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ABSTRACT

Cancer screening, leading to early detection, saves lives. Unfortunately, exist-
ing screening techniques require expensive and intrusive medical procedures, not
globally available, resulting in too many lost would-be-saved lives. We present
CATCH-FM, CATch Cancer early with Healthcare Foundation Models, a cancer
pre-screening methodology that identifies high-risk patients for further screen-
ing solely based on their historical medical records. With millions of electronic
healthcare records (EHR), we establish the scaling law of EHR foundation models
pretrained on medical code sequences, pretrain compute-optimal foundation models
of up to 2.4 billion parameters, and finetune them on clinician-curated cancer risk
prediction cohorts. In our retrospective evaluation comprising of thirty thousand
patients, CATCH-FM achieves strong efficacy, with 50% sensitivity in predicting
first cancer risks at 99% specificity cutoff, and outperforming feature-based tree
models and both general and medical LLMs by up to 20% AUPRC. Despite signifi-
cant demographic, healthcare system, and EHR coding differences, CATCH-FM
achieves state-of-the-art pancreatic cancer risk prediction on the EHRSHOT few-
shot leaderboard, outperforming EHR foundation models pretrained using on-site
patient data. Our analysis demonstrates the robustness of CATCH-FM in various
patient distributions, the benefits of operating in the ICD code space, and its ability
to capture non-trivial cancer risk factors. Our code will be open-sourced.

1 INTRODUCTION

Early cancer detection by cancer screening is one of the most effective ways to combat cancer (Siegel
et al., 2024). Cancers detected at an early stage are treated with significantly improved patient
outcomes (Haue et al.| 2024} |Kim et al., 2024). Recent medical advancements also significantly
improved the curative rates for cancers detected at early stages (Ju et al.| 2024; Maru & Jaffee, [2024;
Springfeld et al., 2023} [Thiele et al.|[2024). Routine screening with follow-up monitoring of high can-
cer risk patients is standard practice, enabling timely intervention and effective treatments (Altmayer
et al., 2024} |Gyawali & Booth, 2024} Rubinstein et al., 2024).

Despite its benefits, cancer screening remains underutilized (Zhang et al., 2022), especially in
populations with limited healthcare resources (Xu et al.| 2024b)) due to reliance on invasive, resource-
intensive procedures like medical imaging (Rohatgi et al., 2020; Washington & Devillel 2020).
Screening is more common for cancers with clear risk factors, like breast and colorectal (Siegel et al.|
2025)), while cancers without early symptoms, such as pancreatic cancer, often progress silently and
are detected late, with survival durations under one year (Blackford et al., 2024).

We present CATCH-FM: CATch Cancer early with Healthcare Foundation Models, a cancer pre-
screening tool that identifies high-risk patients using only their medical history. CATCH-FM is
pretrained on large-scale longitudinal EHR data and finetuned on clinician-curated cancer cohorts. It
directly operates on precise medical codes (ICD), learning general medical patterns through next-code
prediction and finetuned to capture cancer risk signals reflected in patient medical history (Lee et al.|
2021;(2022; |Phan et al.,[2020). Once trained, CATCH-FM can be deployed in EHR systems to predict
cancer risk at low cost, supporting healthcare providers in deciding when and whom to screen.

To facilitate the study of EHR foundation models in cancer pre-screening, we build NHIRD-Cancer,
a cancer risk prediction benchmark, by sampling more than three million patients from the Taiwanese
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National Health Insurance Research Database (NHIRD) (Hsieh et al., [2019)), a government de-
identified and research-accessible EHR database. We allocate three million patients for pretraining,
consisting of billions of medical events spanning two decades, and the remainder for finetuning and
evaluation. We focus on three cancers based on their critical needs for early detection: pancreatic,
liver, and lung cancers (Kim et al., 2024} |Kukhareva et al., [ 2024; Thiele et al., 2024)), and curate
clinically reliable cancer cohorts after matching cancer patients with control-to-case groups.

With billions of medical events available, we examine how compute budget (FLOPs), model size, and
pretraining tokens affect performance. Our findings establish an EHR foundation model scaling law
and confirm the benefit of large-scale pretraining on EHR data. Accordingly, we pretrain compute-
optimal CATCH-FM models up to 2.4b parameters. When finetuned and evaluated for cancer risk
prediction on NHIRD-Cancer, CATCH-FM consistently outperforms feature-based tree models and
language models trained on the same data. Without loss of flexibility, it demonstrates strong predictive
efficacy, achieving over 50% and 70% sensitivity in the first and subsequent target cancer cohorts at a
99% specificity cutoff, and reaching 50% and 80% AUPRC, respectively, offering strong reassurance
when ruling out cancer (Grimes & Schulz, [2005).

On the pancreatic cancer risk prediction task from Stanford Medicine EHRSHOT bench-
mark (Wornow et al., [2023)), CATCH-FM outperforms the prior state-of-the-art EHR foundation
model, CLMBR (Wornow et al.| 2023)), pretrained on millions of on-site patient records, while
CATCH-FM is trained on data from drastically different populations, disease prevalence, and coding
systems (ICD vs. SNOMED). Our analyses further demonstrate the robustness of CATCH-FM across
different patient cohorts, preexisting conditions, and pre-screening configurations. Our interpretability
analyses following the method of |Gao et al.|(2024) reveal that CATCH-FM identified not only known
cancer risk factors but also non-trivial markers discovered in recent medical research.

We view CATCH-FM as an effective, low-risk, and widely performable pre-screening tool that can
assist healthcare providers make informed, effective, and efficient cancer screening decisions. To
facilitate future research and development, our data curation and modeling code will be open-sourced
under MIT license. The NHIRD-Cancer benchmark and trained model checkpoints will be released
under the same license as NHIRD, enabling reproducibility and future research within the necessary
constraints of privacy and regulations on patient data.

2 RELATED WORK

Cancer screening significantly improves prognosis and patient outcomes (Kim et al.| 2024} Kukhareva
et al., [2024; |Thiele et al., [2024)). Advancements in cancer treatment have made cancers more treatable
and potentially curable, if they are detected in early stages (Chu et al.,|2024; |Hu et al., [2024; Kim
et al.| 2024} [Liu et al.| 2024)). Recent advances in Al-powered medical imaging, like CT scans with
multimodal models, have enhanced cancer screening accuracy, sometimes exceeding human-level
sensitivity (Cao et al.; 2023} |Chen et al.,[2023; |Wang et al., 2024b; |Xu et al.,2024a). The challenge is
that medical imaging is resource-intensive, inaccessible for under-served populations, and not widely
performable (Elmohr et al.} 2024; Truhn et al., 2024} |Vrudhula et al., 2024; Waite et al., [2021]).

Using electronic health records (EHR) to assess cancer risk is a promising path to improve cancer
screening effectiveness and efficiency, i.e., by identifying patients with high cancer risk for health-
care professionals to make informed cancer screening decisions (Lee et al., 2021} 2022)). Recent
approaches have made attempts using feature-based machine learning models on large, task-specific
datasets to detect cancer risks, and have shown the possibility of capturing cancer risk signals in
EHR (Peduzzi et al., [2024; |Placido et al.,|2023b)).

Large language models pretrained on medical corpora are effective on text-oriented medical
tasks (Clusmann et al. [2023) such as medical question answering (Singhal et al. [2025)), clini-
cal document summarization (Liu et al.,|2025)), and radiology report generation (Sun et al.| 2024b)).
Recent research has also pretrained foundation models on structured EHR data (Choi et al., 2016}
Gao et al.| 2020; Yao et al.} 2019), and explored their utilities in various clinical tasks (Savcisens
et al.,|2024; Sun et al.,|2024a; Yang et al.,|2023b)). A challenge for EHR foundation models is that
many EHR datasets only cover a slice of patients’ healthcare records (Faltys et al.| 2021}, Johnson
et al.,2016; |Pollard et al.| [2018)), e.g., MIMIC-IV mainly focuses on emergency departments and ICU
encounters (Johnson et al.,[2016). Foundation models pretrained on EHR slices are more effective
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Table 1: Statistics of our NHIRD subset. Table 2: Statistics of first and subsequent target
Ttom Count cancer screening benchmark.
# of patients 3,989,369 P - i L
# of visits (In/out-patients, pharmacy) 1,441,453,071 - ancreatic e e
# of diagnosis (ICD9 codes) 1,491,556,480 First Target Cancer Cohort
# of procedures (Surgeries) 46,282,990 Total 285,097 266,563 277,943
# of treatments (Non drug treatments)  1,729,212,760 g‘f‘:t‘i’vee 283’232 ) 6? 22? 27;*222
# of medications (Drug prescriptions) ~ 2,770,631,039 POS% /Neg. Ratio 161%  195%  1.45%
# of unique medical codes 185,138 Subsequent Target Cancer Cohort
# of tokens for all codes 7,923,387,479
# of patients for pretraining (80%) 3,191,495 ;gls"i‘:ive 27;’221 262’222 262’223
# of patients for finetuning (20%) 797,874 Negative 270000 259231 259,014
Avg. # of visits per patient 271 Pos./Neg. Ratio 2.73%  225%  1.79%

in corresponding prediction tasks such as emergency department triage (Sun et al., |2024a) and ICU
readmission risk (Jiang et al., 2023).

