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Abstract

Molecular generation is a critical task in drug discovery but current approaches
often struggle with efficiency and scalability when dealing with complex molecular
structures. This paper aims to address these challenges by training and evalu-
ating models for molecular generation using the MAMBA State Space Model
architecture. We develop models with 20M and 90M parameters trained on the
MOSES and ZINC datasets, respectively, using the Sequential Attachment-based
Fragment Embedding (SAFE) representation. We compare MAMBA models
against the prevailing Transformer architecture in terms of generation quality and
computational efficiency. Our findings suggest that MAMBA models can achieve
performance comparable to Transformers in generating valid, unique, and diverse
molecules. Generation from both architectures can achieve close to perfect validity
and uniqueness scores, although MAMBA models require more conservative sam-
pling parameters or regeneration steps to achieve these results. MAMBA models
consistently demonstrates lower perplexity and reduced GPU power consumption
(up to 30% reduction) compared to Transformer models. These results indicate that
State Space Models may offer a computationally efficient alternative for molecular
generation tasks, potentially enabling more efficient processing of larger datasets
and complex molecular structures. The efficiency gains of MAMBA models be-
come more pronounced with longer sequences, suggesting that this architecture
could enable the modeling and generation of more complex molecules. This capa-
bility could significantly expand the scope of AI-driven molecular design in drug
discovery.

1 Introduction

The application of artificial intelligence (AI) to molecular design and drug discovery has emerged
as a promising approach to accelerate the identification of novel therapeutic compounds [1]. This
intersection of AI and chemistry builds upon the remarkable success of sequence modeling techniques
in natural language processing (NLP), where models have demonstrated an unprecedented ability
to understand and generate human-like text [2]. The parallels between language and molecular
structures have inspired researchers to adapt and apply these sequence modeling techniques to the
complex task of molecular generation.

Advancements in deep learning architectures, particularly the Transformer model [3], have shown
promise in molecule generation compared to older generative approaches [4]. The Transformer’s
attention mechanism, which allows the model to weigh the importance of different parts of the input
sequence dynamically, has proven especially effective in capturing long-range dependencies in both
text and molecular structures. However, the quadratic computational complexity of Transformers with
respect to sequence length poses challenges for scaling to larger datasets or more complex molecules.
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This limitation has motivated research into alternative architectures such as State Space Models
(SSMs), which offer linear time complexity [5]. SSMs, inspired by control theory and dynamical sys-
tems, provide a different approach to capturing sequential dependencies. The MAMBA architecture,
a recent innovation in SSMs, has shown promising results in language modeling tasks.

The main contribution of this paper is to evaluate models based on the MAMBA architecture on
molecular generation. Our study addresses two critical questions: First, how do State Space Models
compare to Transformer-based architectures in generating valid, unique, and diverse molecules using
the SAFE representation? Second, can the efficiency of the MAMBA architecture provide advantages
in terms of computational resources and training time when applied to larger datasets and model sizes
in molecular generation tasks?

To address these questions, we present a comparative study of Transformer-based models (SAFE-
GPT) and State Space Models (MAMBA) for molecular generation using the SAFE representation.
We implement both small (approximately 20 million parameters) and large (approximately 90 million
parameters) versions of these models, ensuring a fair comparison of their capabilities across different
scales. The paper makes several key contributions:

1. We provide a comprehensive comparison of Transformer and MAMBA architectures for
molecular generation using the SAFE representation across different model sizes.

2. We evaluate the potential of State Space Models as an alternative to Transformers for
capturing complex structural information in molecular generation tasks.

3. We assess the computational efficiency advantages of MAMBA-based models, exploring
their potential for processing larger molecular datasets and more complex structures.

4. We offer insights into the trade-offs between model architecture, performance, and computa-
tional resources, informing future research directions in AI-driven molecular design.

By bridging the gap between cutting-edge sequence modeling techniques and molecular generation,
our work contributes to the ongoing efforts to accelerate drug discovery through AI-driven approaches.
The results of this study indicate that transitioning molecular generation model architectures from
Transformers to MAMBA presents a viable strategy for scaling to larger models or datasets. Fur-
thermore, this shift potentially allows for the modeling of more complex molecules, opening new
avenues for exploring previously intractable chemical spaces and accelerating the discovery of novel
therapeutic compounds.

