisting of three key components. First, we de- 067

velop Perovskite-KG, a domain-specific knowl- 068

edge graph constructed from 1,517 research arti- 069

cles, containing 23,789 entities and 22,272 relation- 070

ships between manufacturing processes, parame- 071

ters, and performance metrics. Second, we create a 072

multi-agent framework for generating high-quality 073

instruction-tuning data, which not only reduces 074

annotation costs but also ensures high reliability 075

and low hallucination through the synergy of mul- 076

tiple specialized agents and expert guidance. This 077

framework generates two complementary datasets: 078

(1) Perovskite-Chat, an instruction-tuning dataset 079

comprising 55,101 high-quality question-answer 080

pairs generated from 2,214 high-impact papers 081

using a novel multi-agent framework, and (2) 082
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Perovskite-Reasoning, a collection of 2,217 care-083

fully curated materials science problems designed084

to enhance scientific reasoning capabilities. Third,085

we introduce two specialized large language mod-086

els: Perovskite-Chat-LLM for domain-specific087

knowledge assistance and Perovskite-Reasoning-088

LLM for tackling complex materials science rea-089

soning tasks. Our work makes the following key090

contributions:091

❶ Construction of a comprehensive perovskite092

knowledge graph. We construct the first com-093

prehensive knowledge graph for perovskite solar094

cells, organizing domain knowledge into a struc-095

tured format that captures the relationships between096

materials, processes, and device performance.097

❷ Multi-agent framework for high-quality data098

generation. We propose an effective multi-agent099

framework for generating high-quality instruction-100

tuning data, resulting in two specialized datasets:101

a diverse domain-specific dataset covering seven102

research categories and a focused reasoning dataset103

for enhancing scientific problem solving capabili-104

ties.105

❸ Specialized LLMs for perovskite research.106

We develop and evaluate two specialized large lan-107

guage models for perovskite solar cells that demon-108

strate superior performance compared to baseline109

models: one optimized for domain-specific queries110

and another for scientific reasoning tasks.111

❹ Extensive experimental validation. We pro-112

vide extensive experimental results showing the113

effectiveness of our integrated system in support-114

ing various research tasks, from literature review to115

experimental design and complex problem solving116

in materials science.117

2 Related Work118

2.1 LLM in Materials Science119

The convergence of language modeling and com-120

putational materials science has unlocked transfor-121

mative potential for rapid discovery. Recent break-122

throughs in domain-specific architectures (e.g. hi-123

erarchical attention mechanisms (Kononova et al.,124

2021) and multimodal fusion networks (Swain and125

Cole, 2016)) have addressed critical challenges in126

crystal structure prediction (Walker et al., 2021)127

and phase diagram analysis (Trewartha et al., 2022).128

As evidenced by the Materials Genome Initiative129

benchmarks (Tshitoyan et al., 2019), three main130

research thrusts have emerged: (1) structured in-131

formation extraction from heterogeneous corpora,132

(2) knowledge graph embeddings for composition- 133

property relationships, and (3) neurosymbolic rea- 134

soning for synthesis pathway optimization (Seifrid 135

et al., 2022; Mishra et al., 2024; Song et al., 2023a; 136

Schilling-Wilhelmi et al., 2025; Miret and Krish- 137

nan, 2024). 138

Building upon these foundations, knowledge- 139

enhanced systems have achieved state-of-the- 140

art performance through two complementary 141

paradigms: graph-based approaches employing het- 142

erogeneous graph neural networks (HGNNs) now 143

attain 89.7% accuracy on multi-hop material prop- 144

erty queries (An et al., 2024), while agent-based 145

frameworks demonstrate 18.7% improvement in 146

autonomous experimental design through chain-of- 147

thought prompting (Zhang et al., 2024a; Song et al., 148

2023b; Gupta et al., 2022; Hira et al., 2024). 149

The field’s maturation is further evidenced by 150

systematic resource development: (i) The SciQAG 151

framework (Wan et al., 2024) introduces a novel 152

curriculum learning paradigm for generating 120K 153

domain-specific QA pairs, reducing expert annota- 154

tion requirements by 78%; (ii) Standardized eval- 155

uation now spans chemical synthesis (ChemLLM- 156

Bench’s reaction yield prediction task (Guo et al., 157

2023)), biomedical applications (MultiMedQA’s 158

toxicity prediction challenge (Singhal et al., 2023)), 159

and cross-domain reasoning (SciEval’s materials- 160

device co-design track (Sun et al., 2023)). 161

2.2 Knowledge Graph in Materials Science 162

Domain-specific knowledge graphs have evolved 163

into structured semantic frameworks that systemat- 164

ically consolidate heterogeneous multi-source data 165

through machine-readable representations, allow- 166

ing cross-domain knowledge integration to acceler- 167

ate discovery pipelines (Pan et al., 2024; Song et al., 168

2024; Zhu et al., 2022; Bordes et al., 2013; Galkin 169

et al.). In materials informatics, current implemen- 170

tations manifest two distinct paradigms: literature- 171

derived systems exemplified by MatKG (Venu- 172

gopal and Olivetti, 2024) and DISCOMAT (Gupta 173

et al., 2023), which employ NLP and graph tech- 174

niques to extract material compositions from tex- 175

tual sources, while empirical architectures repre- 176

sented by MatSciKB (Zhang et al., 2024b), Prop- 177

net (Mrdjenovich et al., 2020), MekG (Statt et al., 178

2023), and MOF-KG (An et al., 2022) focus on 179

encoding experimental provenance and computa- 180

tional models through graph-based representations 181

of material lineages. However, these approaches 182

face the challenges that manual curation processes 183
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face with resource burdens, while existing extrac-184

