
Under review as a conference paper at ICLR 2024

DISCOVERING MATHEMATICAL FORMULAS FROM
DATA VIA LSTM-GUIDED MONTE CARLO TREE
SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Finding a concise and interpretable mathematical formula that accurately describes
the relationship between each variable and the predicted value in the data is a crucial
task in scientific research, as well as a significant challenge in artificial intelligence.
This problem is commonly referred to as symbolic regression, which poses an
NP-hard combinatorial optimization problem. Traditional symbolic regression
algorithms typically rely on genetic algorithms; however, these approaches are
sensitive to hyperparameters and often struggle to fully recover the target expression.
To address these limitations, a novel symbolic regression algorithm based on Monte
Carlo Tree Search (MCTS) was proposed this year. While this algorithm has shown
considerable improvement in recovering target expressions compared to previous
methods, it still faces challenges when dealing with complex expressions due
to the vast search space involved. Moreover, the lack of guidance during the
MCTS expansion process severely hampers its search efficiency. Recently, some
algorithms add a pre-trained policy network to guide the search of MCTS, but
the pre-trained policy network generalizes poorly. In order to overcome these
issues, we propose AlphaSymbol combining ideas from AlphaZero. AlphaSymbol
is a new symbolic regression algorithm that combines MCTS with a Long Short-
Term Memory network (LSTM). By leveraging LSTM’s ability to guide MCTS
expansion process effectively, we enhance the overall search efficiency of MCTS
significantly. Next, we utilize the MCTS results to further refine the LSTM network,
enhancing its capabilities and providing more accurate guidance for the MCTS
process. MCTS and LSTM are coupled together and optimize each other until the
target expression is successfully determined. We conducted extensive evaluations
of AlphaSymbol using 222 expressions sourced from over 10 different symbolic
regression datasets. The experimental results demonstrate that AlphaSymbol
outperforms existing state-of-the-art algorithms in accurately recovering symbolic
expressions both with and without added noise.

1 INTRODUCTION

The ultimate goal of natural scientific research is to discover a concise and clear mathematical
expression from a set of data, which can describe the relationship between variables in the data and
reflect the objective laws of the physical world. The goal of symbolic regression is to use observed
data to search for an expression that can fit the data well. Specifically, if there is a set of data
[x1, x2, ..., xm, y] where xi ∈ Rn and y ∈ R, the purpose of symbolic regression is to discover a
mathematical expression f(x1, x2, ..., xm) through certain methods so that f can fit the data y well.
The resulting expression can not only fit the data y well but also be interpretable. We can utilize the
properties of the basic operators in the expression f to analyze the relationship between the feature
variables [x1, x2, ..., xm] and y in the data. In recent years, deep learning has penetrated various
areas of our lives(Chen et al., 2022; Choudhary et al., 2022; Zhang et al., 2021). People from many
fields, from physics to life sciences, are using neural networks to fit their data. Although artificial
neural networks can fit the data well, the result obtained by the neural network fitting is a "black
box"(Petch et al., 2022), which is not interpretable and analyzable. On the contrary, the result of
symbolic regression is a clear, interpretable, and analyzable mathematical expression. For example,

1

Under review as a conference paper at ICLR 2024

in the physical formula P = FV , we can easily analyze that, given a constant power P , to obtain a
larger force F , we must decrease the velocity V . This is also why vehicles slow down when going
uphill in real-life scenarios. However, a black-box model obtained from a neural network cannot
intuitively derive such useful conclusions.
Mathematical expressions are composed of basic operators, and any expression can be expressed as
an expression binary tree. If we expand the expression binary tree in the order of preorder traversal,
we can obtain an ordered and discrete sequence of operators. So essentially symbolic regression
can be regarded as a combinatorial optimization problem (Karimi-Mamaghan et al., 2022). This is
an NP-hard problem (Huynh et al., 2022). Traditional approaches to symbolic regression typically
utilize evolutionary algorithms, especially genetic programming (GP)(Koza et al., 1992; Schmidt
& Lipson, 2009; Haarnoja et al., 2018). In GP-based symbolic regression, the algorithm begins by
initializing a population of expressions. The individuals in the population undergo crossover and
mutation operations to simulate human evolution. Finally, the best individuals are selected to form
the next generation population. While GP can be effective, it is also known to scale poorly to larger
problems and exhibit high sensitivity to hyperparameters.
Symbolic Physics Learner (SPL)(Sun et al., 2022), published this year, employs MCTS to address
symbolic regression problems. In SPL, MCTS iteratively executes four steps (selection, expansion,
simulation, and backtracking) to progressively uncover the optimal search path. This paradigm effec-
tively tackles symbolic regression problems and demonstrates remarkable performance; Appendix
I delineates a succinct example of employing MCTS to tackle the symbolic regression. however,
due to completely random selection during initial expansion and throughout the simulation phase
without any guidance mechanism in place results in suboptimal search efficiency for SPL. The DGSR-
MCTS(Kamienny et al., 2023) and TPSR(Shojaee et al., 2023) algorithm integrates a pre-trained
policy network to facilitate the search mechanism of the MCTS. However, this pre-trained model
demonstrates limited generalizability, exhibiting satisfactory performance only on data configurations
encountered during its training phase. For instance, should the training be confined to a symbolic
repository encompassing [+, sin, cos, x], any subsequent attempts to extend the repository to in-
corporate additional symbols such as [+,−, sin, cos, exp, x] results in suboptimal performance, or
may altogether fail to function. Furthermore, the model’s efficacy is significantly compromised
when exposed to scenarios deviating from its training conditions; a model trained exclusively with
two variables, x1 and x2, is markedly less competent when evaluated on datasets featuring three
variables. Even when the model samples X within the interval [-2, 2] during training, its performance
is greatly compromised when we sample X within the range of [-4, 4] for testing. In light of these
considerations, both generalization and search efficiency of the algorithm must be addressed. To this
end, we introduce an innovative algorithm, termed AlphaSymbol, designed to reconcile the two.
Inspired by the AlphaZero(Silver et al., 2018) algorithm. We propose AlphaSymbol, a novel sym-
bolic regression framework based on LSTM and MCTS. In AlphaSymbol, we integrate the policy
network and value network into one. We employ an LSTM to generate the probability p of selecting
each symbol and the value v of the current state, which guides the MCTS during the expansion
and simulation phases. Before the self-search actually generates a symbol, multiple simulations are
conducted. Once the self-search generates a complete expression. we calculate the reward using the
reward function and perform backpropagation. Furthermore, we collect the node information selected
during the self-search process to train the LSTM neural network. We collect the parent node and
sibling node of the current node as the input of the LSTM network and take the normalized value π
of the number of times it is child nodes have been visited (probability value of the child nodes being
selected) and the state value z as output. Then, using these data, we can train the LSTM network
to become even more powerful, which can better guide the MCTS algorithm. We summarize our
contributions as follows:

• We propose a novel symbol regression model, called AlphaSymbol, which cleverly combines
LSTM and MCTS. And outperforms several baselines on a series of benchmark problems.
Source code is provided at 1.

• We propose a new loss function (Used to calculate rewards) called SNRMSE , which effec-
tively addresses the issue of variable omission in multivariate regression problems.

• We improve the loss function (used to train LSTM) to encourage the LSTM to produce a
probability distribution with lower information entropy, thereby avoiding situations where

1Source code for AlphaSymbol: https://anonymous.4open.science/r/AlphaSymbol-v2

2

https://anonymous.4open.science/r/AlphaSymbol-v2

Under review as a conference paper at ICLR 2024

each symbol is predicted with a similar probability. Improved the search efficiency of the
algorithm.

2 RELATED WORK

Deep learning for symbolic regression. Recently, many algorithms have been developed to apply
deep learning to symbol regression, achieving promising results. EQL(Martius & Lampert, 2016;
Kim et al., 2020) replaces the activation function of neural networks with basic operators such as
[+,−, ∗, /, sin, ...], Afterwards, parameter sparsification is conducted to eliminate redundant connec-
tions and extract expressions from the network. AI Feynman consists of two versions, AI Feynman
1.0(Udrescu & Tegmark, 2020) and AI Feynman 2.0(Udrescu et al., 2020), both of which aim to
simplify complex problems. In AI Feynman 1.0, a neural network is first trained to fit data and then
used to discover some properties, such as additivity separability, Then, these properties are used to
break down a complex problem into several simpler ones. The limitation is that AI Feynman 1.0
applies only a limited number of properties and achieves better performance only in the domain
of physics expressions. Building upon the foundation of AI Feynman 1.0, version 2.0 proposes
more properties, expanding the algorithm’s applicability to any field. The NeSymRes(Biggio et al.,
2021) algorithm treats symbolic regression as a machine translation problem. This algorithm trains a
transformer model with a large amount of data and then uses the model with beam search to generate
expressions. This article(Li et al.) replaces the feature extraction module of NeSymRes with the point
cloud feature extraction algorithm pointMLP.
Genetic programming for symbolic regression. Genetic Algorithm (GA)(Zhong et al., 2015; Huang
et al., 2022; Haider et al., 2023) is a classic optimization algorithm that simulates the evolution of
human history. The symbolic regression algorithm based on GA is Genetic programming (GP). GP
first initializes a population of expression binary trees. Then, a simulation of human “evolution” is
carried out through means such as crossover and mutation. Finally, excellent individuals are selected
as the next-generation population through fitness selection. This process is repeated. In addition,
there are many algorithms that have been developed by improving upon the GP algorithm(Zhong
et al., 2015; Huang et al., 2022; Haider et al., 2023).
Reinforencement learning for symbolic regression. DSR(Petersen et al., 2019) and DSO (Mund-
henk et al., 2021) are two excellent symbolic regression algorithms based on deep reinforcement
learning. Among them, DSR defines Recurrent Neural Networks (RNN(Graves, 2013), LSTM(Gers
et al., 2000), GRU (Chung et al., 2014), etc) as the policy network. The network takes the parent
and sibling nodes of the node to be generated as inputs and outputs the probability of selecting each
symbol. Then, multiple expressions are sampled from the policy network. Finally, the reward values
are calculated, and the policy network parameters are updated through policy gradient to enable the
policy network to generate better expressions. DSO introduces the GP on the basis of DSR. In DSO,
the expressions sampled from the policy network are used as the initial population for the GP. Then
the GP-evolved expressions and original expressions are combined to update the policy network in
order to provide higher-quality initial populations for GP. SPL(Sun et al., 2022) applies the successful
conventional MCTS to the symbolic regression field. The algorithm selects a good sequence of
expressions by repeating four steps: selection, expansion, simulation, and backpropagation.