2 Background

2.1 Molecular Representations

The choice of molecular representation is crucial for the effectiveness of machine learning models
in computational chemistry and drug discovery. The evolution of these representations reflects
ongoing efforts to balance chemical validity, informativeness, and computational efficiency. The
Simplified Molecular-Input Line-Entry System (SMILES) [6], while widely used, has limitations
in maintaining validity during generation tasks [7]. To address these issues, the Self-Referencing
Embedded Strings (SELFIES) representation was introduced [7], using a robust grammar to ensure
generated strings correspond to valid molecular graphs. Building upon these advancements, the
Sequential Attachment-based Fragment Embedding (SAFE) representation [8] combines fragment-
based approaches with sequential string representations. SAFE represents molecules as an unordered
sequence of interconnected fragment blocks, maintaining high validity rates in generative tasks while
capturing meaningful chemical substructures. By fragmenting molecules using methods like BRICS
[9] and employing a compact encoding scheme, SAFE offers a balance between chemical relevance
and computational efficiency. This approach has shown promise in improving the performance of
molecular generation models.

2.2 Molecular Sequence Modeling

Unlike biological sequences such as DNA, RNA, and proteins that have natural sequential repre-
sentations, modeling arbitrary molecules as sequences requires careful consideration of mapping
between molecular graphs and sequential tokens. Early approaches to molecular sequence modeling
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Figure 1: Schematic representation of Mamba’s Selective State Space Model architecture, illustrating
the selection mechanism, which dynamically focuses on relevant input information, and the hardware-
aware state expansion design [5].

adapted methods from natural language processing, starting with n-gram models and recurrent neural
networks (RNNs) [10, 11]. These models demonstrated initial success but struggled with main-
taining chemical validity and capturing long-range dependencies in complex molecular structures,
particularly for molecules with nested branching patterns or multiple cycles. The development of
masked language modeling and auto regressive training objectives, combined with attention-based
architectures enabled more robust molecular generation [12, 13]. These models showed particular
strength in capturing non-local interactions between functional groups and modeling complex stereo
chemical relationships.

Recent architectural innovations have focused on improving model efficiency while maintaining
chemical validity. This includes specialized architectures that incorporate chemical knowledge
through modified attention patterns [4], and the adaption of pre-training strategies from language
models to molecular domains [14], enabling models to learn general chemical patterns from large
unlabeled datasets before fine-tuning on specific tasks. These advances have progressively improved
the ability to model longer sequences and more complex molecular structures, though computational
efficiency remains a challenge, particularly for modelling large libraries of drug-like compounds.

2.3 State Space Models and MAMBA

State Space Models (SSMs) offer an alternative approach to sequence modeling by representing
sequences as continuous-time dynamical systems. The general form of a discrete-time linear SSM is:

xk+1 = Axk +Buk, (1)

yk = Cxk +Duk, (2)
where xk is the hidden state, uk is the input, yk is the output, and A, B, C, and D are learnable
parameters.

The MAMBA architecture [5] is a selective state space model, which addresses key limitations of
previous SSMs through its selection mechanism, which allows the model to dynamically focus on or
ignore specific inputs based on their content. This mechanism is implemented by making several
SSM parameters, namely ∆, B, and C, functions of the input:

B : (B,L,N)← sB(x) (3)

C : (B,L,N)← sC(x) (4)

∆ : (B,L,D)← τ∆(Parameter + s∆(x)) (5)

Here, sB(x), sC(x), and s∆(x) are learnable functions that transform the input x, allowing the model
to adapt its behavior based on the content of the sequence. The function τ∆ is typically chosen to be
the softplus function, which ensures that ∆ remains positive.

Figure 1 illustrates the key components of the Mamba architecture, namely its selection mechanism
and hardware-aware state expansion. The input x is first discretized and then processed through the
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selective state space model. The model uses learnable parameters A, Bt, and Ct to update the hidden
state ht and produce the output yt. The time step size ∆t is also a learnt parameter and can vary
based on the input. This allows the model to adapt its temporal resolution, effectively zooming in or
out on different parts of the sequence as needed.

