

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERCEPT CANCER: CANCER PRE-SCREENING WITH LARGE SCALE HEALTHCARE FOUNDATION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Cancer screening, leading to early detection, saves lives. Unfortunately, existing screening techniques require expensive and intrusive medical procedures, not globally available, resulting in too many lost would-be-saved lives. We present CATCH-FM, CATch Cancer early with Healthcare Foundation Models, a cancer pre-screening methodology that identifies high-risk patients for further screening solely based on their historical medical records. With millions of electronic healthcare records (EHR), we establish the scaling law of EHR foundation models pretrained on medical code sequences, pretrain compute-optimal foundation models of up to 2.4 billion parameters, and finetune them on clinician-curated cancer risk prediction cohorts. In our retrospective evaluation comprising of thirty thousand patients, CATCH-FM achieves strong efficacy, with 50% sensitivity in predicting first cancer risks at 99% specificity cutoff, and outperforming feature-based tree models and both general and medical LLMs by up to 20% AUPRC. Despite significant demographic, healthcare system, and EHR coding differences, CATCH-FM achieves state-of-the-art pancreatic cancer risk prediction on the EHRSHOT few-shot leaderboard, outperforming EHR foundation models pretrained using on-site patient data. Our analysis demonstrates the robustness of CATCH-FM in various patient distributions, the benefits of operating in the ICD code space, and its ability to capture non-trivial cancer risk factors. Our code will be open-sourced.

1 INTRODUCTION

Early cancer detection by cancer screening is one of the most effective ways to combat cancer (Siegel et al., 2024). Cancers detected at an early stage are treated with significantly improved patient outcomes (Haue et al., 2024; Kim et al., 2024). Recent medical advancements also significantly improved the curative rates for cancers detected at early stages (Ju et al., 2024; Maru & Jaffee, 2024; Springfield et al., 2023; Thiele et al., 2024). Routine screening with follow-up monitoring of high cancer risk patients is standard practice, enabling timely intervention and effective treatments (Altmayer et al., 2024; Gyawali & Booth, 2024; Rubinstein et al., 2024).

Despite its benefits, cancer screening remains underutilized (Zhang et al., 2022), especially in populations with limited healthcare resources (Xu et al., 2024b) due to reliance on invasive, resource-intensive procedures like medical imaging (Rohatgi et al., 2020; Washington & Deville, 2020). Screening is more common for cancers with clear risk factors, like breast and colorectal (Siegel et al., 2025), while cancers without early symptoms, such as pancreatic cancer, often progress silently and are detected late, with survival durations under one year (Blackford et al., 2024).

We present CATCH-FM: CATch Cancer early with Healthcare Foundation Models, a cancer pre-screening tool that identifies high-risk patients using only their medical history. CATCH-FM is pretrained on large-scale longitudinal EHR data and finetuned on clinician-curated cancer cohorts. It directly operates on precise medical codes (ICD), learning general medical patterns through next-code prediction and finetuned to capture cancer risk signals reflected in patient medical history (Lee et al., 2021; 2022; Phan et al., 2020). Once trained, CATCH-FM can be deployed in EHR systems to predict cancer risk at low cost, supporting healthcare providers in deciding when and whom to screen.

To facilitate the study of EHR foundation models in cancer pre-screening, we build NHIRD-Cancer, a cancer risk prediction benchmark, by sampling more than three million patients from the Taiwanese

National Health Insurance Research Database (NHIRD) (Hsieh et al., 2019), a government de-identified and research-accessible EHR database. We allocate three million patients for pretraining, consisting of billions of medical events spanning two decades, and the remainder for finetuning and evaluation. We focus on three cancers based on their critical needs for early detection: pancreatic, liver, and lung cancers (Kim et al., 2024; Kukhareva et al., 2024; Thiele et al., 2024), and curate clinically reliable cancer cohorts after matching cancer patients with control-to-case groups.

With billions of medical events available, we examine how compute budget (FLOPs), model size, and pretraining tokens affect performance. Our findings establish an EHR foundation model scaling law and confirm the benefit of large-scale pretraining on EHR data. Accordingly, we pretrain compute-optimal CATCH-FM models up to 2.4b parameters. When finetuned and evaluated for cancer risk prediction on NHIRD-Cancer, CATCH-FM consistently outperforms feature-based tree models and language models trained on the same data. Without loss of flexibility, it demonstrates strong predictive efficacy, achieving over 50% and 70% sensitivity in the *first* and *subsequent* target cancer cohorts at a 99% specificity cutoff, and reaching 50% and 80% AUPRC, respectively, offering strong reassurance when ruling out cancer (Grimes & Schulz, 2005).

On the pancreatic cancer risk prediction task from Stanford Medicine EHRSHOT benchmark (Wornow et al., 2023), CATCH-FM outperforms the prior state-of-the-art EHR foundation model, CLMBR (Wornow et al., 2023), pretrained on millions of on-site patient records, while CATCH-FM is trained on data from drastically different populations, disease prevalence, and coding systems (ICD vs. SNOMED). Our analyses further demonstrate the robustness of CATCH-FM across different patient cohorts, preexisting conditions, and pre-screening configurations. Our interpretability analyses following the method of Gao et al. (2024) reveal that CATCH-FM identified not only known cancer risk factors but also non-trivial markers discovered in recent medical research.

We view CATCH-FM as an effective, low-risk, and widely performable pre-screening tool that can assist healthcare providers make informed, effective, and efficient cancer screening decisions. To facilitate future research and development, our data curation and modeling code will be open-sourced under MIT license. The NHIRD-Cancer benchmark and trained model checkpoints will be released under the same license as NHIRD, enabling reproducibility and future research within the necessary constraints of privacy and regulations on patient data.

2 RELATED WORK

Cancer screening significantly improves prognosis and patient outcomes (Kim et al., 2024; Kukhareva et al., 2024; Thiele et al., 2024). Advancements in cancer treatment have made cancers more treatable and potentially curable, if they are detected in early stages (Chu et al., 2024; Hu et al., 2024; Kim et al., 2024; Liu et al., 2024). Recent advances in AI-powered medical imaging, like CT scans with multimodal models, have enhanced cancer screening accuracy, sometimes exceeding human-level sensitivity (Cao et al., 2023; Chen et al., 2023; Wang et al., 2024b; Xu et al., 2024a). The challenge is that medical imaging is resource-intensive, inaccessible for under-served populations, and not widely performable (Elmohr et al., 2024; Truhn et al., 2024; Vrudhula et al., 2024; Waite et al., 2021).

Using electronic health records (EHR) to assess cancer risk is a promising path to improve cancer screening effectiveness and efficiency, i.e., by identifying patients with high cancer risk for healthcare professionals to make informed cancer screening decisions (Lee et al., 2021; 2022). Recent approaches have made attempts using feature-based machine learning models on large, task-specific datasets to detect cancer risks, and have shown the possibility of capturing cancer risk signals in EHR (Peduzzi et al., 2024; Placido et al., 2023b).

Large language models pretrained on medical corpora are effective on text-oriented medical tasks (Clusmann et al., 2023) such as medical question answering (Singhal et al., 2025), clinical document summarization (Liu et al., 2025), and radiology report generation (Sun et al., 2024b). Recent research has also pretrained foundation models on structured EHR data (Choi et al., 2016; Gao et al., 2020; Yao et al., 2019), and explored their utilities in various clinical tasks (Savcisen et al., 2024; Sun et al., 2024a; Yang et al., 2023b). A challenge for EHR foundation models is that many EHR datasets only cover a slice of patients’ healthcare records (Faltyś et al., 2021; Johnson et al., 2016; Pollard et al., 2018), e.g., MIMIC-IV mainly focuses on emergency departments and ICU encounters (Johnson et al., 2016). Foundation models pretrained on EHR slices are more effective

108 Table 1: Statistics of our NHIRD subset.
109

Item	Count
# of patients	3,989,369
# of visits (In/out-patients, pharmacy)	1,441,453,071
# of diagnosis (ICD9 codes)	1,491,556,480
# of procedures (Surgeries)	46,282,990
# of treatments (Non drug treatments)	1,729,212,760
# of medications (Drug prescriptions)	2,770,631,039
# of unique medical codes	185,138
# of tokens for all codes	7,923,387,479
# of patients for pretraining (80%)	3,191,495
# of patients for finetuning (20%)	797,874
Avg. # of visits per patient	271

110
111 in corresponding prediction tasks such as emergency department triage (Sun et al., 2024a) and ICU
112 readmission risk (Jiang et al., 2023).
113

114 Many tasks, like cancer risk prediction, require longitudinal EHR data to capture full patient history.
115 Foresight uses two decades of data to pretrain Transformers for biomedical forecasting (Kralje-
116 vic et al., 2022). MOTOR trains a 143M-parameter model on time-to-event tasks using 2.7M
117 patient records from 2014–2022, effectively predicting diagnosis time (Steinberg et al., 2023).
118 CLMBR, a 141M-parameter Transformer, is pretrained on 2.57M Stanford Medicine records over
119 three decades (Wornow et al., 2023), with 6.7K records released in the EHRSHOT benchmark for 15
120 few-shot prediction tasks (Wornow et al., 2023).
121

122 Due to privacy and ethical constraints, large-scale longitudinal EHR data are hard to release publicly.
123 Most EHR foundation models are pretrained on one or two hospital sites and are limited in scale
124 to around 100M parameters (Steinberg et al., 2023; Wornow et al., 2023). Their advantage over
125 feature-based models in cancer risk prediction remains unclear, for instance, while CLMBR performs
126 well on procedure outcomes and lab predictions, it fails to outperform feature-based models in
127 pancreatic cancer prediction on EHRSHOT (Wornow et al., 2023).
128

135 3 NHIRD-CANCER BENCHMARK

136 Initially, we overview our source data, NHIRD, and then the curation process of NHIRD-Cancer.
137

138 3.1 NHIRD PRELIMINARY

139 **Overview.** The National Health Insurance Research Database (NHIRD) include electronic health
140 record (EHR) of over 99.99% of Taiwan population. It includes decades of de-identified records from
141 all healthcare encounters under the National Health Insurance program, with diagnoses, prescriptions,
142 and procedures (Hsieh et al., 2019). Coding standards are applied uniformly across providers,
143 ensuring consistency and correctness. A sample patient record is shown in Appendix Figure 6b.
144

145 **Availability.** The sensitivity of longitudinal EHR data makes large-scale public access challeng-
146 ing (Guo et al., 2023). Among existing longitudinal EHRs (Kraljevic et al., 2022; Steinberg et al.,
147 2023; Wornow et al., 2023), NHIRD is among the most accessible for open research. Eligible
148 institutions in Taiwan and their international collaborators can access NHIRD with IRB approval or
149 exemption under standardized protocols. Access is regulated by the Ministry of Health and Welfare
150 to ensure strong privacy protections (Hsieh et al., 2019; Lin et al., 2018; Sung et al., 2020b). See
151 Appendices A and B for details on de-identification, data quality, and access to NHIRD.
152

153 3.2 NHIRD-CANCER BENCHMARK CURATION

154 Our cancer screening benchmark is curated collaboratively with clinicians, following their guidance
155 in the selection of positive group and cohort control-case group.
156

157 **Data Statistics.** We accessed a subset of NHIRD via collaboration with a Taiwanese medical school,
158 with IRB exemption, as the study uses anonymized, non-human-subjects data. The dataset includes
159 3+ million patients from 1996–2013, covering 1.4 billion visits with diagnoses, treatments, and medi-
160 cations coded in ICD-9 (CDC). It provides 15+ years of physician-confirmed, government-validated
161 history and over 8 billion medical codes. Summary statistics are in Table 1, with preprocessing and

108 Table 2: Statistics of *first* and *subsequent* target
109 cancer screening benchmark.
110

	Pancreatic	Liver	Lung
<i>First</i> Target Cancer Cohort			
Total	285,097	266,563	277,943
Positive	4,520	5,092	3,985
Negative	280,577	261,471	273,958
Pos./Neg. Ratio	1.61%	1.95%	1.45%
<i>Subsequent</i> Target Cancer Cohort			
Total	277,381	265,066	263,662
Positive	7,381	5,835	4,648
Negative	270,000	259,231	259,014
Pos./Neg. Ratio	2.73%	2.25%	1.79%

162 additional details in Appendix A. Our subset aligns with full NHIRD averages (18 vs. 16.5 visits
 163 per patient over 15 years) and is comparable in scale to the 3.67M-patient records from Stanford
 164 medicine used in CLMBR (Wornow et al., 2023), which is not publicly available.

165 **Targeted Cancers.** We focus on pancreatic, liver, and lung cancers, which have high mortality rates
 166 and increased risk of metastatic cancer (De Visser & Joyce, 2023; Gupta & Massagué, 2006; Ji et al.,
 167 2023) where early detection offers substantial benefit (Kukhareva et al., 2024; Thiele et al., 2024;
 168 Blackford et al., 2024; Haue et al., 2024). The screening task is a binary classification: predicting
 169 whether a patient will later develop the target cancer. As suggested by clinicians, we focus on
 170 predicting target cancer *one year* after a clinical visit, enabling early intervention for proactive care.
 171 We set the available medical history per patient to be five years, following clinical standards. We
 172 explicitly split the benchmark into *first* target cancer (patients with no prior cancer history) and
 173 *subsequent* target cancer (patients with a history of other cancers but no prior target cancer) cohorts,
 174 and conduct experiments on models’ efficacy on both scenarios.

175 **Case and Control Group.** Guided by clinicians, we rigorously follow the standard case-control
 176 study methodology and previous cancer screening studies on NHIRD (Phan et al., 2020; Lee et al.,
 177 2021; 2022) to create case-control dataset. We use the first occurrence of target cancer type as the
 178 positive case. The (negative) control group includes patients with no cancer diagnoses, ensuring a
 179 clear distinction between cases and controls, and are matched with the case group as follows.

- 180 1. Patient Demographic Matching: Control patients are matched to case patients based on age and
 181 gender, to minimize confounding factors from demographics.
- 182 2. Relative Duration Matching: Control patients are then filtered to have clinical visits on the same
 183 index date as the case patient’s diagnosis date, ensuring aligned medical timelines. They are also
 184 matched with a comparable length of medical history up to the index date.
- 185 3. Cumulative Duration Matching: Finally, controls are matched to case patients with the same total
 186 duration of lifetime medical history.

187 Our case-control matching goes beyond demographics by incorporating history length and timing,
 188 aligning patients more closely so differences reflect cancer status and enhancing validity.