tion methods exhibit limited granularity in resolv-185

ing complex synthesis-process-property relation-186

ships from unstructured text. To address these lim-187

itations, we propose an LLM-driven framework188

specifically optimized for perovskite materials re-189

search that features a hybrid architecture that syner-190

gizes domain ontologies with self-supervised rela-191

tionship extraction, augmented by automated qual-192

ity control pipelines that enforce materials science193

constraints.194

In this section, we collect 1, 517 paper in per-195

ovskite domain to build Perovskite-KG and de-196

sign the automatic knowledge graph construction197

pipeline including three stages document filtering,198

knowledge extracting and knowledge graph organi-199

zation (Mrdjenovich et al., 2020), as shown in the200

Appendix B.201

2.3 Reasoning alignment202

Recent advances in parameter-efficient alignment203

have witnessed multiple research teams pursue dif-204

ferent methodologies to align the performance of205

o1 (OpenAI, 2024). Contemporary approaches bi-206

furcate along two technical axes: (1) reinforcement207

learning paradigms exemplified by DeepSeek-R1’s208

adversarial preference optimization (Guo et al.,209

2025) and K1.5’s multi-objective reward shaping210

(Team et al., 2025), versus (2) supervised fine-211

tuning strategies employing distilled datasets at212

scale (≥ 104 examples) as demonstrated in (Team,213

2025; Xu et al., 2025; Labs, 2025). In particular,214

S1 (Muennighoff et al., 2025) and LIMO (Ye et al.,215

2025) operationalize the Superficial Alignment Hy-216

pothesis (Zhou et al., 2023a) through curriculum-217

based sparse fine-tuning, achieving comparable rea-218

soning capabilities with merely 1,000-2,000 care-219

fully curated examples, a 92% reduction in annota-220

tion costs relative to conventional SFT approaches.221

3 Perovskite-KG222

• Document Filtering. Drawing upon expert223

knowledge, we have developed the schema for per-224

ovskite materials. This schema, shown in the Ap-225

pendix Table 6, integrates three ontologies {oi |226

oi ∈ schema}: fabrication, parameters, and perfor-227

mance. The fabrication ontology encompasses the228

procedures and conditions required to synthesize229

perovskite materials. The parameters ontology de-230

fines the ingredients, structural components, and231

other compositional aspects of the device. The232

performance ontology is concerned with the effi- 233

ciency and functional characteristics of perovskite 234

devices. Each ontology oi is further divided into 235

sub-ontologies so
(j)
i , where oi =

⋃ni
j=1 so

(j)
i and 236

ni represents the number of sub-ontologies within 237

oi. Each sub-ontology so
(j)
i provides a domain- 238

specific description, denoted as d
(j)
i , along with 239

a corresponding data type, denoted as t
(j)
i , that is 240

relevant to its particular scope. 241

For each sub-ontology [so
(j)
i , d

(j)
i , t

(j)
i ] (e.g., 242

”Coating Parameter” - ”Details about the coating 243

method used in the material deposition process” - 244

”Float”), we create the prompts to query documents 245

D = {Dk | k = 1, . . . , m} using a large language 246

model. These prompts facilitate the extraction of 247

relevant information for each sub-ontology. The 248

output D
(i,j)
filtered is defined as: 249

D
(i,j)
filtered = {Dk ∈ D | so

(j)
i ⊂ Dk}, (1) 250

where D
(i,j)
filtered represents the set of filtered docu- 251

ments containing pertinent details for sub-ontology 252

so
(j)
i across the collection. This approach ensures 253

a systematic and efficient retrieval of targeted in- 254

formation for each sub-ontology. 255

• Knowledge Extracting. We employ a prompt 256

function, denoted as fprompt(·), to transform the 257

sub-ontology [so
(j)
i , d

(j)
i , t

(j)
i ] into a document 258

prompt, represented as fprompt(so
(j)
i , d

(j)
i , t

(j)
i ). To 259

extract the potential domain knowledge K, we uti- 260

lize a pre-trained large language model (LLM), 261

expressed as LLM(·; θ), under a zero-shot setting 262

where the parameters θ remain fixed. The whole 263

pipeline can be formulated as below: 264

K = search
D

(i,j)
filtered

LLM(fprompt(so
(j)
i , d

(j)
i , t

(j)
i ); θ), (2) 265

where the search function search(·) may involve 266

an argmax operation to identify the highest-scoring 267

output or a sampling approach to generate outputs 268

according to the probability distribution specified 269

by the adopted LLM(·; θ). 270

After extracting knowledge, we conduct qual- 271

ity control procedures to ensure accuracy and re- 272

liability. These procedures include entity disam- 273

biguation and relationship deduplication. Entity 274

disambiguation in a knowledge graph aims to re- 275

solve ambiguity by identifying the unique entity 276

that corresponds to an ambiguous mention, denoted 277

as emention, within a subgraph. The objective is to 278

3



Documents

LLM
Expert 

Knowledge

Filtered
Documents

Stage I:	Document	Filtering Stage II:	Knowledge	Extracting

Filtered
Documents

Schema
Description Schema

LLM

Entity

Relationship

Disambiguation 

LLM

Deduplication

Relationship

Entity

Graph
Database

Stage III:	Knowledge	Graph	Organization

Information 
Extraction Agent

Quality 
Validation Agent

Document 
Summar. Agent

Collaborative Multi-Agent Construction of 
Perovskite Large Model Training Data

Instruction Tuning Dataset 
Perovskite-Chat

Reasoning Dataset
Perovskite-Reasoning

LLM Dataset Generation
KG/RAG provide

citation data

Perovskite-LLM

Figure 1: The pipeline of Perovskite-KG construction and Perovskite-LLM.

determine a distinct entity e∗ that accurately repre-279

sents emention. Relationship deduplication involves280

identifying and merging redundant relations in the281

knowledge graph. For instance, given two relations282

ri = (e1, r, e2) and rj = (e′
1, r′, e′

2), if they convey283

the same semantic meaning—that is, if (e1, e2) and284

(e′
1, e′

2) refer to identical entities and the relations285

r and r′ are equivalent.286

• Knowledge Graph Organization. We construct287

the Perovskite Knowledge Graph (Perovskite-KG)288

using a graph database. The Perovskite-KG con-289

sists of 23, 789 entities and 22, 272 relationships.290

By incorporating citation relationships between pa-291

pers, we enable our LLM to provide references for292

its responses, enhancing credibility and reducing293

hallucination.294

4 Instruction Tuning Dataset Generation295

In this section, we collect 2, 214 the top level publi-296

cations papers in the perovskite domain and design297

the instruction tuning dataset including question an-298

swering and multiple choice questions, containing299

55, 101 instances around 4.4 million tokens, named300

Perovskite-Chat. Our experiments show that our301

perovskite instruction tuning dataset can effectively302

improve the performance of LLMs on perovskite303

related tasks.304

Figure 1 illustrates this multi-agent framework305

for the generation of instruction tuning dataset. The306

process begins with expert guidance and academic307

literature from various sources (including Science,308

Nature, Elsevier, Springer, arXiv, and others) as309

input. Expert guidance is provided by the domain310

expert focused on 7 research categories, 21 research311

questions. Table 1 further expands this classifica-312

tion by presenting 21 specific research questions313

(Q1-Q21) organized within these seven categories;314

more details can be found in Appendix D.1. These 315

inputs feed into a multi-agent system: (1) an In- 316

formation Extraction Agent that processes the raw 317

content, (2) a Quality Validation Agent that en- 318

sures data accuracy and relevance, and (3) a Doc- 319

ument Summarization Agent that condenses and 320

structures the information. This framework ensures 321

systematic, high-quality data processing through 322

multiple validation and refinement stages. 323

Let D = {d1, ..., dn} represent the collection 324

of academic literature from various sources, and 325

E = {c1, ..., c7} denote the expert guidance cate- 326

gories with the corresponding research questions 327

Q = {q1, ..., q21}. The multi-agent framework 328

processes these inputs through three specialized 329

agents: 330

Information Extraction: 331

Aextract(di) = {x1, ..., xk} (3) 332

Quality Validation: 333

Avalidate(xj) =
{

1, if valid
0, otherwise

(4) 334

Document Summarization: 335

Asummarize(Xvalid) = y (5) 336

The final instruction tuning dataset D is con- 337

structed as: 338

D = {(qi, yi) | qi ∈ Q, 339
340

yi = Asummarize(Avalidate(Aextract(di)))} (6) 341

Next, we introduce Perovskite-Reasoning, a 342

collection of 2,217 high-quality questions from ma- 343

terials science textbooks, designed to enhance rea- 344

soning capabilities in the perovskite and materials 345
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Category Rationale

Device Structure Fundamental aspects focusing on high-efficiency (>25% PCE) device
architecture and fabrication processes (Q1-Q3)

Perf. Enhancement Analysis of problem-solving approaches and strategic choices in high-
performance devices (Q4-Q5)

Metrics Key performance indicators (VOC, FF, JSC) and their optimization meth-
ods (Q6-Q9)

Stability Critical stability aspects addressing main degradation pathways: mois-
ture, thermal, and light stability (Q10-Q12)

Defect & Recom. Fundamental mechanisms affecting device efficiency through defect
passivation and recombination control (Q13-Q14)

Interface Interface engineering and charge transport optimization (Q15-Q17)

Materials Comprehensive analysis of functional materials and their characteristics
in different device components (Q18-Q21)

Table 1: Classification of Research Questions in Perovskite Solar Cell Studies

43.9%

20.4%

8.2% 9.8%

13.1%

1.7%
2.9%

Device Structure
Perf. Enhancement
Metrics
Stability
Defect & Recom.
Interface
Materials

(a) The distribution of question categories in the instruc-
tion tuning dataset.

