
An Active Learning Performance Model for Parallel
Bayesian Calibration of Expensive Simulations

Özge Sürer
Information Systems & Analytics

Miami University
Oxford, OH 45056

surero@miamioh.edu

Stefan M. Wild
Applied Math & Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720
wild@lbl.gov

Abstract

Estimating parameters of simulation models based on observed data is an especially
challenging task when the computational expense of the model – necessitated by
faithfully capturing the real system – limits the learning process. When simulation
models are expensive to evaluate, emulators are often built to efficiently approxi-
mate model outputs during model calibration. Computing-informed active learning,
guided by intelligent acquisition functions, can improve data collection for emula-
tors, thereby enhancing the calibration’s efficiency. However, the performance of
active learning strategies depends on computational factors such as computing envi-
ronment (e.g., parallel resources available), tradeoffs in (calibration and simulation)
algorithm’s ability to benefit from parallelism, and the computational expense of
the simulation models. In addition to overviewing these considerations, this work
provides examples exemplifying the tradeoffs that make such learning difficult.

1 Introduction

Simulation models are widely used across engineering and science disciplines to explain complex
systems. These models require calibration parameters as input to produce outputs that closely
represent reality. However, calibration parameters are often unknown and must be inferred from data.
The calibration process becomes particularly challenging when each simulation run is computationally
expensive. Bayesian calibration (Sung and Tuo 2024), which quantifies uncertainty in both parameters
and predictions, offers a solution by using emulators such as Gaussian processes (GPs) (Rasmussen
and Williams 2005, Gramacy 2020) to approximate a simulation model’s behavior. Emulators, often
built from carefully selected a priori designs, help facilitate the calibration process (see Santner et al.
(2018) for a thorough review). However, traditional a priori design methods may not adequately
explore the input space, especially in higher-dimensional parameter settings, potentially limiting
the emulator’s accuracy for calibration. Therefore, careful selection of experimental designs for
simulation evaluations is crucial for precise calibration with limited simulation runs.

This work explores active learning for sequential simulation data collection to build statistical
emulators for calibration. In active learning, an acquisition function assesses the value of evaluating
the simulation model at any given parameter. Parameters can be acquired sequentially, either one at
a time (fully sequential) or in batches. While fully sequential procedures can yield more accurate,
evaluation-efficient results given their use of all information obtained up to that point, batch sequential
approaches may achieve high-quality solutions more quickly by evaluating multiple parameters
simultaneously in parallel processing environments. However, the performance of active learning is
influenced by various computational factors, including the convergence rate of the acquisition function
(and its variation with batch size), the time complexity of the acquisition function with different batch

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

and parallelism sizes, and the characteristics of the simulation model (e.g., its parameter dependence
and run-time variability). In this work, we propose a performance model to understand the impact of
these computational factors, ultimately guiding the selection of the best configuration in practice.

In § 2 we present an acquisition function for calibration, which is used to gather experimental data to
motivate our experiments in § 4. § 3 introduces the performance model to investigate the effect of
computational factors.

2 Acquisition Function for Calibration

We consider a simulation model η(·) that takes a parameter θθθ ∈ Θ ⊂ Rp and returns an output η(θθθ),
and a data generation mechanism yielding y = η(θθθ) + ϵ, ϵ ∼ N (0, σ2). At each stage indexed by t,
the simulation data Dt = {(θθθi, η(θθθi)) : i = 1, . . . , nt}, collected sequentially, is stored to build a GP
emulator. Using a GP emulator, η(θθθ)|Dt at any θθθ follows a normal distribution with mean mt(θθθ) and
variance s2t (θθθ).

Calibration can have multiple objectives and different acquisition functions are tailored to achieve
specific goals. For simplicity, we focus only on enhancing parameter inference by learning the
posterior density. To this end, we use the expected integrated variance criterion (EIVAR) (Sürer et al.
2024, Sürer 2024), which selects parameters that minimize the aggregated uncertainty of the posterior
p(θθθ|y). EIVAR at any θθθ∗ is computed as A(θθθ∗) =

∫
Θ
Eη(θθθ∗)|Dt

(V [p(θθθ|y)| (θθθ∗, η(θθθ∗)) ∪ Dt]) dθθθ.
The derivation of EIVAR follows from Sürer et al. (2024) and can be approximated over a set of (e.g.,
uniformly distributed) reference parameters Θref as