Many tasks, like cancer risk prediction, require longitudinal EHR data to capture full patient history.
Foresight uses two decades of data to pretrain Transformers for biomedical forecasting (Kralje-
vic et al., [2022). MOTOR trains a 143M-parameter model on time-to-event tasks using 2.7M
patient records from 2014-2022, effectively predicting diagnosis time (Steinberg et al.l [2023)).
CLMBR, a 141M-parameter Transformer, is pretrained on 2.57M Stanford Medicine records over
three decades (Wornow et al., [2023)), with 6.7K records released in the EHRSHOT benchmark for 15
few-shot prediction tasks (Wornow et al., 2023).

Due to privacy and ethical constraints, large-scale longitudinal EHR data are hard to release publicly.
Most EHR foundation models are pretrained on one or two hospital sites and are limited in scale
to around 100M parameters (Steinberg et al.l [2023; [Wornow et al., [2023)). Their advantage over
feature-based models in cancer risk prediction remains unclear, for instance, while CLMBR performs
well on procedure outcomes and lab predictions, it fails to outperform feature-based models in
pancreatic cancer prediction on EHRSHOT (Wornow et al.| [2023).

3 NHIRD-CANCER BENCHMARK

Initially, we overview our source data, NHIRD, and then the curation process of NHIRD-Cancer.

3.1 NHIRD PRELIMINARY

Overview. The National Health Insurance Research Database (NHIRD) include electronic health
record (EHR) of over 99.99% of Taiwan population. It includes decades of de-identified records from
all healthcare encounters under the National Health Insurance program, with diagnoses, prescriptions,
and procedures (Hsieh et al., |2019). Coding standards are applied uniformly across providers,
ensuring consistency and correctness. A sample patient record is shown in Appendix Figure [6b]

Availability. The sensitivity of longitudinal EHR data makes large-scale public access challeng-
ing (Guo et al.,|[2023)). Among existing longitudinal EHRs (Kraljevic et al.| 2022; |Steinberg et al.,
2023; Wornow et al., [2023)), NHIRD is among the most accessible for open research. Eligible
institutions in Taiwan and their international collaborators can access NHIRD with IRB approval or
exemption under standardized protocols. Access is regulated by the Ministry of Health and Welfare
to ensure strong privacy protections (Hsieh et al.| [2019} |Lin et al., 2018} [Sung et al., |2020b). See
Appendices E] and |B|for details on de-identification, data quality, and access to NHIRD.

3.2 NHIRD-CANCER BENCHMARK CURATION

Our cancer screening benchmark is curated collaboratively with clinicians, following their guidance
in the selection of positive group and cohort control-case group.

Data Statistics. We accessed a subset of NHIRD via collaboration with a Taiwanese medical school,
with IRB exemption, as the study uses anonymized, non-human-subjects data. The dataset includes
3+ million patients from 1996-2013, covering 1.4 billion visits with diagnoses, treatments, and medi-
cations coded in ICD-9 (CDC). It provides 15+ years of physician-confirmed, government-validated
history and over 8 billion medical codes. Summary statistics are in Table[I} with preprocessing and
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additional details in Appendix[A] Our subset aligns with full NHIRD averages (18 vs. 16.5 visits
per patient over 15 years) and is comparable in scale to the 3.67M-patient records from Stanford
medicine used in CLMBR (Wornow et al.| |[2023), which is not publicly available.

Targeted Cancers. We focus on pancreatic, liver, and lung cancers, which have high mortality rates
and increased risk of metastatic cancer (De Visser & Joyce, |2023; \Gupta & Massagué, |2006; Ji et al.}
2023) where early detection offers substantial benefit (Kukhareva et al.,2024; Thiele et al., [2024;
Blackford et al., 2024} Haue et al,[2024). The screening task is a binary classification: predicting
whether a patient will later develop the target cancer. As suggested by clinicians, we focus on
predicting target cancer one year after a clinical visit, enabling early intervention for proactive care.
We set the available medical history per patient to be five years, following clinical standards. We
explicitly split the benchmark into first target cancer (patients with no prior cancer history) and
subsequent target cancer (patients with a history of other cancers but no prior target cancer) cohorts,
and conduct experiments on models’ effacacy on both scenarios.

Case and Control Group. Guided by clinicians, we rigorously follow the standard case-control
study methodology and previous cancer screening studies on NHIRD (Phan et al.| 2020; |Lee et al.,
2021} 2022) to create case-control dataset. We use the first occurance of target cancer type as the
positive case. The (negative) control group includes patients with no cancer diagnoses, ensuring a
clear distinction between cases and controls, and are matched with the case group as follows.

1. Patient Demographic Matching: Control patients are matched to case patients based on age and
gender, to minimize confounding factors from demographics.

2. Relative Duration Matching: Control patients are then filtered to have clinical visits on the same
index date as the case patient’s diagnosis date, ensuring aligned medical timelines. They are also
matched with a comparable length of medical history up to the index date.

3. Cumulative Duration Matching: Finally, controls are matched to case patients with the same total
duration of lifetime medical history.

Our case-control matching goes beyond demographics by incorporating history length and timing,
aligning patients more closely so differences reflect cancer status and enhancing validity.

NHIRD-Forward. We further collect an external dataset, referred to as NHIRD-Forward, from
a different sample of the healthcare system at a distinct timeline from 2016-2021, 3 years after
our NHIRD samples. The hospital only provided first liver and lung caner cohorts for testing. It
follows the same NHIRD format while representing a different patient cohort with no overlap to
NHIRD-Cancer, and is exclusively used to evaluate zero-shot generalization.

Dataset Processing. We use three-digit ICD-9 codes 157, 155 and 162 to define pancreatic, liver,
and lung cancers, respectively. Control patients must not have cancer-related codes from /40-239
(top level of Neoplasms). To support broader cancer types and maximize early detection (Chen et al.,
2020), we use top-level ICD codes to capture more cases. Table [2]lists benchmark statistics. All
cancer diagnoses are confirmed by licensed physicians and validated by the government. More details

in Appendix

4 METHODS

This section presents the model, training, and inference of CATCH-FM.

4.1 MODEL

Figure([T]illustrates the model setup of CATCH-FM. It represents the healthcare record of each patient
as a medical code sequence and models them by a decoder-only transformer.

Patient Representation. In longitudinal structured EHR databases, the patient records are often
represented by a coding system, for example, ICD (CDC) or SNOMED (Cornet & de Keizer, [2008)),
using a unique ID to encode each specific piece of information. A typical patient record can start
with their demographic information, such as age c,ge and gender cgenger, followed by a sequence of n
chronologically ordered visits, vy, vo, ..., v,. Each visit v; consists of m medical events, c}, cf, el
covering diagnoses, medications, procedures, and other clinical events.
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Ci Risk:
’ Transformer Decoder H ancer i
’ Age: Gender: Time Token 1: H ______ H Time Patient EHR
20-25 Male 10-15 Days Token2 | *=***"
- . Sequence
Visit 2 Visit n

Figure 1: An example input sequence for a patient record and the architecture of CATCH-FM.
Specifically, CATCH-FM represents each patient’s EHR token sequence x as,

. 7.1 2 m
[Cageycgenderavlatlyv%"~7vn—1atn—17vn7 [EOS]]7 UTL - [Cnacna"'7cn}' (1)

The demographic tokens age cqg. is discretized into predefined categorical ranges and gender Cgender
is assigned as a distinct token. Each medical event code c is assigned a unique token. Time intervals
between consecutive visits are captured using time tokens ¢, which are also discretized into predefined
categories to encode temporal information. A special token, [EOS] marks the end of the record.

Though each ID can be mapped into the language space, for example, to their names and descriptions,
CATCH-FM directly operates in the ID space which is more compact—each event is encoded by one
token—and precise without ambiguity.

Architecture. CATCH-FM uses the standard decoder-only transformer architecture Gig on top of the
patient’s EHR token sequence x. We use rotary positional embeddings (RoPE) (Su et al.l 2023)) to
encode positional information for visits:

ROPE(z;, p;) = h; - cos(0(p;)) + hi1 - sin(0(p;)). 2)
It assigns the same absolute position p; (i.e., replacing sequential positions like 0,1,2,3... with

0,0,1,1...) to event tokens x; from the same visit. This allows the model to capture the relationships
between events within and across visits.

4.2 PRETRAINING, FINETUNING, AND INFERENCE

CATCH-FM employs the standard pretraining, finetuning, and inference pipeline.

Pretraining. We pretrain CATCH-FM Gy from scratch on our healthcare record pretraining dataset,
using the standard autoregressive next-token prediction objective:

: 1 ¢
HIO}HELM7 £LM = —g Zlogfg(xj\zc<j), fg(il?j‘w<j) = Softmax(Ehj). (3)
j=1
The next code probability fg(-) is computed on token embeddings E and hidden states h from
Gl. Pretraining on large scale patient record with autoregressive language modeling task enables
CATCH-FM to capture the complex medical patterns in patient health trajectories, for example,
associations of medical events and potential risk factors of diseases.

Finetuning. For the cancer prediction task, we employs supervised fine-tuning on the pretrained
CATCH-FM Gj. It uses cross-entropy loss to learn whether a patient will be diagnosed as a target
cancer outcome .