(b) The word cloud of the instruction tuning dataset.

Figure 2: The distribution of question categories in the
instruction tuning dataset.

science domains. The questions were sourced from346

hundreds of widely used materials science and engi-347

neering textbooks, with a focus on perovskite solar348

cells and fundamental materials science concepts.349

Our rigorous selection process applied three key cri-350

teria: clarity of problem statements, completeness351

of solution, and alignment with core materials sci-352

ence principles. Materials science professors con-353

ducted expert assessments to categorize questions 354

by difficulty level, validated through student perfor- 355

mance data and baseline model testing. To develop 356

comprehensive solution paths, we employed ad- 357

vanced language models like DeepSeek-R1 (Guo 358

et al., 2025) and O1 (OpenAI, 2024) in a multi-step 359

reasoning approach. This methodology involved 360

decomposing complex problems into logical steps, 361

applying key physical and chemical principles, and 362

implementing systematic solution strategies with 363

result validation. The resulting dataset features 364

detailed reasoning chains that demonstrate step-by- 365

step problem-solving processes, making it valuable 366

for training models in scientific reasoning and ma- 367

terials science problem-solving. 368

Training Dataset Figure 2 (a) presents the distri- 369

bution of the question categories in the Perovskite- 370

Chat instruction tuning data set. Device Structure 371

dominates with 43.9% of all questions, followed 372

by Performance Enhancement at 20.4%. Device & 373

Recom. comprises 13.1%, while Metrics accounts 374

for 8.2%. The remaining categories include Stabil- 375

ity (9.8%), Materials (2.9%), and Interface (1.7%). 376

Figure 2 (b) displays a wordcloud visualization of 377

the dataset’s most frequent terms, with ”perovskite 378

solar” and ”solar cell” appearing as predominant 379

phrases, reflecting the dataset’s core focus. Other 380

frequently occurring terms such as ”device struc- 381

ture,” ”configuration,” and ”stability” underscore 382

the key technical aspects addressed. This distribu- 383

tion demonstrates the dataset’s strong emphasis on 384

device structural aspects, with performance-related 385
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queries forming the second largest category.386

Evaluation Dataset For better evaluation, we387

design the evaluation dataset including multiple388

choice questions and question answering in the per-389

ovskite domain. The evaluation dataset also extract390

from the top level publications in perovskite do-391

main with our multi-agent framework and extral392

expert double check. The evaluation dataset con-393

tains 1,103 question answering named Perovskite394

QA and 1,103 multiple choice questions named395

Perovskite MCQ.396

For question answering, we set the Rouge-L397

score and the LLM-as-a-Judge (Zheng et al., 2023)398

score as the evaluation metric. In our experiments,399

we find that both metrics can effectively measure400

the quality of question answering and consistency401

with each other.402

For multiple choice questions, we set the accu-403

racy as the evaluation metric. Using LLaMA-3.1-404

8B-Instruct (Dubey et al., 2024) as the baseline405

model, the difficulty level of each question is deter-406

mined by its zero shot performance. Specifically,407

if LLaMA-3.1-8B-Instruct can correctly answer a408

question in a zero-shot setting (without any task-409

specific training or prompt engineering), we clas-410

sify it as an ”easy” question. Conversely, questions411

that LLaMA-3.1-8B-Instruct fails to answer cor-412

rectly are categorized as ”Hard”. This classifica-413

tion method resulted in 823 easy questions and 280414

hard questions in our evaluation dataset, providing415

a balanced assessment of model capabilities across416

different difficulty levels.417

To evaluate the performance of Perovskite-418

Reasoning, we incorporated Minerva (Lewkowycz419

et al., 2022) and GPQA Diamond (Rein et al., 2023)420

as a benchmark. These contain undergraduate and421

PhD level science questions from biology, chem-422

istry, and physics.423

5 Perovskite-LLM424

5.1 Experiment Design425

In this section, we conduct the instruction tun-426

ing experiments on the Perovskite-Chat and427

Perovskite-Reasoning dataset. We select the428

LLaMA-3.1-8B-Instruct (Dubey et al., 2024) and429

Qwen-2.5-7B-Instruct (Yang et al., 2024a) as the430

baseline model, and Perovskite-Chat-LLM and431

Perovskite-Reasoning-LLM are fine-tuned ver-432

sion of LLaMA-3.1-8B-Instruct and Qwen-2.5-433

7B-Instruct with Perovskite-Chat and Perovskite-434

Reasoning dataset.435

For the training process, we used the full param- 436

eter fine-tuning method to fine-tune the Perovskite- 437

LLM. The experiment is carried out on the A800 438

GPU server, with flash attention (Dao, 2024) and 439

mixed precision training for efficient training. For 440

more details on the training process, please refer to 441

Appendix E. 442

For the evaluation process, we use the perplexity 443

(PPL), Rouge-L score, LLM-Judge, and Human- 444

Judge score to evaluate the performance on the Per- 445

ovskite QA benchmark, the accuracy to evaluate 446

the performance on the Perovskite MCQ bench- 447

mark, and the pass@1 rate on Minerva and GPQA 448

benchmarks to evaluate the performance on the 449

Perovskite-Reasoning-LLM. All experiments are 450

conducted with zero-shot settings and three times 451

to get the average results. 452

5.2 Results and analysis 453

Perovskite-Chat-LLM Table 3 presents the eval- 454

uation results of various models on the Perovskite 455

QA dataset. The baseline models include GPT- 456

3.5-Turbo, GPT-4o-Mini, GPT-4o, LLaMA-3.1- 457

8B. Among these, Perovskite-Chat-LLM demon- 458

strates superior performance across all metrics, 459

achieving a perplexity of 2.97, a Rouge-L score 460

of 41.25, and an LLM-Judge score of 2.97. This 461

represents a significant improvement over the base- 462

line LLaMA-3.1-8B model. The GPT family of 463

models, while competitive in terms of LLM-Judge 464

scores, showed lower performance in Rouge-L 465

scores compared to Perovskite-Chat-LLM, with 466

GPT-4o achieving 11.36 for Rouge-L and 1.41 for 467

LLM-Judge. With the case study in Figure 3, we 468

can see that Perovskite-Chat-LLM can generate 469

more accurate and consistent answers compared 470

to other models, and ChatGPT only can offer a 471

general and nonspecific answer which leads to low 472

performance on the Rouge-L and LLM-Judge met- 473

rics. 474

To further validate the effectiveness and cred- 475

ibility of our model, we incorporated human ex- 476

pert evaluation into our assessment methodology. 477

Table 2 presents the results of this human expert 478

evaluation alongside the automatic metrics. No- 479

tably, Perovskite-Chat-LLM achieved the highest 480

scores in both LLM-Judge (2.97) and Human Ex- 481

pert (3.12) assessments, outperforming baseline 482

models such as GPT-4o and LLaMA-3.1-8B. This 483

consistency across both human and LLM-Judge 484

evaluations demonstrates the robustness and relia- 485

bility of our model, as well as its ability to generate 486
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Model LLM-Judge ↑ Human Expert ↑

GPT-4o 1.41 1.73
LLaMA-3.1-8B 1.28 1.17
Perovskite-Chat-LLM 2.97 3.12

Table 2: Comparison of automatic and human expert
evaluation scores on the Perovskite QA dataset.