3 MODELING

The symbol library contains a series of basic operators that can be flexibly combined into various
mathematical expressions. Our symbol library includes five binary operators [+, −, ×, ÷, ••],
five unary operators [sin, cos, exp,

√
, ln], multiple variable operators [x1, x2, . . . , xn], as well

as constant placeholders [c]. Guided by an LSTM, the AlphaSymbol executes MCTS, generating
operators for the expression in the order of pre− order traversal of the expression’s binary tree.
AlphaSymbol uses an LSTM Nθ with parameter θ. This LSTM combines the roles of both the policy
network and value network into a single architecture. Nθ takes as an input the parent node and sibling
nodes of the node to be predicted and outputs the probability p of selecting each operator and the
current state value v, (p, v) = Nθ(s). Where the state value vcan be seen as the degree to which
continuing downward selection from the current node can eventually lead to the optimal expression.
The LSTM in AlphaSymbol is trained from the task of self-search by a reinforcement learning
algorithm. In self-search, before selecting a new symbol, we will conduct several simulations

3

Under review as a conference paper at ICLR 2024

𝜋! 𝜋" 𝜋#

z

𝑎!~𝜋! 𝑎"~𝜋" 𝑎$~𝜋$

𝑠! 𝑠" 𝑠# 𝑠%

+
𝑠𝑖𝑛

+ +

𝑠𝑖𝑛 ∗

𝒂. 𝑠𝑒𝑙𝑓 − 𝑠𝑒𝑎𝑟𝑐ℎ

𝑠𝑖𝑛

+
𝑐𝑜𝑠

+

𝑥

+

𝑁2 𝑁n𝑁1

𝑠𝑖𝑛

+
sin

+
𝑠𝑖𝑛

+

𝑁2 𝑁n𝑁1

𝑠𝑖𝑛 𝑐𝑜𝑠 𝑥

𝑁2 𝑁n𝑁1

+ + +

𝑠𝑖𝑛 𝑠𝑖𝑛 𝑠𝑖𝑛∗ ∗ ∗

𝑠𝑖𝑛 𝑐𝑜𝑠 𝑥

+

𝑠𝑖𝑛 ∗

𝑥 𝑥 𝑥

𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏[N1,N2,…] 𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏[N1,N2,…] 𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏[N1,N2,…]

𝜋! 𝜋" 𝜋#
z

≈
	

𝑠#𝑠"𝑠!

≈
	

≈
	

≈
	

≈
	

≈
	

𝑝! 𝑣! 𝑝" 𝑝#𝑣" 𝑣#

+

𝒔𝒊𝒏

+

𝒃. 	𝐿𝑆𝑇𝑀	𝑡𝑟𝑎𝑖𝑛

LSTM
LSTM
LSTM
LSTM

LSTM
LSTM
LSTM
LSTM

LSTM
LSTM
LSTM
LSTM

??𝑠𝑖𝑛

+

?
∗

?

Normal node

Parent and sibling nodes

Nodes to be predicted

Figure 1: a. self-search. During the self-search phase, the operators with the highest probabilities
(Number of visits) are selected sequentially for each state s1, s2, ..., st. For each state st, multiple
simulations are carried out, and during each simulation, an MCTS αθ using the latest neural network
Nθ is executed (as depicted in Fig 2). Finally, by tabulating the number of times each child node was
visited during multiple simulations, we can determine the selection probability at ∼ πt for each state.
Finally, when the expression is complete at time sr, we calculate the reward value z and perform
backpropagation. b. LSTM training. In AlphaSymbol, the LSTM is designed to take the state st as
input, which is then passed through an LSTM with parameters θ. The output comprises a vector pt
and a scalar value vt, where pt represents a probability distribution over candidate symbols and vt
represents the possible reward value after generating a complete expression starting from the current
state st. During training, the LSTM parameters, θ, are updated to maximize the similarity between
the policy vector, pt, and the search probabilities, πt, while minimizing the difference in the predicted
reward vt and the actual reward z. The new parameters are used in the next iteration of self-search as
in Fig (a).

4

Under review as a conference paper at ICLR 2024

+

∗

+

+

𝑠𝑖𝑛

𝑄 + 𝑈

𝑄 + 𝑈

𝑄 + 𝑈

𝑄 + 𝑈

𝑚𝑎𝑥

𝑚𝑎𝑥

+

∗

+

𝑠𝑖𝑛

+

𝑠𝑖𝑛

𝑉

𝑃 𝑃

𝑃𝑃

𝑉

𝑉

𝑃𝑃
(𝑝, 𝑣) = 𝑁! 𝑠

+

𝑠𝑖𝑛

+

+𝑉

𝑄 𝑄

∗

𝑠𝑖𝑛

+

𝑄𝑄

𝑉

Repeat

𝜋!

𝑠𝑒𝑎𝑟𝑐ℎ

+

𝐵𝑎𝑐𝑘𝑢𝑝
Expand and evaluate Select

+

𝑠𝑖𝑛

+

sin

∗ 𝑠𝑖𝑛

+

sin

∗

𝑉 +

sin

∗
𝑉 𝑉

𝑉 𝑉

+

𝑠𝑖𝑛𝑉 ∗

[+]

[+,∗] [+, 𝑠𝑖𝑛]

[+, 𝒔𝒊𝒏,∗] [+, 𝒔𝒊𝒏, 𝒔𝒊𝒏]

[+, 𝒔𝒊𝒏] [+, 𝒔𝒊𝒏][+,∗]

[+, 𝒔𝒊𝒏,∗] [+, 𝒔𝒊𝒏, 𝒔𝒊𝒏] [+, 𝒔𝒊𝒏, 𝒔𝒊𝒏][+, 𝒔𝒊𝒏,∗]

[+,∗]

[+][+]

Figure 2: MCTS in AlphaSymbol. Select, Starting from the root node, the child node with the
largest UCT value is selected recursively, where UCT = Q(s, a) + U(s, a) and finally a leaf node
is reached. Expand, If the current leaf is not a terminal node, then create multiple (number of
symbols) child nodes, and select the one with the greatest probability p(s, a) to expand., where
p(s, •) = Nθ(s), and the p(s, a) values are stored in the corresponding new child nodes. evaluate,
Use LSTM to calculate the V of the new extension node. backpropagation, After each simulation,
backpropagation is performed, where Nvisit of all visited nodes during the simulation is incremented
by one. Additionally, Action value Q is updated to track the mean of all evaluations V in the subtree
below that action. Search, The probability π of selecting each symbol can be determined during
the self-search phase after the completion of the simulation phase. Herein, π is directly proportional
to (Nvisit)

1
τ , where Nvisit is the visit count of each move from the root state and τ is a parameter

controlling temperature.

under the guidance of LSTM Nθ. After several MCTS simulations, the number of times Ni each
possible child node is selected is obtained, and then [N1, N2, ...Nn] is normalized to obtain π.
Then, based on the probability π, the program is instructed to actually choose a symbol. These
search probabilities usually select much stronger moves than the raw move probabilities p of the
neural network Nθ(s); MCTS may therefore be viewed as a powerful policy improvement operator.
When we have a completed expression, we will calculate the reward z through the reward function,
R(s) = 1/(1 + SNRMSE), where SNRMSE is shown in expression 6. Repeat the process until
you get the target expression. the neural network’s parameters are updated to make the operator’s
probabilities and value (p, v) = Nθ more closely match the improved search probabilities and
self-search reward (π, z); these new parameters are used in the next iteration of self-search to make
the search even stronger. Figure 1 a illustrates the self-search training process.
As shown in Figure2, MCTS is simulated several times under the guidance of an LSTM network.
During the simulation, each node stores three kinds of information, prior probability P(s, a), a visit
count N (s, a), and an action value Q(s, a). In the simulation stage, each simulation starts from the
root node, and the node with the largest UCT (Gelly & Silver, 2007) value among the child nodes is
selected successively. The UCT expression is shown in expression below 1:

UCT (s, a) = Q(s, a) + U(s, a) (1)
Here Action value Q(s, a) (Silver et al., 2017)is the cumulative average reward value of the current
state, and the expression is 2:

Q(s, a) = 1

N (s, a)

∑
s′ |s,a→s′

V(s
′
) (2)

And s, a→ s
′

indicates that a simulation eventually reached s
′

after taking move a from position s.
where U(s, a) ∝ p(s, a)/(1 +N (s, a), The specific expression is 3:

U(s, a) = cpuct ∗ P(s, a) ∗
√
N (s)

1 +N (s, a)
(3)

When a leaf node s
′

is encountered during the simulation, if the leaf node is not a terminal node, this
leaf position is expanded and evaluated only once by the network to generate both prior probabilities

5

Under review as a conference paper at ICLR 2024

and evaluation, (P(s′
, •),V(s′

)) = Nθ(s
′
). Finally, a backpropagation step is performed to update

the counter, action value Q(s, a), visit count N (s, a), and length for the nodes traversed during
the simulation. The self-search process of AlphaSymbol can be perceived as a symbolic selection
process where symbols are chosen through a greedy search algorithm guided by a probability π. The
symbol with the maximum π value is selected as a new symbol. In addition, π is proportional to the
number of visits of each child node after multiple simulations. Here πa ∝ N (s, a)

1
τ , and its precise

computational expression is as follows 4.

