Autoregressive PINNs for Time-Dependent PDEs

Mayank Nagda!, Jephte Abijuru!, Phil Ostheimer!, Jan C. Aurich!,
Stephan Mandt?, Marius Kloft!, Sophie Fellenz!
'RPTU University Kaiserslautern-Landau, Germany
2University of California, Irvine, USA
mnagda@rptu.de

Abstract

Accurately solving time-dependent partial differential equations (PDEs) is central
to many areas of science and engineering. Physics-Informed Neural Networks
(PINNG) use deep learning to solve PDEs, but their pointwise predictions ignore the
autoregressive nature of dynamical systems, often leading to instability and error
accumulation. We propose Physics-Informed Autoregressive Networks (PIANO),
a novel framework that redefines PINNs for modeling dynamical systems. PIANO
predicts future states conditioned on past ones, enforcing physical consistency
through self-supervised rollouts. Our theoretical analysis shows that while PINNs
suffer from temporal instability, PIANO achieves stability through autoregressive
modeling. Across a range of challenging time-dependent PDEs, PIANO delivers
state-of-the-art accuracy and stability, and it also surpasses existing methods in
weather forecasting.

1 Introduction

In 1814, Laplace noted that “the present state of a system is the effect of its past and the cause
of its future” [De Laplacel |1995]], capturing a key principle of dynamics: future states unfold
autoregressively from the present. From weather prediction to heat diffusion and fluid flow, governed
by time-dependent PDEs, learning hinges on how the current state shapes the next. Yet popular ML
solvers such as PINNs [Raissi et al.L|2019] predict each time step independently, without conditioning
on prior states, which we show can induce temporal instability and compounding errors.

Autoregressive (AR) models compute the state u(-,t,) from past states, e.g., u(-,t,) =
flu(-ytn—1),u(:,tn—_2),...), whereas non-AR models estimate each u(-,t,) directly from coor-
dinates, u(-,t,) = f(, t,,). PINNs enforce PDE residuals but are non-AR: they map (-,¢) — u(-,t)
pointwise. While effective in domains like fluid mechanics [Cai et al., 2021]] and cardiovascular
flows [Raissi et al., [2020], they often struggle on dynamical accuracy [Wang et al.l|2024]. Recent
variants (PINNsFormer [Zhao et al.,|2024], PINNMamba [Xu et al.,|2025])) introduce sequence-aware
encoders over (-, t) yet still predict u(-, t,,) independently of u(-,t,,_1), remaining non-AR.

We show that standard PINNs exhibit temporal instability with errors growing over time. To this
end, we introduce PIANO, which enforces physics while predicting each u(-, t,,) conditioned on
prior states to curb error growth. As illustrated in Fig. [, PIANO learns a state transition that
propagates solutions reliably from initial conditions. Our contributions are: (i) theory: PINNs are
temporally unstable for time-dependent PDEs, while AR modeling yields stability (Sec. [2); (ii)
method: a physics-informed AR framework that reformulates PINNs to model temporal evolution
autoregressively (Sec. ; (iii) empirics: on challenging PDEs and weather forecasting, PIANO
achieves better accuracy and stability over existing methods (Sec. [3)).

1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025

ui,l Ui, U3 Ui

:‘ Error Huzt 7uth
(o9}

1
1
1 0
1
1

L -

1
1
1
' . .) 1
1 @ lnitialstate solution usp 1 [PDE Probe (gy) ;A = Solution propagation
, © Collocation points (z,t) | i ; N me e S e e e =
'O Concatenation ! | : | ; 3 v v v ® v
1 1
S Sls SE S s S S e ’ [State Transition Network (f)] 1 =)
| | : | I 3 ° ° ° ° ° L
A ! .
[Embeddlng Network (p,p) 1 Xp ° ° ° ° ° L
© o 0 00 0 0 o
© 0 0 0 0 0 0 o)69 ><J> ‘\)(l> _)69 ! »
e o 0 0 0 0 0 o 4 A A A 1 ® ° ° ° o ° el
Xle o o000 0 o 1 »
® 6 o 06 o o o o) —>»® & & ------ L ' ’y ' 'y ' >
@ © © © © o o o | Sequence 1 t
1

: >
Figure 1: PIANO overview. For each fixed z;, inputs {(z;, ;) }’/_, are concatenated with the previous

prediction @(z;,t;—1) and passed through an embedding network p,;, state transition network fo,
and PDE probe g,,. Rollouts start from the known initial condition u(z, to).

2 Method

Setup and limitation of standard PINNs. We consider time-dependent PDEs on a domain 2 C R¢
with solution v : R? — R’. Interior, initial, and boundary constraints are encoded by operators
Oq, Oq,, Osq (e.g., for heat, Oq(u) = u — uy,). A PINN [Raissi et al., 2019]] approximates « with

g by minimizing a residual loss L(ug) = >_ xc(0,0,,00} ;‘,—)}‘(vax |Ox (up)(z (i))||2 However,
standard PINNs are non-AR: they predict u(-, ¢,) directly from (-, ¢,), independent of w(-, ¢, 1),
which can cause temporal drift.