The architecture is designed to enable efficient GPU computation by utilizing both GPU SRAM and
HBM (High Bandwidth Memory). This dual-memory approach allows for efficient processing of long
sequences, as it balances the need for fast access to recent information with the ability to reference
information from much earlier in the sequence when necessary. Its architecture enables Mamba to
process sequences more efficiently than Transformers while still capturing complex dependencies.
In the context of molecular generation, this suggests potential for processing larger datasets and
modelling more complex molecular structures.

3 Methodology

Our study aims to evaluate the efficacy of autoregressive sequence models in molecular generation
tasks. We focus on comparing Transformer-based models and State Space Models (SSMs), both
implemented as autoregressive sequence models for molecular generation.

3.1 Dataset Preparation

We train models on two datasets: the Molecular Sets (MOSES) dataset and a canonicalized subset
of the ZINC database. The MOSES dataset [15], comprising approximately 1.6 million drug-like
molecules, serves as our primary benchmark. MOSES offers a representation of the chemical space
relevant to drug discovery, with compounds selected based on specific physicochemical properties
and synthetic accessibility criteria. We use the original train-validation split to ensure comparability
with previous work.

To complement MOSES and assess the scalability of our findings, we incorporate a larger dataset
derived from ZINC20 [16]. Specifically, we used a canonicalized subset of 23 million molecules from
ZINC.1 This expanded dataset allows us to investigate whether the trends observed with MOSES
persist when applied to a larger and more diverse chemical space. We randomly split the ZINC subset
was into training (90%) and validation (10%) sets.

The length distribution of molecular representations varies between datasets. In the MOSES dataset,
90% of molecules have token lengths between 25 and 45 tokens, with a median length of 35 tokens.
The ZINC dataset shows greater variation, with 90% of molecules containing between 32 and 62
tokens and a median length of 45 tokens. We set the maximum sequence length to 1024 tokens for all
models to ensure complete coverage of all molecules in both datasets while maintaining consistency
across model architectures.

We apply identical preprocessing to both datasets. We convert the original SMILES strings into
the SAFE (Sequential Attachment-based Fragment Embedding) representation using the SAFE
library.2 The SAFE encoding process involves extracting unique ring digits from the SMILES string,
fragmenting the molecule using methods such as BRICS [9], sorting fragments by size, concatenating
fragment SMILES strings, and replacing attachment points with new ring digits.

SAFE strings are tokenized with the pre-trained byte-pair encoding (BPE) tokenizer from the SAFE-
GPT model.3 This tokenizer has a vocabulary size of 1 880 tokens and using it ensures ensures
consistency with the original SAFE-GPT implementation.

3.2 Model Architectures and Training

We train four models across two architectures: Transformers (SAFE-GPT_Small and SAFE-
GPT_Large) and State Space Models (MAMBA_Small and MAMBA_Large). These models were
selected to investigate both small (approximately 20M parameters) and large (approximately 90M
parameters) variants.

1https://huggingface.co/datasets/sagawa/ZINC-canonicalized
2https://github.com/datamol-io/SAFE
3https://huggingface.co/datamol-io/safe-gpt
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Table 1: Performance metrics for molecular generation models. Top: models trained in this study.
Bottom: results from previous work. Metrics: Valid@10K, Unique@10K, and Diversity (based on
Tanimoto similarity). Higher values indicate better performance for all metrics. Models with ∗ for
uniqueness obtain 1.0 for uniqueness after regenerating any molecules that fail SAFE-to-SMILES
conversion.