189 **NHIRD-Forward.** We further collect an external dataset, referred to as NHIRD-Forward, from
 190 a different sample of the healthcare system at a distinct timeline from 2016-2021, 3 years after
 191 our NHIRD samples. The hospital only provided *first* liver and lung cancer cohorts for testing. It
 192 follows the same NHIRD format while representing a different patient cohort with no overlap to
 193 NHIRD-Cancer, and is exclusively used to evaluate zero-shot generalization.

194 **Dataset Processing.** We use three-digit ICD-9 codes *157*, *155* and *162* to define pancreatic, liver,
 195 and lung cancers, respectively. Control patients must not have cancer-related codes from *140*–*239*
 196 (top level of Neoplasms). To support broader cancer types and maximize early detection (Chen et al.,
 197 2020), we use top-level ICD codes to capture more cases. Table 2 lists benchmark statistics. All
 198 cancer diagnoses are confirmed by licensed physicians and validated by the government. More details
 199 in Appendix A.

200 4 METHODS

201 This section presents the model, training, and inference of CATCH-FM.

202 4.1 MODEL

203 Figure 1 illustrates the model setup of CATCH-FM. It represents the healthcare record of each patient
 204 as a medical code sequence and models them by a decoder-only transformer.

205 **Patient Representation.** In longitudinal structured EHR databases, the patient records are often
 206 represented by a coding system, for example, ICD (CDC) or SNOMED (Cornet & de Keizer, 2008),
 207 using a unique ID to encode each specific piece of information. A typical patient record can start
 208 with their demographic information, such as age c_{age} and gender c_{gender} , followed by a sequence of n
 209 chronologically ordered visits, v_1, v_2, \dots, v_n . Each visit v_i consists of m medical events, $c_i^1, c_i^2, \dots, c_i^m$,
 210 covering diagnoses, medications, procedures, and other clinical events.

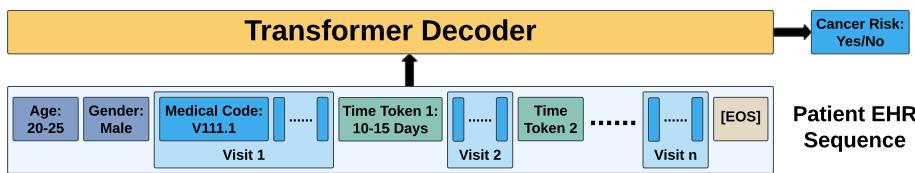


Figure 1: An example input sequence for a patient record and the architecture of CATCH-FM.

Specifically, CATCH-FM represents each patient’s EHR token sequence \mathbf{x} as,

$$[c_{\text{age}}, c_{\text{gender}}, v_1, t_1, v_2, \dots, v_{n-1}, t_{n-1}, v_n, [\text{EOS}]]; \quad v_n = [c_n^1, c_n^2, \dots, c_n^m]. \quad (1)$$

The demographic tokens c_{age} is discretized into predefined categorical ranges and gender c_{gender} is assigned as a distinct token. Each medical event code c is assigned a unique token. Time intervals between consecutive visits are captured using time tokens t , which are also discretized into predefined categories to encode temporal information. A special token, $[\text{EOS}]$ marks the end of the record.

Though each ID can be mapped into the language space, for example, to their names and descriptions, CATCH-FM directly operates in the ID space which is more compact—each event is encoded by one token—and precise without ambiguity.

Architecture. CATCH-FM uses the standard decoder-only transformer architecture G_θ on top of the patient’s EHR token sequence \mathbf{x} . We use rotary positional embeddings (RoPE) (Su et al., 2023) to encode positional information for visits:

$$\text{RoPE}(\mathbf{x}_i, p_i) = \mathbf{h}_i \cdot \cos(\theta(p_i)) + \mathbf{h}_{i\perp} \cdot \sin(\theta(p_i)). \quad (2)$$

It assigns the same absolute position p_i (i.e., replacing sequential positions like 0,1,2,3... with 0,0,1,1...) to event tokens \mathbf{x}_i from the same visit. This allows the model to capture the relationships between events within and across visits.

4.2 PRETRAINING, FINETUNING, AND INFERENCE

CATCH-FM employs the standard pretraining, finetuning, and inference pipeline.

Pretraining. We pretrain CATCH-FM G_θ from scratch on our healthcare record pretraining dataset, using the standard autoregressive next-token prediction objective:

$$\min_{\theta} \mathcal{L}_{\text{LM}}, \quad \mathcal{L}_{\text{LM}} = -\frac{1}{n} \sum_{j=1}^n \log f_{\theta}(x_j | \mathbf{x}_{<j}), \quad f_{\theta}(x_j | \mathbf{x}_{<j}) = \text{Softmax}(\mathbf{E}\mathbf{h}_j). \quad (3)$$

The next code probability $f_{\theta}(\cdot)$ is computed on token embeddings \mathbf{E} and hidden states \mathbf{h} from G_θ . Pretraining on large scale patient record with autoregressive language modeling task enables CATCH-FM to capture the complex medical patterns in patient health trajectories, for example, associations of medical events and potential risk factors of diseases.

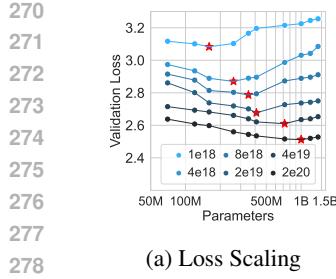
Finetuning. For the cancer prediction task, we employs supervised fine-tuning on the pretrained CATCH-FM G_θ . It uses cross-entropy loss to learn whether a patient will be diagnosed as a target cancer outcome y .

$$\min_{\theta, \phi} \mathcal{L}_{\text{SFT}}, \quad \mathcal{L}_{\text{SFT}} = -\log f_{\phi}(y | \mathbf{x}_{[\text{EOS}]}) , \quad f_{\phi}(y | \mathbf{x}_{[\text{EOS}]}) = \text{Softmax}(\mathbf{W}\mathbf{h}_{[\text{EOS}]} + \mathbf{b}). \quad (4)$$

The learnable parameters include θ in the foundation model, and \mathbf{W} and \mathbf{b} from a linear prediction layer. Finetuning makes CATCH-FM specialized for cancer risk prediction by capturing risk factors from medical histories while leveraging general medical knowledge learned from pretraining.

Inference. The inference of CATCH-FM is to take a patient’s medical history from their EHR record, run a forward pass of the pretrained and finetuned CATCH-FM instances, and predict the cancer risk of the patient. The inference is efficient as only one prediction token is needed per patient.

The sole requirement of patient history makes CATCH-FM a nature fit for cancer prescreening. Healthcare providers can deploy CATCH-FM on a large amount of patient EHR data. The predicted high-risk patients can then be further evaluated by professionals to determine who and when to undergo cancer screening. An accurate prescreening thus effectively triages patients, improving the efficiency and efficacy of cancer screening. It can potentially increase the cancer screening rate by providing decision evidences for healthcare professionals and raise awareness from patients.



279
280
281

Figure 2: Scaling Law of CATCH-FM, including loss IsoFLOPs, estimated FLOP-optimal parameters and pretraining tokens.

Table 3: Compute-optimal CATCH-FM instances pre-trained with variant FLOPs, and their estimated GPU hours in typical A100 machines.

FLOPs	Parameters	A100 Hours
1e18	160m	~16
4e18	260m	~64
2e19	410m	~128
4e19	720m	~256
2e20	1b	~1280

5 EXPERIMENTAL METHODOLOGIES

285
286
287
288
289

Dataset. We use the NHIRD-Cancer benchmark described in Sec. 3.2 for the pretraining, finetuning, and in-domain evaluation. We randomly partition the dataset, allocating 80% for pretraining and 20% for cancer screening benchmarks, ensuring no overlap between them. Each benchmark is further split into 80%/10%/10% for train/valid/test, using stratified sampling to maintain consistent class distributions for *first* and *subsequent* target cancer cohorts.

290
291
292
293
294
295
296
297
298

To evaluate model generalization, We use NHIRD-Forward (Sec. 3.2) to assess zero-shot generalization where all patient cohort are used for evaluation. In addition, we use the EHRSHOT benchmark (Wornow et al., 2023), containing 6,739 Stanford Medicine patients (1990–2023), primarily coded in SNOMED, CPT, and RxNorm. It introduces significant distribution shifts from NHIRD: different healthcare systems, different medical codings, and different populations with different cancer prevalence. We use EHRSHOT’s official pancreatic cancer risk prediction task following their few-shot setting (1–128 positives). It is the only available cancer risk prediction task. We transfer EHRSHOT patients to NHIRD by exact code matching when possible and cosine-similarity embedding soft matching (threshold 0.98) for unmapped codes. Appendix C details the process.

299
300
301
302
303
304
305
306
307

Evaluation metrics. NHIRD-Cancer evaluations use AUROC, AUPRC, specificity, and sensitivity, with the first two serving as the main metrics. AUROC measures the model’s ability to discriminate between patients with and without cancer across all decision thresholds. AUPRC captures the precision–recall trade-off in imbalanced tasks in cancer risk prediction. Specificity, the ratio of true negatives to all negatives, reflects reliability in identifying low-risk patients. Sensitivity, the ratio of true positives to all positives, reflects how well the model flags cancer-risk patients. When possible, we evaluate sensitivity at 99% specificity, a common (pre)screening threshold (Cao et al., 2023; Halner et al., 2023; Jopek et al., 2025), and a clinician-defined standard to reduce false positives, ensuring clinical trust.

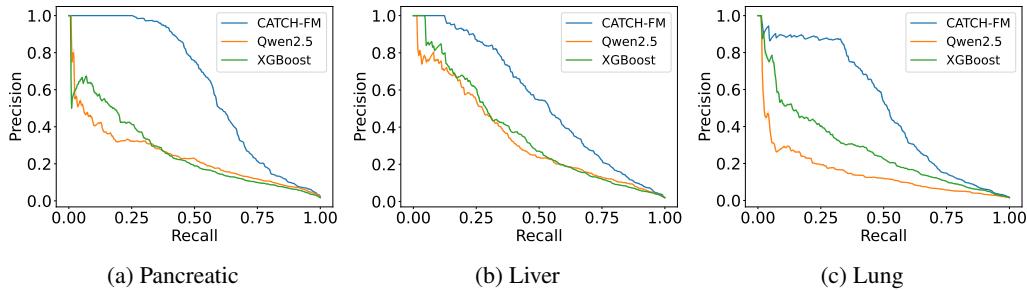
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Baselines. We include standard tree-based models with bag-of-words as input (Bharati et al., 2023): XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017), and well-established EHR Deep learning models (Wang et al., 2024a): StageNet (Gao et al., 2020) and RETAIN (Choi et al., 2016). We compare with pretrained language models, by converting medical codes into text and finetuning BioGPT (Luo et al., 2022) and Qwen2.5 (Yang et al., 2024) on the same data. For EHRSHOT, we compare CATCH-FM against methods reported in their leaderboard (Wornow et al., 2023).

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
19

324
 325 Table 4: Downstream scaling behavior of compute-optimal CATCH-FM on *first* and *subsequent*
 326 cancer cohorts. The *first* / *subsequent* positive rates are shown in parentheses. Sensitivity is evaluated
 327 at a decision threshold corresponding to a fixed 99.0% specificity cutoff. All results are averages over
 328 five random seeds. The highest value for each metric is **bold**.

Model	Pancreatic			Liver			Lung		
	first / subsequent (1.59% / 2.73%)			first / subsequent (1.95% / 2.25%)			first / subsequent (1.45% / 1.80%)		
	AUROC	AUPRC	Sensitivity	AUROC	AUPRC	Sensitivity	AUROC	AUPRC	Sensitivity
XGBoost	91.6 / 95.4	26.3 / 68.4	31.0 / 61.9	91.2 / 95.8	36.2 / 69.7	36.3 / 65.2	91.4 / 95.3	27.6 / 69.4	32.3 / 66.5
LightGBM	91.5 / 95.8	25.6 / 69.1	31.9 / 62.1	92.0 / 95.9	35.4 / 69.9	36.2 / 66.9	91.5 / 95.6	24.3 / 69.2	31.1 / 69.3
RETAIN	68.9 / 21.6	3.4 / 2.0	0.0 / 0.0	74.8 / 20.3	5.2 / 1.4	0.0 / 0.0	74.2 / 82.6	3.9 / 8.9	0.0 / 0.0
StageNet	64.3 / 69.7	2.4 / 4.5	0.0 / 0.0	59.9 / 64.1	2.4 / 3.1	0.0 / 0.0	66.9 / 64.1	2.3 / 3.1	0.0 / 0.0
BioGPT-347m	91.8 / 93.7	19.5 / 50.1	19.9 / 42.0	88.6 / 93.3	24.9 / 49.1	22.4 / 42.2	89.5 / 90.7	19.6 / 50.0	24.9 / 48.6
Qwen2.5-500m	90.3 / 92.7	22.3 / 57.9	25.4 / 50.8	90.4 / 93.7	32.4 / 60.3	32.4 / 55.9	86.3 / 92.8	15.9 / 60.1	18.8 / 53.1
CATCH-FM-160m	91.4 / 97.1	42.4 / 79.6	43.1 / 75.3	89.3 / 96.1	39.3 / 76.6	39.1 / 73.6	89.2 / 94.1	33.0 / 74.8	38.9 / 73.1
CATCH-FM-1b	93.5 / 97.2	57.2 / 82.9	58.6 / 78.6	91.3 / 96.3	49.6 / 76.7	48.9 / 74.3	91.1 / 95.7	47.5 / 77.7	52.6 / 75.3
CATCH-FM-2.4b	94.4 / 97.8	61.3 / 84.7	60.6 / 80.8	92.2 / 96.6	52.8 / 79.0	53.6 / 75.8	92.6 / 96.3	49.6 / 80.2	53.1 / 79.6



348 Figure 3: AUPRC comparison across cancer types with CATCH-FM-2.4b, Qwen2.5-500M, and
 349 XGBoost evaluated on the *first* target cancer cohorts.

352 6.1 SCALING LAWS OF PRETRAINING ON HEALTHCARE RECORDS

354 To pretrain effectively on healthcare records, we first conduct a thorough scaling law analysis of
 355 CATCH-FM. Specifically, we use IsoFLOP profiling (Hoffmann et al., 2022): pretraining models
 356 with various sizes at target FLOPs by varying the number of pretraining tokens.