We formalize this drift via the true evolution operator G(At), which maps the state of the system
at time t,, to the state at time ¢, 1 = t, + At. Defining the error e, (-) = ug(-, tn) — Uue(*, tn)
and the one-step rollout error &, = ||ug(+,tnt1) — G(AL)[ug(+,t,)]||2, we show the recursion
llent1llz < Lgllenll2 + 0x. Because the usual residual loss does not constrain d,,, fresh error can be
injected at each step, accumulating over time. Full statements and proofs are in Appendix [A]

PIANO Architecture. To achieve temporal consistency, PIANO conditions each prediction on the
previous state. For each spatial location x;, we process a temporal sequence {(z;, tj)}j-wzo. Atstep 5,
the model input is ((x;,t;), @(x;,tj—1)), i.e., the current coordinate concatenated with the previous
prediction. The architecture (Figure T has three components:

e Embedding network py: maps the input tuple to a feature vector m'
tial-temporal context and the carried-over state.

%, enriching spa-

* State-transition network fy: a lightweight state-space module that maintains a latent state
h and updates it autoregressively, R = o(LN(Ah;_; + Bmj)), producing an output
representation o; = Ch’ + Dm/’ + mj. This stage models the evolution from t;_ to t;.

* PDE probe g, decodes o', to the physical field, yielding @ (x;,t;) = gy (0").

Rollouts start from the known initial condition u(z, ty), which anchors trajectories and prevents
arbitrary offsets.

Physics-Informed Experience Learning (PIEL). We train by unrolling the model in time and
enforcing physics along the entire predicted trajectory. Starting from wu(z,tq), we generate
W(x;, tj) = ug(w;, tj, u(z;, t;—1)) for j = 1,..., M, backpropagating through time. PDE deriva-
tives are computed on the predicted space—tlme grid using second-order finite differences. Over
X € {Q,09}, we accumulate residual energy Ex (z;) = 77 Z]I\il |Ox[@](zi,t;)||* and define
the objective Lpiano =)y 1)\‘7))‘(Z ¢ Ex(x;). When data are available, we add a simple teacher-

forcing term that replaces (z;, tj,l) with the true state during training; inference always uses
free-rollout (the model feeds on its own predictions). Training algorithm is provided in App. B}

5% Training Progress 25% Training Progress 50% Training Progress 100% Training Progress

Exact Solution u(x,t;

rRMSE: 0.760 rRMSE: 0.423 rRMSE: 0.334 rRMSE: 0.010) 10
6 6 6 6 .
0.5
a a 4 a
0.0
2 2 2 2
/ ‘ -
0 o 0 0
04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 O 10 -
t t t t

0 02 04 06 08 1.0
t

6

4
x

2

o

Figure 2: Training dynamics of PIANO on the convection equation. At 5%, predictions remain
accurate only around the initial condition; by 25-50%, temporal propagation improves noticeably,
and at convergence the predictions become visually indistinguishable from the exact solution. This
demonstrates that propagating accurate information from the initial state leads to stable convergence
without intermediate failures.

0.0008 ! ' ! !
0.08F — PIANO - —— PIAN
—— PINNsformer 0.0006L —— PINNsformer]
0.06 PINNMamba ’ PINNMamba
5‘ | 5 0.0004 - B
= 0.04F 1 e
=)
0.02 } 0.0002 \’m /
0.00[7} ’ T i 0.0000 i i I
0 20 40 60 80 100 0 20 40 60 80 100
Time Step Time Step (n)

(a): Rollout error (rRMSE) vs. time. (b): One-step defect d,, vs. time.

Figure 3: PIANO exhibits almost constant error growth and achieves the lowest one-step defect,
whereas PINNsFormer and PINNMamba show rapidly increasing rollout errors and larger d,,. In
both panels, lower values indicate better performance.

Theoretical guaranties for PIANO. The autoregressive design directly targets the transition error.
Under a p-th order time and ¢-th order space discretization, our main result (Appendix [A)) gives
On < p+ k(AtP + h9), where p is the residual energy minimized by Lpano and £ > 0 depends
on the discretization; for the common second-order case (p = ¢ = 2), mesh refinement reduces the
consistency term, while minimizing p suppresses d,,. Intuitively, PIANO learns a stable evolution
map: each step is both physically consistent and conditioned on the past, curbing error injection and
accumulation over long horizons.

3 Experiments

To empirically demonstrate the effectiveness of PIANO, we evaluate its performance on PDE
benchmarks (Section [3.1)) and a real-world weather forecasting task (Section [3.2).

3.1 PDE Benchmarks

Benchmark We evaluate PIANO on four canonical time-dependent PDEs—Wave, Reaction, Con-
vection, and Heat—spanning higher-order dynamics, nonlinearity, transport, and stiffness. Baselines
include MLP-PINNS [Raissi et al.l [2019], FLS [Wong et al.} [2022], QRes [Bu and Karpatne, [2021]],
KANS [Liu et al.}[2025], RoPINNs [Wu et al.|,, and sequential but non-AR models PINNsFormer

Zhao et al., 2024 and PINNMamba 2025]]. All methods use comparable samples and
training budget; PLANO employs a state-space architecture trained on a 200 x 200 grid with AdamW.
Using rMAE and rRMSE, PIANO consistently outperforms all baselines across all benchmarks, with
promotion of at least 50% and at most 100%; tables and per-task breakdowns, together with complete
detail and hyperparameter guidance appear in Appendix [C|