Igi;)lﬁsm Lspr = —1og fo(y | Tizos1),  fo(y | T imos)) = Softmax(Wh zos) +b).  (4)

The learnable parameters include 6 in the foundation model, and W and b from a linear prediction
layer. Finetuning makes CATCH-FM specialized for cancer risk prediction by capturing risk factors
from medical histories while leveraging general medical knowledge learned from pretraining.

Inference. The inference of CATCH-FM is to take a patient’s medical history from their EHR record,
run a forward pass of the pretrained and finetuned CATCH-FM instances, and predict the cancer risk
of the patient. The inference is efficient as only one prediction token is needed per patient.

The sole requirement of patient history makes CATCH-FM a nature fit for cancer prescreening.
Healthcare providers can deploy CATCH-FM on a large amount of patient EHR data. The predicted
high-risk patients can then be further evaluated by professionals to determine who and when to
undergo cancer screening. An accurate prescreening thus effectively triages patients, improving the
efficiency and efficacy of cancer screening. It can potentially increase the cancer screening rate by
providing decision evidences for healthcare professionals and raise awareness from patients.
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Table 3: Compute-optimal
CATCH-FM instances pre-
trained with variant FLOPs,
and their estimated GPU
hours in typical A100 ma-

chines.
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. . . . . 2e19 410m ~128
Figure 2: Scaling Law of CATCH-FM, including loss IsoFLOPs, esti- 419 720m ~256
2€20 1b ~1280

mated FLOP-optimal parameters and pretraining tokens.

5 EXPERIMENTAL METHODOLOGIES

Dataset. We use the NHIRD-Cancer benchmark described in Sec. [3.2]for the pretraining, finetuning,
and in-domain evaluation. We randomly partition the dataset, allocating 80% for pretraining and 20%
for cancer screening benchmarks, ensuring no overlap between them. Each benchmark is further
split into 80%/10%/10% for train/valid/test, using stratified sampling to maintain consistent class
distributions for first and subsequent target cancer cohorts.

To evaluate model generalization, We use NHIRD-Forward (Sec. [3.2)) to assess zero-shot gener-
alization where all patient cohort are used for evaluation. In addition, we use the EHRSHOT
benchmark (Wornow et al., [2023)), containing 6,739 Stanford Medicine patients (1990-2023), primar-
ily coded in SNOMED, CPT, and RxNorm. It introduces significant distribution shifts from NHIRD:
different healthcare systems, different medical codings, and different populations with different
cancer prevalence. We use EHRSHOTs official pancreatic cancer risk prediction task following
their few-shot setting (1-128 positives). It is the only available cancer risk prediction task. We
transfer EHRSHOT patients to NHIRD by exact code matching when possible and cosine-similarity
embedding soft matching (threshold 0.98) for unmapped codes. Appendix [C|details the process.

Evaluation metrics. NHIRD-Cancer evaluations use AUROC, AUPRC, specificity, and sensitivity,
with the first two serving as the main metrics. AUROC measures the model’s ability to discriminate
between patients with and without cancer across all decision thresholds. AUPRC captures the
precision—recall trade-off in imbalanced tasks in cancer risk prediction. Specificity, the ratio of true
negatives to all negatives, reflects reliability in identifying low-risk patients. Sensitivity, the ratio of
true positives to all positives, reflects how well the model flags cancer-risk patients. When possible,
we evaluate sensitivity at 99% specificity, a common (pre)screening threshold (Cao et al.l 2023}
Halner et al., [2023; Jopek et al., 2025)), and a clinician-defined standard to reduce false positives,
ensuring clinical trust.

Baselines. We include standard tree-based models with bag-of-words as input (Bharati et al., 2023)):
XGBoost (Chen & Guestrin, |2016) and LightGBM (Ke et al., 2017), and well-established EHR Deep
learning models (Wang et al., 2024a)): StageNet (Gao et al.,|2020) and RETAIN (Choi et al., [2016)).
We compare with pretrained language models, by converting medical codes into text and finetuning
BioGPT (Luo et al.,[2022)) and Qwen2.5 (Yang et al., 2024)) on the same data. For EHRSHOT, we
compare CATCH-FM against methods reported in their leaderboard (Wornow et al., [2023)).

Implementation Details. We implement CATCH-FM using a standard architecture (Biderman et al.|
2023)), a decoder-only transformer with rotary position embeddings and flash attention, and pretrain
from scratch on NHIRD. Medical codes, demographics, and special tokens form a 185,138 token
vocabulary, with sequences capped at 2,048 tokens. Longer histories are chunked without overlap
during pretraining and truncated for fine-tuning. More architecture, hyperparameters, and training
details are provided in Appendix [D]

6 EVALUATION RESULTS

This section presents experimental results evaluating CATCH-FM’s scaling law, effectiveness, gener-
alization, and ablation studies, as well as analyses of its captured cancer risk factors.
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Table 4: Downstream scaling behavior of compute-optimal CATCH-FM on first and subsequent
cancer cohorts. The first / subsequent positive rates are shown in parentheses. Sensitivity is evaluated
at a decision threshold corresponding to a fixed 99.0% specificity cutoff. All results are averages over
five random seeds. The highest value for each metric is bold.

Pancreatic Liver Lung

Model Sirst / subsequent (1.59% / 2.73%) Sfirst / subsequent (1.95% /2.25%) Sfirst / subsequent (1.45% / 1.80%)

AUROC AUPRC  Sensitivity ~ AUROC AUPRC  Sensitivity =~ AUROC AUPRC  Sensitivity
XGBoost 91.6/954 263/684 31.0/61.9 | 91.2/958 36.2/69.7 363/652 | 91.4/953 27.6/69.4 32.3/66.5
LightGBM 91.5/958 25.6/69.1 31.9/62.1 | 92.0/959 354/69.9 362/66.9 | 91.5/95.6 243/69.2 31.1/69.3
RETAIN 689/21.6 3.4/20 0.0/0.0 | 74.8/203 52/14 0.0/0.0 | 742/826 3.9/89 0.0/0.0
StageNet 643/69.7 24/45 0.0/0.0 |599/641 24/3.1 0.0/0.0 | 66.9/64.1 23/3.1 0.0/0.0
BioGPT-347m 91.8/93.7 19.5/50.1 19.9/42.0 | 88.6/93.3 24.9/49.1 22.4/42.2 | 89.5/90.7 19.6/50.0 24.9/48.6

Qwen2.5-500m 90.3/92.7 223/579 254/50.8 | 90.4/93.7 32.4/60.3 32.4/559 | 86.3/92.8 159/60.1 18.8/53.1

CATCH-FM-160m 91.4/97.1 424/79.6 43.1/753 | 89.3/96.1 39.3/76.6 39.1/73.6 | 89.2/94.1 33.0/74.8 389/73.1
CATCH-FM-1b 93.5/972 572/829 58.6/78.6 | 91.3/963 49.6/76.7 489/743 | 91.1/95.7 47.5/77.7 52.6/75.3
CATCH-FM-2.4b  94.4/97.8 61.3/84.7 60.6/80.8 | 92.2/96.6 52.8/79.0 53.6/758 | 92.6/96.3 49.6/80.2 53.1/79.6

1.0 —— CATCH-FM 1.0 —— CATCH-FM 10 —— CATCH-FM
Qwen2.5 Qwen2.5 Qwen2.5
0.8 —— XGBoost 0.8 —— XGBoost 0.8 —— XGBoost
c c
20.6 -% 0.6 .g 0.6
] % 2
£ 0.4 £ 0.4 £ 0.4
0.2 0.2 0.2
0.0 0.0 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Recall Recall Recall
(a) Pancreatic (b) Liver (c) Lung

Figure 3: AUPRC comparison across cancer types with CATCH-FM-2.4b, Qwen2.5-500M, and
XGBoost evaluated on the first target cancer cohorts.

6.1 SCALING LAWS OF PRETRAINING ON HEALTHCARE RECORDS

To pretrain effectively on healthcare records, we first conduct a thorough scaling law analysis of
CATCH-FM. Specifically, we use IsoFLOP profiling (Hoffmann et al.| [2022)): pretraining models
with various sizes at target FLOPs by varying the number of pretraining tokens.