357 Figure 2a illustrates clear parabola-shaped IsoFLOP curves, with different model sizes achieving
 358 minimum validation loss at various FLOPs. Using these data points, we fit a power law to characterize
 359 the relationship between FLOPs (C), the loss-optimal model size (N_{opt}), and the optimal number of
 360 training tokens (D_{opt}), as illustrated in Figures 2b and 2c:

$$361 \text{Optimal Model Sizes: } N_{\text{opt}} \propto C^{0.34}, \quad 362 \text{Optimal Token Counts: } D_{\text{opt}} \propto C^{0.69}. \quad (5)$$

363 Scaling laws in healthcare foundation models resemble the scaling laws of large language models
 364 (Hoffmann et al., 2022), highlighting the potential of large-scale EHR foundation models. While
 365 emergent capabilities need further study, we pretrain and finetune a series of compute-optimal
 366 CATCH-FM models across various FLOPs (Table 3) and evaluate their efficacy in cancer risk prediction.
 367 The benefits of compute-optimal pretraining are detailed in Appendix F.

369 6.2 OVERALL RESULTS

371 Table 4 shows the overall performance of cancer risk prediction in NHIRD-Cancer. CATCH-FM
 372 outperforms XGBoost and LightGBM, strong tree models that often outperformed EHR foundation
 373 models (Wornow et al., 2023), by 20%+ AUPRC on *first* target cancer cohorts and 15%+ AUPRC on
 374 *subsequent* target cancer cohorts. It also significantly outperforms medical (BioGPT) and general
 375 (Qwen) large language models pretrained on the texts of NHIRD. Sect. 6.4 further studies the benefits
 376 of pretraining directly on medical codes rather than converting codes into natural language. Moreover,
 377 our studies show that CATCH-FM achieve 50% and 70% sensitivity in *first* and *subsequent* cohorts
 378 at a decision threshold corresponding to 99% specificity, confirming its ability to identify high-

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 5: Zero-shot evaluation on NHIRD-Forward dataset for *first* liver and lung cancer.

Methods	AUROC	AUPRC	Sensitivity
Cancer: Liver, Pos./Neg. (Ratio): 5798/297459 (1.95%)			
XGBoost	93.3	41.8	40.7
Qwen2.5-500m	91.9	30.0	29.1
CATCH-FM-2.4b	93.6	44.8	42.6
Cancer: Lung, Pos./Neg. (Ratio): 5024/347974 (1.44%)			
XGBoost	93.7	34.7	37.9
Qwen2.5-500m	89.1	13.6	17.2
CATCH-FM-2.4b	94.1	36.4	41.4

risk patients for further screening (high sensitivity) and avoid unnecessary patient distress (high specificity). Additional details are found in Appendix E.

Cancer risk prediction is a challenging task, particularly for *first* target cancer cohorts, where many baselines fail to achieve meaningful performance. CATCH-FM demonstrates strong effectiveness, achieving 50%+ AUPRC in predicting *first* cancer cases. For *subsequent* target cancer cohorts, CATCH-FM effectively leverages prior cancer diagnoses as strong risk indicators and achieves 80%+ AUPRC. The benefit of scale is evident in all cohorts. CATCH-FM-2.4b outperforms CATCH-FM-160m by 10–15% AUPRC on *first* cancer cohorts and by 5–10% on *subsequent* cohorts. Scaled-up foundation models perform better on the harder *first* cancer prediction task.

6.3 GENERALIZATION ABILITY

We evaluate CATCH-FM under two generalization settings: temporal shifts within the same healthcare system (NHIRD), and distributional shifts across different systems and countries (EHRSHOT).

Across Hospital Site and Time. We evaluate CATCH-FM on cohorts from an adjacent timeline within the same hospital system, targeting *first* liver and lung cancer. Table 5 shows zero-shot results on NHIRD-Forward, demonstrating robustness to temporal shifts in population. Additional robustness analyses on cohort variations (G) and history exclusion windows (H) are in the Appendix.

Across Healthcare System and Country. Figure 4 shows the K-shot results of CATCH-FM on the EHRSHOT official pancreatic cancer leaderboard, using K positive and K negative on-site examples for tuning. Despite significant shifts in population, healthcare systems, and more than 50% medical code mismatch, CATCH-FM achieves state-of-the-art across all shots on the EHRSHOT leaderboard with a only handful of on-site examples, maintaining the best AUROC and AUPRC.

Moreover, CATCH-FM-160m outperforms CLMBR (140m) in AUROC for $K \geq 8$ and in AUPRC, with only minor gaps at a lower shots, while scaling to CATCH-FM-2.4b further boosts few-shot performance, highlighting the benefits of scale. Notably, CLMBR is pretrained at a similar scale with on-site data (2.57M Stanford patients, same as EHRSHOT), while CATCH-FM faces distribution shifts with only 43% of SNOMED codes mapped to ICD. As ICD is already the predominant U.S. EHR standard (Feinstein et al., 2023), such SNOMED-to-ICD issues occur in only a fraction of healthcare providers. Overall, these results highlight CATCH-FM’s robustness to distribution shifts and code mapping loss, underscoring its potential for transfer across healthcare systems and sites.

6.4 ABLATION STUDY

Table 6 shows ablation studies on different components of CATCH-FM. Modeling patient history is a key source of evidence for CATCH-FM. Demographic information alone is a poor indicator; pretraining is a key advantage of CATCH-FM; different model architectures, similar to observations in large language models, yield mild differences.

Converting the medical codes into their corresponding textual names and pretraining CATCH-FM on texts hinders performance. As shown in Figure 4a, the loss quickly drops to near zero, a strong sign of overfitting. The model memorizes code names and predicts them trivially after seeing the initial tokens. Figure 4b shows the loss is only meaningful on the first token, with the rest memorized. How to better adapt general domain LLMs to EHR data is an interesting future research direction.

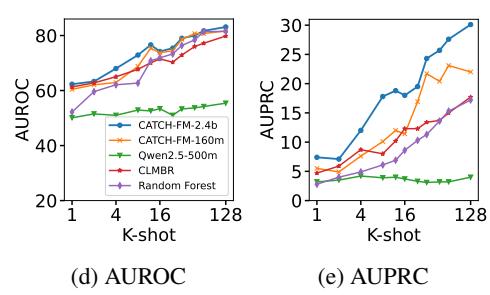


Figure 4: AUROC and AUPRC on EHRSHOT pancreatic cancer from their public leaderboard.

Table 6: Ablation study on various pretraining strategies and model architecture on cancer pancreatic task at 160m with *first* cancer cohorts.

Variations	AUROC	AUPRC	Sensitivity
Medical Code Representation			
CATCH-FM	91.4	42.4	43.1
demographic-only features	50	1.8	0.0
No Pretrain	86.9	16.7	18.7
Model Architecture			
w. Token Level Rel-Pos	90.8	42.0	42.1
w/o. time token	90.6	41.2	41.3
Converted Text Representation			
demographic-only features	50	2.0	0.0
No Pretrain	90.5	18.8	17.5
Finetune Pythia	89.9	16.7	18.8
Pretrain from Scratch	86.5	14.5	15.5
Continual Pretrain Pythia	91.4	25.8	29.4

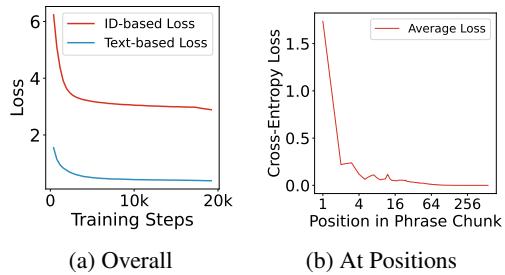


Figure 5: Pretraining losses of CATCH-FM (a) on medical code IDs and texts and (b) at relative text token position in ID name phrase chunk.

Table 7: Top latent features on *first* cancer patients from CATCH-FM’s prediction layer.

Cancer	Features Learned by Sparse Autoencoder (Gao et al., 2024) with Description Generated by Node2Graph (Foote et al., 2023)
Pancreatic	High blood pressure, Diseases of the respiratory system, Operations on larynx or trachea, Telmisartan
	Type 2 diabetes mellitus, Hypertensive heart disease, Norvasc tablet, Hypothyroidism and thyroid
	Infectious and parasitic diseases, Intestinal infectious diseases, Pramipexole, Piracetam
Liver	Duodenal ulcer, Tetracyclines, Ursodeoxycholic acid, Famotidine
	Repair of uterus and supporting structures, Diagnosis on lymphatic structures, Ancillin, Ketoprofen
	Diclofenac, Anxiety state, Dysthymic disorder, Gastrojejunal ulcer
Lung	Loperamide, Chest view, Chronic ischemic heart disease, Diovan, Lymphatic diagnostic procedures
	Hypertensive disease with congestive heart failure, Isosorbide mononitrate, Inguinal hernia repair
	Esophagomyotomy, Norvasc tablet, Isosorbide mononitrate

6.5 RISK FACTORS CAPTURED

This experiment leverages recently developed LLM interpretation method (Gao et al., 2024; Kang et al., 2025) to understand the risk factors captured by CATCH-FM. We train a sparse autoencoder on the prediction layers of finetuned CATCH-FM on *first* target cancer patients and then leverage neuron-to-Graph (N2G) (Foote et al., 2023) to explain the top active latent features on positive cancer cases. Additional implementation details are found in Appendix I.

Table 7 identifies features corresponding to top cancer risk factors captured by CATCH-FM. It includes not only trivial factors, such as Type 2 diabetes (Cui & Andersen, 2012) and high blood pressure (Stocks et al., 2012), but also non-trivial ones such as hypothyroidism, thyroid disorders, and Norvasc, with some indicators only presented at top medical journals less than ten years ago (Sarosiek et al., 2016; Wang et al., 2018b), after our training data cutoff.

7 CONCLUSION

CATCH-FM provides a new cancer risk prediction methodology by pretraining and finetuning Transformers on millions of patients’ medical code sequences. Its effectiveness (50%+ and 70%+ sensitivity on *first* and *subsequent* target cancer cohorts), low risk (99% specificity), and wide applicability (only requiring inference on EHR records) make it a natural fit for cancer pre-screening. It helps healthcare professionals efficiently decide whom and when to screen for cancer, potentially improving the effectiveness and coverage of cancer screening and ultimately, patient outcomes. Our experiments on NHIRD and EHRSHOT demonstrated the benefit of scale in pretraining EHR foundation models, their generalization ability across significantly different healthcare systems, and their ability to capture non-trivial cancer risk factors. We hope our findings, analyses, and open-source codes can inspire and facilitate further research and deployments in leveraging AI to solve real-world healthcare problems.

486 ETHICS STATEMENT
487

488 Our research was conducted using de-identified EHRs obtained through formal research collaboration
489 under regulated access and IRB review, with a determination of exemption made as the study relied
490 solely on secondary, anonymized data and involved no human subjects. We ensured strict compliance
491 with data governance rules set by the dataset sources for access. Privacy and confidentiality were
492 preserved at all times, and no attempt was made to re-identify individuals. We restrict the release of
493 model weights to authorized researchers with the same data access approvals, thereby safeguarding
494 against misuse. Our work aims to advance early cancer detection through trustworthy artificial
495 intelligence and foundation models while acknowledging potential biases in historical health data
496 and the need for careful validation before any clinical deployment.

497
498 REPRODUCIBILITY STATEMENT
499

500 To ensure the reproducibility of our paper, a complete description of the NHIRD data schema,
501 preprocessing pipeline, and full dataset statistics is detailed in the appendix. For transparency, we
502 will publicly release our preprocessing, modeling, and training code under the MIT license, along
503 with detailed instructions for reproducing the experiments. While direct redistribution of NHIRD
504 data is restricted, all eligible institutions can apply for access under the same IRB framework. We
505 will release pre-trained model checkpoints to authorized researchers with equivalent NHIRD data
506 access for replication.

507
508 REFERENCES
509

510 Hospital visits exceed 380 million: NHI - taipeitimes.com. <https://www.taipeitimes.com/News/taiwan/archives/2024/08/04/2003821755>, 2024.

512 Stephan Altmayer, Larissa Maria Armelin, Jussara Soares Pereira, Lis Vitoria Carvalho, Justin Tse,
513 Patricia Balthazar, Martina Zagüini Francisco, Guilherme Watte, and Bruno Hochhegger. MRI with
514 DWI improves detection of liver metastasis and selection of surgical candidates with pancreatic
515 cancer: a systematic review and meta-analysis. *European Radiology*, 34(1):106–114, 2024.

516 Subrato Bharati, M Rubaiyat Hossain Mondal, and Prajyot Podder. A review on explainable artificial
517 intelligence for healthcare: why, how, and when? *IEEE Transactions on Artificial Intelligence*,
518 2023.

520 Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan,
521 Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
522 Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models
523 across training and scaling, 2023. URL <https://arxiv.org/abs/2304.01373>.

524 Amanda L Blackford, Marcia Irene Canto, Mohamad Dbouk, Ralph H Hruban, Bryson W Katona,
525 Amitabh Chak, Randall E Brand, Sapna Syngal, James Farrell, Fay Kastrinos, et al. Pancreatic
526 cancer surveillance and survival of high-risk individuals. *JAMA oncology*, 10(8):1087–1096, 2024.

528 Kai Cao, Yingda Xia, Jiawen Yao, Xu Han, Lukas Lambert, Tingting Zhang, Wei Tang, Gang Jin,
529 Hui Jiang, Xu Fang, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep
530 learning. *Nature medicine*, 29(12):3033–3043, 2023.

531 CDC. International classification of diseases, ninth revision, clinical modification (ICD-9-CM). URL
532 https://archive.cdc.gov/www_cdc_gov/nchs/icd/icd9cm.htm.

534 Po-Ting Chen, Tinghui Wu, Pochuan Wang, Dawei Chang, Kao-Lang Liu, Ming-Shiang Wu, Holger R
535 Roth, Po-Chang Lee, Wei-Chih Liao, and Weichung Wang. Pancreatic cancer detection on CT scans
536 with deep learning: a nationwide population-based study. *Radiology*, 306(1):172–182, 2023.

538 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
539 *22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
2016.

540 Xingdong Chen, Jeffrey Gole, Athurva Gore, Qiye He, Ming Lu, Jun Min, Ziyu Yuan, Xiaorong
 541 Yang, Yanfeng Jiang, Tiejun Zhang, et al. Non-invasive early detection of cancer four years before
 542 conventional diagnosis using a blood test. *Nature communications*, 11(1):3475, 2020.

543 Hsu-Chih Chien, Yea-Huei Kao Yang, and Jane PF Bai. Trastuzumab-related cardiotoxic effects in
 544 taiwanese women: a nationwide cohort study. *JAMA oncology*, 2(10):1317–1325, 2016.

545 Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter
 546 Stewart. Retain: An interpretable predictive model for healthcare using reverse time attention
 547 mechanism. *Advances in neural information processing systems*, 29, 2016.

548 Xianjing Chu, Wentao Tian, Jiaoyang Ning, Gang Xiao, Yunqi Zhou, Ziqi Wang, Zhuofan Zhai,
 549 Guilong Tanzhu, Jie Yang, and Rongrong Zhou. Cancer stem cells: advances in knowledge and
 550 implications for cancer therapy. *Signal Transduction and Targeted Therapy*, 9(1):170, 2024.