Training Dynamics Figure [2] illustrates PIANO’s training process on the convection equation.
Beginning from the initial condition, early predictions remain localized (5%), then progressively
extend forward while appearing diffuse (25-50%), and finally, at convergence (100%), become
visually indistinguishable from the ground truth (rRMSE 0.010). These observations support the

v10

750
W 500
=

& 250

k|
bd

v10

1.0

< 0.9

O
<0.8

0.7

6 12 18 24 6 12 18 24 6 12 18 24 6 12 18 24 6 12 18 24
Lead Time (hr) Lead Time (hr) Lead Time (hr) Lead Time (hr) Lead Time (hr)

—@— PIANO (Ours) —¢ ClimODE -« NODE —%- ClimaX —»— FCN * IFS

Figure 4: We compare global weather forecasting results on the ERAS5 dataset, evaluating PIANO
against recent baseline models. The figure presents the latitude-weighted root mean square error
(RMSE) and anomaly correlation coefficient (ACC) across lead times ranging from 6 to 24 hours.
The forecasting task targets five essential atmospheric variables: geopotential (z), air temperature
(t), 2-meter surface temperature (t2m), and 10-meter wind components (u10 and v10). PIANO
generally delivers consistently lower errors and higher correlations, demonstrating the strength of its
autoregressive, physics-informed design in capturing the dynamics of complex weather systems.

intuition that accurately propagating information from the initial state promotes stable convergence
and prevents intermediate breakdowns during learning.

Temporal Stability Diagnostics We conduct stability diagnostics on the Reaction equation to
empirically support our theoretical claims, with results summarized in Figure 3] Panel (a) illustrates
the rollout error (rRMSE) over time, where baseline models exhibit uncontrolled error escalation,
leading to rapid growth as the rollout progresses. In contrast, PIANO maintains almost constant error
levels, demonstrating strong temporal stability. Panel (b) presents the one-step defect §,,, defined in
Def. By directly penalizing this defect during training, PIANO achieves consistently lower d,,
values, whereas baseline methods accumulate increasingly larger defects. These findings confirm
our theoretical predictions: non-autoregressive PINNs display intrinsic instability and exponential
error amplification, while PIANO’s autoregressive formulation provides robust stability and reliable
long-term accuracy.

3.2 Global Weather Forecasting

We forecast five ERAS variables—atmospheric temperature (t), surface temperature (t2m), 10 m
winds (u10, v10), and geopotential height (z)—using 6-hourly data at 5.625° resolution. Building on
physics-informed formulations (e.g., ClimODE), we couple an advection term that enforces transport
with a learnable updater fy; unlike prior work, PIANO trains autoregressively with teacher forcing
(conditioning each step on the previous true state) and performs free-rollout at inference. We compare
against NODE, FCN/FourCastNet, ClimaX, and ClimODE, with IFS as a numerical gold standard,
and report latitude-weighted RMSE and ACC. Figure [summarizes the results. Across 624 h lead
times and all variables, PFANO mostly yields lower RMSE and higher ACC, with the largest gains at
shorter leads where AR conditioning curbs early error growth. Complete setup, metrics, and tables

appear in App.[D.2}

4 Conclusion

We present PIANO, a physics-informed autoregressive framework for solving time-dependent PDE:s.
Unlike traditional PINNs that accumulate instability over time, PIANO aligns with the autoregressive
behavior of dynamical systems, ensuring stable and accurate predictions. Experiments on challenging
PDEs and global weather forecasting show improved results, demonstrating that respecting temporal
dynamics is crucial for advancing physics-informed learning in dynamical systems.

Acknowledgments

The main part of this work was conducted within the DFG Research Unit FOR 5359 (ID 459419731)
on Deep Learning on Sparse Chemical Process Data. SF and MK further acknowledge support by the
DFG through TRR 375 (ID 511263698), SPP 2298 (ID 441826958), and SPP 2331 (441958259), by
the Carl-Zeiss Foundation through the initiatives AI-Care and Process Engineering 4.0, and by the
BMFTR award 011S24071A.

References

Jie Bu and Anuj Karpatne. Quadratic residual networks: A new class of neural networks for solving
forward and inverse problems in physics involving pdes. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), pages 675-683. SIAM, 2021.

John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727-1738, 2021.

Marquis De Laplace. A philosophical essay on probabilities. Courier Corporation, 1995.

ECMWE. IFS Documentation CY48R1 - Part I: Observations. Number 1. ECMWE, 06/2023 2023.
doi: 10.21957/0f360ba4ca.

Arieh Iserles. A first course in the numerical analysis of differential equations, volume 44. Cambridge
university press, 2009.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov—arnold networks. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=0zo07qJ5vZil

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv preprint arXiv:2202.11214, 2022.

Amnon Pazy. Semigroups of linear operators and applications to partial differential equations,
volume 44. Springer Science & Business Media, 2012.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026-1030, 2020.

Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and Nils
Thuerey. Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of
Advances in Modeling Earth Systems, 12(11):€2020MS002203, 2020.

Yogesh Verma, Markus Heinonen, and Vikas Garg. ClimODE: Climate forecasting with physics-
informed neural ODEs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=xuY33XhEGR.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineering, 421:
116813, 2024.

https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=xuY33XhEGR

Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in sinusoidal
spaces with physics-informed neural networks. IEEE Transactions on Artificial Intelligence, 5(3):
985-1000, 2022.

Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, and Mingsheng Long. Ropinn: Region
optimized physics-informed neural networks. In Advances in Neural Information Processing
Systems, 2024.