πai
=

log(N (s, ai)
1
τ)∑n

i=0 log(N (s, ai)
1
τ)

(4)

The training of LSTM is a regression problem. Firstly, we initialize the state as s0, and the parameters
of the LSTM network are randomly initialized as θ0. During the self-search phase, before making an
actual selection of a symbol, we conduct multiple MCTS simulations under the guidance of the LSTM
network, with the current state s0 as the input. Then, we obtain the probability π0 and select symbol
a0 to move into state s1 under the guidance of π0. Train and update the parameters of the LSTM
using the data collected during the self-search phase to obtain θ1. Repeat the above process until a
complete expression is obtained or the maximum length is reached. Once a complete expression is
obtained, we compute the final reward z and perform backpropagation. Each traversed node during
the self-search process can contribute to training data (st, πt, zt), where zt = z. Figure 1 b illustrates
that the LSTM neural network is trained by randomly selecting a portion of the previously collected
training data (s, π, z), which generates a new set of parameters designated as θnew. The LSTM
neural network (p, v) = Nθnew(s) is adjusted to minimize the error between the predicted value v
and the reward z and to maximize the similarity of the neural network predicts probabilities p to the
search probabilities π. Specifically, In this study, the parameters θ of the LSTM are updated via the
gradient descent method. Expression 5 shows the loss function to be optimized. It is noteworthy that
we incorporate the information entropy of the predicted probability p as a part of the loss function.

L = (z − v)2 − πT logp− pT logp+ ξ||θ||2 (5)

Among them, the first term (z − v)2 makes the predicted value v and the true value z as close as
possible. The second term, −πT log p, minimizes the difference between predicted probability
p and π. The third term, −pT log p(Wulfmeier et al., 2015), the information entropy loss which
maximizes the difference between the predicted probability of each symbol so that the probabilities
are concentrated on a single symbol rather than being almost equal for every symbol. The final
term, ξ||θ||2, is the L2 (Van Laarhoven, 2017) regularization penalty to prevent overfitting of the
neural network, where ξ is a parameter that controls the strength of L2 weight regularization. The
pseudocode for AlphaSymbol is shown in Algorithm 1
Constant optimization. If a constant placeholder "C" appears in the sampled expression, we will
use nonlinear optimization algorithms such as BFGS (Liu & Nocedal, 1989) or L-BFGS-B (Zhu
et al., 1997) to optimize the constants. For example, for the expression 2.2 ∗ sin(x) + 1.3, we might
search for an expression of the form C ∗ sin(x) + C, and then perform constant optimization using
BFGS to obtain the original expression.
Loss function : SNRMSE . Traditional loss functions only calculate loss by evaluating
the match between predicted value ŷ and actual value y. The expression for the loss is

NRMSE = 1
σ

√
1
N

∑N
i=1(yi − ŷi)2(Chai & Draxler, 2014). When dealing with multivariate

problems, especially when one variable is numerically much smaller than the others, or when two
variables are highly correlated, using NRMSE as a loss metric may easily result in variable omission.
To tackle this challenge, we propose a new loss function called "SNRMSE ," with the following
expression:6

SNRMSE =
1

σy

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 + λ ∗
m∑
j=1

1

σxj

√√√√ 1

N

N∑
i=1

(xji − x̂ji)2 (6)

Here, N represents the sample size, m represents the number of variables, and xji refers to the ith

variable of the jth sample. λ belongs to the interval [−1, 1], indicating the importance of X in the
loss function. if there are variables [x1, x2, ..., xj] in the predicted expression, then we simply set
the predicted value [x̂1, x̂2, ..., x̂j] of these variables to their original value, and the loss is 0. If some
variables [x1, x2, ..., xj] are missing from the prediction expression, we set the predicted value of

6

Under review as a conference paper at ICLR 2024

Table 1: Recovery rate comparison of AlphaSymbol and four baselines on more than ten mainstream
symbolic regression datasets.

Dataset Dataset Number AlphaSymbol DSO SPL GP NeSymReS

Dataset-1 Nguyen 21 95±1.49% 92±2.68% 91±3.46% 61±4.17% 56±3.67%
Dataset-2 Keijzer 15 78±2.81% 81±3.17% 76±3.24% 47±6.33% 52±5.93%
Dataset-3 Korns 15 74±1.89% 73±3.32% 69±4.10% 31±5.21% 27±5.29%
Dataset-4 Constant 8 88±3.14% 85±4.89% 82±4.23% 35±5.14% 22±5.17%
Dataset-5 Livermore 22 89±1.67% 85±2.26% 81±2.46% 40±3.17% 28±3.58%
Dataset-6 Vladislavleva 8 52±2.12% 48±2.95% 39±3.29% 12±2.47% 13±3.20%
Dataset-7 R 6 46±1.28% 44±1.94% 32±2.61% 9±2.24% 4±3.18%
Dataset-8 Jin 6 60±1.73% 53±2.10% 43±2.41% 14±2.19% 11±3.01%
Dataset-9 Neat 9 67±2.01% 72±2.48% 65±2.47% 27±3.08% 21±3.15%

Dataset-10 AIFeynman 103 64±3.02% 56±3.85% 44±4.10% 29±4.95% 18±4.62%
Dataset-11 Others 9 81±1.28% 75±1.86% 74±2.19% 35±3.04% 24±2.73%

Average 72.2±10.62% 69.5±11.1% 63.1±13.4% 30.0±10.8% 25.1±10.74%

0.0 0.5 0.9
Recovery rate

all ablations

No constrain & S_NRMSE

No entropy & S_NRMSE

No entropy & constrain

No S_NRMSE

No constrain

No entropy

No ablations

(a)

0.00 0.02 0.04 0.06 0.08 0.10
Noise level

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fu
ll

re
co

ve
ry

 ra
te

 (n
/2

10
0)

our
our_mean
DSO

DSO_mean
GP
GP_mean

NeSymReS
NeSymReS_mean

SPL
SPL_mean

(b)

0 200 400 600 800 1000
Concrete compressive strengt

0

20

40

60

80 pred
real

(c)

Figure 3: Fig (a) illustrates the recovery for various ablations of AlphaSymbol on all Nguyen
benchmarks, with error bars indicating the standard errors. Fig (b) describes the recovery rate of
AlphaSymbol and four other excellent algorithms on all Nguyen benchmarks under different levels of
noise. Fig (c) describes the relationship between the fitted curve and the real data. From this, we can
clearly see that the yellow curve robustly fits the sample points.

these variables to [0, 0,...,0] to generate a large loss. To achieve the purpose of preventing variable
loss.
Reward function. When a complete expression is obtained during the self-search phase, we need to
use a reward function to evaluate its quality. Firstly, the reward function must meet the requirement
that the smaller loss, the larger reward. Secondly, to make the learning process more stable, the
reward function should be designed to have values that range between [0, 1]. Therefore, we define the
reward function as Reward(s) = 1

1+SNRMSE

Constraining the search space. To ensure the smooth operation of the algorithm and enhance its
efficiency and performance. We have imposed some reasonable constraints on the search space of
the algorithm. (1), We have placed a limit on the length of the generated expression. (2), Operators
that are inverse functions cannot occur consecutively (for example, the operator exp(log(x)) is
not allowed). (3), We have disallowed the repeated nesting of sin and cos because, in real-life
applications, expressions with repeated nesting of trigonometric functions are rare (e.g. sin(cos(x))
is not allowed). (4), Some illegal expressions are not allowed to be generated. For example, log(τ),
where τ should be greater than zero, so in the process of expression generation, functions that have
negative values like sin, cos, and so on can’t come right after log.
Expression generation termination. Introduce two variables, counter and arity(Petersen et al.,
2019), where the counter is initialized to 1. Binary functions, such as [+,−,×,÷...], have an
arity of 2, while unary functions, such as [sin, cos, exp, ln...], have an arity of 1. Variables,
[x1, x2, ..., xn], and constants placeholders [c] have an arity of 0. During the process of generating
expressions through pre-order traversal, the current counter of the symbol sequence is calculated
in real-time using the expression counter = counter + arity(a)− 1. If the counter of the current
sequence is 0, it indicates that a complete expression has been sampled, and the sampling is stopped.

7

Under review as a conference paper at ICLR 2024

4 RESULTS

Evaluating AlphaSymbol. We evaluated the performance of AlphaSymbol on more
than ten classic datasets in the field of symbolic regression. These datasets are labeled
Nguyen,Keijzer,Korns, Constant, Livermore,R, V ladislavlev, Jin, Neat, AIFeynman,
and Others. The datasets mentioned above collectively contain a total of 222 test expressions,
The specific details are shown in table tables C.1 to C.3 in the appendix. We compare AlphaSymbol
with four symbol regression algorithms that have demonstrated high performance:

• SPL. An excellent algorithm which successfully applies the traditional MCTS to the field of
symbolic regression.

• DSO. A superior algorithm that effectively integrates DSR and GP for symbolic regression
tasks.

• GP. A classic algorithm that applies genetic algorithms perfectly to the field of symbolic
regression.

• NeSymReS. This algorithm is categorized as a large-scale pre-training model.