551 Jan Clusmann, Fiona R Kolbinger, Hannah Sophie Muti, Zunamys I Carrero, Jan-Niklas Eckardt,
 552 Narmin Ghaffari Laleh, Chiara Maria Lavinia Löffler, Sophie-Caroline Schwarzkopf, Michaela
 553 Unger, Gregory P Veldhuizen, et al. The future landscape of large language models in medicine.
 554 *Communications medicine*, 3(1):141, 2023.

555 Gary S Collins and Karel GM Moons. Comparing risk prediction models, 2012.

556 Ronald Cornet and Nicolette de Keizer. Forty years of snomed: a literature review. *BMC medical
 557 informatics and decision making*, 8:1–6, 2008.

558 YunFeng Cui and Dana K Andersen. Diabetes and pancreatic cancer. *Endocrine-related cancer*, 19
 559 (5):F9–F26, 2012.

560 Karin E De Visser and Johanna A Joyce. The evolving tumor microenvironment: From cancer
 561 initiation to metastatic outgrowth. *Cancer cell*, 41(3):374–403, 2023.

562 Matthijs Douze, Alexandre Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-Emmanuel
 563 Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

564 Mohab M Elmohr, Zulqarnain Javed, Prachi Dubey, John E Jordan, Lubdha Shah, Khurram Nasir,
 565 Eric M Rohren, and Christie M Lincoln. Social determinants of health framework to identify and
 566 reduce barriers to imaging in marginalized communities. *Radiology*, 310(2):e223097, 2024.

567 Martin Faltys, Marc Zimmermann, Xinrui Lyu, Matthias Hüser, Stephanie Hyland, Gunnar Rätsch,
 568 and Tobias Merz. Hirid, a high time-resolution icu dataset (version 1.1. 1). *Physio. Net*, 10, 2021.

569 James A Feinstein, Peter J Gill, and Brett R Anderson. Preparing for the international classification
 570 of diseases, 11th revision (icd-11) in the us health care system. In *JAMA Health Forum*, volume 4,
 571 pp. e232253–e232253. American Medical Association, 2023.

572 Alex Foote, Neel Nanda, Esben Kran, Ioannis Konstas, Shay Cohen, and Fazl Barez. Neuron to
 573 graph: Interpreting language model neurons at scale. *arXiv preprint arXiv:2305.19911*, 2023.

574 Junyi Gao, Cao Xiao, Yasha Wang, Wen Tang, Lucas M Glass, and Jimeng Sun. Stagenet: Stage-
 575 aware neural networks for health risk prediction. In *Proceedings of The Web Conference 2020*, pp.
 576 530–540, 2020.

577 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
 578 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint
 579 arXiv:2406.04093*, 2024.

580 David A Grimes and Kenneth F Schulz. Refining clinical diagnosis with likelihood ratios. *The Lancet*,
 581 365(9469):1500–1505, 2005.

582 Lin Lawrence Guo, Ethan Steinberg, Scott Lanyon Fleming, Jose Posada, Joshua Lemmon, Stephen R
 583 Pfohl, Nigam Shah, Jason Fries, and Lillian Sung. Ehr foundation models improve robustness in
 584 the presence of temporal distribution shift. *Scientific Reports*, 13(1):3767, 2023.

585 Gaorav P Gupta and Joan Massagué. Cancer metastasis: building a framework. *Cell*, 127(4):679–695,
 586 2006.

594 Bishal Gyawali and Christopher M Booth. Treatment of metastatic pancreatic cancer: 25 years of
 595 innovation with little progress for patients. *The Lancet Oncology*, 25(2):167–170, 2024.
 596

597 Andreas Halner, Luke Hankey, Zhu Liang, Francesco Pozzetti, Daniel A. Szulc, Ella Mi, Geoffrey
 598 Liu, Benedikt M. Kessler, Junetha Syed, and Peter J. Liu. Decancer: Machine learning framework
 599 tailored to liquid biopsy based cancer detection and biomarker signature selection. *iScience*, 26(5):
 600 106610, 2023. doi: 10.1016/j.isci.2023.106610.

601 Amalie Dahl Haue, Jessica Xin Hjaltelin, Peter Christoffer Holm, Davide Placido, et al. Artificial
 602 intelligence-aided data mining of medical records for cancer detection and screening. *The Lancet
 603 Oncology*, 25(12):e694–e703, 2024.
 604

605 Health and Welfare Data Science Center. Regulations for data application and usage. <https://dep.mohw.gov.tw/dos/cp-5146-61992-113.html>.
 606

607 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 608 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 609 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
 610

611 Cheng-Yang Hsieh, Chien-Chou Su, Shih-Chieh Shao, Sheng-Feng Sung, Swu-Jane Lin, Yea-Huei
 612 Kao Yang, and Edward Chia-Cheng Lai. Taiwan’s national health insurance research database:
 613 past and future. *Clinical epidemiology*, pp. 349–358, 2019.
 614

615 Ankang Hu, Li Sun, Hao Lin, Yuheng Liao, Hui Yang, and Ying Mao. Harnessing innate immune
 616 pathways for therapeutic advancement in cancer. *Signal Transduction and Targeted Therapy*, 9(1):
 617 68, 2024.
 618

619 Kuan-Lun Huang, Yi-Lung Chen, Robert Stewart, and Vincent Chin-Hung Chen. Antidepressant
 620 use and mortality among patients with hepatocellular carcinoma. *JAMA network open*, 6(9):
 621 e2332579–e2332579, 2023.
 622

623 Haoran Ji, Chuang Hu, Xuhui Yang, Yuanhao Liu, Guangyu Ji, Shengfang Ge, Xiansong Wang, and
 624 Mingsong Wang. Lymph node metastasis in cancer progression: molecular mechanisms, clinical
 625 significance and therapeutic interventions. *Signal Transduction and Targeted Therapy*, 8(1):367,
 626 2023.
 627

628 Lavender Yao Jiang, Xujin Chris Liu, Nima Pour Nejatian, Mustafa Nasir-Moin, Duo Wang, Anas
 629 Abidin, Kevin Eaton, Howard Antony Riina, Ilya Laufer, Paawan Punjabi, et al. Health system-scale
 630 language models are all-purpose prediction engines. *Nature*, 619(7969):357–362, 2023.
 631

632 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
 633 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
 634 freely accessible critical care database. *Scientific data*, 3(1):1–9, 2016.
 635

636 Maksym A. Jopek, Michał Sieczczyński, Krzysztof Pastuszak, Sylwia Łapińska-Szumczyk, Jacek
 637 Jassem, Anna J. Zaczek, Matthew T. Rondina, and Anna Supernat. Impact of clinical factors on
 638 accuracy of ovarian cancer detection via platelet rna profiling. *Blood Advances*, 9(5):979–991,
 639 2025. doi: 10.1182/bloodadvances.2024014008.
 640

641 Yixin Ju, Dongzhi Xu, Miao-miao Liao, Yutong Sun, Wen-dai Bao, Fan Yao, and Li Ma. Barriers
 642 and opportunities in pancreatic cancer immunotherapy. *NPJ Precision Oncology*, 8(1):199, 2024.
 643

644 Hao Kang, Tevin Wang, and Chenyan Xiong. Interpret and control dense retrieval with sparse latent
 645 features, 2024. URL <https://arxiv.org/abs/2411.00786>.
 646

647 Hao Kang, Tevin Wang, and Chenyan Xiong. Interpret and control dense retrieval with sparse latent
 648 features. *arXiv preprint arXiv:2411.00786*, 2025.
 649

650 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
 651 Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural information
 652 processing systems*, 30, 2017.

648 Hyo Suk Kim, Young Hoon Choi, Jae Sin Lee, Ik Hyun Jo, Sung Woo Ko, Kyu Hyun Paik, Hyun Ho
 649 Choi, Han Hee Lee, Yeon Soo Lim, Chang Nyol Paik, et al. Characteristics of early pancreatic
 650 cancer: Comparison between stage 1a and stage 1b pancreatic cancer in multicenter clinical data
 651 warehouse study. *Cancers*, 16(5):944, 2024.

652
 653 Zeljko Kraljevic, Dan Bean, Anthony Shek, Rebecca Bendayan, Harry Hemingway, Joshua Au Yeung,
 654 Alexander Deng, Alfie Baston, Jack Ross, Esther Idowu, et al. Foresight-generative pretrained
 655 transformer (gpt) for modelling of patient timelines using ehrs. *arXiv preprint arXiv:2212.08072*,
 656 2022.

657 Polina V Kukhareva, Haojia Li, Tanner J Caverly, Angela Fagerlin, Guilherme Del Fiol, Rachel Hess,
 658 Yue Zhang, Jorie M Butler, Chelsey Schlechter, Michael C Flynn, et al. Lung cancer screening
 659 before and after a multifaceted electronic health record intervention: A nonrandomized controlled
 660 trial. *JAMA Network Open*, 7(6):e2415383–e2415383, 2024.

661
 662 Hsiu-An Lee, Louis R Chao, and Chien-Yeh Hsu. A 10-year probability deep neural network
 663 prediction model for lung cancer. *Cancers*, 13(4):928, 2021.

664
 665 Hsiu-An Lee, Kuan-Wen Chen, and Chien-Yeh Hsu. Prediction model for pancreatic cancer—a
 666 population-based study from nhird. *Cancers*, 14(4):882, 2022.

667 Teng-Yu Lee, Yao-Chun Hsu, Hsiao-Ching Tseng, Shi-Hang Yu, Jaw-Town Lin, Ming-Shiang Wu,
 668 and Chun-Ying Wu. Association of daily aspirin therapy with risk of hepatocellular carcinoma in
 669 patients with chronic hepatitis b. *JAMA internal medicine*, 179(5):633–640, 2019.

670
 671 Liang-Yu Lin, Charlotte Warren-Gash, Liam Smeeth, and Pau-Chung Chen. Data resource profile:
 672 the national health insurance research database (nhird). *Epidemiology and health*, 40, 2018.

673
 674 Pei-Ying Lin, Shih-Ni Chang, Tzu-Hung Hsiao, Bo-Tsang Huang, Ching-Heng Lin, and Pan-Chyr
 675 Yang. Association between parkinson disease and risk of cancer in taiwan. *JAMA oncology*, 1(5):
 633–640, 2015.

676
 677 Beilei Liu, Hongyu Zhou, Licheng Tan, Kin To Hugo Siu, and Xin-Yuan Guan. Exploring treatment
 678 options in cancer: tumor treatment strategies. *Signal transduction and targeted therapy*, 9(1):175,
 679 2024.

680
 681 Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco Basaldella, and Nigel Collier. Self-alignment
 682 pretraining for biomedical entity representations. *arXiv preprint arXiv:2010.11784*, 2020.

683
 684 Xiaohong Liu, Hao Liu, Guoxing Yang, Zeyu Jiang, Shuguang Cui, Zhaoze Zhang, Huan Wang,
 685 Liyuan Tao, Yongchang Sun, Zhu Song, et al. A generalist medical language model for disease
 686 diagnosis assistance. *Nature Medicine*, pp. 1–11, 2025.

687
 688 Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu.
 689 Biogpt: generative pre-trained transformer for biomedical text generation and mining. *Briefings in
 bioinformatics*, 23(6):bbc409, 2022.

690
 691 Saumya Y Maru and Elizabeth M Jaffee. Pancreatic cancer is feeling the heat. *Journal for im-
 munotherapy of cancer*, 12(10):e010124, 2024.

692
 693 Giulia Peduzzi, Alessio Felici, Roberto Pellungrini, and Daniele Campa. Explainable machine
 694 learning identifies a polygenic risk score as a key predictor of pancreatic cancer risk in the uk
 695 biobank. *Digestive and Liver Disease*, 2024.

696
 697 Dinh-Van Phan, Chien-Lung Chan, Ai-Hsien Adams Li, Ting-Ying Chien, and Van-Chuc Nguyen.
 698 Liver cancer prediction in a viral hepatitis cohort: A deep learning approach. *International Journal
 of Cancer*, 147(10):2871–2878, 2020.

699
 700 D. Placido, B. Yuan, J. X. Hjaltelin, C. Zheng, A. D. Haue, et al. A deep learning algorithm to predict
 701 risk of pancreatic cancer from disease trajectories. *Nature Medicine*, 29(5):1113–1122, 2023a. doi:
 10.1038/s41591-023-02332-5.

702 Davide Placido, Bo Yuan, Jessica X Hjaltelin, Chunlei Zheng, Amalie D Haue, Piotr J Chmura, Chen
 703 Yuan, Jihye Kim, Renato Umeton, Gregory Antell, et al. A deep learning algorithm to predict risk
 704 of pancreatic cancer from disease trajectories. *Nature medicine*, 29(5):1113–1122, 2023b.
 705

706 Tom J Pollard, Alistair EW Johnson, Jesse D Raffa, Leo A Celi, Roger G Mark, and Omar Badawi.
 707 The eicu collaborative research database, a freely available multi-center database for critical care
 708 research. *Scientific data*, 5(1):1–13, 2018.

709 Karthik W Rohatgi, Christine M Marx, Marquita W Lewis-Thames, Jingxia Liu, Graham A Colditz,
 710 and Aimee S James. Peer reviewed: Urban–rural disparities in access to low-dose computed
 711 tomography lung cancer screening in missouri and illinois. *Preventing chronic disease*, 17, 2020.
 712

713 Wendy S Rubinstein, Christos Patriotis, Anthony Dickherber, Paul KJ Han, Hormuzd A Katki, Elyse
 714 LeeVan, Paul F Pinsky, Philip C Prorok, Amanda L Skarupka, Sarah M Temkin, et al. Cancer
 715 screening with multicancer detection tests: A translational science review. *CA: A Cancer Journal
 716 for Clinicians*, 2024.

717 Konrad Sarosiek, Ankit V Gandhi, Shivam Saxena, Christopher Y Kang, Galina I Chipitsyna,
 718 Charles J Yeo, and Hwyda A Arafat. Hypothyroidism in pancreatic cancer: role of exogenous
 719 thyroid hormone in tumor invasion—preliminary observations. *Journal of Thyroid Research*, 2016
 720 (1):2454989, 2016.
 721

722 Germans Savcisen, Tina Eliassi-Rad, Lars Kai Hansen, Laust Hvas Mortensen, Lau Lilleholt, Anna
 723 Rogers, Ingo Zettler, and Sune Lehmann. Using sequences of life-events to predict human lives.
 724 *Nature Computational Science*, 4(1):43–56, 2024.