Figure [2a] illustrates clear parabola-shaped IsoFLOP curves, with different model sizes achieving
minimum validation loss at various FLOPs. Using these data points, we fit a power law to characterize
the relationship between FLOPs (C'), the loss-optimal model size (/Nop), and the optimal number of
training tokens (Dop ), as illustrated in Figures[2b|and

Optimal Model Sizes: Nop o< Cco34 Optimal Token Counts: Dy o< C0-%9. @)

Scaling laws in healthcare foundation models resemble the scaling laws of large language mod-
els (Hoffmann et al., [2022), highlighting the potential of large-scale EHR foundation models. While
emergent capabilities need further study, we pretrain and finetune a series of compute-optimal
CATCH-FM models across various FLOPs (Table|3) and evaluate their efficacy in cancer risk predic-
tion. The benefits of compute-optimal pretraining are detailed in Appendix [F}

6.2 OVERALL RESULTS

Table [4] shows the overall performance of cancer risk prediction in NHIRD-Cancer. CATCH-FM
outperforms XGBoost and LightGBM, strong tree models that often outperformed EHR foundation
models (Wornow et al., [2023), by 20%+ AUPRC on first target cancer cohorts and 15%+ AUPRC on
subsequent target cancer cohorts. It also significantly outperforms medical (BioGPT) and general
(Qwen) large language models pretrained on the texts of NHIRD. Sect. further studies the benefits
of pretraining directly on medical codes rather than converting codes into natural language. Moreover,
our studies show that CATCH-FM achieve 50% and 70% sensitivity in first and subsequent cohorts
at a decision threshold corresponding to 99% specificity, confirming its ability to identify high-
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Table 5: Zero-shot evaluation on NHIRD- 80+ ; 301
Forward dataset for first liver and lung cancer. 251
9 604 Q 20+
g E 15.
Methods AUROC AUPRC Sensitivity ?( —e— CATCH-FM-2.4b 3
- 40_ CATCH-FM-160m 10.
Cancer: Liver, Pos./Neg. (Ratio): 5798/297459 (1.95%) - gr;g;'5-5°°m 5
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XGBoost 93.7 34.7 379
Qwen2.5-500m 89.1 13.6 17.2 : .
CATCELEM-2.4b 041 364 4.4 Figure 4: AUROC and AUPRC on EHRSHOT

pancreatic cancer from their public leaderboard.

risk patients for further screening (high sensitivity) and avoid unnecessary patient distress (high
specificity). Additional details are found in Appendix [E]

Cancer risk prediction is a challenging task, particularly for first target cancer cohorts, where many
baselines fail to achieve meaningful performance. CATCH-FM demonstrates strong effectiveness,
achieving 50%+ AUPRC in predicting first cancer cases. For subsequent target cancer cohorts,
CATCH-FM effectively leverages prior cancer diagnoses as strong risk indicators and achieves 80%+
AUPRC. The benefit of scale is evident in all cohorts. CATCH-FM-2.4b outperforms CATCH-FM-
160m by 10-15% AUPRC on first cancer cohorts and by 5-10% on subsequent cohorts. Scaled-up
foundation models perform better on the harder first cancer prediction task.

6.3 GENERALIZATION ABILITY

We evaluate CATCH-FM under two generalization settings: temporal shifts within the same healthcare
system (NHIRD), and distributional shifts across different systems and countries (EHRSHOT).

Across Hospital Site and Time. We evaluate CATCH-FM on cohorts from an adjacent timeline
within the same hospital system, targeting first liver and lung cancer. Table[5]shows zero-shot results
on NHIRD-Forward, demonstrating robustness to temporal shifts in population. Additional robustness
analyses on cohort variations (G) and history exclusion windows (H) are in the Appendix.

Across Healthcare System and Country. Figure d] shows the K-shot results of CATCH-FM on the
EHRSHOT official pancreatic cancer leaderboard, using K positive and K negative on-site examples
for tuning. Despite significant shifts in population, healthcare systems, and more than 50% medical
code mismatch, CATCH-FM achieves state-of-the-art across all shots on the EHRSHOT leaderboard
with a only handful of on-site examples, maintaining the best AUROC and AUPRC.

Moreover, CATCH-FM-160m outperforms CLMBR (140m) in AUROC for K > 8 and in AUPRC,
with only minor gaps at a lower shots, while scaling to CATCH-FM-2.4b further boosts few-shot
performance, highlighting the benefits of scale. Notably, CLMBR is pretrained at a similar scale with
on-site data (2.57M Stanford patients, same as EHRSHOT), while CATCH-FM faces distribution
shifts with only 43% of SNOMED codes mapped to ICD. As ICD is already the predominant U.S.
EHR standard (Feinstein et al., |2023), such SNOMED-to-ICD issues occur in only a fraction of
healthcare providers. Overall, these results highlight CATCH-FM’s robustness to distribution shifts
and code mapping loss, underscoring its potential for transfer across healthcare systems and sites.

6.4 ABLATION STUDY

Table [ shows ablation studies on different components of CATCH-FM. Modeling patient history
is a key source of evidence for CATCH-FM. Demographic information alone is a poor indicator;
pretraining is a key advantage of CATCH-FM; different model architectures, similar to observations
in large language models, yield mild differences.

Converting the medical codes into their corresponding textual names and pretraining CATCH-FM on
texts hinders performance. As shown in Figure[4a] the loss quickly drops to near zero, a strong sign
of overfitting. The model memorizes code names and predicts them trivially after seeing the initial
tokens. Figure [db]shows the loss is only meaningful on the first token, with the rest memorized. How
to better adapt general domain LLMs to EHR data is an interesting future research direction.
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Table 6: Ablation study on various pretraining

strategies and model architecture on cancer pan- 6 — on
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Continual Pretrain Pythia 91.4 25.8 29.4 text token position in ID name phrase chunk.

Table 7: Top latent features on first cancer patients from CATCH-FM’s prediction layer.

Cancer Features Learned by Sparse Autoencoder (Gao et al.| 2024) with Description Generated by
Node2Graph (Foote et al.|2023)

High blood pressure, Diseases of the respiratory system, Operations on larynx or trachea, Telmisartan

Pancreatic  Type 2 diabetes mellitus, Hypertensive heart disease, Norvasc tablet, Hypothyroidism and thyroid

Infectious and parasitic diseases, Intestinal infectious diseases, Pramipexole, Piracetam

Duodenal ulcer, Tetracyclines, Ursodeoxycholic acid, Famotidine

Liver Repair of uterus and supporting structures, Diagnosis on lymphatic structures, Ancillin, Ketoprofen

Diclofenac, Anxiety state, Dysthymic disorder, Gastrojejunal ulcer

Loperamide, Chest view, Chronic ischemic heart disease, Diovan, Lymphatic diagnostic procedures

Lung Hypertensive disease with congestive heart failure, Isosorbide mononitrate, Inguinal hernia repair

Esophagomyotomy, Norvasc tablet, Isosorbide mononitrate

6.5 RISK FACTORS CAPTURED

This experiment leverages recently developed LLM interpretation method (Gao et al.| 2024} |Kang
et al.,2025) to understand the risk factors captured by CATCH-FM. We train a sparse autoencoder
on the prediction layers of finetuned CATCH-FM on first target cancer patients and then leverage
neuron-to-Graph (N2G) (Foote et al.,|2023)) to explain the top active latent features on positive cancer
cases. Additional implementation details are found in Appendix[I|

Table |7| identifies features corresponding to top cancer risk factors captured by CATCH-FM. It
includes not only trivial factors, such as Type 2 diabetes (Cui & Andersen, 2012) and high blood
pressure (Stocks et al.|[2012)), but also non-trivial ones such as hypothyroidism, thyroid disorders, and
Norvasc, with some indicators only presented at top medical journals less than ten years ago (Sarosiek:
et al.,[2016} [Wang et al., |2018Db)), after our training data cutoff.

7 CONCLUSION

CATCH-FM provides a new cancer risk prediction methodology by pretraining and finetuning
Transformers on millions of patients’ medical code sequences. Its effectiveness (50%+ and 70%+
sensitivity on first and subsequent target cancer cohorts), low risk (99% specificity), and wide
applicability (only requiring inference on EHR records) make it a natural fit for cancer pre-screening.
It helps healthcare professionals efficiently decide whom and when to screen for cancer, potentially
improving the effectiveness and coverage of cancer screening and ultimately, patient outcomes.
Our experiments on NHIRD and EHRSHOT demonstrated the benefit of scale in pretraining EHR
foundation models, their generalization ability across significantly different healthcare systems, and
their ability to capture non-trivial cancer risk factors. We hope our findings, analyses, and open-source
codes can inspire and facilitate further research and deployments in leveraging Al to solve real-world
healthcare problems.
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A NHIRD DETAILS

The Taiwanese National Health Insurance Research Database (NHIRD) is one of the largest and most
comprehensive de-identified population-wide EHR datasets globally (Hsieh et al.,[2019), covering
over 99% of the Taiwanese population. It contains longitudinal medical records spanning over
two decades, including patient demographics, diagnoses, prescriptions, clinical events, medical
procedures, and hospital visits from all hospitals and medical facilities in Taiwan. Maintained by the
National Health Insurance Administration in collaboration with the Ministry of Health and Welfare,
the NHIRD comprises both registration files and hospital claim data submitted for reimbursement
under the National Health Insurance (NHI) program.

We leverage a subset, which includes a randomly selected cohort of three million patients from 1996
to 2013, of the Taiwanese National Health Insurance Research Database (NHIRD) for pretraining
EHR foundation models and constructing clinical downstream tasks for benchmarks. Unlike other
datasets, the NHIRD stands out for its scale and comprehensiveness under a single-payer healthcare
system, which enables standardized data collection and creates a comprehensive and lifelong record of
patients’ medical footprints. This makes NHIRD one of the most suitable resources for the real-world
implementation of EHR foundation models. The NHIRD contains three main categories of medical
information, with all personal details, such as ID, birthdate, and residential postcode, de-identified:

* Demographics: This includes details about medical institutions (e.g., centers, hospitals,
and clinics) and de-identified data on patients, physicians, and pharmacists.
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* Visit: Comprehensive records of medical visits, including outpatient clinic visits (including
visit to medical centers and hospitals), hospitalizations, and pharmacy drug fulfillments.

* Order details: Detailed records of prescriptions, procedures, medical equipment, and
materials associated with each type of visit.