In order to test the ability of each algorithm to fully recover expression using only local data, we
sampled only 20 points for variable X within the interval [−1, 1] and obtained the corresponding
true value y. We use the strictest definition of recovery: exact symbolic equivalence, as determined
using a computer algebra system, e.g. SymPy (Meurer et al., 2017). We tested each expression 100
times using the aforementioned algorithms and recorded the number of times, denoted by Nfull,
that expression was completely recovered (The expression symbols, constant positions, and constant
values are all the same). Finally, we evaluated the performance of each algorithm by comparing the
full recovery rate, calculated asNfull/100. In Table 1, we present the recovery rates of each algorithm
on all benchmark datasets. The performance of AlphaSymbol on recovery rate is slightly better than
the other four advanced algorithms. In addition, the R2 of AlphaSymbol on the AI Feynman dataset
is presented in E.1E.2. As the training progresses, the algorithm’s reward function fluctuation is
illustrated in the line graph (convergence proof) as depicted in Figures B.1 of the appendix. From the
reward fluctuation line chart, one can discern that as training ensues, the reward values exhibit an
oscillatory ascent, eventually culminating in a state of equilibrium. This corroborates the efficacy of
our algorithm in guiding symbolic search, and it also validates that our algorithm ultimately attains
convergence.
Ablation studies. AlphaSymbol includes a series of small but important components, in addition
to its main algorithm. We developed a series of ablation experiments to verify the effect of each
component on the algorithm performance. The image in Fig 3a shows the AlphaSymbol performance
change on all Nguyen benchmarks after the different component combinations are removed. Where
"No entropy" means that the information entropy loss is not applied to the loss. "No constrain" means
no constraints are applied. "No S_NRMSE" means that the SNRMSE loss function was not applied.
As can be seen from the figure, although there is no catastrophic decline in algorithm performance
after different components are removed, the recovery rate is significantly reduced compared with that
without the ablation experiment.

Table 2: This demonstrates the impact of incorporating the information entropy of predicted probabil-
ity p into the loss function during LSTM training on the efficiency of the algorithm.

Benchmark Mean entropy Time(s)
Yes No Yes No

Nguyen-1 1.50 2.16 14.2 25.6
Nguyen-2 1.62 2.43 115.34 168.16
Nguyen-3 1.82 2.96 268.42 484.76
Nguyen-4 2.19 3.02 268.42 484.76
Average 1.78 2.64 132.65 226.17

Anti-noise experiment In the natural world, most of the data we get has some level of noise.
Therefore, the anti-noise ability is an important index to test whether an algorithm can solve real
problems. We conducted anti-noise experiments on the AlphaSymbol algorithm and four other

8

Under review as a conference paper at ICLR 2024

advanced algorithms on Nguyen benchmarks. The noisy data(Shang et al., 2018) were randomly
sampled from the range of [−level ∗ scale, level ∗ scale] where level ∈ [0, 0.1] represents the noise
level, and the scale is equal to max(y)−min(y). At each noise level, we ran each expression 100
times. Then, we calculated the recovery rate of each algorithm on the expressions at each noise
level. As shown in Fig 3b, AlphaSymbol exhibits outstanding performance in anti-noise ability. It
outperforms all other algorithms at all noise levels except for slightly lower performance than DSO at
noise levels of 0.01 and 0.02.
Ablation experiment for information entropy. In order to increase the "confidence" of the LSTM
in selecting the correct symbol, it is highly preferable that the predicted probability distribution p
be concentrated on the correct symbol. We incorporated the information entropy of the probability
distribution p, represented as −pT log(p), into the loss function. We performed ablation experiments
on three expressions Nguyen-1 to Nguyen-3. During the experimentations, the predicted values
[p1, p2, p3, . . .] were retained after every prediction of the LSTM network. The information entropy
Ei for each pi was then calculated as Ei = −pTi log pi. Finally, the mean information entropy, Emean,
was determined by averaging the information entropy for each pi. Additionally, we monitored the
impact of incorporating the information entropy of the predicted probability distribution p into the
loss function on the algorithm’s efficiency. As shown in Table 2, incorporating the information
entropy of p into the loss function makes the LSTM network more “confident” in its predictions,
resulting in a lower information entropy of the predicted probabilities p. This indicates that the LSTM
is more certain in selecting a symbol. Meanwhile, the LSTM network’s increased "confidence"
can result in improved algorithm efficiency. Under equal conditions, we are able to find the target
expression more quickly.

The resulting analyzability test This Concrete compressive strength data set (Yeh, 1998) contains 5
quantitative input variables and 1 quantitative output variable. The 5 input variables are Cement (x1),
Blast Furnace Slag (x2), Water (x3), Superplasticizer (x4), and Age (x5). And the output variable
is Concrete compressive strength (y). We use the aforementioned 5 input variables as input into
AlphaSymbol to fit the output variable Concrete compressive strength. The final expression derived
by AlphaSymbol is as shown in equation 7.

y = 0.66x4 +
0.66(x1 + x2 − x3 + 334)

7.17 + 17746.56
x1∗x5

(7)

We can analyze the positive or negative correlation between the variables [x1, x2, ..., x5] and
y very clearly from these equations. According to Formula 8, we can take the partial deriva-

tive of y with respect to x, where ∂y
∂x1

=
0.66(7.17+ 17746.56

x1∗x5
)+ 17746.65

x2
1x5

(0.66(x1+x2−x3+334))

7.17+ 17746.56
x1∗x5

2 >

0, ∂y
∂x2

= 0.66
7.17+ 17746.56

x1∗x5

> 0, ∂y
∂x3

= −0.66
7.17+ 17746.56

x1x5

< 0, ∂y
∂x4

= 0.66 > 0, ∂y
∂x5

=

0.66(x1+x2−x3+334)

7.17+ 17746.56
x1x5

2
17746.56
x2
1x5

> 0 Based on the information, we can conclude that x1, x2, x4, x5

is directly proportional to y,and x3 is inversely proportional to y. This is consistent with the cor-
relation coefficient matrixE.1, which indicates that the expression obtained by our algorithm is an
analyzable and reliable expression. Figure 3c displays the fitted curve of Equation 7 to the data.

5 DISSCUSION

We propose a new symbolic regression framework AlphaSymbol. The results are state-of-the-art
on a series of benchmark symbolic regression tasks. In AlphaSymbol, we introduce an LSTM to
guide MCTS in searching for good expressions. The data obtained from the MCTS simulation is
then used to train the LSTM, which in turn provides better guidance for MCTS. To make the LSTM
network more “confident”, we introduce the information entropy loss of the predicted probability
distribution p in the loss function. Experimental results demonstrate that this operation can effectively
improve the efficiency of the algorithm search. Secondly, in order to improve the problem of variable
dropout that often occurs when the algorithm deals with multi-variable problems. We propose a
new loss function, SNRMSR, which not only considers y and ŷ but also considers xn using the
Quasi-Euclidean distance between the real and predicted points in a multi-dimensional space as
the loss. Our ablation experiments have demonstrated that introducing the proposed SNRMSR loss
function yields a noteworthy enhancement in the algorithm’s expression recovery rate, compared to
using a regular loss function. Furthermore, this loss function effectively addresses the challenge of

9

Under review as a conference paper at ICLR 2024

variable omission that often arises when dealing with multi-variable problems.
When AlphaSymbol deals with data with too many variables, the search efficiency is low because of
the large search space, and sometimes the target expression can not be obtained. In order to solve this
problem, next we intend to pre-train the policy network with a large amount of data to improve the
performance and efficiency of the algorithm.
Our future research will focus on the following aspect. In the physical world, real physical quantities
have specific units, for instance, the unit of velocity is measured in meters per second (m/s). Hence,
the expressions that we discover should be a variable measured in meters divided by a variable
measured in seconds. With this prior knowledge, we can significantly enhance search efficiency.
Therefore, in the following research, we will consider incorporating physical constraints into the
search process based on the laws of the real physical world. This will result in a more scientifically
sound and efficient symbol regression algorithm.

REFERENCES

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In International Conference on Machine Learning, pp.
936–945. PMLR, 2021.

Tianfeng Chai and Roland R Draxler. Root mean square error (rmse) or mean absolute error
(mae)?–arguments against avoiding rmse in the literature. Geoscientific model development, 7(3):
1247–1250, 2014.

Xuxin Chen, Ximin Wang, Ke Zhang, Kar-Ming Fung, Theresa C Thai, Kathleen Moore, Robert S
Mannel, Hong Liu, Bin Zheng, and Yuchen Qiu. Recent advances and clinical applications of deep
learning in medical image analysis. Medical Image Analysis, pp. 102444, 2022.

Kamal Choudhary, Brian DeCost, Chi Chen, Anubhav Jain, Francesca Tavazza, Ryan Cohn,
Cheol Woo Park, Alok Choudhary, Ankit Agrawal, Simon JL Billinge, et al. Recent advances and
applications of deep learning methods in materials science. npj Computational Materials, 8(1):59,
2022.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Sylvain Gelly and David Silver. Combining online and offline knowledge in uct. In Proceedings of
the 24th international conference on Machine learning, pp. 273–280, 2007.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with lstm. Neural computation, 12(10):2451–2471, 2000.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

C Haider, FO de Franca, B Burlacu, and G Kronberger. Shape-constrained multi-objective genetic
programming for symbolic regression. Applied Soft Computing, 132:109855, 2023.

Zhixing Huang, Yi Mei, and Jinghui Zhong. Semantic linear genetic programming for symbolic
regression. IEEE Transactions on Cybernetics, 2022.