725 Rebecca L. Siegel, Angela N. Giaquinto, and Ahmedin Jemal. Cancer statistics, 2024. *CA: A Cancer
 726 Journal for Clinicians*, 74(1):12–49, 2024. doi: <https://doi.org/10.3322/caac.21820>. URL <https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21820>.
 727

728 Rebecca L. Siegel, Kimberly D. Miller, Hannah E. Fuchs, and Ahmedin Jemal. Cancer statistics, 2025.
 729 *CA: A Cancer Journal for Clinicians*, 75(2):7–33, 2025. doi: 10.3322/caac.21871. URL <https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21871>.
 730

731 Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou,
 732 Kevin Clark, Stephen R Pfahl, Heather Cole-Lewis, et al. Toward expert-level medical question
 733 answering with large language models. *Nature Medicine*, pp. 1–8, 2025.
 734

735 Christoph Springfield, Cristina R Ferrone, Matthew HG Katz, Philip A Philip, Theodore S Hong,
 736 Thilo Hackert, Markus W Büchler, and John Neoptolemos. Neoadjuvant therapy for pancreatic
 737 cancer. *Nature Reviews Clinical Oncology*, 20(5):318–337, 2023.
 738

739 Ethan Steinberg, Jason Fries, Yizhe Xu, and Nigam Shah. Motor: a time-to-event foundation model
 740 for structured medical records. *arXiv preprint arXiv:2301.03150*, 2023.
 741

742 Ewout W Steyerberg and Ewout W Steyerberg. Study design for prediction modeling. *Clinical
 743 prediction models: a practical approach to development, validation, and updating*, pp. 37–58,
 744 2019.

745 Tanja Stocks, Mieke Van Hemelrijck, Jonas Manjer, Tone Bjørge, Hanno Ulmer, Göran Hallmans,
 746 Björn Lindkvist, Randi Selmer, Gabriele Nagel, Steinar Tretli, et al. Blood pressure and risk of
 747 cancer incidence and mortality in the metabolic syndrome and cancer project. *Hypertension*, 59(4):
 748 802–810, 2012.
 749

750 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
 751 transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.
 752

753 Liwen Sun, Abhineet Agarwal, Aaron Kornblith, Bin Yu, and Chenyan Xiong. Ed-copilot: Re-
 754 duce emergency department wait time with language model diagnostic assistance. In *Forty-first
 755 International Conference on Machine Learning*, 2024a.

756 Liwen Sun, James Zhao, Megan Han, and Chenyan Xiong. Fact-aware multimodal retrieval aug-
 757 mentation for accurate medical radiology report generation. *arXiv preprint arXiv:2407.15268*,
 758 2024b.

759 Mujeen Sung, Hwisang Jeon, Jinhyuk Lee, and Jaewoo Kang. Biomedical entity representations with
 760 synonym marginalization. *arXiv preprint arXiv:2005.00239*, 2020a.

762 Sheng-Feng Sung, Cheng-Yang Hsieh, and Ya-Han Hu. Two decades of research using taiwan's
 763 national health insurance claims data: bibliometric and text mining analysis on pubmed. *Journal*
 764 *of Medical Internet Research*, 22(6):e18457, 2020b.

765 You-Lin Tain, Lung-Chih Li, Hsiao-Ching Kuo, Chiu-Ju Chen, and Chien-Ning Hsu. Gestational
 766 exposure to nonsteroidal anti-inflammatory drugs and risk of chronic kidney disease in childhood.
 767 *JAMA pediatrics*, 179(2):171–178, 2025.

769 Nandan Thakur, Nils Reimers, Johannes Daxenberger, and Iryna Gurevych. Augmented SBERT:
 770 Data augmentation method for improving bi-encoders for pairwise sentence scoring tasks. In
 771 *Proceedings of the 2021 Conference of the North American Chapter of the Association for Compu-*
 772 *tational Linguistics: Human Language Technologies*, pp. 296–310, Online, June 2021. Associa-
 773 *tion for Computational Linguistics. URL [https://www.aclweb.org/anthology/2021.](https://www.aclweb.org/anthology/2021.naacl-main.28)*
 774 *naacl-main.28.*

775 Maja Thiele, Patrick S Kamath, Isabel Graupera, Antoni Castells, Harry J de Koning, Miquel Serra-
 776 Burriel, Frank Lammert, and Pere Ginès. Screening for liver fibrosis: Lessons from colorectal and
 777 lung cancer screening. *Nature Reviews Gastroenterology & Hepatology*, pp. 1–11, 2024.

778 Daniel Truhn, Jan-Niklas Eckardt, Dyke Ferber, and Jakob Nikolas Kather. Large language models
 779 and multimodal foundation models for precision oncology. *NPJ Precision Oncology*, 8(1):72,
 780 2024.

781 Tou-Yuan Tsai, Yu-Chang Liu, Wan-Ting Huang, Yu-Kang Tu, Shang-Quan Qiu, Sameer Noor,
 782 Yong-Chen Huang, Eric H Chou, Edward Chia-Cheng Lai, and Huei-Kai Huang. Risk of bleeding
 783 following non–vitamin k antagonist oral anticoagulant use in patients with acute ischemic stroke
 784 treated with alteplase. *JAMA Internal Medicine*, 184(1):37–45, 2024.

786 Amey Vrudhula, Alan C Kwan, David Ouyang, and Susan Cheng. Machine learning and bias in
 787 medical imaging: Opportunities and challenges. *Circulation: Cardiovascular Imaging*, 17(2):
 788 e015495, 2024.

789 Stephen Waite, Jinel Scott, and Daria Colombo. Narrowing the gap: imaging disparities in radiology.
 790 *Radiology*, 299(1):27–35, 2021.

792 Jiaqi Wang, Junyu Luo, Muchao Ye, Xiaochen Wang, Yuan Zhong, Aofei Chang, Guanjie Huang,
 793 Ziyi Yin, Cao Xiao, Jimeng Sun, and Fenglong Ma. Recent advances in predictive modeling with
 794 electronic health records. In *Proceedings of the Thirty-Third International Joint Conference on*
 795 *Artificial Intelligence*, IJCAI '24, 2024a. ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/914.
 796 URL [https://doi.org/10.24963/ijcai.2024/914.](https://doi.org/10.24963/ijcai.2024/914)

797 Meng-Ting Wang, Jun-Ting Liou, Chen Wei Lin, Chen-Liang Tsai, Yun-Han Wang, Yu-Juei Hsu,
 798 and Jyun-Heng Lai. Association of cardiovascular risk with inhaled long-acting bronchodilators in
 799 patients with chronic obstructive pulmonary disease: a nested case-control study. *JAMA internal*
 800 *medicine*, 178(2):229–238, 2018a.

801 Xiyue Wang, Junhan Zhao, Eliana Marostica, Wei Yuan, Jietian Jin, Jiayu Zhang, Ruijiang Li,
 802 Hongping Tang, Kanran Wang, Yu Li, et al. A pathology foundation model for cancer diagnosis
 803 and prognosis prediction. *Nature*, 634(8035):970–978, 2024b.

804 Zhensheng Wang, Donna L White, Ron Hoogeveen, Liang Chen, Eric A Whitsel, Peter A Richardson,
 805 Salim S Virani, Jose M Garcia, Hashem B El-Serag, and Li Jiao. Anti-hypertensive medication use,
 806 soluble receptor for glycation end products and risk of pancreatic cancer in the women's health
 807 initiative study. *Journal of clinical medicine*, 7(8):197, 2018b.

809 Cyrus Washington and Curtiland Deville. Health disparities and inequities in the utilization of
 diagnostic imaging for prostate cancer. *Abdominal Radiology*, 45:4090–4096, 2020.

810 Michael Wornow, Rahul Thapa, Ethan Steinberg, Jason Fries, and Nigam Shah. Ehrshot: An
 811ehr benchmark for few-shot evaluation of foundation models. *Advances in Neural Information
 812 Processing Systems*, 36:67125–67137, 2023.

813 Hanwen Xu, Naoto Usuyama, Jaspreet Bagga, Sheng Zhang, Rajesh Rao, Tristan Naumann, Cliff
 814 Wong, Zelalem Gero, Javier González, Yu Gu, et al. A whole-slide foundation model for digital
 815 pathology from real-world data. *Nature*, pp. 1–8, 2024a.

816 Xuan Xu, Y. Liu, Y. Zhang, et al. Rural-urban disparities and trends in cancer screening: An analysis
 817 of the national health interview survey, 2010–2018. *JNCI Cancer Spectrum*, 8(6):pkae113, 2024b.
 818 doi: 10.1093/jncics/pkae113. URL <https://academic.oup.com/jncics/article/8/6/pkae113/7888891>.

819 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 820 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 821 arXiv:2412.15115*, 2024.

822 Chaoqi Yang, Zhenbang Wu, Patrick Jiang, Zhen Lin, Junyi Gao, Benjamin P Danek, and Jimeng
 823 Sun. Pyhealth: A deep learning toolkit for healthcare applications. In *Proceedings of the 29th
 824 ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5788–5789, 2023a.

825 Zhichao Yang, Avijit Mitra, Weisong Liu, Dan Berlowitz, and Hong Yu. Transformehr: transformer-
 826 based encoder-decoder generative model to enhance prediction of disease outcomes using electronic
 827 health records. *Nature communications*, 14(1):7857, 2023b.

828 Hao-Ren Yao, Der-Chen Chang, Ophir Frieder, Wendy Huang, and Tian-Shyug Lee. Multiple graph
 829 kernel fusion prediction of drug prescription. In *Proceedings of the 10th ACM International
 830 Conference on Bioinformatics, Computational Biology and Health Informatics*, pp. 103–112, 2019.

831 Zheng Yuan, Zhengyun Zhao, Haixia Sun, Jiao Li, Fei Wang, and Sheng Yu. Coder: knowledge-
 832 infused cross-lingual medical term embedding for term normalization. *Journal of biomedical
 833 informatics*, 126:103983, 2022.

834 Xuesong Zhang, Jingxuan Zhao, Xuesong Han, et al. County-level social vulnerability and
 835 cancer screening rates in the us, 2018. *JAMA Network Open*, 5(9):e2236736, 2022. doi:
 836 10.1001/jamanetworkopen.2022.36736. URL <https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2796736>.

844 A NHIRD DETAILS

845 The Taiwanese National Health Insurance Research Database (NHIRD) is one of the largest and most
 846 comprehensive de-identified population-wide EHR datasets globally (Hsieh et al., 2019), covering
 847 over 99% of the Taiwanese population. It contains longitudinal medical records spanning over
 848 two decades, including patient demographics, diagnoses, prescriptions, clinical events, medical
 849 procedures, and hospital visits from all hospitals and medical facilities in Taiwan. Maintained by the
 850 National Health Insurance Administration in collaboration with the Ministry of Health and Welfare,
 851 the NHIRD comprises both registration files and hospital claim data submitted for reimbursement
 852 under the National Health Insurance (NHI) program.

853 We leverage a subset, which includes a randomly selected cohort of three million patients from 1996
 854 to 2013, of the Taiwanese National Health Insurance Research Database (NHIRD) for pretraining
 855 EHR foundation models and constructing clinical downstream tasks for benchmarks. Unlike other
 856 datasets, the NHIRD stands out for its scale and comprehensiveness under a single-payer healthcare
 857 system, which enables standardized data collection and creates a comprehensive and lifelong record of
 858 patients' medical footprints. This makes NHIRD one of the most suitable resources for the real-world
 859 implementation of EHR foundation models. The NHIRD contains three main categories of medical
 860 information, with all personal details, such as ID, birthdate, and residential postcode, de-identified:

861 • **Demographics:** This includes details about medical institutions (e.g., centers, hospitals,
 862 and clinics) and de-identified data on patients, physicians, and pharmacists.

864

- **Visit:** Comprehensive records of medical visits, including outpatient clinic visits (including visit to medical centers and hospitals), hospitalizations, and pharmacy drug fulfillments.

865

- **Order details:** Detailed records of prescriptions, procedures, medical equipment, and materials associated with each type of visit.

866

870 Table 8 lists all NHIRD tables with descriptions. The three main visit tables are CD (outpatient
 871 clinic visits, including medical centers and hospitals), DD (hospitalization), and GD (pharmacy),
 872 each linked to an order table: OO (for CD), DO (for DD), and GO (for GD). For CATCH-FM, we
 873 use ID, CD, OO, DD, DO, GD, and GO tables, as they constitute complete patient medical histories.
 874 Demographic and other statistics to further describe data density and sparsity are shown in Table 9
 875 and Figure 7. Rigorous data cleaning includes removing missing values, correcting erroneous codes,
 876 and standardizing dates and billing codes to ensure reliable pretraining data. The following sections
 877 detail how we construct patient medical histories and preprocess data to create the cancer screening
 878 benchmark.

879 **Data De-identification and Privacy.** All NHIRD data are de-identified following strict protocols
 880 mandated by the National Health Insurance Administration (NHIA). Personally identifiable
 881 information (PII), such as names and ID numbers, is removed and irreversibly encrypted using
 882 non-public anonymization methods (Lin et al., 2018; Health & Center). Our study uses only
 883 anonymized demographic variables, e.g., age and gender, for model training. Given the level of
 884 anonymization and the coarse granularity of these attributes, the risk of patient re-identification is
 885 negligible. Hence, our use of NHIRD data fully complies with privacy standards and poses no ethical
 886 or legal concerns regarding patient confidentiality.

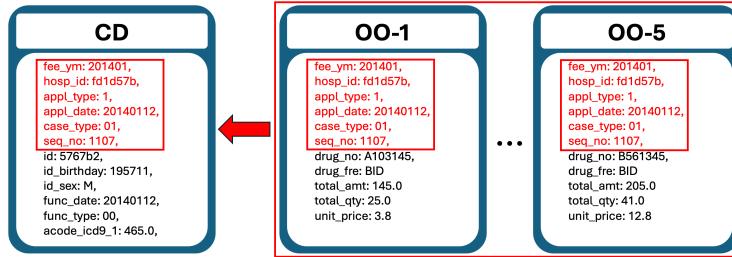
887 **Correctness of NHIRD.** The universal healthcare system in Taiwan enables frequent patient visits
 888 and interactions and generates rich, detailed, and longitudinal patient records. In 2023, NHIRD
 889 recorded over 380 million medical visits for 23 million individuals, averaging 16.5 visits per
 890 person (tai, 2024). These statistics, including consistent surgery and prescription rates, align closely
 891 with our dataset statistics in Table 1, confirming the correctness of our dataset. Most importantly, all
 892 data in NHIRD receive strict validation by the National Health Insurance Administration (NHIA),
 893 which enforces robust quality control measures to eliminate duplication, correct inconsistencies, and
 894 ensure patient-level accuracy. Additionally, coding standards are uniformly implemented across
 895 all healthcare providers nationwide, guaranteeing consistency and correctness at scale. Given
 896 this systematic validation, national standardization, and population-wide coverage, NHIRD is an
 897 exceptionally accurate and dependable data source trusted and used in research published at top
 898 peer-reviewed medical journals (Wang et al., 2018a; Lee et al., 2019; Tsai et al., 2024; Tain et al.,
 899 2025).