Table || lists all NHIRD tables with descriptions. The three main visit tables are CD (outpatient
clinic visits, including medical centers and hospitals), DD (hospitalization), and GD (pharmacy),
each linked to an order table: OO (for CD), DO (for DD), and GO (for GD). For CATCH-FM, we
use ID, CD, OO, DD, DO, GD, and GO tables, as they constitute complete patient medical histories.
Demographic and other statistics to further describe data density and sparsity are shown in Table[9]
and Figure[7] Rigorous data cleaning includes removing missing values, correcting erroneous codes,
and standardizing dates and billing codes to ensure reliable pretraining data. The following sections
detail how we construct patient medical histories and preprocess data to create the cancer screening
benchmark.

Data De-identification and Privacy. All NHIRD data are de-identified following strict protocols
mandated by the National Health Insurance Administration (NHIA). Personally identifiable
information (PII), such as names and ID numbers, is removed and irreversibly encrypted using
non-public anonymization methods (Lin et al., 2018; Health & Center). Our study uses only
anonymized demographic variables, e.g., age and gender, for model training. Given the level of
anonymization and the coarse granularity of these attributes, the risk of patient re-identification is
negligible. Hence, our use of NHIRD data fully complies with privacy standards and poses no ethical
or legal concerns regarding patient confidentiality.

Correctness of NHIRD. The universal healthcare system in Taiwan enables frequent patient visits
and interactions and generates rich, detailed, and longitudinal patient records. In 2023, NHIRD
recorded over 380 million medical visits for 23 million individuals, averaging 16.5 visits per
person (tai, 2024)). These statistics, including consistent surgery and prescription rates, align closely
with our dataset statistics in Table[I] confirming the correctness of our dataset. Most importantly, all
data in NHIRD receive strict validation by the National Health Insurance Administration (NHIA),
which enforces robust quality control measures to eliminate duplication, correct inconsistencies, and
ensure patient-level accuracy. Additionally, coding standards are uniformly implemented across
all healthcare providers nationwide, guaranteeing consistency and correctness at scale. Given
this systematic validation, national standardization, and population-wide coverage, NHIRD is an
exceptionally accurate and dependable data source trusted and used in research published at top
peer-reviewed medical journals (Wang et al., 2018a; |Lee et al., 2019} |Tsai et al., 2024} [Tain et al.,
2025).

Cancer Diagnosis Validity. Cancer diagnoses in the NHIRD are made by licensed physicians from
all hospitals and medical facilities and undergo strict validation by the National Health Insurance
Administration (NHIA) to ensure diagnostic accuracy, prevent misclassification, and eliminate billing
errors or fraud (Lin et al., 2018}; Hsieh et al., 2019). This rigorous quality control process makes
the NHIRD a highly reliable source for cancer retrospective research, especially for creating cancer
patient cohorts with diagnosis codes. With verified patient histories and clinically validated cancer
diagnoses, the NHIRD has been widely adopted for cancer research and trusted in top peer-reviewed
studies (Lin et al.| |2015; /Chien et al., 2016, |[Huang et al., [2023).

Medical History Construction. To create a sequential medical history for each patient, we first
aggregate all visits and their associated order details by joining CD with OO, DD with DO, and GD
with GO. Figure [6a] describes the join process on CD with OO. After that, we aggregate visits for
each individual 4 million patients by their patient ID and sorted in chronological order. Figure [6b]
shows a sample patient after the aggregation on all visits.

Cancer Demographic Statistics. Table [I0|presents demographic statistics, including cancer patients’
medical history lengths across age groups. The NHIRD provides extensive longitudinal data, with
average history lengths ranging from 10.3 to 15 years across various cancers. This depth allows
for analyzing disease progression and identifying patterns that support early cancer detection. Its
large sample size ensures robust statistical power for subgroup analysis, making NHIRD an invalu-
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Tee_ym: 201401,
hosp_id: fd1d57b,

seq_no: 1107,

Tee_ym: 201401,
hosp_id: fd1d57b,

seq_no: 1107,

Tee_ym: 201401,
hosp_id: fd1d57b,

appl_type: 1, appl_type: 1, appl_type: 1,
appl_date: 20140112, appl_date: 20140112, appl_date: 20140112,
case_type: 01, case_type: 01, case_type: 01,

seq_no: 1107,

id: 5767b2, drug_no: A103145, drug_no: B561345,
id_birthday: 195711, drug_fre: BID drug_fre: BID
id_sex: M, total_amt: 145.0 total_amt: 205.0
func_date: 20140112, total_qty: 25.0 total_qty: 41.0

func_type: 00,
acode_icd9_1: 465.0,

: 3.8

unit_pri

unit_price: 12.8

(a) Sample table joins on CD with OO, assuming a totally 5 order details. All
values for each field are synthetic to maintain PIIs. We join CD with OO on
fee_ym, hosp_id, appl_type, appl_date, case_type, and seq_no. The joining
between DD with DO and GD with GO follows the same methods described

here.

Visit-1 (CD)

Visit-2 (DD)

(b) Sample patient medical history, assuming a totally 50 visits, after aggre-
gating all CD, DD, and GD by patient id. We differentiate visit types by their

original table before aggregation.

Visit-50 (DD)

fee_ym: 199605, fee_ym: 199607, fee_ym: 201402,
hosp_id: fd1d57b, hosp_id: e6fd559, hosp_id: edadf7b,
appl_type: 1, appl_type: 1, appl_type: 1,
appl_date: 19960502, appl_date: 19960702, appl_date: 20140212,
case_type: 01, case_type: 01, case_type: 04,
seq_no: 0012, b seq_no: 1178,

i hday: 195711, id_birthday: 195711, id_birthday: 195711,
id_sex: M, id_sex: M, id_sex: M,

func_date: 19960502, func_date: 19960702, func_date: 20140112,
func_type: 00, func_type: 01, func_type: 08,
acode_icd9_1:465.9, acode_icd9_1:V70.0, icd_op_code_1:55.01,
order_details: | order_details: [......] order_details: [......]

Figure 6: Sample join and resulting example patient.
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Table 8: NHIRD table overview. Table name with * denotes the table we use in our paper.

Name  Description Name Description
ID* Registry for beneficiaries

(Patient information)
DETA  Registry for contracted specialty services DT Monthly claim summary for inpatient claims
HOSB  Registry for contracted medical facilities CT Monthly claim summary for ambulatory care claims
Inpatient expenditures by admissions
(Hospitalization visit)
Details of inpatient orders

BED Registry for contracted beds

HOSX  Supplementary registry for contracted medical facilities DD*

DOC Registry for board-certified specialists DO* (Order detail of Hospitalization visit)

PER Registry for medical personnel CD* é)ﬁ?:;ﬁ?gccl?;iece\)jii?g d)itures by visits

HV Registry for catastrophic illness patients 00* ?Oe;;::: ;;Z;?g?fi?gmc:: L;Eg?ésvisi ts)

HOX Registry for medical services GD* ﬁi‘f;ﬁﬁfgi Sfl(:;' prescriptions dispensed at contracted pharmacies
DRUG  Regisiry for drug prescriptions GO* Details of prescriptions dispensed at contracted pharmacies

(Order detail of pharmacy visit)

Table 9: Demographic, history length, and other statistics of NHIRD. Note that, the average and
median history length are calculated in years. Notably, some patient gender records are not male or
female, so we exclude those from the statistics.

Group Count  Avg. history Median history Avg. # visits Median # visits Avg. # codes Median # codes

All 3,989,369 15.2 17 271 214 5,886 4,329
Male 1,965,368 15.1 17 243 184 5415 3,818
Female 1,962,523 16 17 306 248 6,504 4,934
0-18 456,322 12.4 13 274 250 5,803 5,208
18-35 1,047,623 15.4 17 188 164 3,736 3,137
35-50 981,514 15.5 17 214 172 4,448 3,384
50-70 1,017,522 16 17 312 253 6,829 5,246
70+ 486,388 15 17 471 416 11,525 9,871

able resource for population-wide studies on cancer progression, early detection, and screening
effectiveness.

Subsequent Cancer Definition. In cancer registry standards such as SEER and IARC, the term
subsequent primary cancer refers strictly to new independent primary malignancies, explicitly
excluding metastases or recurrences of prior cancers. In contrast, for the purposes of this study,
we define subsequent cancer more broadly to include both new independent primary cancers and
metastases to the target organ. This operational definition reflects the screening context, where both
scenarios represent clinically relevant risks for early detection.

B DATA ACCESSIBILITY, IRB, AND REPRODUCIBILITY

NHIRD is a publicly accessible research resource governed under controlled access. Any research
institution in Taiwan may apply for access by obtaining Institutional Review Board (IRB) approval
and complying with the data use regulations set by the Ministry of Health and Welfare. International
research institutions can collaborate with Taiwanese research institutions under a formal agreement.
While the data are not openly accessible, they are available to all eligible institutions through a formal
application process. We obtained NHIRD access through a formal collaboration with a Taiwanese
medical school. As part of the IRB review process, we submitted the complete NHIRD data schema,
a comprehensive research plan, the data access protocol, and a list of authorized users. We received
formal approval and granted exemption from our IRB, as the study relied solely on fully de-identified
secondary data and involved no human subjects. Such IRB determination and exemption are common
in research using the MIMIC dataset. For reproducibility, we will publicly release our complete
data preprocessing pipeline and modeling code. In addition, pre-trained model checkpoints are
made available to researchers who obtain NHIRD access through the same framework, enabling fair
replication and downstream research while upholding strict privacy and compliance standards.
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Figure 7: NHIRD frequency statistics on history length, number of visit, and number of codes per
patient

Table 10: Demographics and medical history lengths of selected cancer patients in NHIRD. The
difference in cancer case counts from Table [2| results from the removal of cases with insufficient
history or erroneous records during benchmark creation.