Model Valid@10K↑ Unique@10K↑ Diversity↑
SAFE-GPT_Large (87M) 00.98 1 0.880
Mamba_Large (94M) 0.72∗ 1 0.873
SAFE-GPT_Small (21M) 1 0.999 0.864
Mamba_Small (20M) 0.62∗ 0.999 0.860
GSELFIES-GPT20M [7] 1 0.999 0.887
GSELFIES-VAE [7] 1 0.999 0.859
SELFIES-VAE [7] 1 0.999 0.858
GMT-SELFIES [17] 1 1 0.870
CharRNN [15] 0.975 0.999 0.856
VAE [15] 0.977 0.998 0.856
LatentGAN [15] 0.897 0.997 0.857
JT-VAE [15] 1 0.999 0.855
LigGPT [13] 0.900 0.999 0.871

Our SAFE-GPT models reproduce the original SAFE models [8], serving as our Transformer-
based baselines. We adapt the original MAMBA implementation4 and integrate it with the rest
of the SAFE library. This ensures that only the architecture is varied while keeping all other
aspects of the pipeline constant. Our molecular generation implementation is available at https:
//github.com/Anri-Lombard/Mamba-SAFE.

All models were trained on NVIDIA A100 GPUs. The small models were trained for 10 epochs, while
the large models were trained for a fixed number of 250,000 steps, corresponding to approximately
2.4 epochs. Detailed model architecture parameters and training hyperparameters can be found in
Appendix A.

3.3 Molecule Generation and Evaluation

We generate molecules as SAFE sequences from the trained models using sampling-based decoding
[18]. We use same decoding parameters as in the original SAFE-GPT implementation (which follows
the default Hugging Face decoding parameters): a temperature of 1.0, top-p parameter of 1.0, and a
top-k parameter of 50. These parameters are used for both the SAFE-GPT and MAMBA models. For
evaluation we generated 10,000 molecules from each model (as a single trial per model).

Our evaluation framework encompasses both quantitative measures and qualitative analyses, building
upon established metrics widely used in molecular generation literature [15, 12]. We assess Validity,
calculated using RDKit [19], which has been established as a key metric for evaluating molecular
generation models [17, 7]. Uniqueness and Diversity, first introduced for molecular generation
evaluation by [10], assess the model’s ability to generate distinct molecular structures and the
structural variety within the generated set, respectively.

Validity is calculated as the fraction of molecules successfully converted to valid RDkit molecules,
where the generate SAFE strings are first converted to SMILES before being validated by RDkit.
While the SAFE-to-SMILES conversion is always successful for SAFE-GPT outputs, we found that
for the MAMBA models some generated molecules unexpected fail this conversion step, although all
molecules that pass it are successfully converted to RDkit molecules. Therefore, while we report the
initial validity which requires passing both validation steps, our generation process includes a retry
mechanism that regenerates any molecules that fail the SAFE-to-SMILES conversion step. The rest
of the evaluations use the set of molecules obtained after this. See Appendix B for detailed discussion
of the two-step validation process.

Uniqueness assesses the model’s ability to generate distinct molecular structures. Diversity measures
the structural variety within the generated set. It is quantified using the average pairwise Tanimoto

4https://github.com/state-spaces/mamba
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Figure 2: Validation set perplexity of SAFE-
GPT_Small and MAMBA_Small models
during training on the MOSES dataset.
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Figure 3: Validation set perplexity of SAFE-
GPT_Large and MAMBA_Large models
during training on the ZINC dataset.

distance between molecules based on their ECFP4 fingerprint representations [20]. Diversity is
calculated using the following equation:

Diversity =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

(1− T (mi,mj)), (6)

where N is the number of molecules, mi and mj are molecules, and T (mi,mj) is the Tanimoto
similarity between their ECFP4 fingerprints.

To gauge how well the models capture the characteristics of drug-like molecules, we compare the
distributions of key physicochemical properties between the generated molecules and the training
set. These properties, which are crucial in drug discovery [21, 22], include molecular weight, LogP,
topological polar surface area (TPSA), number of rotatable bonds, hydrogen bond acceptors and
donors, and aromatic rings.

We also evaluate the Quantitative Estimate of Drug-likeness (QED) [23], a composite measure that
combines several molecular properties to assess how drug-like a compound is. QED is calculated as
the geometric mean of desirability functions for each property:

QED = exp

(
1

n

n∑
i=1

ln di

)
, (7)

where di are the desirability functions for each molecular descriptor.