Model Perovskite QA
PPL ↓ Rouge-L ↑ LLM-Judge ↑

GPT-3.5-Turbo - 11.24 1.24
GPT-4o-Mini - 11.90 1.34
GPT-4o - 11.36 1.41

LLaMA-3.1-8B 6.77 13.18 1.28
LLaMA-3.1-70B 4.98 17.38 1.80
Qwen-2.5-7B 6.23 11.22 1.39
Qwen-2.5-72B 5.12 10.17 1.31
Perovskite-Chat-LLM 2.97 41.25 2.97
+Perovskite-KG 2.80 43.10 3.15

Table 3: Performance of Perovskite-Chat-LLM on
Perovskite QA

responses that are not only accurate but also align487

with expert expectations in the field.488

Table 4 presents the evaluation results of various489

models on the Perovskite MCQ dataset, categorized490

into Easy, Hard, and All difficulty levels. Among491

these, GPT 4o achieves the highest overall score492

of 84.68, with scores of 91.37 for Easy and 65.00493

for Hard questions. Perovskite-Chat-LLM, high-494

lighted in red, shows strong performance with a495

score of 67.86 on Hard questions, the highest in496

this category, and an overall score of 81.96.497

Perovskite-Reasoning-LLM Table 5 presents498

the evaluation results of Perovskite-Reasoning-499

LLM compared against various baseline models500

on the GPQA and Minerva benchmarks. In the 7B-501

scale model category, our Perovskite-Reasoning-502

LLM achieves state-of-the-art performance with503

remarkable data efficiency over 7B models, requir-504

ing only 2K training examples compared to 800K505

for R1-Qwen2.5-7B and 114K for OpenThinker-506

7B. Our model achieves 43.95 on GPQA and 44.49507

on Minerva. Compared to 32B models, while our508

GPQA performance shows room for improvement509

(suggesting GPQA’s sensitivity to model size), our510

Minerva score (44.49) is competitive with larger511

models like LIMO-32B (44.90) and approaches512

S1-32B (47.79). This shows that our efficient train-513

ing approach can achieve strong performance on514

STEM reasoning tasks even with a smaller model515

architecture.516

Model Perovskite MCQ
Easy Hard All ↑

GPT-3.5-Turbo 86.63 49.29 77.15
GPT-4o-Mini 89.79 61.79 82.68
GPT-4o 91.37 65.00 84.68

LLaMA-3.1-8B 100.00 0.00 74.21
LLaMA-3.1-70B 93.44 66.43 86.58
Qwen-2.5-7B 92.22 55.36 82.86
Qwen-2.5-72B 93.07 64.29 85.77
Perovskite-Chat-LLM 95.50 62.86 87.22
+Perovskite-KG 97.32 65.10 89.21

Table 4: Performance of Perovskite-Chat-LLM on
Perovskite MCQ. The LLaMA-3.1-8B baseline model’s
performance defines Easy/Hard question categories.

Model # ex GPQA ↑ Minerva ↑ Avg ↑

API Models

o1 - 77.30 - -
o1-preview - 73.30 47.10 60.20
o1-mini - 60.00 - -
Deepseek-R1 - 71.50 - -

32B

Qwen2.5-32B-Instruct - 48.00 41.20 44.60
QwQ-32B-preview - 65.10 39.00 52.05
LIMO-32B* 0.8K 66.70 44.90 55.80
S1-32B* 1K 59.60 47.79 53.69

7B

R1-Qwen2.5-7B* 800K 44.49 25.25 34.87
R1-LLaMA3-8B* 800K 19.19 30.51 24.85
OpenThinker-7B* 114K 42.90 41.10 42.00
Perovskite-R-LLM 2K 43.95 44.49 44.22

Table 5: We evaluate the performance of Perovskite-
Reasoning-LLM on the GPQA and Minerva bench-
marks. * indicates the results are from our evaluation.
# ex = number of examples used for fine-tuning. #
Perovskite-R-LLM : Perovskite-Reasoning-LLM

5.3 Integrate Perovskite-KG with 517

Perovskite-Chat-LLM 518

To ensure the Perovskit-Chat-LLM possesses 519

current and specialized knowledge, we employ 520

retrieval-augmented generation (RAG) to dynam- 521

ically integrate information from our Perovskite- 522

KG. A key advantage of this approach is the contin- 523

uous and automatic updating of the LLM’s knowl- 524

edge base, which is directly facilitated by the auto- 525

mated construction methodology of the Perovskite- 526

KG itself. The technical implementation of this in- 527

tegration leverages the LightRAG framework (Guo 528

et al., 2024). The performance improvements re- 529

sulting from the integration of Perovskite-KG with 530

Perovskite-Chat-LLM (”+Perovskite-KG”) are pre- 531

sented in Table 3 and Table 4. When enhanced 532

by the Perovskite-KG, the Perovskite-Chat-LLM 533

demonstrates improved scores in both Perovskite 534

QA (2.97 → 3.15) and Perovskite MCQ (87.22 → 535

89.21). Representative case studies illustrating 536
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these benefits are detailed in Figure 4 and Figure 10.537

The Perovskit-Chat-LLM, when augmented with538

this knowledge integration, demonstrates an en-539

hanced capability to access up-to-date information540

and deliver fine-grained, domain-specific responses541

compared to its baseline version lacking such inte-542

gration. For instance, when presented with a query543

such as, “Can you tell me what is CuO? And give544

me 5 usage in perovskite?”, the enhanced model545

provides the requested details, with each stated us-546

age accompanied by a citation from the underlying547

knowledge source.548

5.4 Case Study549

To illustrate the practical advantages of Perovskite-550

LLM over existing models, Figure 3 presents551

a comparative analysis of the responses of552

Perovskite-Chat-LLM and ChatGPT to a ques-553

tion about the fabrication of high-efficiency per-554

ovskite solar cells. The responses demonstrate555

a clear distinction in the depth and specificity556

of knowledge provided by each model. For in-557

stance, Perovskite-Chat-LLM specifies precise con-558

ditions for the HTL preparation (150°C for 15559

minutes) and details a two-step spin-coating proce-560

dure (1,000 rpm for 10 seconds, followed by 6,000561

rpm for 30 seconds) with specific process modifi-562

cations like anisole addition. This level of detail563

reflects Perovskite-Chat-LLM’s specialized train-564

ing on domain-specific literature and its ability to565

provide practical, implementation-ready guidance566

for researchers in the field. For more details, please567

refer to Appendix F.568

6 Conclusion569

In this work, we present a comprehensive570

knowledge-enhanced system for perovskite solar571

cell research, integrating three key components:572

(1) Perovskite-KG, a domain-specific knowledge573

graph containing 23,789 entities and 22,272 re-574

lationships; (2) multi-agent system for generat-575

ing two complementary datasets, Perovskite-Chat576

and Perovskite-Reasoning, designed for domain-577

specific knowledge assistance and scientific rea-578

soning respectively; and (3) two specialized large579

language models that demonstrate superior per-580

formance in both knowledge retrieval and rea-581

soning tasks. Our experimental results show582

significant improvements over existing models,583

with Perovskite-Chat-LLM achieving state-of-the-584

art performance on domain-specific tasks and585

Perovskite-Reasoning-LLM showing competitive586

Question:
How to fabricate the perovskite solar cells
those can reach PCE over 25%?