Quang Nhat Huynh, Hemant Kumar Singh, and Tapabrata Ray. Discovery of implicit relationships
from data using linear programming and mixed integer linear programming. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pp. 558–561, 2022.

Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, and Marco Virgolin. Deep
generative symbolic regression with monte-carlo-tree-search. arXiv preprint arXiv:2302.11223,
2023.

10

Under review as a conference paper at ICLR 2024

Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Patrick Meyer, Amir Mohammad Karimi-
Mamaghan, and El-Ghazali Talbi. Machine learning at the service of meta-heuristics for solving
combinatorial optimization problems: A state-of-the-art. European Journal of Operational Re-
search, 296(2):393–422, 2022.

Samuel Kim, Peter Y Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir Čeperić, and Marin
Soljačić. Integration of neural network-based symbolic regression in deep learning for scientific
discovery. IEEE transactions on neural networks and learning systems, 32(9):4166–4177, 2020.

John R Koza et al. Evolution of subsumption using genetic programming. In Proceedings of the first
European conference on artificial life, pp. 110–119. MIT Press Cambridge, MA, USA, 1992.

Wenqiang Li, Weijun Li, Linjun Sun, Min Wu, Lina Yu, Jingyi Liu, Yanjie Li, and Songsong Tian.
Transformer-based model for symbolic regression via joint supervised learning. In The Eleventh
International Conference on Learning Representations.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053, 2021.

Jeremy Petch, Shuang Di, and Walter Nelson. Opening the black box: the promise and limitations
of explainable machine learning in cardiology. Canadian Journal of Cardiology, 38(2):204–213,
2022.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Mingyue Shang, Zhenxin Fu, Nanyun Peng, Yansong Feng, Dongyan Zhao, and Rui Yan. Learning
to converse with noisy data: Generation with calibration. In IJCAI, volume 7, 2018.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan K Reddy. Transformer-based
planning for symbolic regression. arXiv preprint arXiv:2303.06833, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):
1140–1144, 2018.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discovering
governing equations via monte carlo tree search. arXiv preprint arXiv:2205.13134, 2022.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark. Ai
feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural
Information Processing Systems, 33:4860–4871, 2020.

11

Under review as a conference paper at ICLR 2024

Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
ment learning. arXiv preprint arXiv:1507.04888, 2015.

I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Cement
and Concrete research, 28(12):1797–1808, 1998.

Wengang Zhang, Hongrui Li, Yongqin Li, Hanlong Liu, Yumin Chen, and Xuanming Ding. Appli-
cation of deep learning algorithms in geotechnical engineering: a short critical review. Artificial
Intelligence Review, pp. 1–41, 2021.

Jinghui Zhong, Yew-Soon Ong, and Wentong Cai. Self-learning gene expression programming. IEEE
Transactions on Evolutionary Computation, 20(1):65–80, 2015.

Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on mathematical
software (TOMS), 23(4):550–560, 1997.

12

Under review as a conference paper at ICLR 2024

A APPENDIX: PSEUDOCODE FOR THE ALPHASYMBOL

Algorithm 1 presents an overview of the AlphaSymbol framework. Prior to selecting a sym-
bol, the UseConstraint(τ, s, π) function is applied to enforce constraints. The counter is up-
dated after each symbol selection, and we check whether the counter is zero. If the counter is
zero, the reward value of the obtained expression is computed and backpropagation is performed.
If the current symbol is a leaf node but not a terminal node, we expand and evaluate the node.

Algorithm 1: AlphaSymbol
Data: X = [x1, x2, ..., xn] ;y = [y1, y2, ..., yn];S=[+,−,×,÷, ...]
Result: Find an expression such that y = f(X)

1 initialization;
2 while Reward ̸= 1 do
3 ▷ A threshold can also be set, for example, Reward >= 0.9999.
4 repeat
5 Self-Search :
6 UseConstraint(τ, s, π)3
7 symbol = arg max(π) ▷ Choosing the symbol with the highest probability
8 τ .append(symbol)
9 counter = counter + Arity(symbol)4 - 1 ▷ Whether or not the expression is complete

10 if counter=0 then
11 z = 1

1+SNRMSE
▷ Calculating rewards

12 if z > T then
13 ▷ T represents the termination threshold of the algorithm
14 break; ▷ Terminate the program upon achieving expected rewards
15 end
16 Backpropagate : z ▷ Backpropagate the final reward
17 Storing data : [s, π, z]
18 Train Neural Network : Nθ −→ NθNEW ▷ Further training of LSTM
19 end
20 MCTS:
21 Expand and evaluate:
22 parent||sibling = ParentSibling(τt) 2 ▷ Get the neural network input
23 (p,v) =Nθ(parent||sibling) ▷ Calculating probability distribution p and evaluat value v

with LSTM
24 for j ← 2 to nevaluate do
25 if current node = leafnode & counter ̸= 0 then
26 Expend(p) ▷ Expanding leaf nodes with probability p
27 else
28 Select: at+1 = arg max(UCT (st, at)) ▷ Selecting the symbol with the largest

UCT value as the next symbol
29 end
30 Backpropagate(v) ▷ Backpropagate the evaluate value v

31 end
32 until Find the target epxression;
33 end

Algorithm 2 describes the function ParentSibling(τ) used in Algorithm 1 to find the parent and
sibling nodes of the next symbol to the sample. This algorithm uses the following logic: If the last
symbol in the partial traversal is a unary or binary operator and has no siblings, it is the parent node
and its sibling is set to empty. Otherwise, the algorithm iterates forward in the traversal until it finds a

13

Under review as a conference paper at ICLR 2024

node with unselected children. This node is the parent and the subsequent node is the sibling.

Algorithm 2: ParentSibling(τ) (To retrieve the father and sibling nodes as inputs for an LSTM)
1 Input : Partially sampled traversal τ
2 Output : Concatenated parent and sibling nodes of the next nodes to be generated
3 T ← len(τ) ▷ Length of partial traversal
4 counter ← 0 ▷ Initializes a counter with no selected number of nodes
5 if Arity(τT) > 0 then
6 parent← τT
7 sibling ← empty
8 end
9 for i← T to 1 do

10 counter = counter +Arity(τi)− 1
11 ▷ Update counter of unselected nodes
12 if counter = 0 then
13 parent← τi
14 sibling ← τi+1

15 end
16 end

Algorithm 3 demonstrates the application of a series of constraints during the symbol generation
process. The specific steps are as follows: we first obtain the types of symbols in our symbol library,
and then based on the current state, we sequentially determine whether each function in the symbol
library should be "restricted". If a symbol is restricted, we set the probability of selecting that symbol
to zero and finally normalize the probabilities of all symbols.

Algorithm 3: UseConstraints(τ, Si, π)
1 Input : The simulated probability π; partially sampled traversal τ ; Used symbol library S
2 Output : The probability distribution π adjusted according to the constraints
3 L← len(S) ▷ Length of S
4 for i← 1 to L do
5 if Constraint(τ, Si) then
6 πi ← 0 ▷ Sets the restricted symbol probability to zero
7 end
8 π ← π∑L

i=0 πi
▷ The probability is normalized

9 end

Algorithm 4 describes the Arity(s) function used in Algorithm 1, which obtains the arity of an
operator. Specifically, for a variable [x1] and a constant [c], Arity(s)=0. For a unary operator
[sin, cos, exp, ln, sqrt], Arity(s)=1. Similarly, for a binary operator, Arity(s)=2, and so on for other
operators.

Algorithm 4: Arity(s)
1 Input : Newly selected operator symbol s;
2 Output : The arity of an operator
3 s← select(S) ▷ Selecting new symbols.
4 if s ∈ [x1, x2, ..., xn, c] then
5 return 0 ▷ If the symbol is a variable or a constant, the arity would be 0
6 end
7 if s ∈ [sin, cos, exp, log, sqrt] then
8 return 1 ▷ If the operator is unary, the arity would be 1.
9 end

10 if s ∈ [+,−, ∗, /] then
11 return 2 ▷ If the operator is a binary operator, it returns 2.
12 end

14

Under review as a conference paper at ICLR 2024

B APPENDIX: REWARD VARIATION CURVE (ON DATASET NGUYEN).

(a) Nguyen-1 (b) Nguyen-2 (c) Nguyen-3

(d) Nguyen-4 (e) Nguyen-5 (f) Nguyen-6

(g) Nguyen-7 (h) Nguyen-8 (i) Nguyen-9

(j) Nguyen-10 (k) Nguyen-11 (l) Nguyen-12

Figure B.1: The series of figures above presents line graphs depicting the reward values of AlphaSym-
bol on the Nguyen dataset over time. As observed from the figures, throughout the search process,
the reward values for all expressions demonstrate an oscillatory ascent with the increase in training
iterations. Notably, Expression 8 is an exception due to its comparatively simple structure, achieving
its best result within just one epoch.

15

Under review as a conference paper at ICLR 2024

C APPENDIX: EXPERIMENTAL DETAILS FOR EACH EXPRESSION

Table B.1−B.3 shows some specific details of different expressions when tested. The benchmark
problem specifications for symbolic regression are as follows:

• Input variables are represented as [x1, x2, ..., xn]

• U(a, b, c)signifies c random points uniformly sampled between a and b for each input
variable. Different random seeds are used for training and testing datasets.

• E(a, b, c) indicates c points evenly spaced between a and b for each input variable.

• To simplify the notation, libraries are defined relative to a base library
[+,−,×,÷, sin, cos, ln, exp, sqrt, x1].

• Any unassigned operand is represented by •, for instance, •2 corresponds to the square
operator.

Table C.1: Symbol library and value range of the three data sets Nguyen, Korns, and Jin.