900 **Cancer Diagnosis Validity.** Cancer diagnoses in the NHIRD are made by licensed physicians from
 901 all hospitals and medical facilities and undergo strict validation by the National Health Insurance
 902 Administration (NHIA) to ensure diagnostic accuracy, prevent misclassification, and eliminate billing
 903 errors or fraud (Lin et al., 2018; Hsieh et al., 2019). This rigorous quality control process makes
 904 the NHIRD a highly reliable source for cancer retrospective research, especially for creating cancer
 905 patient cohorts with diagnosis codes. With verified patient histories and clinically validated cancer
 906 diagnoses, the NHIRD has been widely adopted for cancer research and trusted in top peer-reviewed
 907 studies (Lin et al., 2015; Chien et al., 2016; Huang et al., 2023).

908 **Medical History Construction.** To create a sequential medical history for each patient, we first
 909 aggregate all visits and their associated order details by joining CD with OO, DD with DO, and GD
 910 with GO. Figure 6a describes the join process on CD with OO. After that, we aggregate visits for
 911 each individual 4 million patients by their patient ID and sorted in chronological order. Figure 6b
 912 shows a sample patient after the aggregation on all visits.

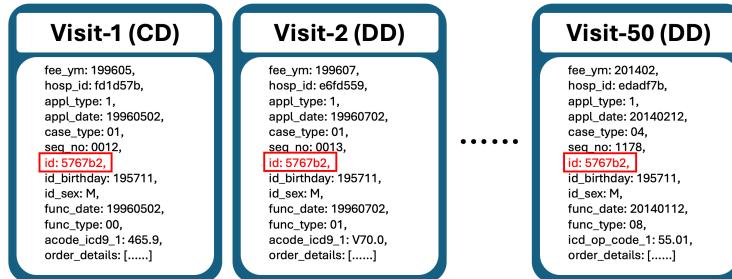
913 **Cancer Demographic Statistics.** Table 10 presents demographic statistics, including cancer patients'
 914 medical history lengths across age groups. The NHIRD provides extensive longitudinal data, with
 915 average history lengths ranging from 10.3 to 15 years across various cancers. This depth allows
 916 for analyzing disease progression and identifying patterns that support early cancer detection. Its
 917 large sample size ensures robust statistical power for subgroup analysis, making NHIRD an inval-

918
919
920
921
922
923
924
925
926
927
928
929
930
931



932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

(a) Sample table joins on CD with OO, assuming a totally 5 order details. All values for each field are synthetic to maintain PII. We join CD with OO on **fee_ym**, **hosp_id**, **appl_type**, **appl_date**, **case_type**, and **seq_no**. The joining between DD with DO and GD with GO follows the same methods described here.



958
959
960
961
962
963
964
965
966
967
968
969
970
971

(b) Sample patient medical history, assuming a totally 50 visits, after aggregating all CD, DD, and GD by patient **id**. We differentiate visit types by their original table before aggregation.

Figure 6: Sample join and resulting example patient.

972 Table 8: NHIRD table overview. Table name with * denotes the table we use in our paper.
973

Name	Description	Name	Description
BED	Registry for contracted beds	ID*	Registry for beneficiaries (Patient information)
DETA	Registry for contracted specialty services	DT	Monthly claim summary for inpatient claims
HOSB	Registry for contracted medical facilities	CT	Monthly claim summary for ambulatory care claims
HOSX	Supplementary registry for contracted medical facilities	DD*	Inpatient expenditures by admissions (Hospitalization visit)
DOC	Registry for board-certified specialists	DO*	Details of inpatient orders (Order detail of Hospitalization visit)
PER	Registry for medical personnel	CD*	Ambulatory care expenditures by visits (Outpatient clinic visits)
HV	Registry for catastrophic illness patients	OO*	Details of ambulatory care orders (Order detail of outpatient clinic visits)
HOX	Registry for medical services	GD*	Expenditures for prescriptions dispensed at contracted pharmacies (Pharmacy visit)
DRUG	Registry for drug prescriptions	GO*	Details of prescriptions dispensed at contracted pharmacies (Order detail of pharmacy visit)

985
986
987 Table 9: Demographic, history length, and other statistics of NHIRD. Note that, the average and
988 median history length are calculated in years. Notably, some patient gender records are not male or
989 female, so we exclude those from the statistics.

Group	Count	Avg. history	Median history	Avg. # visits	Median # visits	Avg. # codes	Median # codes
All	3,989,369	15.2	17	271	214	5,886	4,329
Male	1,965,368	15.1	17	243	184	5,415	3,818
Female	1,962,523	16	17	306	248	6,504	4,934
0-18	456,322	12.4	13	274	250	5,803	5,208
18-35	1,047,623	15.4	17	188	164	3,736	3,137
35-50	981,514	15.5	17	214	172	4,448	3,384
50-70	1,017,522	16	17	312	253	6,829	5,246
70+	486,388	15	17	477	416	11,525	9,871

990
991
992
993
994
995
996
997
998
999
1000
1001
able resource for population-wide studies on cancer progression, early detection, and screening
1002 effectiveness.1003
1004
1005
1006
1007
Subsequent Cancer Definition. In cancer registry standards such as SEER and IARC, the term
1008 *subsequent primary cancer* refers strictly to new independent primary malignancies, explicitly
1009 excluding metastases or recurrences of prior cancers. In contrast, for the purposes of this study,
1010 we define *subsequent cancer* more broadly to include both new independent primary cancers and
1011 metastases to the target organ. This operational definition reflects the screening context, where both
1012 scenarios represent clinically relevant risks for early detection.1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

B DATA ACCESSIBILITY, IRB, AND REPRODUCIBILITY

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
172100
172101
172102
172103
172104
172105
172106
172107
172108
172109
172110
172111
172112
172113
172114
172115
172116
172117
172118
172119
172120
172121
172122
172123
172124
172125
172126
172127
172128
172129
172130
172131
172132
172133
172134
172135
172136
172137
172138
172139
172140
172141
172142
172143
172144
172145
172146
172147
172148
172149
172150
172151
172152
172153
172154
172155
172156
172157
172158
172159
172160
172161
172162
172163
172164
172165
172166
172167
172168
172169
172170
172171
172172
172173
172174
172175
172176
172177
172178
172179
172180
172181
172182
172183
172184
172185
172186
172187
172188
172189
172190
172191
172192
172193
172194
172195
172196
172197
172198
172199
172200
172201
172202
172203
172204
172205
172206
172207
172208
172209
172210
172211
172212
172213
172214
172215
172216
172217
172218
172219
172220
172221
172222
172223
172224
172225
172226
172227
172228
172229
172230
172231
172232
172233
172234
172235
172236
172237
172238
172239
172240
172241
172242
172243
172244
172245
172246
172247
172248
172249
172250
172251
172252
172253
172254
172255
172256
172257
172258
172259
172260
172261
172262
172263
172264
172265
172266
172267
172268
172269
172270
172271
172272
172273
172274
172275
172276
172277
172278
172279
172280
172281
172282
172283
172284
172285
172286
172287
172288
172289
172290
172291
172292
172293
172294
172295
172296
172297
172298
172299
172300
172301
172302
172303
172304
172305
172306
172307
172308
172309
172310
172311
172312
172313
172314
172315
172316
172317
172318
172319
172320
172321
172322
172323
172324
172325
172326
172327
172328
172329
172330
172331
172332
172333
172334
172335
172336
172337
172338
172339
172340
172341
172342
172343
172344
172345
172346
172347
172348
172349
172350
172351
172352
172353
172354
172355
172356
172357
172358
172359
172360
172361
172362
172363
172364
172365
172366
172367
172368
172369
172370
172371
172372
172373
172374
172375
172376
172377
172378
172379
172380
172381
172382
172383
172384
172385
172386
172387
172388
172389
172390
172391
172392
172393
172394
172395
172396
172397
172398
172399
172400
172401
172402
172403
172404
172405
172406
172407
172408
172409
172410
172411
172412
172413
172414
172415
172416
172417
172418
172419
172420
172421
172422
172423
172424
172425
172426
172427
172428
172429
172430
172431
172432
172433
172434
172435
172436
172437
172438
172439
172440
172441
172442
172443
172444
172445
172446
172447
172448
172449
172450
172451
172452
172453
172454
172455
172456
172457
172458
172459
172460
172461
172462
172463
172464
172465
172466
172467
172468
172469
172470
172471
172472
172473
172474
172475
172476
172477
172478
172479
172480
172481
172482
172483
172484
172485
172486
172487
172488
172489
172490
172491
172492
172493
172494
172495
172496
172497
172498
172499
172500
172501
172502
172503
172504
172505
172506
172507
172508
172509
172510
172511
172512
172513
172514
172515
172516
172517
172518
172519
172520
172521
172522
172523
172524
172525
172526
172527
172528
172529
172530
172531
172532
172533
172534
172535
172536
172537
172538
172539
172540
172541
172542
172543
172544
172545
172546
172547
172548
172549
172550
172551
172552
172553
172554
172555
172556
172557
172558
172559
172560
172561
172562
172563
172564
172565
172566
172567
172568
172569
172570
172571
172572
172573
172574
172575
172576
172577
172578
172579
172580
172581
172582
172583
172584
172585
172586
172587
172588
172589
172590
172591
172592
172593
172594
172595
172596
172597
172598
172599
172600
172601
172602
172603
172604
172605
172606
172607
172608
172609
172610
172611
172612
172613
172614
172615
172616
172617
172618
1726

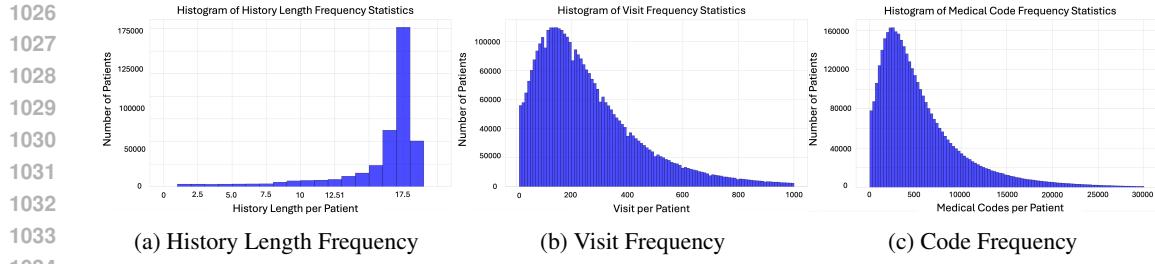


Figure 7: NHIIRD frequency statistics on history length, number of visit, and number of codes per patient

Table 10: Demographics and medical history lengths of selected cancer patients in NHIIRD. The difference in cancer case counts from Table 2 results from the removal of cases with insufficient history or erroneous records during benchmark creation.

Demographic group	Counts	Avg. history length
Pancreatic		
All	12,602	12.3
0-18	28	11.8
18-35	267	15
35-50	1,453	13.3
50-70	4,806	12.8
70+	6,048	11.6
Liver		
All	11,355	13.7
0-18	14	10.3
18-35	252	14.3
35-50	1,620	14.2
50-70	4,968	13.9
70+	4,501	13.1
Lung		
All	8,867	14
0-18	15	12.8
18-35	120	14.5
35-50	678	14.3
50-70	3,109	14.4
70+	4,945	13.8

C EHRSHOT

Dataset and Prediction Task Overview. EHRSHOT is the latest published EHR dataset for evaluating the few-shot performance of foundation models on clinical prediction tasks. It consists of structured, de-identified, and longitudinal Electronic Health Records (EHRs) from 6,739 patients treated at Stanford Medicine, including diagnosis codes, procedures, medications, and laboratory test results. EHRSHOT is sourced from the EHR system in both Stanford Health Care and Lucile Packard Children’s Hospital, where 2.57M patients used to pretrain CLMBR, a clinical foundation model used to evaluate the EHRSHOT benchmark in the original paper (Wornow et al., 2023). It contains 15 distinct clinical prediction tasks under the four main categories:

- Operational Outcomes
- Anticipating Lab Test Results
- Assignment of New Diagnoses
- Anticipating Chest X-ray Findings

1080
1081
1082
1083
1084
1085 Table 11: Comparison of coding formats between EHRSHOT and NHIRD, where NHI refers to
1086 Taiwan’s National Health Insurance Administration. In NHIRD, only ICD-9-CM and ICD-9-Proc are
1087 international standard codes for diagnoses and procedures, while all other codes, such as those for
1088 drugs, orders, materials, and services, are defined by the NHI for domestic use only.

Code type	EHRSHOT	NHIRD
Diagnosis	SNOMED, ICDO3	ICD-9-CM
Prescriptions	RxNorm	NHI Drug Code
Medical Procedures	CPT, HCPCS	NHI Order Code
Surgical Procedures	SNOMED, ICD-10-Proc, ICD-9-Proc,	ICD-9-Proc, NHI Order Code
Diagnostic Procedures	CPT, HCPCS	NHI Order Code
Lab Orders	LONIC	NHI Order Code
Medical Equipments	SNOMED, CPT, HCPCS	NHI Material Code
Medical Supplies	HCPCS	NHI Material Code
Medical Services	CPT	NHI Service Code

1095
1096 Table 12: Summary of coding mapping from EHRSHOT to NHIRD.

Code in EHRSHOT	Mapping methods	Code in NHIRD
SNOMED	SNOMED to ICD9 mapping	ICD-9-CM
SNOMED - procedure	Semantic text matching	ICD-9-Proc, NHI Order Code
SNOMED - regime/therapy	Semantic text matching	ICD-9-Proc, NHI Order Code
SNOMED - physical object	Semantic text matching	NHI Order Code
ICDO3	ICD mapping by CMS	ICD-9-CM
ICD10-Proc	ICD mapping by CMS	ICD-9-Proc
RxNorm	Semantic text matching	NHI Drug Code
CPT	Semantic text matching	NHI Order / Service Code
HCPCS	Semantic text matching	NHI Material Code
LONIC	Semantic text matching	NHI Order Code

1109
1110 where the one-year pancreatic cancer prediction is under the category ”Assignment of New Diagnoses”. It is worth noting that, pancreatic cancer prediction is the only available cancer prediction
1111 task in EHRSHOT. Each designed to test the ability of foundation models for accurate predictions
1112 under limited labeled data at the time of patient visit. Refer Table 3 in the original EHRSHOT
1113 paper (Wornow et al., 2023) for complete task description and statistics.