Perovskite-Chat-LLM:
...
For the hole transport layer (HTL), materials
like PEDOT:PSS are commonly used. These
materials are spin-coated onto the substrate
and annealed at a temperature of 150°C for
15 minutes. The perovskite precursor solu-
tion is then prepared using a mixed cation and
halide composition, and spin-coated onto the
HTL. The spin-coating process involves a two-
step procedure: first at 1,000 rpm for 10 sec-
onds, followed by 6,000 rpm for 30 seconds,
with anisole added during the second step to
facilitate crystallization.
...

ChatGPT:
...
Perovskite Material Quality: The quality of
the perovskite material is crucial for achieving
high efficiency. Use high-quality perovskite
precursors and optimize the fabrication process
to ensure uniform and defect-free perovskite
films.
...

Figure 3: Comparison of responses between Perovskite-
LLM and ChatGPT: Perovskite-LLM provides detailed
operational steps with specific parameters, while Chat-
GPT only offers general conceptual guidance.

Question:
Can you tell me what is CuO? And give me 5
usage in perovskite.

Perovskite-Chat-LLM:
...
1. Hole Transport Material: CuO acts as an
effective hole transport material (HTM) due
to its suitable work function and high hole
mobility. It is often used in conjunction with
other materials, such as NiOx, to enhance
the performance of PSCs by facilitating effi-
cient charge extraction [1].
...
References:
[1] Inorganic Materials as Hole Selective Con-
tacts and Intermediate Tunnel Junction Layer
for Monolithic Perovskite-CIGSe Tandem Solar
Cells, Wang, Yajie; Wenisch, Robert; Schlat-
man
...

Figure 4: A case study of Perovskite-Chat-LLM’s abil-
ity to provide detailed and accurate information with
references.

performance on scientific reasoning benchmarks 587

despite using substantially fewer training exam- 588

ples. The system provides researchers with effec- 589

tive tools to review the literature, design exper- 590

iments, and solve complex problems in PSC re- 591

search. Our work demonstrates the potential of 592

LLMs to accelerate innovation and discovery in 593

materials science by enabling more efficient knowl- 594

edge access and reasoning capabilities. 595
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Limitations596

Despite the promising results, our current system597

has several limitations that warrant future investi-598

gation:599

• Knowledge Coverage: While our knowledge600

graph covers a substantial portion of the PSC601

literature, it may not capture all emerging re-602

search directions and novel experimental tech-603

niques. Future work should focus on devel-604

oping mechanisms for automatic knowledge605

base expansion and updates to maintain its606

relevance.607

• Model Size Trade-offs: While our 7B-608

parameter models achieve competitive perfor-609

mance, there might be certain complex tasks610

that benefit from larger model architectures,611

suggesting a potential trade-off between ef-612

ficiency and capability. Future work will in-613

vestigate model compression techniques and614

more efficient architectures.615

To address these limitations, our future work616

will focus on three main directions: (1) develop-617

ing a continuous knowledge integration framework618

that can automatically update the knowledge base619

with new research findings, (2) enhancing the rea-620

soning capabilities through advanced model archi-621

tectures and training strategies, and (3) improving622

the system’s practical utility through better valida-623

tion mechanisms and more efficient model designs.624

These improvements will make the system more625

robust, up-to-date, and accessible to the broader626

research community.627
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A Additional Related Work1043

A.1 Multi-agent systems1044

The landscape of AI system architectures encom-1045

passes two distinct paradigms: multi-agent systems1046

and autonomous agents (Zhuge et al., 2023; Hong1047

et al., 2024a; Zhang et al., 2024c; Wang et al.,1048

2023). While autonomous agents rely on inde-1049

pendent decision-making capabilities, multi-agent1050

systems excel through structured collaboration be-1051

tween specialized components. The latter approach1052

offers practical advantages by building upon es-1053

tablished expertise rather than requiring complex1054

behavioral modeling.1055

Research in multi-agent frameworks has evolved1056

along two primary trajectories. The first focuses1057

on domain-agnostic systems that leverage collec-1058

tive intelligence for general problem-solving (Wei1059

et al., 2022; Diao et al., 2024; Wang et al., 2022;1060

Madaan et al., 2023; Wang et al., 2024). The sec-1061

ond pathway explores domain-specific applications,1062

with notable implementations in:1063

• Code generation and debugging (Hong et al.,1064

2024b; Ridnik et al., 2024; Zhong et al.,1065

2024a)1066

• Data analytics (Xie et al., 2024; Ye et al.,1067

2024; Li et al., 2024; Zhou et al., 2023b)1068

• Mathematical reasoning (Zhong et al., 2024b;1069

Xu et al., 2024)1070

• Knowledge retrieval (Nori et al., 2023; Zhou1071

et al., 2024)1072

Despite significant progress in identifying effec-1073

tive agent configurations for specific use cases, the1074

field still faces the challenge of developing system-1075

atic approaches for new domains. This highlights1076

the importance of research into automated methods1077

for framework design and optimization.1078

B Schema in Perovskite-KG1079

Table 6 presents a comprehensive schema for the1080

Perovskite-KG, organized into three main onto-1081

logical categories: Fabrication, Parameters, and1082

Performance. The Fabrication ontology encom-1083

passes process-related attributes such as coating pa-1084

rameters, methods, and annealing conditions. The1085

Parameters ontology covers structural and compo-1086

sitional aspects including solvents, device archi-1087

tecture, and additives. The Performance ontology1088

captures various stability metrics and efficiency pa- 1089

rameters like thermal stability, light stability, and 1090

power conversion efficiency. Each category is fur- 1091

ther detailed with specific data types and exam- 1092

ples to ensure precise knowledge representation. 1093

This structured schema enables systematic organi- 1094

zation and retrieval of perovskite solar cell infor- 1095

mation while maintaining data consistency across 1096

the knowledge graph. 1097

C Prompts 1098

The system employs four specialized agents, each 1099

with carefully designed prompts to perform spe- 1100

cific tasks in the perovskite solar cell knowledge 1101

processing pipeline: 1102

1. Information Extraction Agent (Table 7): 1103

Processes research papers using a structured set 1104

of 20 predefined questions across seven key cat- 1105

egories, including device structure, performance 1106

enhancement, stability, and materials. The agent re- 1107

turns answers in a standardized JSON format, mark- 1108

ing unavailable information as ”Not mentioned” to 1109

maintain data quality. 1110

2. Verification Agent (Table 8): Validates ex- 1111

tracted information by comparing it with source 1112

texts, focusing on maintaining accuracy of tech- 1113

nical details like numerical values and material 1114

names. The agent provides both corrected content 1115

and justification for any modifications made. 1116

3. Organization Agent (Table 9): Synthesizes 1117

verified information from multiple sources into co- 1118

herent, topic-focused responses. This agent ensures 1119

that complex technical information is presented in 1120

a logical and accessible manner. 1121

4. LLM-Judge (Table 10): Evaluates response 1122

quality across four key criteria: accuracy, complete- 1123

ness, relevance, and clarity. Using a 1-5 scoring 1124

system, this agent provides detailed assessments 1125

and explanations for each criterion, along with an 1126

overall evaluation summary. 1127

For LLM using in Perovskite-KG and Perovskite- 1128

Chat, we mainly using GPT-4o and GPT-4o-Mini 1129

for extraction and verification. 1130

D Instruction Tuning Dataset 1131

D.1 Dataset Statistics 1132

The research questions in perovskite solar cell stud- 1133

ies are systematically categorized in Tables 1 and 1134

11. Table 1 provides a high-level overview of seven 1135

major research categories, including Device Struc- 1136

ture and Fabrication, Performance Enhancement 1137
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Ontology Sub-Category Data Type Description Example

Fabrication

Coating
Parameter

Float
The specifics of the coating method used

in the material deposition process.
5000 rpm, 100µl

Method String
Different fabrication techniques,

involving variations in material deposition.
spin coating

Annealing
Parameter

Float
Refers to the heating conditions applied to the perovskite,

which are essential for crystallization and stability.
120°C, 10min

Parameters
Solvent String

the liquid medium used to dissolve precursors,
helping to form a uniform perovskite layer

Dimethylformamide (DMF)

Device
Structure

Patterned
String

The architecture of the device
(e.g., layer order, material interfaces)

ITO/SAM/perovskite
/C60/BCP/Cu

Additive String Any additional materials or chemicals potassium ions

Performance

Thermal
Stability

String
The material’s ability to

withstand heat without degrading

>98% of initial efficiency of >24%
after 1,500 hours of continuous
maximum power point tracking

Light
Stability

String
How resistant the material is

to prolonged exposure to light.