Demographic group Counts Avg. history length

Pancreatic

All 12,602 12.3
0-18 28 11.8
18-35 267 15
35-50 1,453 13.3
50-70 4,806 12.8
70+ 6,048 11.6
Liver

All 11,355 13.7
0-18 14 10.3
18-35 252 14.3
35-50 1,620 14.2
50-70 4,968 13.9
70+ 4,501 13.1
Lung

All 8,867 14
0-18 15 12.8
18-35 120 14.5
35-50 678 14.3
50-70 3,109 14.4
70+ 4,945 13.8

C EHRSHOT

Dataset and Prediction Task Overview. EHRSHOT is the latest published EHR dataset for
evaluating the few-shot performance of foundation models on clinical prediction tasks. It consists
of structured, de-identified, and longitudinal Electronic Health Records (EHRs) from 6,739 patients
treated at Stanford Medicine, including diagnosis codes, procedures, medications, and laboratory
test results. EHRSHOT is sourced from the EHR system in both Stanford Health Care and Lucile
Packard Children’s Hospital, where 2.57M patients used to pretrain CLMBR, a clinical foundation
model used to evaluate the EHRSHOT benchmark in the original paper (Wornow et al,[2023)). It
contains 15 distinct clinical prediction tasks under the four main categories:

* Operational Outcomes
* Anticipating Lab Test Results
» Assignment of New Diagnoses

* Anticipating Chest X-ray Findings
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Table 11: Comparison of coding formats between EHRSHOT and NHIRD, where NHI refers to
Taiwan’s National Health Insurance Administration. In NHIRD, only ICD-9-CM and ICD-9-Proc are
international standard codes for diagnoses and procedures, while all other codes, such as those for
drugs, orders, materials, and services, are defined by the NHI for domestic use only.

Code type EHRSHOT NHIRD

Disgnosis SNOMED, ICDO3 ICD-9-CM

Prescriptions RxNorm NHI Drug Code

Medical Procedures CPT, HCPCS NHI Order Code

Surgical Procedures SNOMED, ICD-10-Proc, ICD-9-Proc, ICD-9-Proc, NHI Order Code
Diagnositc Procedures CPT, HCPCS NHI Order Code

Lab Orders LONIC NHI Order Code

Medical Equipments SNOMED, CPT, HCPCS NHI Material Code

Medical Supplies HCPCS NHI Material Code

Medical Services CPT NHI Service Code

Table 12: Summary of coding mapping from EHRSHOT to NHIRD.

Code in EHRSHOT Mapping methods Code in NHIRD

SNOMED SNOMED to ICD9 mapping ICD-9-CM

SNOMED - procedure Semantic text matching ICD-9-Proc, NHI Order Code
SNOMED - regime/therapy ~ Semantic text matching ICD-9-Proc, NHI Order Code
SNOMED - physical object Semantic text matching NHI Order Code

ICDO3 ICD mapping by CMS ICD-9-CM

ICD10-Proc ICD mapping by CMS ICD-9-Proc

RxNorm Semantic text matching NHI Drug Code

CPT Semantic text matching NHI Order / Service Code
HCPCS Semantic text matching NHI Material Code

LONIC Semantic text matching NHI Order Code

where the one-year pancreatic cancer prediction is under the category ”Assignment of New Diag-
noses”. It is worth noting that, pancreatic cancer prediction is the only available cancer prediction
task in EHRSHOT. Each designed to test the ability of foundation models for accurate predictions
under limited labeled data at the time of patient visit. Refer Table 3 in the original EHRSHOT
paper (Wornow et al., 2023) for complete task description and statistics.

EHRSHOT verse NHIRD. The source EHR system of EHRSHOT in Stanford Medicine and Lucile
Packard Children’s Hospital utilizes the Observational Medical Outcomes Partnership Common
Data Model (OMOP-CDM) format. The OMOP-CDM is a standardized format for organizing and
conforming EHR, enabling consistent analysis across diverse healthcare datasets. On the other hand,
The NHIRD, as described in Appendix[A] comprises an extensive set of structured tables capturing
nearly all aspects of healthcare encounters. However, its format is tailored for internal use by the
National Health Insurance Administration in Taiwan, rather than for international interoperability like
OMOP-CDM. Applying CATCH-FM, built and pretrained on NHIRD, to EHRSHOT is nontrivial
due to differences in coding formats between the two healthcare systems. Table|l 1| summarizes the
key differences in medical coding schemes used by NHIRD and EHRSHOT.

Mapping EHRSHOT to NHIRD. As CATCH-FM is pretrained on NHIRD using ICD-9 and NHI
codes, we map SNOMED to ICD-9 using official CMS and NLM mappings. While 43% of codes
have one-to-one mappings (mostly SNOMED to ICD-9), the remaining 57% (e.g., RxNorm, CPT)
are aligned to NHI codes via semantic matching on text descriptions (Liu et al., 2020; |Sung et al.}
2020a; |Yuan et al., 2022)). Due to differences in drug, procedure, and medical codes, the average
cosine similarity between EHRSHOT and top-1 matched NHIRD codes is 84.3%, posing a significant
generalization challenge where no gold-mapping standard exists.

ICD-based codes such as ICD-9-Proc (ICD-9 Procedure code), ICD-10-PCS (ICD-10 Procedure
code), and ICD-O-3 (ICD oncology code) can be mapped to ICD-9 using publicly available mappings
from the Centers for Medicare & Medicaid Services (CMS). Diagnostic concepts in SNOMED can
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Table 13: Summary of coding mapping from EHRSHOT to NHIRD.

Code in EHRSHOT

Mapping methods

Code in NHIRD

SNOMED
SNOMED - procedure
SNOMED - regime/therapy

SNOMED to ICD9 mapping
Semantic text matching
Semantic text matching

ICD-9-CM
ICD-9-Proc, NHI Order Code
ICD-9-Proc, NHI Order Code

SNOMED - physical object Semantic text matching NHI Order Code

ICDO3 ICD mapping by CMS ICD-9-CM

ICD10-Proc ICD mapping by CMS ICD-9-Proc

RxNorm Semantic text matching NHI Drug Code

CPT Semantic text matching NHI Order / Service Code
HCPCS Semantic text matching NHI Material Code
LONIC Semantic text matching NHI Order Code

Table 14: Code mapping statistics from EHRSHOT to NHIRD. “Exact” denotes mappings via
official mapping, while “Threshold” refers to semantic text matching at the specified cosine similarity
(0.0-1.0). The 0.98 soft-matching cutoff is applied only to codes without official mappings. The 0.98
threshold includes both exact and those mapped by the 0.98 soft-matching cutoff.

Code type (Total) Exact 0.98 threshold
SNOMED (11598) 8998 (77.6%) 9072 (78.2%)
ICD10PCS (3669) 3618 (98.6%) 3618 (98.6%)
ICDO03 (96) 76 (79.2%) 83 (86.5%)
RxNorm (5433) 0(0.0%) 0 (0.0%)
CPT (4675) 0(0.0%) 3 (0.06%)
LONIC (3945) 2 (0.05%) 3 (0.08%)
HCPCS (64) 0 (0.0%) 0 (0.0%)
All (29480) 12694 (43.1%) 12779 (43.4%)

also be mapped to ICD-9 via the “ICD-9-CM Diagnostic Codes to SNOMED CT Map” provided
by the U.S. National Library of Medicine (NLM). However, other coding systems, e.g., SNOMED
procedures, CPT (coding for medical services, procedures, and other practices), and RxNorm (codes
for drug prescriptions), lack direct mappings to the NHIRD coding scheme. Table|13|summarizes
the mapping strategies and source-target relationships between each coding system. To address this,
we adopt a text-based semantic matching approach by embeddinﬂ the textual descriptions of codes
using Sentence Transformers (Thakur et al.|[2021) and formulating the mapping as a dense retrieval
problem, a method widely used to align medical concepts across ontologies (Sung et al.l 2020a; Liu
et al., 2020; |Yuan et al., [2022). Codes from each system are matched to the most semantically similar
code in NHIRD based on text similarity, using Faiss as the retrieval backend (Douze et al.| 2024).

Since no gold mapping standard exists for semantic alignment, it is difficult to determine whether
moderate similarity scores (e.g., 0.7-0.85) reflect true mappings or noise. To approximate exact
mappings and ensure high precision, we therefore adopt a strict cutoff of 0.98 as the threshold for
soft matching. Table[T4] summarizes the resulting coverage under different matching strategies. Even
with semantic matching, the final coverage reaches only 43%, implying that over half of the medical
information is lost. This substantial loss reflects the inherent challenge of aligning heterogeneous
and non-standardized EHR format, especially when deploying healthcare foundation models across
different healthcare systems and populations, and underscores the difficulties of achieving robust
model generalization.

D IMPLEMENTATION DETAILS

Tokenization and inputs. We map all medical codes to unique indices ranging from O to the total
number of unique medical codes, with a token vocabulary size of 185,138, including demographic,
time, and special tokens. Since all tokens are treated as atomic units, no additional tokenization

'We adopt Salesforce/SFR-Embedding-Mistral as encoder from Huggingface.
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Table 15: Model hyperparameters under different parameter sizes with million (m) and billion (b).