1114
1115 **EHRSHOT verse NHIRD.** The source EHR system of EHRSHOT in Stanford Medicine and Lucile
1116 Packard Children’s Hospital utilizes the Observational Medical Outcomes Partnership Common
1117 Data Model (OMOP-CDM) format. The OMOP-CDM is a standardized format for organizing and
1118 conforming EHR, enabling consistent analysis across diverse healthcare datasets. On the other hand,
1119 The NHIRD, as described in Appendix A, comprises an extensive set of structured tables capturing
1120 nearly all aspects of healthcare encounters. However, its format is tailored for internal use by the
1121 National Health Insurance Administration in Taiwan, rather than for international interoperability like
1122 OMOP-CDM. Applying CATCH-FM, built and pretrained on NHIRD, to EHRSHOT is nontrivial
1123 due to differences in coding formats between the two healthcare systems. Table 11 summarizes the
1124 key differences in medical coding schemes used by NHIRD and EHRSHOT.

1125
1126 **Mapping EHRSHOT to NHIRD.** As CATCH-FM is pretrained on NHIRD using ICD-9 and NHI
1127 codes, we map SNOMED to ICD-9 using official CMS and NLM mappings. While 43% of codes
1128 have one-to-one mappings (mostly SNOMED to ICD-9), the remaining 57% (e.g., RxNorm, CPT)
1129 are aligned to NHI codes via semantic matching on text descriptions (Liu et al., 2020; Sung et al.,
1130 2020a; Yuan et al., 2022). Due to differences in drug, procedure, and medical codes, the average
1131 cosine similarity between EHRSHOT and top-1 matched NHIRD codes is 84.3%, posing a significant
1132 generalization challenge where no gold-mapping standard exists.

1133
1134 ICD-based codes such as ICD-9-Proc (ICD-9 Procedure code), ICD-10-PCS (ICD-10 Procedure
1135 code), and ICD-O-3 (ICD oncology code) can be mapped to ICD-9 using publicly available mappings
from the Centers for Medicare & Medicaid Services (CMS). Diagnostic concepts in SNOMED can

Table 13: Summary of coding mapping from EHRSHOT to NHIRD.

Code in EHRSHOT	Mapping methods	Code in NHIRD
SNOMED	SNOMED to ICD9 mapping	ICD-9-CM
SNOMED - procedure	Semantic text matching	ICD-9-Proc, NHI Order Code
SNOMED - regime/therapy	Semantic text matching	ICD-9-Proc, NHI Order Code
SNOMED - physical object	Semantic text matching	NHI Order Code
ICD03	ICD mapping by CMS	ICD-9-CM
ICD10-Proc	ICD mapping by CMS	ICD-9-Proc
RxNorm	Semantic text matching	NHI Drug Code
CPT	Semantic text matching	NHI Order / Service Code
HCPSCS	Semantic text matching	NHI Material Code
LONIC	Semantic text matching	NHI Order Code

Table 14: Code mapping statistics from EHRSHOT to NHIRD. “Exact” denotes mappings via official mapping, while “Threshold” refers to semantic text matching at the specified cosine similarity (0.0–1.0). The 0.98 soft-matching cutoff is applied only to codes without official mappings. The 0.98 threshold includes both exact and those mapped by the 0.98 soft-matching cutoff.

Code type (Total)	Exact	0.98 threshold
SNOMED (11598)	8998 (77.6%)	9072 (78.2%)
ICD10PCS (3669)	3618 (98.6%)	3618 (98.6%)
ICD03 (96)	76 (79.2%)	83 (86.5%)
RxNorm (5433)	0 (0.0%)	0 (0.0%)
CPT (4675)	0 (0.0%)	3 (0.06%)
LONIC (3945)	2 (0.05%)	3 (0.08%)
HCPSCS (64)	0 (0.0%)	0 (0.0%)
All (29480)	12694 (43.1%)	12779 (43.4%)

also be mapped to ICD-9 via the “ICD-9-CM Diagnostic Codes to SNOMED CT Map” provided by the U.S. National Library of Medicine (NLM). However, other coding systems, e.g., SNOMED procedures, CPT (coding for medical services, procedures, and other practices), and RxNorm (codes for drug prescriptions), lack direct mappings to the NHIRD coding scheme. Table 13 summarizes the mapping strategies and source-target relationships between each coding system. To address this, we adopt a text-based semantic matching approach by embedding¹ the textual descriptions of codes using Sentence Transformers (Thakur et al., 2021) and formulating the mapping as a dense retrieval problem, a method widely used to align medical concepts across ontologies (Sung et al., 2020a; Liu et al., 2020; Yuan et al., 2022). Codes from each system are matched to the most semantically similar code in NHIRD based on text similarity, using Faiss as the retrieval backend (Douze et al., 2024).

Since no gold mapping standard exists for semantic alignment, it is difficult to determine whether moderate similarity scores (e.g., 0.7–0.85) reflect true mappings or noise. To approximate exact mappings and ensure high precision, we therefore adopt a strict cutoff of 0.98 as the threshold for soft matching. Table 14 summarizes the resulting coverage under different matching strategies. Even with semantic matching, the final coverage reaches only 43%, implying that over half of the medical information is lost. This substantial loss reflects the inherent challenge of aligning heterogeneous and non-standardized EHR format, especially when deploying healthcare foundation models across different healthcare systems and populations, and underscores the difficulties of achieving robust model generalization.

D IMPLEMENTATION DETAILS

Tokenization and inputs. We map all medical codes to unique indices ranging from 0 to the total number of unique medical codes, with a token vocabulary size of 185,138, including demographic, time, and special tokens. Since all tokens are treated as atomic units, no additional tokenization

¹We adopt Salesforce/SFR-Embedding-Mistral as encoder from Huggingface.

1188 Table 15: Model hyperparameters under different parameter sizes with million (m) and billion (b).
1189

1190 Parameters	1191 Num of layers	1192 Dimension	1193 Num of heads	1194 Block size
1195 70m	1196 6	1197 512	1198 8	1199 2048
1200 120m	1201 6	1202 768	1203 8	1204 2048
1205 160m	1206 12	1207 768	1208 12	1209 2048
1210 260m	1211 12	1212 1024	1213 16	1214 2048
1215 350m	1216 20	1217 1024	1218 16	1219 2048
1220 410m	1221 24	1222 1024	1223 16	1224 2048
1225 560m	1226 22	1227 1280	1228 10	1229 2048
1230 720m	1231 20	1232 1536	1233 12	1234 2048
1235 1b	1236 16	1237 2048	1238 8	1239 2048
1240 1.2b	1241 20	1242 2048	1243 16	1244 2048
1245 1.4b	1246 24	1247 2048	1248 16	1249 2048
1250 2.1b	1251 24	1252 2560	1253 16	1254 2048
1255 2.8b	1256 32	1257 2560	1258 32	1259 2048

1204 Table 16: Hyperparameters Configurations for CATCH-FM
1205

1206 Hyperparameter	1207 Pretraining	1208 Supervised	1209 Fine-tuning
1210 Learning Rate	1211 6e-6 for model size \geq 1B; else 1e-5		
1212 Optimizer		1213 AdamW	
1213 Adam ϵ		1214 1e-8	
1214 Adam Betas (β_1, β_2)		1215 (0.9, 0.999)	
1215 Weight decay		1216 0.01	
1216 Gradient Norm		1217 0.1	
1217 Scheduler		1218 Warmup-Stable-Decay	
1218 Warmup Ratio		1219 0.1	
1219 Stable Ratio		1220 0.8	
1220 Decay Ratio		1221 0.1	
1221 Batch Size	1222 64	1223 128	
1222 Epochs	1223 -	1224 5	

1221 is required. The input sequence length is limited to 2,048 tokens. For patient records with EHR
1222 sequences exceeding this limit, we avoid truncation during pretraining and instead split the sequences
1223 into non-overlapping chunks, processing them across multiple training steps. However, during
1224 fine-tuning, inputs longer than 2,048 tokens are truncated, as they must be processed as single
1225 sequences.

1226 **Backbone architecture.** We use the Pythia architecture as the backbone of CATCH-FM. Pythia
1227 is a family of decoder-only autoregressive language models, ranging from 70m to 12b parameters,
1228 designed for scalable and consistent research. Its feedforward architecture features rotary embeddings
1229 for positional encoding, untied embedding layers, and parallelized flash attention for efficient training.
1230 Table 15 outlines the model architecture, while Table 16 details the hyperparameters for pretraining
1231 and supervised fine-tuning on cancer screening tasks. All models are trained on 8 A100-SXM4-40GB
1232 GPUs.

1233 **Baselines.** For the tree-based baselines, XGBoost and LightGBM, we utilize their official Python
1234 packages, xgboost² and lightgbm³, respectively. For deep learning baselines, we employ the
1235 PyHealth framework (Yang et al., 2023a) and perform supervised learning tasks directly on the cancer
1236 screening benchmarks. For language model baselines, we convert medical codes into text using
1237 language model vocabularies and concatenate them into sequences representing patient histories for
1238 fine-tuning. In NHIRD, ICD9 codes are mapped to standardized textual descriptions using official
1239 code mapping tables. Each medical code, representing a diagnosis, surgery, treatment, or medication,

1240 ²<https://xgboost.readthedocs.io/en/stable/index.html>

1241 ³<https://lightgbm.readthedocs.io/en/stable/>

1242 Table 17: Estimated FLOPs requirement for CATCH-FM. The required training steps and total tokens
 1243 (inside the parentheses) for different model sizes are reported here.

FLOPs	1e+18	4e+18	8e+18	2e+19	4e+19	8e+19	1e+20	2e+20
CATCH-FM-70m	10071 (1.32e+09)	40287 (5.28e+09)	80575 (1.06e+10)	201439 (2.64e+10)	402878 (5.28e+10)	805757 (1.06e+11)	1007197 (1.32e+11)	2014394 (2.64e+11)
CATCH-FM-120m	6247 (8.19e+08)	24990 (3.28e+09)	49981 (6.55e+09)	124952 (1.64e+10)	249905 (3.28e+10)	499810 (6.55e+10)	624763 (8.19e+10)	1249526 (1.64e+11)
CATCH-FM-160m	4800 (6.29e+08)	19202 (2.52e+09)	38405 (5.03e+09)	96014 (1.26e+10)	192029 (2.52e+10)	384058 (5.03e+10)	480072 (6.29e+10)	960145 (1.26e+11)
CATCH-FM-260m	3252 (4.26e+08)	13011 (1.71e+09)	26022 (3.41e+09)	65057 (8.53e+09)	130114 (1.71e+10)	260228 (3.41e+10)	325285 (4.26e+10)	650570 (8.53e+10)
CATCH-FM-350m	2421 (3.17e+08)	9685 (1.27e+09)	19371 (2.54e+09)	48429 (6.35e+09)	96858 (1.27e+10)	193716 (2.54e+10)	242145 (3.17e+10)	484290 (6.35e+10)
CATCH-FM-410m	2147 (2.81e+08)	8588 (1.13e+09)	17176 (2.25e+09)	42941 (5.63e+09)	85882 (1.13e+10)	171765 (2.25e+10)	214706 (2.81e+10)	429412 (5.63e+10)
CATCH-FM-720m	1302 (1.71e+08)	5209 (6.83e+08)	10418 (1.37e+09)	26045 (3.41e+09)	52090 (6.83e+09)	104180 (1.37e+10)	130225 (1.71e+10)	260451 (3.41e+10)
CATCH-FM-1b	964 (1.26e+08)	3857 (5.06e+08)	7714 (1.01e+09)	19285 (2.53e+09)	38570 (5.06e+09)	77141 (1.01e+10)	96426 (1.26e+10)	192853 (2.53e+10)
CATCH-FM-1.2b	818 (1.07e+08)	3273 (4.29e+08)	6547 (8.58e+08)	16369 (2.15e+09)	32739 (4.29e+09)	65478 (8.58e+09)	81848 (1.07e+10)	163696 (2.15e+10)
CATCH-FM-1.4b	710 (9.32e+07)	2843 (3.73e+08)	5687 (7.46e+08)	14219 (1.86e+09)	28439 (3.73e+09)	56879 (7.46e+09)	71098 (9.32e+09)	142197 (1.86e+10)
CATCH-FM-2.1b	486 (6.38e+07)	1946 (2.55e+08)	3892 (5.10e+08)	9732 (1.28e+09)	19464 (2.55e+09)	38929 (5.10e+09)	48662 (6.38e+09)	97324 (1.28e+10)
CATCH-FM-2.8b	382 (5.01e+07)	1529 (2.00e+08)	3058 (4.01e+08)	7646 (1.00e+09)	15292 (2.00e+09)	30584 (4.01e+09)	38230 (5.01e+09)	76460 (1.00e+10)

1252 Table 18: Operational Decision Threshold Analysis of CATCH-FM-2.4b on *first* target cancer cohorts

Threshold	False Positive Rate	True Positive Rate	Specificity	Precision	Relative Risk
Cancer: Pancreatic, Positive/Negative (Incidence Ratio): 452/28058 (1.59%)					
0.996	0.000	0.188	1.000	1.000	63.075
0.980	0.000	0.330	0.9999	0.974	61.426
0.932	0.001	0.407	0.9994	0.911	57.455
0.815	0.001	0.458	0.9986	0.841	53.075
0.686	0.002	0.491	0.9975	0.760	47.954
0.495	0.004	0.535	0.9960	0.684	43.119
0.411	0.005	0.566	0.9946	0.627	39.577
0.264	0.008	0.586	0.9918	0.536	33.836
0.204	0.010	0.606	0.9900	0.495	31.196
Cancer: Liver, Positive/Negative (Incidence Ratio): 509/26148 (1.95%)					
0.984	0.000	0.134	0.9999	0.958	50.158
0.957	0.001	0.242	0.9994	0.891	46.679
0.905	0.001	0.330	0.9985	0.816	42.711
0.841	0.003	0.381	0.9972	0.727	38.053
0.768	0.004	0.422	0.9958	0.660	34.539
0.702	0.006	0.446	0.9945	0.612	32.044
0.635	0.007	0.477	0.9932	0.576	30.157
0.588	0.008	0.501	0.9919	0.545	28.536
0.515	0.010	0.536	0.9901	0.512	26.824
Cancer: Lung, Positive/Negative (Incidence Ratio): 868/30153 (1.45%)					
0.997	0.000	0.130	0.9998	0.897	62.455
0.992	0.001	0.243	0.9995	0.866	60.332
0.977	0.001	0.336	0.9992	0.854	59.456
0.950	0.002	0.366	0.9982	0.749	52.157
0.914	0.003	0.414	0.9974	0.702	48.911
0.825	0.004	0.454	0.9962	0.633	44.087
0.716	0.005	0.491	0.9950	0.589	41.002
0.593	0.007	0.509	0.9931	0.519	36.167
0.385	0.010	0.531	0.9901	0.439	30.576

1276 is transformed accordingly. Patient histories are then constructed by concatenating the medical text,
 1277 similar to processing text documents in language models. The sequence length limit is 1024 for
 1278 BioGPT and 2048 for Qwen.