Additionally we assess the computational resource utilization of the evaluated models by measuring
GPU power consumption and GPU utilization throughout training. This enables us to compare the
efficiency of each model architecture in terms of energy consumption, hardware utilization, and
overall training time, providing insights into their scalability and potential for handling larger datasets
or more complex molecular structures.

4 Results

4.1 Model Comparison

Table 1 summarizes the key performance metrics for our models, alongside previously reported results
for other molecular generation approaches with a comparable setup. While all models achieve high
final validity scores after applying our retry mechanism for invalid generations, there are important
differences in their initial generation behavior. The SAFE-GPT models generate molecules that
consistently convert from SAFE to SMILES format without errors, achieving perfect (1.0) or close
to perfect (0.98) validity directly. In contrast, MAMBA models with default sampling parameters
(top-p = 1.0) initially show SAFE-to-SMILES conversion failures in 28-38% of generations, requiring
regeneration to achieve perfect validity. Reducing the top-p parameter to 0.9 decreases but does not
eliminate these failures. This behavior, which is unexpected given SAFE’s design principles, suggests
that the representation might be particularly optimized for Transformer architectures.

After accounting for regeneration, uniqueness is consistently high across all models, with large
models achieving perfect uniqueness (1.000) and small models reaching near-perfect uniqueness
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(0.999). The diversity scores are comparable across the models, with SAFE-GPT_Large achieving the
highest score of 0.880, followed closely by MAMBA_Large at 0.873. The small models show slightly
lower but still competitive diversity scores. The diversity scores are comparable across the models,
with SAFE-GPT_Large achieving the highest score of 0.880, followed closely by MAMBA_Large at
0.873. The small models show slightly lower but still competitive diversity scores.

These results demonstrate a parity in performance between State Space (MAMBA) and Transformer
(SAFE-GPT) architectures across all three evaluation metrics for molecular generation. Both small
(20M parameters) and large (90M parameters) models achieve high validity and uniqueness scores,
regardless of the underlying architecture. This parity extends the applicability of State Space Models,
previously shown to be effective in language tasks, to the domain of molecular generation. The
comparable diversity scores across all models further demonstrates that SSMs can be as effective as
Transformers in exploring vast chemical spaces, a crucial aspect of molecular generation tasks.

4.2 Perplexity Analysis

Figures 2 and 3 reports the perplexity of each of the models across training epochs for small and
large models, respectively, as measured on a held-out validation set at intervals throughout training.
MAMBA_Small exhibits consistently lower perplexity than SAFE-GPT_Small throughout training,
converging to values around 1.4 (compared to around 1.5 for SAFE-GPT_Small). The gap in
perplexity is even more pronounced in the larger models, with MAMBA_Large displaying noticeably
lower perplexity than SAFE-GPT_Large.

This consistently lower perplexity exhibited by the MAMBA models suggests that they have learned
a better probability distribution over the space of possible molecules. This efficiency in modeling
could be attributed to the continuous-time dynamics of SSMs, which may be particularly well-
suited to capturing the sequential nature of molecular structures, though the interaction between this
architecture and the SAFE representation requires further investigation. However, this appears to
be in tension with their need for more conservative sampling (decreasing the top-p parameter) or
regeneration steps to achieve high validity rates.

4.3 Molecular Property Distributions

To assess how well our models captures the characteristics of drug-like molecules, we analyze the
distribution of various molecular properties for the generated compounds, following established
evaluation approaches [15, 12]. For small models, we compare the distributions to the MOSES
training dataset, while for large models, we compare them to the ZINC dataset. Figures 4 and 5 show
the distributions of key molecular properties for small and large models, respectively.

Overall, the distributions of molecular properties for generated molecules closely matched those
of their respective training datasets (MOSES for small models, ZINC for large models) across all
evaluated models. This consistency was observed for all of the following properties: number of
aromatic rings, indicating aromaticity patterns in drug-like molecules; hydrogen bond acceptors
(HBA) and donors (HBD), crucial for predicting molecular interactions [24]; LogP, a measure of
lipophilicity important for drug-like properties [24]; molecular weight, ensuring generated molecules
fall within appropriate size ranges for potential drug candidates [24]; Quantitative Estimate of Drug-
likeness (QED), a composite measure of overall drug-like characteristics [23]; number of rotatable
bonds, indicating molecular flexibility [22]; and Topological Polar Surface Area (TPSA), representing
molecular polarity [25].