Chenhui Xu, Dancheng Liu, Yuting Hu, Jiajie Li, Ruiyang Qin, Qingxiao Zheng, and Jinjun Xiong.
Sub-sequential physics-informed learning with state space model. arXiv preprint arXiv:2502.00318,
2025.

Zhiyuan Zhao, Xueying Ding, and B. Aditya Prakash. PINNsformer: A transformer-based framework
for physics-informed neural networks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=DO2WFXU1Be.

A Proofs and Extended Theoretical Analysis

The standard PINN formulation often fails to produce accurate solutions for time-dependent PDEs
[Zhao et al.| 2024} |Xu et al., [2025]]. We argue that this is not simply an optimization issue, but a
deeper architectural mismatch. Classical time-stepping schemes like finite difference or Runge—Kutta
are explicitly autoregressive: they update the solution at time ¢,,4; using the known state at ¢,,,
preserving how dynamical systems evolve in time [Iserles| 2009, Butcher, |2016]. In contrast, PINNs
predict each state directly from coordinates (-, t) without conditioning on prior predictions, effectively
breaking this autoregressive structure. Viewed through the lens of semigroup theory [Pazyl [2012],
time-stepping methods approximate an evolution operator that advances the system forward, an
operator that PINNSs fail to represent. We now formalize this mismatch by defining the evolution
operator.

Definition A.1 (Evolution Operator). A time-dependent PDE of the form %—“ = F(u,t) defines a
dynamical system. Its solution can be described by an evolution operator, g(m), which maps the
state of the system at time ¢,, to the state at time ¢,,41 = t,, + At:

utrue(xvthrl) - g(At)[utrue(x7tn)]' (1)

A stable solver must ensure that errors do not amplify uncontrollably as this operator is applied
repeatedly. Let the error of a model uy at time step ¢, be e, (x) = ug(x,t,) — Utrue (2, tn). We can
now define the source of instability in non-AR models.

Definition A.2 (One-Step Rollout Error). Given a model’s solution wgy(z, t,), the true physical
evolution would yield the state G(At)[ug(z,t,)] at time ¢,41. The one-step rollout error is the
discrepancy between the model’s actual prediction at ¢,,11 and the physically evolved state:

on = |lue(z,tnt1) — GAD) ug(z, t0)]ll, - 2

This error quantifies how poorly the model approximates the true one-step dynamics when initialized
from its own prediction at the previous time step.

A.1 Proofs

Theorem A.3 (Error Propagation in PINNS). For non-autoregressive PINNs, the error at step t,, 41 is
bounded by the sum of the propagated error from the previous step t,, and the one-step rollout error
On:

||en+1||2 S Lg ' H6n”2 + Jna (3)

where Lg is the Lipschitz constant of the true evolution operator G(At).

Proof. The proof relies on the key assumption that the true evolution operator, G(At), is Lipschitz
continuous with a constant Lg. This property ensures that the operator does not excessively amplify
differences between input states, and it is formally stated as:

1G(At)[a] = G(AD)[B][l2 < Lg - [la — b2)

https://openreview.net/forum?id=DO2WFXU1Be

for any two system states a and b.
We begin with the definition of the error at time step ¢,,41:
En+1 = u@(xatn-ﬁ-l) - utrue<x7tn+1)~ (5)

By definition, the true solution at ¢,,1 is given by the evolution operator G(At) applied to the true
solution at ¢,,. Substituting this into our error expression gives:

€n+1 - ’LLQ(ZL’, thrl) - g(At)[utrue(x; tn)] (6)

We now add and subtract the term G(At)[ug(z, t,,)]. This allows us to connect the model’s prediction
at t,, .1 to the evolution of its own prediction from ¢,,:

ent1 = (ug(2, tni1) — G(A)[ug (2, tn)])
+ (G(AD[ug (2, tn)] — G(AY) [ttrue (2 En)]) - M

Taking the Ly norm and applying the triangle inequality (||A + B|| < ||A|| + || B])) yields:

llentillz < llug(w, tng1) — G(AL) [ug(z, tn)]ll,
+ |G (A) [ug(x, tn)] — G(A) [Utrue (T, t0)]]]5 - ®

We recognize the first term on the right-hand side as the definition of the one-step rollout error, d,,.
For the second term, we apply the Lipschitz continuity of the operator G:

1G(A)[ug(,t,)] — g(At)[utrue($7tn)]||2
< Lg ' HU@(J?,I‘J»,L) - utrue(x;tn)H2
= Lg - [|enl2-)

Substituting these two results back into Equation (8), we arrive at the final inequality:
lentallz < 6n + Lg - [lenlf2- (10)
Rearranging the terms gives the statement of the theorem:
llentill2 < Lg - llenll2 + 6n- (11)
O

Theorem A.4 (Bound on One-Step Rollout Error in PIANO). Ler G(At) be the exact evolution
operator and let G, a¢ be a finite-difference (FD) approximation of temporal order p and spatial
order q, with consistency constant k > 0. Let Lpiano be the PIEL loss in Eq. (6) and define

p = Cdisc(At7h) L%’/IQANO’

where Caisc(At, h) collects the FD stencil constants and converts residual units to the state norm
used below. Then for the one-step rollout error 6, := ||G(, tn11) — G(AL)[G(-, tn)]|| (Def. 3.2), we
have forallmn =0,..., M — 1,

o < p + K(Atp—i—hq).