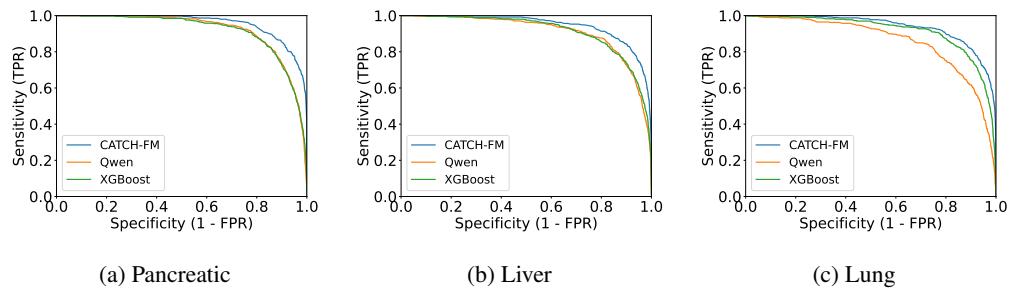
1280 **Training Configurations.** Table 17 shows the required training steps and total tokens for
 1281 CATCH-FM at various FLOP targets. We adopt this configuration to investigate the scaling laws for
 1282 CATCH-FM, aiming to determine the optimal model and data scales under a fixed FLOP budget.
 1283 Their corresponding FLOPs, number of parameters, and GPU training hours are listed in Table 3. We
 1284 calculate the FLOPs with Pytorch built-in flops counter.

E ANALYSIS OF THRESHOLD TUNING

1289 Clinically, models often adjust decision thresholds to prioritize sensitivity or specificity (Collins
 1290 & Moons, 2012; Steyerberg & Steyerberg, 2019), such as reducing false positives in prescreening
 1291 or increasing sensitivity in high-risk groups. Figure 8 shows that CATCH-FM supports tunable
 1292 sensitivity and specificity, which makes it well-suited for diverse clinical settings. It show that
 1293 CATCH-FM maintains its advantage across all thresholds, confirming its ability to identify high-
 1294 risk patients for further screening (high sensitivity) and avoid unnecessary patient distress (high
 1295 specificity). We also report AUROC curves across thresholds to compare our model with baseline
 1296 methods (XGBoost and Qwen), as shown in Figure 9.

1296 Table 19: Model Performance Comparsion (Specificity = 0.99) on *first* target cancer cohort
1297

Model (Input)	Threshold	False Positive Rate	True Positive (Sensitivity)	Specificity	Precision	Relative Risk
Cancer: Pancreatic, Positive/Negative (Incidence Ratio): 452/28058 (1.59%)						
CATCH-FM-2.4b (Code Sequence)	0.204	0.01	0.606	0.99	0.495	31.196
XGBoost (Bag-of-words)	0.180	0.01	0.310	0.99	0.335	21.126
Qwen (Language Sequence)	0.408	0.01	0.254	0.99	0.324	17.644
Cancer: Liver, Positive/Negative (Incidence Ratio): 509/26148 (1.95%)						
CATCH-FM-2.4b (Code Sequence)	0.515	0.01	0.536	0.99	0.512	26.824
XGBoost (Bag-of-words)	0.200	0.01	0.363	0.99	0.415	21.723
Qwen (Language Sequence)	0.437	0.01	0.324	0.99	0.421	19.3
Cancer: Lung, Positive/Negative (Incidence Ratio): 868/30153 (1.45%)						
CATCH-FM-2.4b (Code Sequence)	0.385	0.01	0.531	0.99	0.439	30.576
XGBoost (Bag-of-words)	0.172	0.01	0.323	0.99	0.323	22.5
Qwen (Language Sequence)	0.573	0.01	0.188	0.99	0.238	15.239

1308 Figure 8: Sensitivity and specificity as functions of the screening decision threshold for CATCH-FM-
1309 2.4b, Qwen2.5-500M, and XGBoost on the *first* target cancer cohorts.
1310

1311 We evaluate our model and carefully select decision thresholds from the AUROC curve to ensure a
1312 specificity of at least 0.99. We also report Relative Risk (RR), to quantify the odds of cancer among
1313 those classified as positive compared to a random pick based just on the population disease incidence
1314 following suggested work in Placido et al. (2023a). We provide a complete threshold selection results
1315 in Table 18.

1316 Under a fixed specificity of 0.99 and FPR of 0.01, our model demonstrates strong performance across
1317 all three cancer prediction tasks. For pancreatic cancer, a threshold of 0.20 yields a TPR of 0.61, and
1318 a relative risk of 31.2. For liver cancer, a threshold of 0.52 yields a TPR of 0.54 and a relative risk
1319 of 26.8. For lung cancer, a threshold of 0.39 yields a TPR of 0.53 and a relative risk of 30.6. These
1320 results highlight the utility of our method across diverse cancer types. Under the fixed specificity
1321 threshold, we ensure a fair comparison with the baselines, as detailed in Table 19. Across all metrics,
1322 our model consistently outperforms the baselines.

1323 To simulate clinical implementation, following the approach proposed in Placido et al. (2023a),
1324 we adopt an operational decision point that simulates cost constraints, where only the top 0.1% of
1325 patients (by predicted risk) are eligible to be advanced to a surveillance program. At this threshold,
1326 our model achieves relative risk scores of 63.1, 52.0, and 61.9 for pancreatic, liver, and lung cancers
1327 prediction, respectively. This also further indicates the clinical utility of our model.

1328 F BENEFITS OF COMPUTE-OPTIMAL PRETRAINING

1329 We show the detailed performance comparison between compute-(non-)optimal pretraining on
1330 downstream cancer pancreatic screening, as supplementary information for Figure 2, in the Table 20.
1331 We can observe that a compute-optimal model with adequate tokens outperforms larger models with
1332 insufficient tokens and smaller models with excessive tokens.

1333 G ANALYSIS OF COHORT CONTROL

1334 We evaluate CATCH-FM-160m’s performance with training and testing on controlled (matched)
1335 and random (out-of-distribution) control groups to assess screening under various distribution shifts.

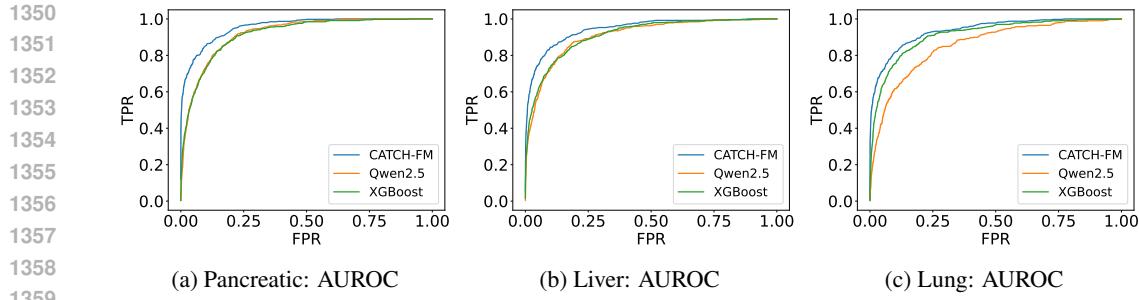


Figure 9: AUROC comparison across cancer cohorts with CATCH-FM-2.4b, Qwen2.5-500M, and XGBoost evaluated on the *first* target cancer cohorts.

Table 20: Performance of compute-(non-)optimal pretraining on *all* target cancer cohorts.

Scale	Tokens	Loss	F1	AUROC	AUPRC	Specificity	Sensitivity
FLOPs = 4e18, Optimal Model Scale = 260m							
260m	1.7B	2.887	86.6	97.1	81.2	99.5	70.7
70m	5.2B	2.974	86.4	97.0	81.1	99.2	70.7
2b	0.2B	3.411	82.7	96.1	73.3	99.1	60.9
FLOPs = 2e19, Optimal Model Scale = 410m							
410m	5.6B	2.677	87.3	96.4	81.2	99.3	70.8
70m	26B	2.862	86.1	96.2	79.7	99.1	70.7
2b	1.2B	2.885	82.4	96.2	74.9	98.5	67.3

Table 21: Evaluation of pretrained compute-optimal model CATCH-FM-160m on *all* cancer cohorts with different target controls on negative cases. The label distribution is fixed for each cancer data.

Negative Selection		F1 (Macro)	AUROC	AUPRC	Specificity	Sensitivity
Training	Testing					
Cancer: Pancreatic						
Controlled	Controlled	86.6	97.1	81.2	99.2	70.7
Random	Random	86.3	95.9	78.5	99.4	67.2
Controlled	Random	85.5	96.9	79.7	99.0	70.7
Random	Controlled	87.8	95.6	80.1	99.6	67.2
Cancer: Liver						
Controlled	Controlled	84.5	96.0	76.6	99.3	63.4
Random	Random	85.0	95.0	75.8	99.3	64.5
Controlled	Random	79.4	94.6	69.0	98.2	63.4
Random	Controlled	85.2	94.6	75.5	99.4	64.5
Cancer: Lung						
Controlled	Controlled	82.1	95.8	71.5	99.6	54.7
Random	Random	83.5	96.1	72.5	99.4	62.4
Controlled	Random	83.4	95.9	72.8	99.8	54.7
Random	Controlled	84.0	95.6	72.7	99.4	62.4

As shown in Table 21, CATCH-FM maintains strong performance on the random control group, demonstrating its robustness in handling out-of-distribution patients and ensuring consistent results across diverse populations.

Table 22: Performance of CATCH-FM-160m on all target cancer cohorts under varying exclusion windows.

Time Window Exclusion	AUPRC	Specificity	Sensitivity
Cancer: Pancreatic			
12-month	81.2	99.2	70.7
6-month	81.4	99.2	71.2
Cancer: Liver			
12-month	76.6	99.3	63.4
6-month	76.9	99.1	67.7
Cancer: Lung			
12-month	71.5	99.6	54.7
6-month	71.6	99.5	59.7

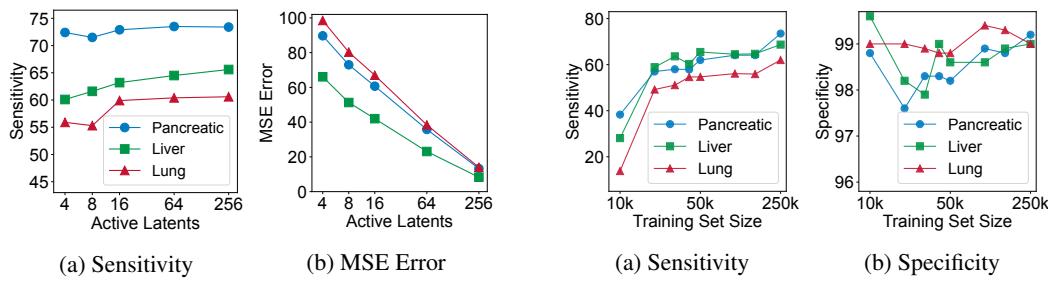


Figure 10: Evaluation results for the cancer screening task of the sparse autoencoder (SAE)

Figure 11: CATCH-FM-1b finetuned with different label sizes on *first* target cancer cohorts.

H TIME WINDOW EXCLUSION

This experiment studies CATCH-FM’s effectiveness at different exclusion window in between input medical history and cancer diagnosis. Table 22 shows the results of CATCH-FM when finetuned and evaluated with different exclusion windows. A shortened 6-month exclusion window presents an easier task, as more short term risk factors may be observable, and CATCH-FM performs better in that setup. This confirms that CATCH-FM can be conveniently adapted to different prediction settings based on healthcare professional’s preference.

I DETAILS OF INTERPRETABILITY EXPERIMENTS

We process positive patients’ event token sequences using the fine-tuned CATCH-FM-1b model on each cancer dataset to obtain hidden states \mathbf{h} for every token. Following (Kang et al., 2024), we then train a TopK sparse autoencoder (SAE) on the hidden states of the [EOS] token, $\mathbf{h}_{[EOS]}$, which serves as an aggregated representation of patient trajectories. The SAE is implemented as follows:

$$\mathbf{z} = \text{TopK}(\mathbf{W}_{\text{enc}}(\mathbf{h}_{[EOS]} - \mathbf{b}_{\text{dec}}) + \mathbf{b}_{\text{enc}}), \quad (6)$$

$$\hat{\mathbf{h}}_{[EOS]} = \mathbf{W}_{\text{dec}}\mathbf{z} + \mathbf{b}_{\text{dec}} \quad (7)$$

where the embedding vector $\mathbf{h}_{[EOS]}$ is passed through an encoder parameterized by \mathbf{W}_{enc} and \mathbf{b}_{enc} . The TopK activation function regulates the number of active latent features. The encoded representation is then reconstructed via a decoder parameterized by \mathbf{W}_{dec} and \mathbf{b}_{dec} . The SAE is trained using the mean squared error (MSE) loss for reconstruction.

Figure 10 presents the reconstruction evaluation across different numbers of active latent features on the cancer screening benchmark. We observe that as the number of active latent features increases, both cancer screening performance and reconstruction quality improve. Interestingly, with just 16 active latent features, the SAE’s reconstructed embeddings already capture enough information

1458 to match the original performance. This suggests that the latent cancer signal extracted from the
1459 fine-tuned CATCH-FM is inherently low-dimensional.
1460

1461 J ANALYSIS OF SUPERVISED DATA SCALE

1463 Many healthcare systems may not have as many patients as in NHIRD, e.g., in scattered healthcare
1464 systems. This experiment evaluates CATCH-FM with different amounts of available supervised
1465 finetuning labels. Figure 11 plots CATCH-FM’s performance finetuned with different amount of
1466 labels. CATCH-FM maintains its 99% specificity with as few as 10k training labels, with only 300
1467 positives. Its sensitivity increases with more finetuning amount and crossed 50% with only 20k total
1468 patient data across two decades, which is fewer than a typical hospital.
1469

1470 K USAGE OF LARGE LANGUAGE MODEL

1472 We used large language models to assist in polishing the writing of this paper. Specifically, LLMs
1473 were employed to correct grammar, paraphrase sentences, and improve readability and flow. The
1474 scientific ideas, experiments, and analyses were fully conducted by the authors, with LLM use limited
1475 to enhancing clarity and smoothness of expression.
1476

1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511