A(θθθ∗) ≈ 1

|Θref |
∑

θθθ∈Θref

p(θθθ)2

(
fN
(
y; mt(θθθ),

1
2

(
σ2 + s2t (θθθ) + τ2t (θθθ,θθθ

∗)
))

2π1/2|σ2 + s2t (θθθ)− τ2t (θθθ,θθθ
∗)|1/2

)
, (1)

where τ2t (θθθ,θθθ
∗) = covt(θθθ,θθθ

∗)2/
(
s2t (θθθ

∗) + υt
)
, covt(θθθ,θθθ

∗) = kt(θθθ,θθθ
∗)− kt(θθθ)

⊤K−1
t kt(θθθ

∗), and
fN evaluates a normal probability density. Here, υt > 0 is the nugget parameter, kt(·, ·) is the kernel
function and kt(θθθ) consists of the cross-kernel evaluations between θθθ and θθθi, for i = 1, . . . , nt. The
matrix Kt is an nt×nt matrix with (i, j)-th entry kt(θθθi, θθθj)+υt1i=j for 1 ≤ i, j ≤ nt. Both (Sürer
et al. 2024, Sürer 2024) provide a summary of the accuracy of EIVAR and other benchmark methods
across different stages, operating under the assumption that the run time for each simulation evaluation
is fixed and that acquisition times are negligible. In contrast, this work aims to illustrate how the
performance of active learning methods is influenced by various computational factors, including
variable run times and acquisition times, thereby providing a more comprehensive understanding of
their effectiveness in a multitude of real-world scenarios.

We assume access to w workers, which can run w simulation models concurrently, and an additional
worker that generates b parameters with the acquisition function. If w = 1, we conduct data collection
sequentially, one parameter at a time. For w > 1, updates are performed either synchronously or
asynchronously, depending on the batch size b. When b = 1, we generate a set of candidate parameters
from the prior and select the one that minimizes (1). For b > 1, rather than solving b× p-dimensional
optimization problem, we minimize (1) b times over a candidate set of parameters. At each of the b
iterations, we assume a constant value for the unknown simulation output of the selected parameter
and then update the emulator. This approach is known as the constant liar strategy in Bayesian
optimization (Ginsbourger et al. 2010). In this context, the constant liar strategy serves to illustrate
the proposed batch-sequential procedure. However, this strategy may introduce inaccuracies in
predictions because it relies on fixed estimates for unseen parameters, which might not accurately
represent the actual simulation outputs. Alternative approaches for batch acquisitions could be
employed, each leading to different performance tradeoffs that affect both computational efficiency
and the quality of the solutions obtained.

3 Performance Model Using Active Learning

Algorithm 1 presents the pseudocode for a performance model utilizing the sequential data collection
described in § 2. The algorithm collects n(b, α) simulation data points to achieve α-level calibration
accuracy with batch size b (line 4). To conduct our numerical analysis, we record the time cJj (b, w) at
which each job j ended, which is equal to the sum of the start time of job j and the random execution

2

Algorithm 1: Performance model for parallel calibration

1 Input: batch size b, worker size w, number of data to be collected n(b, α)
2 Initialize t = 0; Pt(w) = {1, . . . , w}; nt = w

3 cJj (b, w) = sj ∀j = 1, . . . , w; cSt (b, w) = 0

4 while nt < n(b, α) do
5 t← t+ 1; nt ← nt−1; Pt(w)← Pt−1(w)

6 cSt (b, w) = max
{
cSt−1(b, w),

{
cJj (b, w) : j ∈ Pt(w)

}
[b]

}
+ a(b, t)

7 Remove b completed jobs from pending Pt(w)
8 for i = 1, . . . , b do
9 Generate job nt + i

10 cJnt+i(b, w) = cSt (b, w) + snt+i

11 Pt(w)← Pt(w) ∪ {nt + i}
12 nt ← nt + b

Figure 1: Calibration problem characteristics for EIVAR on a test function with w = 256.

time sj (line 10). The execution time varies across different simulation evaluations because different
parameters can affect the computational complexity of the simulation model and may result in slower
(or faster) convergence. Each job begins after the stage at which its input acquisition has completed.

We store the end time cSt (b, w) for each stage t (line 6). The acquisition time a(b, t) depends on the
stages and batch sizes. In our case, since the time required to build a new emulator increases with the
growing size of the simulation data, a(b, t) increases in both batch size and time. The pending list
Pt(w) maintains the indices of jobs submitted for evaluation that have not yet completed (line 11).
This list helps track ongoing simulations, allowing the system to manage and monitor which tasks are
still in progress. At each stage, the job in the bth order of the pending list is the last one for which the
simulation output was received from the workers.