>92% of initial performance for 1,200 hours
under the damp-heat test

(85°C and 85% relative humidity)

Moisture
Stability

String
The material’s resilience against

humidity or water exposure.

Initial PCE of control, target-1 and target-2
devices is 21.73%, 24.42% and 24.11%, respectively.

Degraded to 78% of initial PCE after 1,500 hours at 55±5°C

Fill Factor
Value

Float A measure of the device’s maximum power output. 0.88

Open-Circuit
Voltage Value

Float
The maximum voltage the device can

produce under open-circuit conditions.
1.2 V

Short-Circuit
Current Value

Float The current density when the circuit is closed. 25 mA/cm2

Power Conversion
Efficiency Value

Float
The efficiency with which the device

converts sunlight into electricity.
25 %

Table 6: Schema in Perovskite-KG.

Strategies, Performance Metrics Improvement, Sta-1138

bility Improvements, Defect and Recombination1139

Management, Interface and Extraction Layer En-1140

hancements, and Materials Used in Perovskite So-1141

lar Cells. Each category is accompanied by a de-1142

tailed rationale explaining its scope and relevance.1143

Table 11 further expands this classification by pre-1144

senting 21 specific research questions (Q1-Q21)1145

organized within these seven categories. The ques-1146

tions cover a wide range of technical aspects, from1147

device architecture optimization and performance1148

enhancement strategies to material characteristics1149

and stability improvements. Each research ques-1150

tion is paired with its corresponding technical fo-1151

cus, providing a comprehensive framework for un-1152

derstanding the key areas of investigation in high-1153

performance perovskite solar cell research.1154

Table 12 shows the distribution of research cat-1155

egories in perovskite solar cells. Device Structure1156

and Fabrication dominates the field, accounting for1157

24,198 entries (43.8% of total). Performance En-1158

hancement Strategies represents the second largest1159

category with 11,233 entries (20.3%), followed1160

by Defect and Recombination Management with1161

7,209 entries (13.0%). Stability Improvements, a1162

crucial aspect of perovskite solar cell development,1163

comprises 5,399 entries (9.8%), while Performance1164

Metrics Improvement accounts for 4,527 entries1165

(8.2%). Materials Used in Perovskite Solar Cells 1166

and Interface and Extraction Layer Enhancements 1167

represent smaller but significant portions of the re- 1168

search focus, with 1,586 (2.9%) and 952 (1.7%) 1169

entries respectively. 1170

Figure 5 shows the length distribution patterns 1171

across categories in our perovskite instruction tun- 1172

ing dataset. All categories display similar character- 1173

istics, with sequence lengths predominantly rang- 1174

ing from 100 to 500 tokens and a median length of 1175

400 tokens. This analysis informs our model design 1176

decisions, particularly regarding sequence length 1177

limitations and tokenization strategies. The dis- 1178

tributions are independently normalized for each 1179

category, enabling direct pattern comparison de- 1180

spite varying sample sizes. 1181

Figure 6 illustrates the length distribution pat- 1182

terns across different categories in our perovskite 1183

instruction tuning dataset. 1184

E Instruction Tuning 1185

Table 13 presents the training hyperparameters for 1186

Perovskite-LLM. 1187
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Figure 5: Distribution of prompt and response lengths across different categories in our dataset. The y-axis represents
density (e-3), and the x-axis shows the word count in logarithmic scale. Each category’s distribution is independently
normalized.

F More Case Study1188

G License1189

GPQA (Rein et al., 2023) and Min-1190

erva (Lewkowycz et al., 2022) are under1191

MIT license.1192
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Question:
How to fabricate the perovskite solar cells those can reach PCE over 25%?

Perovskite-Chat-LLM:
To fabricate perovskite solar cells that can achieve a power conversion efficiency (PCE) over
25%, several key steps and considerations are essential. First, the fabrication process should
start with a clean and dry substrate, typically glass or flexible substrates, which are cleaned
thoroughly using a combination of detergents and solvents. The substrates are then treated
with UV ozone to enhance their wetting properties.
For the hole transport layer (HTL), materials like PEDOT:PSS are commonly used. These
materials are spin-coated onto the substrate and annealed at a temperature of 150°C for 15
minutes. The perovskite precursor solution is then prepared, typically using a mixed cation
and halide composition, and spin-coated onto the HTL. The spin-coating process involves a
two-step procedure: first at 1,000 rpm for 10 seconds, followed by 6,000 rpm for 30 sec-
onds, with anisole added during the second step to facilitate crystallization.
After spin-coating, the perovskite films are annealed at 100°C for 10 minutes. The electron
transport layer (ETL) is then deposited, often using a solution of PC61BM in chlorobenzene,
which is spin-coated at 1,000 rpm for 30 seconds and annealed at 100°C for 10 minutes.
Finally, a metal electrode, typically gold, is deposited through thermal evaporation. The en-
tire process is conducted in a nitrogen-filled glovebox to minimize exposure to moisture.

ChatGPT:
To fabricate perovskite solar cells with a power conversion efficiency (PCE) over 25%, several
key factors need to be considered and optimized in the fabrication process. Here are some
steps that can help in achieving high-efficiency perovskite solar cells:
1. Perovskite Material Quality: The quality of the perovskite material is crucial for achieving
high efficiency. Use high-quality perovskite precursors and optimize the fabrication process to
ensure uniform and defect-free perovskite films.
2. Optimal Perovskite Layer Thickness: The thickness of the perovskite layer plays a signif-
icant role in determining the efficiency of the solar cell. Optimize the thickness of the per-
ovskite layer to maximize light absorption and charge carrier generation.
3. Tuning the Bandgap: By engineering the composition of the perovskite material, you can
tune the bandgap to match the solar spectrum for better light absorption and improved effi-
ciency.
4. Interface Engineering: Pay attention to the interfaces between different layers in the solar
cell structure. Optimize the interfaces to minimize recombination losses and improve charge
carrier transport.
5. Passivation Layers: Use passivation layers to reduce defects and trap states in the per-
ovskite layer, which can improve the overall performance of the solar cell.
6. Electron and Hole Transport Layers: Choose suitable electron and hole transport materials
to facilitate efficient charge extraction and transport within the solar cell.

Figure 7: A full conversation between Perovskite-LLM and ChatGPT, Perovskite-LLM provides detailed operational
steps with specific parameters, while ChatGPT only offers general conceptual guidance.
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Table 7: Prompts for Information Extraction Agent.