Notably, the Mamba model distributions closely align with those of the SAFE-GPT models for both
small and large variants. This suggests that the State Space Model architecture can capture the same
molecular property characteristics as the Transformer-based model when trained on the same dataset.
The ability of both architectures to accurately reproduce these property distributions demonstrates
their capability to learn and generate molecules with realistic and diverse properties. This is crucial
for the application of these models in drug discovery and molecular design tasks, as it ensures that
the generated molecules are likely to possess the physicochemical properties required for potential
drug candidates.
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Table 2: Computational efficiency metrics for training molecular generation models. Reported values:
GPU Utilization (%) and GPU Power Consumption (W) for SAFE-GPT and MAMBA models of
different sizes.

Model GPU Utilization (%) GPU Power Consumption (W)
SAFE-GPT_Small 60 ± 2 280
Mamba_Small 22 ± 1 190
SAFE-GPT_Large 95 ± 5 360
Mamba_Large 80 ± 15 280

4.4 Computational Efficiency Comparison

Table 2 reports the computational efficiency metrics for training each model, including GPU utiliza-
tion and GPU power consumption. MAMBA models consistently demonstrates lower GPU power
consumption than the SAFE-GPT models. MAMBA_Small consumed approximately 32% less
power than SAFE-GPT_Small, while MAMBA_Large consumed about 22% less power than SAFE-
GPT_Large. GPU utilization patterns correspondingly reveal that MAMBA_Small has significantly
lower GPU utilization (22%) compared to SAFE-GPT_Small (60%). For large models, the gap nar-
rows, with MAMBA_Large utilizing 80% of GPU capacity compared to 95% for SAFE-GPT_Large.
This substantial reduction in computational resource requirements could prove crucial for scaling
up to larger datasets or more complex molecular structures, potentially enabling the exploration of
chemical spaces that were previously computationally infeasible.

The small Mamba model trains slightly longer than the Transformer-based model despite its lower
resource utilization (1̃0 hours for MAMBA_Small against 8̃ hours for SAFE-GPT_Small). However,
this trend reverses for large models. The 90M parameter SAFE-GPT model took approximately 90
hours to train for 250,000 steps, while the equivalent Mamba model completed the same training
in 64 hours. This observation suggests that the efficiency advantages of MAMBA models become
more pronounced as model size increases, offering significant time savings for large-scale molecular
generation tasks.

These efficiency gains observed in MAMBA models, particularly at larger scales, points to the
potential to apply the Mamba architecture to train models for more complex molecular structures or to
iterate through model designs more rapidly. This could potentially accelerate the drug discovery pro-
cess and enable more comprehensive explorations of chemical space in materials science applications.
These efficiency comparisons are dependent on the training data’s sequence lengths. Additionally,
the need for regeneration steps with MAMBA models suggests that further architectural optimization
might be needed to fully realize their potential with the SAFE representation. We hypothesize that
that the efficiency gap will be even wider with longer sequences, due to Mamba’s lower algorithmic
complexity. However, further investigations are required to verify the scalability of these efficiency
gains to larger models or different hardware configurations.

5 Conclusion

This paper empirically validates the efficacy of State Space Models, specifically the MAMBA archi-
tecture, for molecular generation. By demonstrating comparable performance to Transformer-based
models in generating valid, unique, and diverse molecules, we contribute to the growing body of
evidence suggesting that SSMs represent a viable alternative to attention-based architectures across
diverse domains. The success of MAMBA models in capturing the intricacies of molecular structures,
as encoded in the SAFE representation, underscores the versatility of SSMs. The efficiency advantage
demonstrated by MAMBA-based models, evidenced by substantial reductions in GPU power con-
sumption and improved training times for larger models, highlights the theoretical advantage of SSMs
in processing sequences in linear time complexity. By offering a balance between generation quality
and computational efficiency, MAMBA models enable new possibilities for scaling up molecular
generation tasks to handle larger datasets and more complex molecular representations, enabling
more efficient exploration of vast chemical spaces.