Name Expression Dataset Library
Nguyen-1 x3

1 + x2
1 + x1 U(−1, 1, 20) L0

Nguyen-2 x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20) L0

Nguyen-3 x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 20) L0

Nguyen-4 x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20) L0

Nguyen-5 sin(x2
1) cos(x) − 1 U(−1, 1, 20) L0

Nguyen-6 sin(x1) + sin(x1 + x2
1) U(−1, 1, 20) L0

Nguyen-7 log(x1 + 1) + log(x2
1 + 1) U(0, 2, 20) L0

Nguyen-8
√
x U(0, 4, 20) L0

Nguyen-9 sin(x) + sin(x2
2) U(0, 1, 20) L0 ∪ {x2}

Nguyen-10 2 sin(x) cos(x2) U(0, 1, 20) L0 ∪ {x2}
Nguyen-11 x

x2
1 U(0, 1, 20) L0 ∪ {x2, ••, const}

Nguyen-12 x4
1 − x3

1 + 1
2x

2
2 − x2 U(0, 1, 20) L0 ∪ {•4, •3, x2, const}

Nguyen-2′ 4x4
1 + 3x3

1 + 2x2
1 + x U(−1, 1, 20) L0

Nguyen-5′ sin(x2
1) cos(x) − 2 U(−1, 1, 20) L0

Nguyen-8′ 3
√
x U(0, 4, 20) L0 ∪ {••, const}

Nguyen-8′′ 3
√

x2
1 U(0, 4, 20) L0 ∪ {••, const}

Nguyen-1c 3.39x3
1 + 2.12x2

1 + 1.78x U(−1, 1, 20) L0 ∪ {const}
Nguyen-5c sin(x2

1) cos(x) − 0.75 U(−1, 1, 20) L0 ∪ {const}
Nguyen-7c log(x + 1.4) + log(x2

1 + 1.3) U(0, 2, 20) L0 ∪ {const}
Nguyen-8c √

1.23x U(0, 4, 20) L0 ∪ {const}
Nguyen-10c sin(1.5x) cos(0.5x2) U(0, 1, 20) L0 ∪ {x2, const}

Korns-1 1.57 + 24.3 ∗ x4
1 U(−1, 1, 20) L0

Korns-2 0.23 + 14.2
(x4+x1)

(3x2)
U(−1, 1, 20) L0 ∪ {x2, const}

Korns-3 4.9
(x2−x1+

x1
x3

(3x3))
− 5.41 U(−1, 1, 20) L0 ∪ {x2, x3const}

Korns-4 0.13sin(x1) − 2.3 U(−1, 1, 20) L0

Korns-5 3 + 2.13log(|x5|) U(−1, 1, 20) L0 ∪ {const}
Korns-6 1.3 + 0.13

√
|x1| U(−1, 1, 20) L0 ∪ {const}

Korns-7 2.1(1 − e−0.55x1) U(−1, 1, 20) L0 ∪ {const}
Korns-8 6.87 + 11

√
|7.23x1x4x5| U(−1, 1, 20) L0 ∪ {const}

Korns-9 12
√

|4.2x1x2x2| U(−1, 1, 20) L0 ∪ {x2, const}

Korns-10 0.81 + 24.3
2x1+3x2

2
4x3

3+5x4
4

U(−1, 1, 20) L0 ∪ {x2, x3, x4, const}

Korns-11 6.87 + 11cos(7.23x3
1) U(−1, 1, 20) L0 ∪ {x2, const}

Korns-12 2 − 2.1cos(9.8x3
1)sin(1.3x5) U(−1, 1, 20) L0 ∪ {x2, const}

Korns-13 32.0 − 3.0
tan(x1)

tan(x2)

tan(x3)

tan(x4)
U(−1, 1, 20) L0 ∪ {x2, x3, x4, const, tan, tanh}

Korns-14 22.0 − (4.2cos(x1) − tan(x2))
tanh(x3)

sin(x4)
U(−1, 1, 20) L0 ∪ {x2, x3, x4, const, tan, tanh}

Korns-15 12.0 − 6.0tan(x1)

ex2 (log(x3) − tan(x4)))) U(−1, 1, 20) L0 ∪ {x2, x3, x4, const, tan}

Jin-1 2.5x4
1 − 1.3x3

1 + 0.5x2
2 − 1.7x2 U(−3, 3, 100) L0 − {log} ∪ {•3, •4, x2, const}

Jin-2 8.0x2
1 + 8.0x3

2 − 15.0 U(−3, 3, 100) L0 − {log} ∪ {•2, •3, x2,
Jin-3 0.2x3

1 + 0.5x3
2 − 1.2x2 − 0.5x1 U(−3, 3, 100) L0 − {log} ∪ {•3, x2, const}

Jin-4 1.5 exp x + 5.0cos(x2) U(−3, 3, 100) L0 − {log} ∪ {•2, •3, x2,
Jin-5 6.0sin(x1)cos(x2) U(−3, 3, 100) L0 − {log} ∪ {•2, •3, x2,
Jin-6 1.35x1x2 + 5.5sin((x1 − 1.0)(x2 − 1.0)) U(−3, 3, 100) L0 − {log} ∪ {•2, •3, x2,

16

Under review as a conference paper at ICLR 2024

Table C.2: Symbol library and value range of the three data sets neat, Keijzer and Livermore.

Name Expression Dataset Library
Neat-1 x4

1 + x3
1 + x2

1 + x U(−1, 1, 20) L0

Neat-2 x5
1 + x4

1 + x3
1 + x2

1 + x U(−1, 1, 20) L0

Neat-3 sin(x2
1) cos(x) − 1 U(−1, 1, 20) L0 ∪ {1}

Neat-4 log(x + 1) + log(x2
1 + 1) U(0, 2, 20) L0 ∪ {1}

Neat-5 2 sin(x) cos(x2) U(−1, 1, 100) L0 ∪ {x2}
Neat-6

∑x
k=1

1
k E(1, 50, 50) {+,×,÷, •−1,−•,

√
•, x}

Neat-7 2 − 2.1 cos(9.8x1) sin(1.3x2) E(−50, 50, 105) L0 ∪ {x2}

Neat-8 e−(x1)2

1.2+(x2−2.5)2
U(0.3, 4, 100) {+,−,×,÷, exp, e−•, •2, x, x2}

Neat-9 1

1+x
−4
1

+ 1

1+x
−4
2

E(−5, 5, 21) L0 ∪ {x2}

Keijzer-1 0.3x1sin(2πx1) U(−1, 1, 20) L0 ∪ {const}
Keijzer-2 2.0x1sin(0.5πx1) U(−1, 1, 20) L0 ∪ {const}
Keijzer-3 0.92x1sin(2.41πx1) U(−1, 1, 20) L0 ∪ {const}
Keijzer-4 x3

1e
−x1cos(x1)sin(x1)sin(x1)

2cos(x1) − 1 U(−1, 1, 20) L0 ∪ {1}
Keijzer-5 3 + 2.13log(|x5|) U(−1, 1, 20) L0 ∪ {const}
Keijzer-6 x1(x1+1)

2 U(−1, 1, 20) L0 ∪ {const}
Keijzer-7 log(x1) U(0, 1, 20) L0

Keijzer-8
√

(x1) U(0, 1, 20) L0

Keijzer-9 log(x1 +
√

x2
1 + 1) U(−1, 1, 20) L0 ∪ {x2}

Keijzer-10 x
x2
1 U(−1, 1, 20) L0 ∪ {x2, ••, const}

Keijzer-11 x1x2 + sin((x1 − 1)(x2 − 1)) U(−1, 1, 20) L0 ∪ {x2, 1}

Keijzer-12 x4
1 − x3

1 +
x2
2
2 − x2 U(−1, 1, 20) L0 − {log} ∪ {•3, •4, x2, const}

Keijzer-13 6sin(x1)cos(x2) U(−1, 1, 20) L0 ∪ {x2, const}
Keijzer-14 8

2+x2
1+x2

2
U(−1, 1, 20) L0 ∪ {x2, const}

Keijzer-15
x3
1
5 +

x3
2
2 − x2 − x1 U(−1, 1, 20) L0 − {log} ∪ {•3, x2, const}

Livermore-1 1
3 + x1 + sin(x2

1)) U(−3, 3, 100) L0 − {log}
Livermore-2 sin(x2

1) ∗ cos(x1) − 2 U(−3, 3, 100) L0 − {log}
Livermore-3 sin(x3

1) ∗ cos(x2
1)) − 1 U(−3, 3, 100) L0 − {log}

Livermore-4 log(x1 + 1) + log(x2
1 + 1) + log(x1) U(−3, 3, 100) L0 ∪ {1}

Livermore-5 x4
1 − x3

1 + x2
2 − x2 U(−3, 3, 100) L0 − {log} ∪ {•3, •4, x2, const}

Livermore-6 4x4
1 + 3x3

1 + 2x2
1 + x1 U(−3, 3, 100) L0 − {log} ∪ {•3, •4, x2, const}

Livermore-7 (exp(x1)−exp(−x1)
2) U(−1, 1, 100) L0 ∪ {const}

Livermore-8 (exp(x1)+exp(−x1)
3 U(−3, 3, 100) L0 ∪ {const}

Livermore-9 x9
1 + x8

1 + x7
1 + x6

1 + x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 100) L0

Livermore-10 6 ∗ sin(x1)cos(x2) U(−3, 3, 100) L0 ∪ {x2, const}

Livermore-11
x2
1x2

2
(x1+x2)

U(−3, 3, 100) L0 ∪ {x2}

Livermore-12
x5
1

x3
2

U(−3, 3, 100) L0 ∪ {x2}

Livermore-13 x
1
3
1 U(−3, 3, 100) L0 ∪ {••, const}

Livermore-14 x3
1 + x2

1 + x1 + sin(x1) + sin(x2
2) U(−1, 1, 100) L0 − {log} ∪ {•3, •4, x2, const}

Livermore-15 x
1
5
1 U(−3, 3, 100) L0 ∪ {••, const}

Livermore-16 x
2
3
1 U(−3, 3, 100) L0 ∪ {••, const}

Livermore-17 4sin(x1)cos(x2) U(−3, 3, 100) L0 ∪ {x2, const}
Livermore-18 sin(x2

1) ∗ cos(x1) − 5 U(−3, 3, 100) L0 ∪ {const}
Livermore-19 x5

1 + x4
1 + x2

1 + x1 U(−3, 3, 100) L0

Livermore-20 e(−x2
1) U(−3, 3, 100) L0 ∪ {−1}

Livermore-21 x8
1 + x7

1 + x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1 U(−1, 1, 20) L0

Livermore-22 e(−0.5x2
1) U(−3, 3, 100) L0 ∪ {const}

17

Under review as a conference paper at ICLR 2024

Table C.3: Symbol library and value range of the three data sets Vladislavleva and others.