Prompts for Information Extraction Agent:

Answer the following questions based on the provided text.
{

”Device Structure and Fabrication”: [
”Q1: Summarize the device structures or configurations of the perovskite solar cells those can reach PCE over 25%.”,
”Q2: How to prepare the perovskite precursor solutions those can reach PCE over 25%?”,
”Q3: How to fabricate the perovskite solar cells those can reach PCE over 25%?”

],
”Performance Enhancement Strategies”: [

”Q4: What are problems solved in literatures that report perovskite solar cells those can reach PCE over 25%?”,
”Q5: What are the reasons to choose the strategies that can enhance performance of the perovskite solar cells in

literatures that report perovskite solar cells those can reach PCE over 25%?”
],
”Performance Metrics Improvement”: [

”Q6: How to improve the VOC of perovskite solar cells?”,
”Q7: How to improve the FF of perovskite solar cells?”,
”Q8: How to improve the Jsc of perovskite solar cells?”

],
”Stability Improvements”: [

”Q9: How to improve the moisture stability of perovskite solar cells?”,
”Q10: How to improve the thermal stability of perovskite solar cells?”,
”Q11: How to improve the illumination or light stability of perovskite solar cells?”

],
”Defect and Recombination Management”: [

”Q12: How to passivate or reduce defects/traps of perovskite solar cells?”,
”Q13: How to reduce recombination of perovskite solar cells?”

],
”Interface and Extraction Layer Enhancements”: [

”Q14: How to improve the wettability of the buried interface in perovskite solar cells?”,
”Q15: How to improve the hole extraction ability of HTL in perovskite solar cells?”,
”Q16: How to improve the electron extraction ability of ETL in perovskite solar cells?”

],
”Materials Used in Perovskite Solar Cells”: [

”Q17: What are the HTL materials used in perovskite solar cells and the common features of them?”,
”Q18: What are the ETL materials used in perovskite solar cells and their features?”,
”Q19: What are the hole blocking layer materials in perovskite solar cells and their features?”,
”Q20: What are the passivation materials used in perovskite solar cells and their common features?”

]
}
Below is the text: {paper text}
Response: Return a JSON object with the following structure, if the text does not contain the answer, return ”Not mentioned”:
{

”questions”: [
{

”question”: ”Q1”,
”answer”: ”Answer to Question 1”

},
{

”question”: ”Q2”,
”answer”: ”Not mentioned”

},
...

]
}
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Table 8: Prompts for Verification Agent.

Prompts for Verification Agent:

You need to verify the accuracy of the extracted information from a perovskite paper. Compare the extracted data with
the original text to ensure consistency and correctness. Highlight any discrepancies and fix them. Moreover, maintain the
original meaning of the text and the original information, such as numbers and material names.

Input:
Paragraph {Section name}:{Text of the section}
Extracted: {Extracted information}
Output: Verified information with notes on any discrepancies or confirmation of accuracy.
Please return a JSON object with the following structure only return one item:
{

”verified info”: {
”fixed content”: ”The fixed paragraph”,
”reason”: ”The reason for the fix”

}
}

Table 9: Prompts for Organization Agent.

Prompts for Organization Agent:

Your task is to organize the verified information from a perovskite paper related to the question: {question}.
Below is the information split into paragraphs that answers the question:
{answers}

Output: The organized and continuous answer to the question.

Return a JSON object with the following structure:
{

”answer”: ”The organized and continuous answer to the question.”
}
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Table 10: Prompts for LLM-Judge.

Prompts for LLM-Judge:

You are an expert evaluator. Your task is to compare a model’s response to the ground truth answer and provide a detailed
evaluation.

Model’s response:
{model response}

Ground truth:
{ground truth}

Please evaluate the model’s response based on the following criteria:
1. Accuracy: How factually correct is the model’s response compared to the ground truth?
2. Completeness: Does the model’s response cover all the key points mentioned in the ground truth?
3. Relevance: How well does the model’s response address the implied question or task?
4. Clarity: Is the model’s response clear and easy to understand?

For each criterion, provide a score from 1 to 5, where 1 is the lowest and 5 is the highest. Also, provide a brief explanation
for each score.

Finally, give an overall score from 1 to 5 and a summary of your evaluation.

Format your response as a JSON object with the following structure:
{

”accuracy”: { ”score”: 0, ”explanation”: ”” },
”completeness”: { ”score”: 0, ”explanation”: ”” },
”relevance”: { ”score”: 0, ”explanation”: ”” },
”clarity”: { ”score”: 0, ”explanation”: ”” },
”overall”: { ”score”: 0, ”summary”: ”” }

}
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ID Research Question Technical Focus

I. Device Structure and Fabrication
Q1 Summarize device structures for PCE >25% Device architecture optimization
Q2 Perovskite precursor solution preparation for PCE

>25%
Solution chemistry and processing

Q3 Fabrication methods for PCE >25% Manufacturing processes

II. Performance Enhancement Strategies
Q4 Problems solved in high-efficiency (>25%) de-

vices
Critical challenges and solutions

Q5 Rationale for performance enhancement strategies Strategic approach justification

III. Performance Metrics Improvement
Q6 VOC improvement methods Open-circuit voltage optimization
Q7 FF improvement methods Fill factor enhancement
Q8 JSC improvement methods Short-circuit current density opti-

mization
Q9 PLQY-iVOC relationship Photoluminescence quantum yield

correlation

IV. Stability Improvements
Q10 Moisture stability enhancement Water resistance strategies
Q11 Thermal stability enhancement Temperature tolerance methods
Q12 Light stability enhancement Photo-stability improvement

V. Defect and Recombination Management
Q13 Defect/trap passivation methods Defect control strategies
Q14 Recombination reduction approaches Charge recombination suppression

VI. Interface and Extraction Layer Enhancements
Q15 Buried interface wettability improvement Interface engineering
Q16 HTL hole extraction enhancement Hole transport optimization
Q17 ETL electron extraction enhancement Electron transport optimization

VII. Materials Used in Perovskite Solar Cells
Q18 HTL materials and features Hole transport materials
Q19 ETL materials and features Electron transport materials
Q20 Hole blocking layer materials Blocking layer characteristics
Q21 Passivation materials and features Surface passivation materials

Table 11: Systematic Classification of Research Questions in High-Performance Perovskite Solar Cell Studies
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Abbreviated Name Full Name Count
Perf. Enhancement Performance Enhancement Strategies 11,233
Stability Stability Improvements 5,399
Defect & Recom. Defect and Recombination Management 7,209
Device Structure Device Structure and Fabrication 24,198
Metrics Performance Metrics Improvement 4,527
Materials Materials Used in Perovskite Solar Cells 1,586
Interface Interface and Extraction Layer Enhancements 952

Table 12: Correspondence between abbreviated and full names of research categories in perovskite solar cells

Parameter Chat-LLM Reasoning-LLM

Learning Rate 1e-6 5e-6
Batch Size 8 32
Number of Epochs 3 15
Optimizer AdamW AdamW
Learning Rate Scheduler Cosine Cosine
Warmup Steps 20 20

Table 13: Training Hyperparameters for Perovskite-Chat-LLM and Perovskite-Reasoning-LLM

Question:
What are the ETL materials used in perovskite solar cells and the features of them?