Parameters Num of layers Dimension Num of heads Block size

70m 6 512 8 2048
120m 6 768 8 2048
160m 12 768 12 2048
260m 12 1024 16 2048
350m 20 1024 16 2048
410m 24 1024 16 2048
560m 22 1280 10 2048
720m 20 1536 12 2048
1b 16 2048 8 2048
1.2b 20 2048 16 2048
1.4b 24 2048 16 2048
2.1b 24 2560 16 2048
2.8b 32 2560 32 2048

Table 16: Hyperparameters Configurations for CATCH-FM

Hyperparameter Pretraining Supervised Fine-tuning
Learning Rate 6e-6 for model size > 1B; else 1e-5
Optimizer AdamW

Adam € le-8

Adam Betas (31, 52) (0.9, 0.999)

Weight decay 0.01

Gradient Norm 0.1

Scheduler Warmup-Stable-Decay
Warmup Ratio 0.1

Stable Ratio 0.8

Decay Ratio 0.1

Batch Size 64 128

Epochs - 5

is required. The input sequence length is limited to 2,048 tokens. For patient records with EHR
sequences exceeding this limit, we avoid truncation during pretraining and instead split the sequences
into non-overlapping chunks, processing them across multiple training steps. However, during
fine-tuning, inputs longer than 2,048 tokens are truncated, as they must be processed as single
sequences.

Backbone architecture. We use the Pythia architecture as the backbone of CATCH-FM. Pythia
is a family of decoder-only autoregressive language models, ranging from 70m to 12b parameters,
designed for scalable and consistent research. Its feedforward architecture features rotary embeddings
for positional encoding, untied embedding layers, and parallelized flash attention for efficient training.
Table [T5] outlines the model architecture, while Table [[6]details the hyperparameters for pretraining
and supervised fine-tuning on cancer screening tasks. All models are trained on 8§ A100-SXM4-40GB
GPUs.

Baselines. For the tree-based baselines, XGBoost and LightGBM, we utilize their official Python
packages, xgboost E] and lightgbm E], respectively. For deep learning baselines, we employ the
PyHealth framework (Yang et al.|[2023a)) and perform supervised learning tasks directly on the cancer
screening benchmarks. For language model baselines, we convert medical codes into text using
language model vocabularies and concatenate them into sequences representing patient histories for
fine-tuning. In NHIRD, ICD9 codes are mapped to standardized textual descriptions using official
code mapping tables. Each medical code, representing a diagnosis, surgery, treatment, or medication,

Zhttps://xgboost.readthedocs.io/en/stable/index.html
3https://lightgbm.readthedocs.io/en/stable/
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Table 17: Estimated FLOPs requirement for CATCH-FM. The required training steps and total tokens
(inside the parentheses) for different model sizes are reported here.

FLOPS le+18 4e+18 8e+18 2e+19 4e+19 8e+19 1e+20 2e+20

CATCH-FM-70m 10071 (1.32e+09) 40287 (5.28e+09) 80575 (1.06e+10) 201439 (2.64e+10) 402878 (5.28e+10) 805757 (1.06e+11) 1007197 (1.32e+11) 2014394 (2.64e+11)
CATCH-FM-120m 6247 (8.19e+08) 24990 (3.28e+09) 49981 (6.55e+09) 124952 (1.64e+10) 249905 (3.28e+10) 499810 (6.55e+10) 624763 (8.19e+10) 1249526 (1.64e+11)
CATCH-FM-160m 4800 (6.29e+08) 19202 (2.52e+09) 38405 (5.03e+09) 96014 (1.26e+10) 192029 (2.52e+10) 384058 (5.03e+10) 480072 (6.29e+10) 960145 (1.26e+11)
CATCH-FM-260m 3252 (4.26e+08) 13011 (1.71e+09) 26022 (3.41e+09) 65057 (8.53e+09) 130114 (1.71e+10) 260228 (3.41e+10) 325285 (4.26e+10) 650570 (8.53e+10)
CATCH-FM-350m 2421 (3.17e+08) 9685 (1.27e+09) 19371 (2.54¢+09) 48429 (6.35¢+09) ~ 96858 (1.27e+10) 193716 (2.54e+10) 242145 (3.17e+10) ~ 484290 (6.35¢+10)
CATCH-FM-410m 2147 (2.81e+08) 8588 (1.13e+09) 17176 (2.25¢+09) 42941 (5.63e+09) 85882 (1.13e+10) 171765 (2.25e+10) 214706 (2.81e+10) 429412 (5.63e+10)
CATCH-FM-720m 1302 (1.71e+08) 5209 (6.83e¢+08) 10418 (1.37e+09) 26045 (3.41e+09) 52090 (6.83e+09) 104180 (1.37e+10) 130225 (1.71e+10) 260451 (3.41e+10)
CATCH-FM-1b 964 (1.26e+08) 3857 (5.06e+08) 7714 (1.01e+09) 19285 (2.53e+09) 38570 (5.06e+09) ~ 77141 (1.01e+10) 96426 (1.26e+10) 192853 (2.53e+10)
CATCH-FM-1.2b 818 (1.07e+08) 3273 (4.29e+08) 6547 (8.58e+08) 16369 (2.15e+09) 32739 (4.29e+09) 65478 (8.58e+09) 81848 (1.07e+10) 163696 (2.15¢+10)
CATCH-FM-1.4b 710 (9.32e+07) 2843 (3.73e+08) 5687 (7.46e+08) 14219 (1.86e+09) 28439 (3.73e+09) 56879 (7.46e+09) 71098 (9.32e+09) 142197 (1.86e+10)
CATCH-FM-2.1b 486 (6.38e+07) 1946 (2.55e+08) 3892 (5.10e+08) 9732 (1.28e+09) 19464 (2.55e+09) 38929 (5.10e+09) 48662 (6.38e+09) 97324 (1.28e+10)
CATCH-FM-2.8b 382 (5.01e+07) 1529 (2.00e+08) 3058 (4.01e+08) 7646 (1.00e+09) 15292 (2.00e+09) 30584 (4.01e+09) 38230 (5.01e+09) 76460 (1.00e+10)

Table 18: Operational Decision Threshold Analysis of CATCH-FM-2.4b on first target cancer cohorts

Threshold False Positive Rate  True Positive Rate  Specificity Precision Relative Risk
Cancer: Pancreatic, Positive/Negative (Incidence Ratio): 452/28058 (1.59%)

0.996 0.000 0.188 1.000 1.000 63.075
0.980 0.000 0.330 0.9999 0.974 61.426
0.932 0.001 0.407 0.9994 0911 57.455
0.815 0.001 0.458 0.9986 0.841 53.075
0.686 0.002 0.491 0.9975 0.760 47.954
0.495 0.004 0.535 0.9960 0.684 43.119
0.411 0.005 0.566 0.9946 0.627 39.577
0.264 0.008 0.586 0.9918 0.536 33.836
0.204 0.010 0.606 0.9900 0.495 31.196
Cancer: Liver, Positive/Negative (Incidence Ratio): 509/26148 (1.95%)
0.984 0.000 0.134 0.9999 0.958 50.158
0.957 0.001 0.242 0.9994 0.891 46.679
0.905 0.001 0.330 0.9985 0.816 42.711
0.841 0.003 0.381 0.9972 0.727 38.053
0.768 0.004 0.422 0.9958 0.660 34.539
0.702 0.006 0.446 0.9945 0.612 32.044
0.635 0.007 0.477 0.9932 0.576 30.157
0.588 0.008 0.501 0.9919 0.545 28.536
0.515 0.010 0.536 0.9901 0.512 26.824
Cancer: Lung, Positive/Negative (Incidence Ratio): 868/30153 (1.45%)
0.997 0.000 0.130 0.9998 0.897 62.455
0.992 0.001 0.243 0.9995 0.866 60.332
0.977 0.001 0.336 0.9992 0.854 59.456
0.950 0.002 0.366 0.9982 0.749 52.157
0914 0.003 0.414 0.9974 0.702 48911
0.825 0.004 0.454 0.9962 0.633 44.087
0.716 0.005 0.491 0.9950 0.589 41.002
0.593 0.007 0.509 0.9931 0.519 36.167
0.385 0.010 0.531 0.9901 0.439 30.576

is transformed accordingly. Patient histories are then constructed by concatenating the medical text,
similar to processing text documents in language models. The sequence length limit is 1024 for
BioGPT and 2048 for Qwen.

Training Configurations. Table [T7) shows the required training steps and total tokens for
CATCH-FM at various FLOP targets. We adopt this configuration to investigate the scaling laws for
CATCH-FM, aiming to determine the optimal model and data scales under a fixed FLOP budget.
Their corresponding FLOPs, number of parameters, and GPU training hours are listed in Table[5] We
calculate the FLOPs with Pytorch built-in flops counter.