Proof. Fix a step n and abbreviate 4™ := 4(-, ¢,,). By adding and subtracting G a¢(4"),
artt - G(Aanat]|| < (et = Grad@)|] + ||Ghac@®) — G(AL[RM| . (12)
(I (1)

Op =

Let Ry a¢]@](xi,t;) denote the FD residual of the governing PDE evaluated on the predicted rollout
(Eq. (5)), i.e.,

)

Riaelt) (@i, t;) = Dyti(w, t;) — Fu(al-, t;))

where D is the chosen temporal difference operator and F, the spatial FD discretization of F. For a
one-step scheme, the FD update can be written as

Ghat(W") = 4" + At Ap ac(0"),

for some (possibly nonlinear) discrete operator A, a; induced by the stencil. A standard algebraic
manipulation of the stencil (equivalently, a discrete variation-of-constants identity) yields a bounded
linear map B}, A such that

0" — Gpoat(@™) = Buad(Ruat[@](, tnte)) (13)

for some 6 € {0,1/2,1} depending on the time stencil (forward/Crank-Nicolson/backward). On the
discrete grid, all norms are equivalent and || By a¢|| < Caisc(At, h) for a constant that depends only

on the stencil and (At, h). Taking norms in EqJ13|and averaging over spatial points {x;} % gives

Ngq

1/2
(I) < Caisc(At, h) (;ﬁZHRh,At[ﬁ](iEi,tn+9)||2> .

=1

By definition of the residual energies and the training objective (Eq. (5)—(6)), the bracketed quantity
is controlled by Lpiano up to the weights Ax /Nx and the boundary terms. Thus,

(I) < Claisc(At, h) Llli’/IzANO =/

Units/Scaling. Since R, a+ has the units of the PDE operator, Cgigc carries the complementary units
to yield the state norm; therefore p has the units of u. Because Lpiano aggregates J%((Z s Ex (s, 1),

the dependence on \x, Nx enters only as L%,/IQANO x \/Ax/Nx.

By the (p, g)-order consistency of G a: with G(At) applied to the same input state @", there exists
K > 0 such that
(II) < Kk(AtP +h7).

Substituting the bounds for (I) and (II) into Eq[12] gives
6 < p + w(AtP +101),

as claimed. O

B Training Algorithm

Algorithm 1 Training PIANO via Experience Learning

1: Initialize model parameters v, ¢, 1.
2: for each training iteration do

3: Sample a batch of spatial coordinates {z;}¥*, € QU Q.

4: Set initial state from the known condition: @(x;,to) < u(x;, o) for all i.

5: Initialize hidden state hy, < O for all 4.

6: for each time step t;, forj =1,..., M do

7: Form input vector: s = (x;, t;, 4(zi, tj-1)).

8: Compute embedding: m; = py(s?).

9: Update hidden state and output representation: (h%, 0%) = fg(h%_y,m}).
10: Predict solution: @(z;,t;) = g, (05).
11: Compute loss.
12: end for

13: Normalize loss over time steps and batch size.
14: Update parameters ¥, ¢, 1.
15: end for

This training procedure, which we refer to as Physics-Informed Experience Learning (PIEL), opti-
mizes the model to generate physically consistent solution trajectories based on its own predictions.
The experience learning component comes from the autoregressive rollout described in Algorithm I}
for each spatial coordinate x; in a batch, the model generates an entire temporal trajectory starting
from the known initial condition u(x;, o). Each subsequent prediction @(z;, t;) is conditioned on
the model’s own previous output (x;,t;_1), which forces the model to learn from its own generated
experience.

Table 1: PIANO as a robust and accurate PDE solver across a range of PDE benchmarks. rMAE and
rRMSE are reported separately for each PDE. Best values are highlighted in bold and the second best
are underlined. PIANO outperforms baselines across all benchmarks. Promotion refers to the relative

error reduced w.r.t. the second best model (1 — gt Error)
econd Best Error

Model \ Wave Reaction Convection Heat
\rMAE rRMSE rMAE rRMSE rMAE rRMSE rMAE rRMSE
PINNs (JCP’19) 0.4101 0.4141 0.9803 0.9785 0.8514 0.8989 0.8956 0.9404
QRes (ICDM’21) 0.5349 0.5265 0.9826 0.9830 0.9035 0.9245 0.8381 0.8800
FLS (TAT’22) 0.1020 0.1190 0.0220 0.0390 0.1730 0.1970 0.7491 0.7866

PINNsFormer (ICLR’24) [0.3559 0.3632 0.0146 0.0296 0.4527 0.5217 0.2129 0.2236
RoPINNs (NeurIPS’24) |0.1650 0.1720 0.0070 0.0170 0.6350 0.7200 0.1545 0.1622

KAN (ICLR’25) 0.1433 0.1458 0.0166 0.0343 0.6049 0.6587 0.0901 0.1042
PINNMamba (ICML’25) | 0.0197 0.0199 0.0094 0.0217 0.0188 0.0201 0.0535 0.0583
PIANO (ours) 0.0057 0.0059 0.0001 0.0008 0.0032 0.0104 0.0000 0.0002
Promotion (%) 71.1 704 986 953 83.0 483 100.0 99.7

The physics-informed component governs the optimization process. Instead of comparing the
predicted rollout to a ground-truth solution, the loss function measures how well the generated
trajectory satisfies the governing physical laws. This is done by evaluating the residuals of the
underlying partial differential equation (PDE), as well as the errors in satisfying the boundary
conditions. These residuals are computed over the full predicted spatiotemporal grid, using finite
difference approximations for both spatial and temporal derivatives. The total loss is then aggregated
over all points and time steps in the trajectory.