Name Expression Dataset Library

Vladislavleva-1 (e−(x1−1)2)

(1.2+(x2−2.5)2))
U(−1, 1, 20) L0 ∪ {const}

Vladislavleva-2 e−x1x3
1cos(x1)sin(x1)(cos(x1)sin(x1)

2 − 1) U(−1, 1, 20) L0 − {log} ∪ {•2, •3, x2,

Vladislavleva-3 e−x1x3
1cos(x1)sin(x1)(cos(x1)sin(x1)

2 − 1)(x2 − 5) U(−1, 1, 20) L0 ∪ {1}
Vladislavleva-4 10

5+(x1−3)2+(x2−3)2+(x3−3)2+(x4−3)2+(x5−3)2
U(0, 2, 20) L0 ∪ {x2, x3, x4, x5, ••, const, tan}

Vladislavleva-5 30(x1 − 1)
x3−1

(x1−10)
x2
2 U(−1, 1, 100) L0 ∪ {x2, const}

Vladislavleva-6 6sin(x1)cos(x2) E(1, 50, 50) L0 ∪ {x2, const}
Vladislavleva-7 2 − 2.1 cos(9.8x) sin(1.3x2) E(−50, 50, 105) L0 ∪ {x2, const}

Vladislavleva-8 e−(x−1)2

1.2+(x2−2.5)2
U(0.3, 4, 100) {+,−,×,÷, exp, e−•, •2, x, x2}

Test-2 3.14 ∗ x1 ∗ x1 U(−1, 1, 20) L0 ∪ {const}
Const-Test-1 5 ∗ x1 ∗ x1 U(−1, 1, 20) L0 ∪ {const}

GrammarVAE-1 1./3 + x1 + sin(x2
1)) U(−1, 1, 20) L0 ∪ {const}

Sine sin(x1) + sin(x1 + x2
1)) U(−1, 1, 20) L0

Nonic x9
1 + x8

1 + x7
1 + x6

1 + x5
1 + x4

1 + x3
1 + x2

1 + x1 U(−1, 1, 100) L0 ∪ {x2}
Pagie-1 1

1+x
−4
1 + 1

1+x2−4

E(1, 50, 50) L0 ∪ {x2}

Meier-3
x2
1x2

2
(x1+x2)

E(−50, 50, 105) L0 ∪ {x2}

Meier-4
x5
1

x3
2

U(0.3, 4, 100) {+,−,×,÷, exp, e−•, •2, x, x2}
Poly-10 x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10 E(−1, 1, 100) L0 ∪ {x2, x3, x4, x5, x6, x7, x8, x9, x10}

D APPENDIX: AVERAGE COEFFICIENT OF DETERMINATION (R2) ON VARIOUS
DATASETS

To assess the goodness of fit of AlphaSymbol on the datasets, we also recorded the average R2 of
AlphaSymbol on various testing datasets. From the table, it can be observed that AlphaSymbol
achieved an average R2 exceeding 0.99 on the majority of the datasets. This suggests that while
AlphaSymbol may not be able to fully recover the original formula of certain expressions, it can still
find an equivalent expression that fits the observed data well.

Table D.1: Average Coefficient of Determination (R2) on Various Datasets

Benchmark R2

Nguyen 0.9999
Keijzer 0.9991
Korns 0.9982
Constant 0.9991
Livermore 0.9998
Vladislavlev 0.9831
R 0.9702
Jin 0.9888
Neat 0.9763
AI Feynman 0.9960
Others 0.9982
Average 0.9917

E APPENDIX: R2 OF ALPHASYMBOL ON THE AI FEYNMAN DATASET.

We tested the performance of our proposed symbol regression algorithm, AlphaSymbol, on the AI
Feynman dataset. This dataset contains problems from physics and mathematics across multiple
subfields, such as mechanics, thermodynamics, and electromagnetism. The authors provided 100,000
sampled data points in the AI Feynman dataset, however, to better test the performance of AlphaSym-
bol, we randomly selected only 100 data points from the 100,000 provided as our experimental data.
We applied AlphaSymbol to perform symbol regression on each data in the dataset. and recorded
the R2 between the predicted results and the correct answers. The experimental results indicate that

18

Under review as a conference paper at ICLR 2024

AlphaSymbol can accurately fit the corresponding expressions from a small number of sample points.
For the majority of the formulas, the R2 exceeds 0.99. This indicates that the model performs well
on problems in fields such as physics and mathematics, and has great potential for wide application.
The experimental results are shown in Table E.1 and Table E.2.

x_1 x_2 x_3 x_4 x_5 y

x_
1

x_
2

x_
3

x_
4

x_
5

y

1 -0.28 -0.082 0.093 0.082 0.5

-0.28 1 0.11 0.043 -0.044 0.13

-0.082 0.11 1 -0.66 0.28 -0.29

0.093 0.043 -0.66 1 -0.19 0.37

0.082 -0.044 0.28 -0.19 1 0.33

0.5 0.13 -0.29 0.37 0.33 1
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.1: This is a heatmap of the correlation coefficients between each variable x and y. From the
image, we can see that y has a positive correlation with x1, x2, x4, and x5 to varying degrees, and
has a negative correlation with x3.

F APPENDIX: HYPERPARAMETER SETTINGS

- min_length (int): minimum number of operators to allow in expression
- max_length (int): maximum number of operators to allow in expression
- type (‘rnn’, ‘lstm’, or ‘gru’): type of architecture to use
- num_layers (int): number of layers in RNN architecture
- dropout (float): dropout (if any) for RNN architecture
- lr (float): learning rate for RNN
- optimizer (‘adam’ or ‘rmsprop’): optimizer for RNN
- inner_optimizer (‘lbfgs’, ‘adam’, or ‘rmsprop’): optimizer for expressions
- inner_lr (float): learning rate for constant optimization
- inner_num_epochs (int): number of epochs for constant optimization
-batch_size (int): batch size for training the RNN
- λ (float): The weight assigned to the X part of the loss, ranges from 0 to 1.

when training the RNN.
- batch_size (int): batch size for training the RNN
- num_batches (int): number of batches (will stop early if found)
- hidden_size (int): hidden dimension size for RNN

19

Under review as a conference paper at ICLR 2024

Table E.1: Tested Feynman Equations, part 1.

Feynman Equation R2

I.6.20a f = e−θ2/2/
√
2π 0.9992

I.6.20 f = e
− θ2

2σ2 /
√
2πσ2 0.9988

I.6.20b f = e
− (θ−θ1)2

2σ2 /
√
2πσ2 0.9923

I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2 0.8929
I.9.18 F = Gm1m2

(x2−x1)2+(y2−y1)2+(z2−z1)2
0.9944

I.10.7 F = Gm1m2
(x2−x1)2+(y2−y1)2+(z2−z1)2

0.9906
I.11.19 A = x1y1 + x2y2 + x3y3 1.0
I.12.1 F = µNn 1.0
I.12.2 F = q1q2

4πϵr2
1.0

I.12.4 Ef = q1
4πϵr2

0.9994
I.12.5 F = q2Ef 1.0
I.12.11 F = Q(Ef +Bv sin θ) 0.9999
I.13.4 K = 1

2
m(v2 + u2 + w2) 0.9969

I.13.12 U = Gm1m2(
1
r2

− 1
r1
) 1.0

I.14.3 U = mgz 1.0

I.14.4 U =
kspringx

2

2
0.9999

I.15.3x x1 = x−ut√
1−u2/c2

0.9993

I.15.3t t1 = t−ux/c2√
1−u2/c2

0.9844

I.15.10 p = m0v√
1−v2/c2

0.9978

I.16.6 v1 = u+v
1+uv/c2

0.9873
I.18.4 r = m1r1+m2r2

m1+m2
0.9894

I.18.12 τ = rF sin θ 0.9999
I.18.16 L = mrv sin θ 0.9999
I.24.6 E = 1

4
m(ω2 + ω2

0)x
2 0.9986

I.25.13 Ve = q
C

1.0
I.26.2 θ1 = arcsin(n sin θ2) 0.9991
I.27.6 ff = 1

1
d1

+ n
d2

0.9995

I.29.4 k = ω
c

1.0
I.29.16 x =

√
x2
1 + x2

2 − 2x1x2 cos(θ1 − θ2) 0.9942
I.30.3 I∗ = I∗0

sin2(nθ/2)

sin2(θ/2)
0.9912

I.30.5 θ = arcsin(λ
nd

) 0.9994
I.32.5 P = q2a2

6πϵc3
0.9857

I.32.17 P = (1
2
ϵcE2

f)(8πr
2/3)(ω4/(ω2 − ω2

0)
2) 0.9788

I.34.8 ω = qvB
p

1.0
I.34.10 ω = ω0

1−v/c
0.9928

I.34.14 ω = 1+v/c√
1−v2/c2

ω0 0.9992

I.34.27 E = ℏω 1.0
I.37.4 I∗ = I1 + I2 + 2

√
I1I2 cos δ 0.9927

I.38.12 r = 4πϵℏ2
mq2

0.9999
I.39.10 E = 3

2
pFV 1.0

I.39.11 E = 1
γ−1

pFV 0.9998
I.39.22 PF = nkbT

V
0.9999

I.40.1 n = n0e
−mgx

kbT 0.9947
I.41.16 Lrad = ℏω3

π2c2(e
ℏω
kbT −1)

0.8462

I.43.16 v =
µdriftqVe

d
1.0

I.43.31 D = µekbT 1.0
I.43.43 κ = 1

γ−1
kbv
A

0.9428
I.44.4 E = nkbT ln(V2

V1
) 0.8322

I.47.23 c =
√

γpr
ρ

0.9926

I.48.20 E = mc2√
1−v2/c2

0.8859

I.50.26 x = x1[cos(ωt) + α cos(ωt)2] 0.9999

20

Under review as a conference paper at ICLR 2024

Table E.2: Tested Feynman Equations, part 2.