This performance model also allows one to employ problem characteristics (e.g., distributions of the
number of simulations required, simulation run times, and acquisition times) to assess the wall time
needed to obtain a specific accuracy, and thereby choose an acquisition and computing configuration.

4 Results and Discussion

We acquired 2560 parameters using EIVAR with the well-known Himmelblau function (Surjanovic
and Bingham 2013), experimenting with batch sizes b ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256} and a worker
size w = 256. Detailed information about the experimental setup is provided in Appendix A. The
accuracy is assessed by the mean absolute deviation (MAD) between the true and estimated posteriors.
In a sequential design, performance is typically summarized after receiving new evaluations, as
illustrated in the left panel of Figure 1. The performance degrades with an increasing batch size
because more parameters are chosen without incorporating new information from the evaluations
of other parameters in the same batch. The performance summary across stages (middle panel) can

3

Figure 2: Wall-clock time to achieve an α-level solution with various acquisition times and batch
sizes. The mean simulation time increases from µ = 21 in the left panel to µ = 26 in the right panel
with the simulation time standard deviation set to µ. The y-axis shows different ă values.

approximate the wall-clock time required for data collection, assuming that simulation run time is
relatively constant and is the dominant computational cost. However, as acquisition times vary across
stages and batch sizes (right panel), combining these factors with the computational expense of the
simulation models may lead to significant variability in overall performance.

To investigate this, we use the progress curves in the left panel of Figure 1 to provide n(b, α) as
input to the performance model in Algorithm 1. We evaluate this model under varying simulation
and acquisition times. We model random simulation run times using a truncated normal distribution.
We apply a linear increase to the acquisition time, varying the slopes and intercepts. For each job
j ∈ {1 + b(t− 1) : t = 1, . . . , n/b}, the linear acquisition time

(
ă+ b̆j/n

)
with ă = b̆ is obtained.

The α-level corresponds to the highest accuracy, defined as the lowest MAD, achieved with b = 256.
For comparison, we determine n(b, α) for other batch sizes (e.g., n(b = 1, α) = 246). Figure 2
illustrates the wall-clock time required to achieve an α-level accuracy across different batch sizes
and acquisition times. When acquisition times are relatively longer, larger batch sizes generally
reduce the wall-clock time needed to achieve α-level accuracy, as smaller batch sizes require more
frequent acquisitions. While smaller batch sizes require fewer simulation evaluations, the wall-clock
time increases due to the total acquisition time. The best batch size varies with different acquisition
and simulation times. For instance, in the right panel, b = 16 minimizes wall-clock time when the
acquisition time is 22, whereas b = 128 is the best in the left panel for the same acquisition time.

A key benefit of our performance model is that it allows one to investigate various settings, including
when the simulation run times are constant, have multiple modes, or exhibit other variability patterns.
Figure 3 examines how variability in simulation run times influences the batch size for minimizing
wall-clock time, considering different simulation and acquisition times. As variability increases
(right panel), synchronous updates are beneficial only when acquisition times are significantly long.
Smaller batch sizes perform better as the ratio of simulation times to acquisition time becomes larger.
As a result, the best batch size achieves a balance between minimizing simulation evaluations and
limiting acquisition overhead, depending on the relative scales of acquisition and simulation times.

5 Concluding Thoughts

What is the “best" active learning method? This paper shows that this depends on factors such
as the computational environment (e.g., available parallelism, method scalability) and problem
characteristics (e.g., simulation/acquisition times and their variability). A method that is best in
one setting can readily be shown to perform poorly in another. Our proposed performance model
is designed to help inform practitioners of the tradeoffs associated with candidate methods for their
particular problem and setting. For instance, practitioners could test the candidate methods in a
simulated environment using a similar but much less computationally expensive synthetic function

4

Figure 3: Batch size with various simulation and acquisition times. Colors indicate the batch size
that minimizes the wall-clock time to achieve an α-level solution and numbers in each cell represent
the associated walk-clock time. The axes show the mean simulation time (µ) and ă. The standard
deviation in simulation time increases from µ× 0.01 in the left panel to µ in the right panel.

with similar characteristics to the target problem. They could also take empirical data on past
simulation run times, apply knowledge on the scalability of the approach, and use all of these in our
performance model in order to determine actions on the production (very computationally expensive)
run. The aim in doing so is to maintain solution quality while being as efficient as possible with
computational resources and wall time goals.