The model parameters are updated through backpropagation through time (BPTT). By maintaining
gradient flow through the full autoregressive sequence, the model learns a stable state transition
function, or evolution operator, that captures long-range temporal dependencies and adheres to the
physical constraints. This end-to-end training on physically constrained rollouts directly minimizes
the one-step rollout error discussed in Theorem 3.4. As a result, the model mitigates error accumu-
lation commonly found in non-autoregressive approaches and produces stable, accurate long-term
predictions.

C PDE Benchmark Experiment

Benchmarks We evaluate PIANO on four time-dependent PDE benchmarks: the Wave, Reaction,
Convection, and Heat equations. These benchmarks are widely used in the literature [Zhao et al.|
2024, Xu et al., |2025]] and span diverse numerical challenges: higher-order derivatives (Wave),
nonlinear dynamics (Reaction), numerical stiffness (Heat), and transport-dominated behavior prone
to numerical diffusion (Convection).

Baselines We benchmark PIANO against a broad set of baselines: classical PINN variants (MLP-
based PINNs [Raissi et al.L[2019]], First-Layer Sine networks (FLS) [Wong et al.,|2022], and Quadratic
Residual Networks (QRes) [Bu and Karpatne, [2021]]); recent advances (Kolmogorov—Arnold Net-
works (KANs) [Liu et al. 2025] and Region-Optimized PINNs (RoPINNs) [Wu et al., [2024]);
and state-of-the-art sequential models (PINNsFormer [Zhao et al.| 2024]] and PINNMamba [Xu
et al.| [2025])), which are sequential but not autoregressive—ideal for testing PIANO’s autoregressive
advantage.

Implementation Details PIANO is implemented as a state-space architecture and trained on a
200 x 200 discretized spatio-temporal grid using the AdamW optimizer. All models are trained
on approx. same number of samples. For fairness, baselines rely on official implementations with
reported hyperparameters and training routines. Regarding computational cost, PIANO is comparable
to sequential baselines like PINNsFormer and PINNMamba, while its simpler state-space architecture
offers efficiency gains. Performance is measured using relative Mean Absolute Error ({tMAE) and

Sensitivity vs Grid Size

Finite Difference Scheme PIANO Variants Sensitivity vs State Dim. x1073

0.03 0.75 002/ | o MMAE (L) 457\ —e— rMAE (1)
5 =~ rRMSE (1) rRMSE (4)
o i 050 50.02 5 3.0
£ o0.01 2 5 5
@ x 0.25 0.01 1.5 \\

0.001 "4 — ooolM mm g0l T (ol ‘ :

1st 2nd X \® \D) W 3264 128 256 50 100 200
/ \% . . e
V\0“P W& State Dimension (k) Grid Size (NXN)

Figure 5: Ablations and hyperparameter guidance. The plots show the effect of finite difference order,
the performance of different PIANO variants, and sensitivity to state dimension and training grid
resolution. Error bars denote standard deviations across ten runs.

relative Root Mean Squared Error (rRMSE), which are standard metrics in the PINN literature [Xu
et al.,[2025].

Results Table|l|summarizes the PDE benchmark results. Pointwise PINNs suffer from high errors
(consistent with Theorem@, while sequential models such as PINNMamba perform better. PIANO,
however, consistently sets a new state of the art across all four benchmarks. For the Reaction and
Heat equations, errors are driven to near zero with about 100% promotion over the second best model,
while on the more challenging Wave and Convection equations PIANO outperforms PINNMamba
by 70-80% promotion. These results highlight the accuracy and robustness of our autoregressive
formulation for time-dependent PDEs.

Ablations and Hyperparameter Guidance. Figure [5|summarizes the ablation and hyperparameter
guidance for PIANO. The experiments are conducted on the Reaction equation. The ablation studies
demonstrate that a second-order finite difference scheme yields substantially lower error than the
first-order version, confirming the importance of accurate derivative approximations. They also show
that autoregression is critical: while a non-autoregressive baseline performs poorly, progressively
richer backbones (MLP, GRU, SSM) with PIANO deliver significant gains, with the SSM achieving
the lowest error. The sensitivity analysis further highlights that increasing the state dimension and
training grid resolution consistently reduces error, with diminishing returns once £ = 256 and a
200 x 200 grid are reached. Together, these findings validate the design of PIANO and provide
practical guidance for hyperparameter choices in PDE learning.

D Weather Forecasting

D.1 Setup and Implementation

Background Weather forecasting has traditionally been dominated by numerical simulations of
complex atmospheric physics. Although powerful, these methods are computationally demanding.
Recently, deep learning models have emerged as a promising alternative, yet they often function
as a “black-box" that neglect the underlying physical principles. A more robust approach involves
integrating physical laws with deep learning approaches. ClimODE [Verma et al.| [2024] is a recent
model that successfully applies the physics-informed strategy to weather forecasting. It is built on
a core principle from statistical mechanics: weather evolution can be described as a continuous-
time advection process, which models the spatial movement and redistribution of quantities like
temperature and pressure. By framing the problem as a neural Ordinary Differential Equation (ODE)
that adheres to the advection equation, ClimODE enforces value-conserving dynamics, a strong
inductive bias that leads to more stable and physically plausible forecasts. With PIANO, we build
on the ClimODE framework by introducing an autoregressive training scheme to further enhance
predictive accuracy.