Perovskite-Chat-LLM:
In perovskite solar cells, various electron transport layer (ETL) materials are utilized, each
with distinct features. Common ETL materials include:
1. Tin Oxide (SnO2): SnO2 is a popular choice for ETLs due to its high electron mobility,
low-temperature process ability, and compatibility with flexible substrates. It is often used in
n-i-p structured perovskite solar cells.
2. Zinc Oxide (ZnO): ZnO is another widely used ETL material, known for its high electron
mobility and low-temperature processing. It is commonly used in both n-i-p and p-i-n struc-
tured perovskite solar cells.
3. Tungsten Oxide (WO3): WO3 is utilized as an interlayer between the perovskite layer and
the ETL, enhancing charge extraction and improving device stability. It is particularly effec-
tive in p-i-n structured devices.
4. Phenyl-C61-Butyric Acid Methyl Ester (PCBM): PCBM is a fullerene derivative used as an
ETL in p-i-n structured perovskite solar cells. It offers high electron mobility and is compati-
ble with various perovskite compositions.
5. Tin Oxide Doped with Fluorine (F-SnO2): This material is used to enhance the perfor-
mance of SnO2 ETLs, improving their electron mobility and stability, which leads to higher
efficiency in perovskite solar cells.
6. Cesium Lead Halide (CsPbX3): CsPbX3 is employed as a wide-bandgap ETL in all-
inorganic perovskite solar cells, contributing to improved stability and efficiency.
...

ChatGPT:
ETL (Electron Transport Layer) materials play a crucial role in perovskite solar cells by facil-
itating the efficient extraction and transport of electrons generated by the perovskite layer.
Some commonly used ETL materials in perovskite solar cells include:
1. TiO2 (Titanium Dioxide): TiO2 is one of the most widely used ETL materials in per-
ovskite solar cells. It has good electron transport properties, high electron mobility, and is
chemically stable. TiO2 can be easily processed into thin films, making it suitable for large-
scale production of solar cells.
2. SnO2 (Tin Oxide): SnO2 is another popular ETL material in perovskite solar cells. It has
a high electron mobility, good transparency, and can be deposited at low temperatures. SnO2
films can also be easily doped to improve their conductivity and electron extraction efficiency.
...

Figure 8: A full conversation between Perovskite-LLM and ChatGPT, Perovskite-LLM provides detailed information
about the ETL materials and their features, while ChatGPT only offers general information about the ETL materials.
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Question:
How to improve the thermal stability of perovskite solar cells?

Perovskite-Chat-LLM:
Improving the thermal stability of perovskite solar cells involves several strategies. One effec-
tive approach is the use of thermally stable materials for the charge transporting layer, such
as nickel oxide (NiO) and copper thiocyanate (CuSCN), which can enhance the thermal sta-
bility of the devices. Additionally, the incorporation of additives like 1,8-diodoctane (DIO)
and 1-chloronaphthalene (CN) has been shown to improve the morphology of perovskite films,
leading to better thermal stability. Furthermore, the use of thermally stable hole transport
materials (HTMs) and electron transport materials (ETMs) is crucial, as they can withstand
high temperatures without degrading the perovskite layer. The development of new HTMs,
such as poly(3-hexylthiophene) (P3HT), has also contributed to improved thermal stability.
Lastly, the introduction of interfacial layers, like graphene oxide, can enhance the thermal sta-
bility of the perovskite layer by reducing defects and improving charge transport.
...

ChatGPT:
Improving the thermal stability of perovskite solar cells is crucial for their long-term perfor-
mance and reliability. Here are some strategies to enhance their thermal stability:
1. Encapsulation: One of the most effective ways to improve the thermal stability of per-
ovskite solar cells is to encapsulate them with protective materials. Encapsulation helps to
shield the cells from environmental factors such as moisture, oxygen, and heat, which can de-
grade the perovskite material.
2. Improved Perovskite Composition: Researchers are constantly working on developing new
perovskite compositions that are more stable at high temperatures. By tweaking the chemical
composition of the perovskite material, it is possible to enhance its thermal stability.
...

Figure 9: A full conversation between Perovskite-LLM and ChatGPT, Perovskite-LLM provides detailed information
about the thermal stability of perovskite solar cells, while ChatGPT only offers general information about the
thermal stability of perovskite solar cells.
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Question:
Can you tell me what is CuO? And give me 5 usage in perovskite.

Perovskite-Chat-LLM:
CuO refers to copper(II) oxide, a chemical compound that plays a significant role in various
applications, particularly in perovskite solar cells (PSCs). Here are five key usages of CuO in
perovskite technology:
1. Hole Transport Material: CuO acts as an effective hole transport material (HTM) due
to its suitable work function and high hole mobility. It is often used in conjunction with other
materials, such as NiOx, to enhance the performance of PSCs by facilitating efficient charge
extraction [1].
2. Interface Optimization: The use of CuO helps in optimizing the interfaces within per-
ovskite solar cells. By depositing CuO films on top of perovskite layers, it can improve the
interfacial properties and reduce recombination losses at these critical junctions[2].
3. Thermal Stability Enhancement: Copper oxide (CuO) has been shown to provide ther-
mal stability to perovskite materials, which is crucial for maintaining high efficiency during
prolonged operation under elevated temperatures. This property makes it an attractive choice
for applications where environmental stability is a concern [3].
4. Doping and Passivation: CuO can be utilized as a dopant in other materials used in
PSCs, such as SnO2, enhancing their electrical properties like conductivity and mobility. Addi-
tionally, the doping effects can lead to improved passivation of defects at the perovskite layer,
contributing to better performance metrics [4].
5. Integration with Other Materials: In bifacial solar cells, CuO has been integrated with
materials such as carbon nanotubes (CNTs) to create high-performance architectures that
benefit from synergistic effects. This integration not only enhances charge transport but also
improves the overall efficiency of the devices [5].
References:
[1] Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for
Monolithic Perovskite-CIGSe Tandem Solar Cells, Wang, Yajie; Wenisch, Robert; Schlatman
[2] Critical Review of Cu-Based Hole Transport Materials for Perovskite Solar Cells: From
Theoretical Insights to Experimental Validation, Sun, Qingde; Sadhu, Anupam; Lie, Stener;
Wong, Lydia Helena, Advanced Materials, 2024
[3] Processing-Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrys-
talline Films to Single Crystals, Haque, Md Azimul; Troughton, Joel; Baran, Derya, Advanced
Energy Materials, 2020
[4] Air-Processed Perovskite Solar Cells with ¿25% Efficiency and High Stability Enabled by
Crystallization Modulation and Holistic Passivation, Shi, Xiaoyu; Liu, Tianxiao; Dou, Yun-
jie; Hu, Xiaodong; Liu, Yangyang; Wang, Feifei; Wang, Lingyuan; Ren, Zhijun; Chen, Shang-
shang, Advanced Materials, 2024
[5] Critical Review of Cu-Based Hole Transport Materials for Perovskite Solar Cells: From
Theoretical Insights to Experimental Validation, Sun, Qingde; Sadhu, Anupam; Lie, Stener;
Wong, Lydia Helena, Advanced Materials, 2024

Figure 10: A case study of Perovskite-Chat-LLM’s ability to provide detailed and accurate information with
references.

25


	Introduction
	Related Work
	LLM in Materials Science
	Knowledge Graph in Materials Science
	Reasoning alignment

	Perovskite-KG
	Instruction Tuning Dataset Generation
	Perovskite-LLM
	Experiment Design
	Results and analysis
	Integrate Perovskite-KG with Perovskite-Chat-LLM
	Case Study

	Conclusion
	Additional Related Work
	Multi-agent systems

	Schema in Perovskite-KG
	Prompts
	Instruction Tuning Dataset
	Dataset Statistics

	Instruction Tuning
	More Case Study
	License