Future work could broaden the experimental evaluation by incorporating real-world simulations
or more complex systems beyond the Himmelblau function. Testing on more intricate models
or real calibration scenarios would enhance the robustness and generalizability of the findings,
offering insight into the performance of active learning in a broad array of practical applications.
Additionally, expanding the scope of acquisition strategies by exploring alternatives such as expected
improvement or Thompson sampling, alongside the EIVAR criterion illustrated here, could provide a
more thorough comparison. Such an exploration may reveal the potential advantages or limitations of
each approach, improving our understanding of the effectiveness of each acquisition strategy across
various calibration contexts. One limitation of the performance model is its reliance on the input
number n(b, α) of data points to be collected. To address this, a predictive model could further
be developed to estimate n(b, α) based on the characteristics of the simulation model, enhancing
the performance model’s usability and effectiveness. Many of these discussions are detailed in the
extended paper by Sürer and Wild (2024).

Acknowledgments and Disclosure of Funding

This work was supported in part by the NSF CSSI program under grant OAC-2004601 (BAND
Collaboration) and by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research’s SciDAC and applied mathematics programs under Contract No.
DE-AC02-05CH11231. Computing resources provided on Bebop, a high-performance computing
cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory, are
gratefully acknowledged.

References
Ginsbourger D, Le Riche R, Carraro L (2010) Kriging is well-suited to parallelize optimization. Computa-

tional Intelligence in Expensive Optimization Problems 131–162, URL http://dx.doi.org/10.1007/
978-3-642-10701-6_6.

5

http://dx.doi.org/10.1007/978-3-642-10701-6_6
http://dx.doi.org/10.1007/978-3-642-10701-6_6

Gramacy RB (2020) Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied
Sciences (New York, NY: CRC Press; Taylor & Francis Group), ISBN 9780367415426, URL http:
//bobby.gramacy.com/surrogates.

Rasmussen CE, Williams CKI (2005) Gaussian Processes for Machine Learning (Adaptive Computation and
Machine Learning) (The MIT Press), ISBN 026218253X.

Santner TJ, Williams BJ, Notz WI (2018) The Design and Analysis of Computer Experiments. Springer Series in
Statistics (New York: Springer), second edition, ISBN 9781493988471, URL http://dx.doi.org/10.
1007/978-1-4757-3799-8.

Sung CL, Tuo R (2024) A review on computer model calibration. WIREs Computational Statistics 16(1):e1645,
URL http://dx.doi.org/10.1002/wics.1645.

Sürer O (2024) Simulation experiment design for calibration via active learning. Journal of Quality Technology
0(0):1–19, URL http://dx.doi.org/10.1080/00224065.2024.2391780.

Sürer O, Plumlee M, Wild SM (2024) Sequential Bayesian experimental design for calibration of expensive
simulation models. Technometrics 66(2):157–171, URL http://dx.doi.org/10.1080/00401706.
2023.2246157.

Sürer O, Wild SM (2024) Performance analysis of sequential experimental design for calibration in parallel
computing environments. URL https://arxiv.org/abs/2412.00654.

Surjanovic S, Bingham D (2013) Virtual library of simulation experiments: Test functions and data sets.
https://www.sfu.ca/~ssurjano/index.html, [Online; accessed 06-June-2024].

A Appendix / supplemental material

The details of the Himmelblau function are given as follows in the calibration context. We consider
θ1 ∈ [−5, 5] and θ2 ∈ [−5, 5] and take θθθ = (θ1, θ2) and η(θθθ) = (θ21 + θ2 − 11)2 + (θ1 + θ22 − 7)2

with y = 1 and σ2 = 1. The function has a multimodal density as shown in Figure 4.

Figure 4: Illustration of the Himmelblau function’s synthetic density.

6

http://bobby.gramacy.com/surrogates
http://bobby.gramacy.com/surrogates
http://dx.doi.org/10.1007/978-1-4757-3799-8
http://dx.doi.org/10.1007/978-1-4757-3799-8
http://dx.doi.org/10.1002/wics.1645
http://dx.doi.org/10.1080/00224065.2024.2391780
http://dx.doi.org/10.1080/00401706.2023.2246157
http://dx.doi.org/10.1080/00401706.2023.2246157
https://arxiv.org/abs/2412.00654
https://www.sfu.ca/~ssurjano/index.html

	Introduction
	Acquisition Function for Calibration
	Performance Model Using Active Learning
	Results and Discussion
	Concluding Thoughts
	Appendix / supplemental material