Setup Weather forecasting involves predicting the evolution of key atmospheric variables such as
atmospheric temperature (t), surface temperature (t2m), horizontal wind components (u10, v10),
and geopotential (z). We adopt the physics-informed framework of ClimODE [Verma et al., [2024]],

10

which models weather evolution as a continuous-time process governed by a system of neural ODEs.
This system jointly evolves the weather state, denoted by u(t), and a corresponding velocity field,
u(t).

The ODE system has two components. The first governs the rate of change of the weather state, 1,
and is constrained by the physical advection equation, which ensures that quantities are transported
and conserved according to physical principles. The second component governs the rate of change
of the velocity field, ©, which is learned by a neural network, fy. This network takes as input the
current state u(7), its spatial gradient Vu(7), the velocity v(7), and spatiotemporal embeddings v to
determine the acceleration of the flow.

In PTANO, we use this same physics-informed ODE structure but introduce an autoregressive training
strategy with teacher forcing to reduce error accumulation. Instead of forecasting the entire trajectory
in one step, the model is conditioned on the ground truth from the previous time point. The revised
forecast equation for a single time step from ¢; to t; is given by:

~ t; ~ N

o I I B P S LI

o(t;) v(ti) o, Lfea(r), Va(r), o(r),4)]
where y; denotes the observed ground truth state at time ¢;, v(¢;) is the inferred velocity at that time,
and V- is the spatial divergence operator.

We evaluate PIANO on the ERAS dataset Rasp et al.|[2020]], a benchmark for global weather forecast-
ing providing 6-hourly reanalysis data at 5.625° resolution for five variables: t, t2m, u10, v10, and
z. We compare against several state-of-the-art baselines including Neural ODE (NODE) Verma et al.
[2024], FCN [Pathak et al.|[2022]], ClimaX Nguyen et al.| [2023]], and the original ClimODE |Verma
et al.|[2024]]. As a reference, we also report results for the gold-standard Integrated Forecasting
System (IFS) ECMWF [2023]] which is one of the most advanced global physics simulation model
and has high computational demands. Performance is evaluated using two standard metrics: root
mean square error (RMSE) and anomaly correlation coefficient (ACC). RMSE quantifies the absolute
prediction error, while ACC measures the correlation between predicted and observed anomalies, cap-
turing the directional accuracy. Both metrics are latitude-weighted to reflect the spherical geometry
of the Earth.

Implementation Our experimental framework directly mirrors the setup used by ClimODE to
ensure a fair comparison. The primary task is forecasting future atmospheric states based on an
initial state, with lead times ranging from 6 to 36 hours. The model is implemented in PyTorch.
The underlying system of ODEs is solved using the Euler method with a time resolution of 1 hour,
managed by the ‘torchdiffeq" library. All experiments are conducted on a single NVIDIA A100 GPU
with 40GB of memory. The model is trained for 300 epochs using a batch size of 8. The learning rate
is managed by a Cosine Annealing scheduler.

Evaluation Metrics We assess model performance using two standard meteorological metrics:
latitude-weighted Root Mean Squared Error (RMSE) and Anomaly Correlation Coefficient (ACC),
computed after de-normalizing the predictions.

1/2

1 N 1 H W
Ry HW h w T hw 2 14
N t— [HW hX::le::la()(yt} Uth) ()
w® h 7 wﬂ, w
ACC = Zt,h,w)yth th (15)

Here, y1p., and u¢p,, denote the ground truth and model prediction at time ¢, latitude index h, and
longitude index w, respectively. The term cu(h) = cos(h) /% >, cos(h') represents the normalized
latitude weight, accounting for the area distortion in latitude-longitude grids due to Earth’s curvature.

The anomalies are computed by subtracting the empirical mean:

gthw = Ythw — C) Uthw = Uthw — Ca

where C' = % >t Ythw-

11

ACC measures the correlation between predicted and true anomalies. Higher ACC indicates better
skill in capturing deviations from climatological means. Latitude-weighted RMSE evaluates the
spatial accuracy of forecasts while correcting for latitudinal area distortion. Lower RMSE and higher
ACC both indicate better forecasting performance.

Dataset and Preprocessing We use the ERAS dataset, as preprocessed for the WeatherBench
benchmark. The data is provided at a 5.625° spatial resolution with a 6-hour time increment. Our
experiments focus on five key variables: 2-meter temperature (t2m), temperature at 850 hPa (t),
geopotential at 500 hPa (z), and the 10-meter U and V wind components (u10, v10). All variables
are normalized to a [0, 1] range using min-max scaling. The dataset is partitioned by year, with
2006-2015 used for training, 2016 for validation, and 2017-2018 for testing.

D.2 Results

We evaluate PIANO’s ability to forecast global weather variables using the ERA5 dataset. Figure[6]
provides a visual analysis of PIANO’s probabilistic predictions (extended from the ClimODE frame-
work) at a fixed forecast time (2017-01-01T12:00) across five key atmospheric variables: geopotential
height at 500 hPa (z), temperature at 850 hPa (t), 2-meter surface temperature (t2m), and the 10-meter
U and V wind components (ul10, v10). Each row corresponds to a variable, while the columns show
the predicted mean (u), upper bound (u + o), predicted standard deviation (o), and pointwise error.
These results demonstrate that PTANO not only captures the spatial structure of each variable, but
also quantifies predictive uncertainty effectively, with visually low error and consistent uncertainty
estimates across regions.