Feynman Equation R2

II.2.42 P = κ(T2−T1)A
d

0.7842
II.3.24 FE = P

4πr2
0.9976

II.4.23 Ve = q
4πϵr

0.9997
II.6.11 Ve = 1

4πϵ
pd cos θ

r2
1.0

II.6.15a Ef = 3
4πϵ

pdz
r5

√
x2 + y2 0.9466

II.6.15b Ef = 3
4πϵ

pd
r3

cos θ sin θ 0.9943
II.8.7 E = 3

5
q2

4πϵd
0.9955

II.8.31 Eden =
ϵE2

f

2
1.0

II.10.9 Ef = σden
ϵ

1
1+χ

0.9999
II.11.3 x =

qEf

m(ω2
0−ω2)

0.9901

II.11.7 n = n0(1 +
pdEf cos θ

kbT
) 0.8826

II.11.20 P∗ =
nρp

2
dEf

3kbT
0.7783

II.11.27 P∗ = nα
1−nα/3

ϵEf 0.9859
II.11.28 θ = 1 + nα

1−(nα/3)
0.9947

II.13.17 B = 1
4πϵc2

2I
r

0.9997
II.13.23 ρc =

ρc0√
1−v2/c2

0.9807

II.13.34 j =
ρc0v√
1−v2/c2

0.9938

II.15.4 E = −µMB cos θ 1.0
II.15.5 E = −pdEf cos θ 1.0
II.21.32 Ve = q

4πϵr(1−v/c)
0.9954

II.24.17 k =
√

ω2

c2
− π2

d2
0.9872

II.27.16 FE = ϵcE2
f 1.0

II.27.18 Eden = ϵE2
f 1.0

II.34.2a I = qv
2πr

0.9982
II.34.2 µM = qvr

2
0.9918

II.34.11 ω = g_qB
2m

0.9937
II.34.29a µM = qh

4πm
1.0

II.34.29b E = g_µMBJz

ℏ 0.8882
II.35.18 n = n0

exp(µmB/(kbT))+exp(−µmB/(kbT))
0.9466

II.35.21 M = nρµM tanh(µMB
kbT

) 0.8722
II.36.38 f = µmB

kbT
+ µmαM

ϵc2kbT
0.9244

II.37.1 E = µM (1 + χ)B 0.9999
II.38.3 F = Y Ax

d
1.0

II.38.14 µS = Y
2(1+σ)

0.9999
III.4.32 n = 1

e
ℏω
kbT −1

0.9877

III.4.33 E = ℏω

e
ℏω
kbT −1

0.9998

III.7.38 ω = 2µMB
ℏ 0.9914

III.8.54 pγ = sin(Et
ℏ)2 0.9943

III.9.52 pγ =
pdEf t

ℏ
sin((ω−ω0)t/2)

2

((ω−ω0)t/2)2
0.7266

III.10.19 E = µM

√
B2

x +B2
y +B2

z 0.9928
III.12.43 L = nℏ 1.0
III.13.18 v = 2Ed2k

ℏ 0.9999

III.14.14 I = I0(e
qVe
kbT − 1) 0.9982

III.15.12 E = 2U(1− cos(kd)) 0.9999
III.15.14 m = ℏ2

2Ed2
0.9983

III.15.27 k = 2πα
nd

0.9998
III.17.37 f = β(1 + α cos θ) 1.0
III.19.51 E = −mq4

2(4πϵ)2ℏ2
1
n2 0.9894

III.21.20 j =
−ρc0qAvec

m
0.7489

21

Under review as a conference paper at ICLR 2024

- use_gpu (bool): whether or not to train with GPU

Table F.1: Tuned hyperparameters for AlphaSymbol.

Parameter Value
min_length 2
max_length -

type LSTM
Num_layers for LSTM 2

hidden_size 250
dropout 0.0

optimizer for LSTM adam
Learn rate 0.0005
batch_size 1000
Use_gpu False

inner_optimizer lbfgs
inner_lr 0.1

inner_num_epochs 5
num_batches 10000

λ 0.1

G APPENDIX: RELATED WORK SUPPLEMENT

Self-Learning_Gene_Expression_Programming (SL-GEP)(Zhong et al., 2015), The SL-GEP
method utilizes Gene Expression Programming (GEP) to represent each chromosome, which consists
of a main program and a set of Automatically Defined Functions (ADFs). Each ADF is a sub-function
used to solve sub-problems and is combined with the main program to address the target problem of
interest. In the initialization step, all encoded ADFs in each chromosome are randomly generated.
Then, during the evolutionary search process, SL-GEP employs a self-learning mechanism to improve
the search outcomes. Specifically, SL-GEP utilizes an adaptive learning algorithm to dynamically
evolve the ADFs online and integrate them with the main program to construct more complex and
higher-order sub-functions, thereby enhancing search accuracy and efficiency.
semantic genetic programming (SGD)(Huang et al., 2022), Traditional genetic programming
approaches often rely on random search to find optimal solutions, but this method is inefficient
and prone to getting stuck in local optima. Therefore, SGD utilizes program behavior to guide the
search, aiming to improve the efficiency and accuracy of symbolic regression problems. Specifically,
this method starts by transforming input data into vector form and uses it as a constraint in a linear
programming model. Then, semantic information is employed to evaluate each program and classify
them based on their behavioral characteristics. Subsequently, the best programs are selected within
each category and used to generate a new generation of programs. This approach effectively reduces
the search space and accelerates convergence speed.
shape-constrained symbolic regression (SCSR) (Haider et al., 2023), The main idea of SCSR is
a shape-constrained symbolic regression algorithm. This method leverages prior knowledge about
the shape of the regression function to improve the accuracy of the regression model. Specifically,
the article introduces both single-objective and multi-objective algorithms. The single-objective
algorithm utilizes genetic programming techniques to generate the best-fitting curve. On the other
hand, the multi-objective algorithm considers multiple optimization objectives and employs Pareto
front techniques to search for a set of non-dominated solutions.

H APPENDIX: COMPUTING RESOURCES

The server we use is equipped with an Intel(R) Xeon(R) Gold 5218R CPU, which has a base
frequency of 2.10 GHz. It has a total of 20 CPU cores, allowing for parallel processing and improved

22

Under review as a conference paper at ICLR 2024

computational performance. The high core count and efficient architecture of the Intel Xeon Gold
5218R make it suitable for handling demanding computational tasks and workloads.

I APPENDIX: MCTS

In order to clearly show the MCTS search process, we assume that there are only two basic symbols
[sin,x]. The target expression is y = sin(x). The search process is as follows.

Initialization: Initially there is a root node S0, and each node in the tree has two values, the reward
Q of the node and the number of visits to that node N.

Figure I.1

First iteration: Node S0 is the root and leaf node, and is not the terminating node, so it is extended.
Assume that S0 has two actions (the basic symbol [sin,x]) after it , which are transferred to S1 and S2

respectively.

Figure I.2

You can then use the UCT formula to choose whether to extend S1or S2. Here N1and N2are both
0, so the UCT value of both nodes is infinite, so any node can be selected, here S1is selected for
extension and simulation (random selection of symbols). After simulation, it was found that the final
reward value was 0.2, so it was updated retrospectively. Q1 = 0.2,N1= 1,Q0=0.2,N0= 1.

23

Under review as a conference paper at ICLR 2024

Figure I.3

The second iteration: Starting from S0, calculate the UCT values of S1 and S2, and select the larger
one for expansion. (assuming S1 > S2 after calculation)
Then according to the UCT value, S1 is selected for expansion. After reaching S1, it is found that
it is a leaf node and has been explored, then enumerate all possible states of the current node (each
action corresponds to a state), and add them to the tree.

Figure I.4

Then we can select either S3 or S4 at random as before. Keep iterating. (In this example, S4 has
successfully found the target expression)

24

	Introduction
	Related Work
	Modeling
	Results
	Disscusion
	Appendix: Pseudocode for the AlphaSymbol
	Appendix: Reward variation curve (On Dataset Nguyen).
	Appendix: Experimental details for each expression
	Appendix: Average Coefficient of Determination (R2) on Various Datasets
	Appendix: R2 of AlphaSymbol on the AI Feynman dataset.
	Appendix: Hyperparameter Settings
	Appendix: Related work supplement
	Appendix: Computing resources
	Appendix: MCTS