E ANALYSIS OF THRESHOLD TUNING

Clinically, models often adjust decision thresholds to prioritize sensitivity or specificity (Collins
& Moons, 20125 [Steyerberg & Steyerberg, |2019), such as reducing false positives in prescreening
or increasing sensitivity in high-risk groups. Figure [§] shows that CATCH-FM supports tunable
sensitivity and specificity, which makes it well-suited for diverse clinical settings. It show that
CATCH-FM maintains its advantage across all thresholds, confirming its ability to identify high-
risk patients for further screening (high sensitivity) and avoid unnecessary patient distress (high
specificity). We also report AUROC curves across thresholds to compare our model with baseline
methods (XGBoost and Qwen), as shown in Figure E[
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Table 19: Model Performance Comparsion (Specificity = 0.99) on first target cancer cohort

Model (Input) Threshold False Positive Rate  True Positive (Sensitivity) Specificity Precision Relative Risk
Cancer: Pancreatic, Positive/Negative (Incidence Ratio): 452/28058 (1.59%)
CATCH-FM-2.4b (Code Sequence) 0.204 0.01 0.606 0.99 0.495 31.196
XGBoost (Bag-of-words) 0.180 0.01 0.310 0.99 0.335 21.126
Qwen (Language Sequence) 0.408 0.01 0.254 0.99 0.324 17.644
Cancer: Liver, Positive/Negative (Incidence Ratio): 509/26148 (1.95%)
CATCH-FM-2.4b (Code Sequence) 0.515 0.01 0.536 0.99 0.512 26.824
XGBoost (Bag-of-words) 0.200 0.01 0.363 0.99 0.415 21.723
Qwen (Language Sequence) 0.437 0.01 0.324 0.99 0.421 19.3
Cancer: Lung, Positive/Negative (Incidence Ratio): 868/30153 (1.45%)
CATCH-FM-2.4b (Code Sequence) 0.385 0.01 0.531 0.99 0.439 30.576
XGBoost (Bag-of-words) 0.172 0.01 0.323 0.99 0.323 22.5
Qwen (Language Sequence) 0.573 0.01 0.188 0.99 0.238 15.239
1.0 1.0 1.0
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a a a
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Figure 8: Sensitivity and specificity as functions of the screening decision threshold for CATCH-FM-
2.4b, Qwen2.5-500M, and XGBoost on the first target cancer cohorts.

We evaluate our model and carefully select decision thresholds from the AUROC curve to ensure a
specificity of at least 0.99. We also report Relative Risk (RR), to quantify the odds of cancer among
those classified as positive compared to a random pick based just on the population disease incidence
following suggested work in [Placido et al.|(2023a)). We provide a complete threshold selection results
in Table T8l

Under a fixed specificity of 0.99 and FPR of 0.01, our model demonstrates strong performance across
all three cancer prediction tasks. For pancreatic cancer, a threshold of 0.20 yields a TPR of 0.61, and
a relative risk of 31.2. For liver cancer, a threshold of 0.52 yields a TPR of 0.54 and a relative risk
of 26.8. For lung cancer, a threshold of 0.39 yields a TPR of 0.53 and a relative risk of 30.6. These
results highlight the utility of our method across diverse cancer types. Under the fixed specificity
threshold, we ensure a fair comparison with the baselines, as detailed in Table Across all metrics,
our model consistently outperforms the baselines.

To simulate clinical implementation, following the approach proposed in |Placido et al.| (2023al),
we adopt an operational decision point that simulates cost constraints, where only the top 0.1% of
patients (by predicted risk) are eligible to be advanced to a surveillance program. At this threshold,
our model achieves relative risk scores of 63.1, 52.0, and 61.9 for pancreatic, liver, and lung cancers
prediction, respectively. This also further indicates the clinical utility of our model.

F BENEFITS OF COMPUTE-OPTIMAL PRETRAINING

We show the detailed performance comparison between compute-(non-)optimal pretraining on
downstream cancer pancreatic screening, as supplementary information for Figure 2] in the Table 20|
We can observe that a compute-optimal model with adequate tokens outperforms larger models with
insufficient tokens and smaller models with excessive tokens.

G ANALYSIS OF COHORT CONTROL

We evaluate CATCH-FM-160m’s performance with training and testing on controlled (matched)
and random (out-of-distribution) control groups to assess screening under various distribution shifts.
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Figure 9: AUROC comparison across cancer cohorts with CATCH-FM-2.4b, Qwen2.5-500M, and
XGBoost evaluated on the first target cancer cohorts.

Table 20: Performance of compute-(non-)optimal pretraining on all target cancer cohorts.

Scale Tokens Loss F1 AUROC AUPRC Specificity  Sensitivity
FLOPs = 4e18, Optimal Model Scale = 260m

260m 1.7B 2.887 86.6 97.1 81.2 99.5 70.7

70m 5.2B 2974 86.4 97.0 81.1 99.2 70.7
2b 0.2B 3411 827 96.1 73.3 99.1 60.9

FLOPs = 2¢19, Optimal Model Scale = 410m

410m 5.6B 2.677 873 96.4 81.2 99.3 70.8

70m 26B 2.862  86.1 96.2 79.7 99.1 70.7
2b 1.2B 2.885 824 96.2 74.9 98.5 67.3

Table 21: Evaluation of pretrained compute-optimal model CATCH-FM-160m on all cancer cohorts
with different target controls on negative cases. The label distribution is fixed for each cancer data.

Negative Selection

— - F1 (Macro) AUROC AUPRC Specificity Sensitivity
Training Testing

Cancer: Pancreatic

Controlled Controlled 86.6 97.1 81.2 99.2 70.7
Random Random 86.3 95.9 78.5 99.4 67.2
Controlled Random 85.5 96.9 79.7 99.0 70.7
Random Controlled 87.8 95.6 80.1 99.6 67.2
Cancer: Liver
Controlled Controlled 84.5 96.0 76.6 99.3 634
Random Random 85.0 95.0 75.8 99.3 64.5
Controlled Random 79.4 94.6 69.0 98.2 634
Random Controlled 85.2 94.6 75.5 994 64.5
Cancer: Lung
Controlled Controlled 82.1 95.8 71.5 99.6 54.7
Random Random 83.5 96.1 72.5 994 62.4
Controlled Random 834 95.9 72.8 99.8 54.7
Random Controlled 84.0 95.6 72.7 994 62.4

As shown in Table 21| CATCH-FM maintains strong performance on the random control group,
demonstrating its robustness in handling out-of-distribution patients and ensuring consistent results
across diverse populations.
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Table 22: Performance of CATCH-FM-160m on all target cancer cohorts under varying exclusion
windows.

Time Window Exclusion AUPRC Specificity = Sensitivity

Cancer: Pancreatic

12-month 81.2 99.2 70.7
6-month 81.4 99.2 71.2
Cancer: Liver
12-month 76.6 99.3 63.4
6-month 76.9 99.1 67.7
Cancer: Lung
12-month 71.5 99.6 54.7
6-month 71.6 99.5 59.7
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Figure 10: Evaluation results for the cancer  Figure 11: CATCH-FM-1b finetuned with differ-
screening task of the sparse autoencoder (SAE)  ent label sizes on first target cancer cohorts.

H TIME WINDOW EXCLUSION

This experiment studies CATCH-FM’s effectiveness at different exclusion window in between input
medical history and cancer diagnosis. Table 22] shows the results of CATCH-FM when finetuned
and evaluated with different exclusion windows. A shortened 6-month exclusion window presents
an easier task, as more short term risk factors may be observable, and CATCH-FM performs better
in that setup. This confirms that CATCH-FM can be conveniently adapted to different prediction
settings based on healthcare professional’s preference.

I DETAILS OF INTERPRETABILITY EXPERIMENTS

We process positive patients’ event token sequences using the fine-tuned CATCH-FM-1b model on
each cancer dataset to obtain hidden states h for every token. Following (Kang et al., 2024), we then
train a TopK sparse autoencoder (SAE) on the hidden states of the [EOS] token, hgos7, Which
serves as an aggregated representation of patient trajectories. The SAE is implemented as follows:

z = TOPK(Wenc(h[EOS] - bdec) + benc)a (6)
E[EOS] = Wiecz + bgec 7)

where the embedding vector h(zog; is passed through an encoder parameterized by Wy, and
bene. The TopK activation function regulates the number of active latent features. The encoded
representation is then reconstructed via a decoder parameterized by Wy, and bge.. The SAE is
trained using the mean squared error (MSE) loss for reconstruction.

Figure [T0| presents the reconstruction evaluation across different numbers of active latent features on
the cancer screening benchmark. We observe that as the number of active latent features increases,
both cancer screening performance and reconstruction quality improve. Interestingly, with just 16
active latent features, the SAE’s reconstructed embeddings already capture enough information
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to match the original performance. This suggests that the latent cancer signal extracted from the
fine-tuned CATCH-FM is inherently low-dimensional.

J ANALYSIS OF SUPERVISED DATA SCALE

Many healthcare systems may not have as many patients as in NHIRD, e.g., in scattered healthcare
systems. This experiment evaluates CATCH-FM with different amounts of available supervised
finetuning labels. Figure [TT]plots CATCH-FM’s performance finetuned with different amount of
labels. CATCH-FM maintains its 99% specificity with as few as 10k training labels, with only 300
positives. Its sensitivity increases with more finetuning amount and crossed 50% with only 20k total
patient data across two decades, which is fewer than a typical hospital.

K USAGE OF LARGE LANGUAGE MODEL

We used large language models to assist in polishing the writing of this paper. Specifically, LLMs
were employed to correct grammar, paraphrase sentences, and improve readability and flow. The
scientific ideas, experiments, and analyses were fully conducted by the authors, with LLM use limited
to enhancing clarity and smoothness of expression.
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