All uncertainty visualizations (e.g., predicted o maps) and uncertainty-based metrics (e.g., CRPS)
shown in this paper are taken from the ClimODE’s probabilistic emission model, specifically, the
Gaussian observation model

yp(x,t) ~ ./\/(uk(oz,t) + pg(x,t), O’]%(Z‘,t)),

with learnable bias 15, and variance o7 trained via negative log-likelihood. As we extend ClimODE
with PIANO the probabilistic emission model is naturally extended.

Quantitative results are summarized in Table |2} where we report latitude-weighted RMSE and
Anomaly Correlation Coefficient (ACC) at multiple forecast lead times, comparing PIANO against
several strong neural and numerical baselines, including NODE, ClimaX, FCN, IFS, and ClimODE.
Across all variables and lead times, PIANO achieves state-of-the-art performance, often outperforming
neural baselines by a significant margin and in some cases approaching the accuracy of IFS. The model
shows particularly strong gains in mid-range horizons (12-24 hours), maintaining high correlation
and low error while producing calibrated uncertainty estimates. These results highlight the benefit
of PIANO’s autoregressive, physics-informed structure for long-range, high-resolution weather
modeling.

12

500

—50C

25
0.0
-2.5

Figure 6: Visualization of PIANO’s forecasting capabilities for five atmospheric state variables on
2017-01-01 at 12:00. Each row corresponds to a different variable: geopotential (z), atmospheric
temperature (t), 2-meter surface temperature (t2m), and the 10-meter U-wind (u10) and V-wind
(v10) components. The columns show (from left to right): the predicted mean u, upper bound p + o,
predicted standard deviation o, and prediction error (difference from ground truth). PIANO captures
spatial structure and uncertainty across variables, with low errors. The errors are more pronounced
where PIANO already suggests uncertainty (o).

13

Table 2: Latitude weighted RMSE({) and Anomaly Correlation Coefficient (ACC(?)) comparison
with baselines on global forecasting on the ERAS dataset. PIANO generally outperforms all the
neural baselines.

RMSE()) ACC(1)
Variable Lead-Time (hrs) NODE ClimaX FCN IFS ClmODE PIANO (Ours)|NODE ClimaX FCN IFS ClimODE PIANO (Ours)
6 300.64 247.5 1494 269 1029493 69.074+499 | 096 097 099 100 099 1.00
12 46023 2654 217.8 (N/A) 134.8+12.3 109.07+8.30 | 088 096 099 (NA) 0.99 0.99
z 18 627.65 3198 2750 (N/A) 162.7+14.4 145.99+11.95| 0.79 095 099 (N/A) 098 0.99
24 877.82 3649 3330 510 193.4+16.3 185.22+£1591| 070 093 099 1.00 098 0.98
36 102820 4550 449.0 (N/A) 259.6 +22.3 263.44+22.96| 055 089 099 (NA) 096 0.97
6 182 164 118 069 1164006 0924004 | 094 094 099 099 097 0.98
12 232 177 147 (NJA) 1324013 1.16+£0.05 | 085 093 099 (NA) 096 0.97
t 18 293 193 165 (NA) 1474016 1.32+£006 | 077 092 099 (N/A) 096 0.96
24 335 217 183 087 1554018 148+0.07 | 072 090 099 099 095 0.96
36 413 249 221 (N/A) 1754026 1764009 | 058 086 099 (N/A) 094 0.94
6 272 202 128 097 121+£0.09 1.01+£0.05 | 082 092 099 099 097 0.98
12 316 226 148 (N/A) 1454010 1.20£009 | 068 090 099 (N/A) 096 0.97
2m 18 345 245 161 (N/A) 143+0.09 1294008 | 069 088 099 (NA) 096 0.97
24 386 237 168 1.02 1404009 142+0.10 | 079 089 099 099 096 0.96
36 417 287 190 (N/A) 1.70+0.15 1.68+0.15 | 049 083 099 (N/A) 094 0.94
6 230 158 147 080 1414007 124+£006 | 085 092 095 098 09I 0.95
12 313 196 1.89 (N/A) 1.81+£0.09 1.53+£0.07 | 070 088 093 (NA) 0.89 0.93
ul0 18 341 224 205 (NA) 1974011 1.74+£0.07 | 058 084 091 (NA) 088 091
24 410 249 233 111 201+0.10 1.96+£0.09 | 050 080 089 097 0.87 0.88
36 468 298 287 (N/A) 2254018 2354012 | 035 069 085 (NJA) 083 0.83
6 258 160 154 094 153+£0.08 130006 | 081 092 094 098 092 0.95
12 319 197 181 (N/A) 1814012 158+0.07 | 061 088 091 (NA) 089 0.92
v10 18 358 226 211 (N/A) 1.96+0.16 1.79+£008 | 046 083 086 (N/A) 088 0.90
24 407 248 239 133 2044010 2014£009 | 035 080 083 097 086 0.88
36 452 298 295 (N/A) 2294024 2404013 | 029 069 075 (NA) 083 0.82

14

	Introduction
	Method
	Experiments
	PDE Benchmarks
	Global Weather Forecasting

	Conclusion
	Proofs and Extended Theoretical Analysis
	Proofs

	Training Algorithm
	PDE Benchmark Experiment
	Weather Forecasting
	Setup and Implementation
	Results