While our study provides valuable insights into State Space Models for molecular generation, several
limitations warrant further investigation. Our analysis was confined to models with 20M and 90M
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parameters, leaving the performance characteristics of larger-scale architectures unexplored. Addi-
tionally, the observed differences in SAFE-to-SMILES conversion success between MAMBA and
Transformer models suggests a need to investigate the interaction between molecular representations
and model architectures more thoroughly. Future work should extend this comparison to more
extensive models and diverse molecular datasets, particularly focusing on how task performance
and computational efficiencies scale with sequence length. Additionally, the discrepancy between
MAMBA models’ lower perplexity and their need for more conservative sampling parameters to
ensure validity requires further examination. Future research should also explore the application of
these architectures to more complex tasks such as targeted molecule design or optimization of specific
molecular properties. Such advancements could significantly impact drug discovery processes and
materials development, potentially enabling the exploration of previously intractable chemical spaces.
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Figure 4: Distributions of key molecular properties for molecules generated by small models (SAFE-
GPT_Small and MAMBA_Small, both ∼20M parameters) compared to the MOSES dataset.
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Figure 5: Distributions of molecular properties for molecules generated by SAFE-GPT_Large and
MAMBA_Large models (∼90M parameters) compared to the ZINC dataset.
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A Model Architecture and Training Details

A.1 Model Architecture Parameters

Tables 3 and 4 summarize the key parameters of each model architecture used in our study.

Table 3: SAFE-GPT Model Architecture Parameters
Parameter SAFE-GPT-Small SAFE-GPT-Large
Model Type Transformer Transformer
Embedding Dimension 512 768
Number of Layers 6 12
Attention Heads 8 12
Max Sequence Length 1024 1024
Dropout Rate 0.1 0.1
Normalization LayerNorm LayerNorm

Table 4: MAMBA Model Architecture Parameters
Parameter MAMBA-Small MAMBA-Large
Model Type SSM SSM
Embedding Dimension 512 768
Number of Layers 6 12
SSM Variant Mamba2 Mamba2
Max Sequence Length 1024 1024
Dropout Rate 0.1 0.1
Normalization RMSNorm RMSNorm
Residual Connections FP32 FP32

A.2 Model Training Parameters

Table 5 summarizes the key training parameters for both small and large models.

Table 5: Training Parameters for Small and Large Models
Parameter Small Models Large Models
Optimizer AdamW AdamW
Learning rate 5e-4 1e-4
Warmup steps 20,000 10,000
Weight decay 0.1 0.1
Gradient clipping 1.0 1.0
Batch size (per device) 32 100
Gradient accumulation steps 2 2
Effective batch size 64 200
Training duration 10 epochs 250,000 steps
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B Validity Calculation Details

SAFE Representation SMILE Representation RDKIT Molecule ObjectConvert Convert

SAFE Representation SMILE Representation RDKIT Molecule ObjectConvert Convert

Figure 6: Validity calculation process. Top: Traditional invalidity case where SMILES to RDKit
conversion fails, which is what’s measured in validity scores. Bottom: SAFE to SMILES conversion
failure, which according to SAFE’s design should not occur, holds true for Transformer models but
was observed with MAMBA models using default parameters.

The validity metric measures the success rate of converting SMILES strings to RDKit molecule
objects. The SAFE representation is supposed to ensure robust conversion to SMILES strings
through its grammatical constraints. Notably, MAMBA models with default sampling parameters
often generate SAFE representations that fail to convert to SMILES format, triggering decoder
errors. When accounting for these SAFE-to-SMILES conversion failures, the actual validity rates
for MAMBA models drops by 28-38%. Reducing the top-p parameter to 0.9 decreases but does
not eliminate these failures. This behavior suggests the SAFE representation might be particularly
optimized for Transformer architectures. However our implementation includes a retry mechanism
that regenerates batches containing invalid molecules, ensuring 100% validity in the SAFE to SMILES
conversion step. In the absence of a better explanation of the SAFE-to-SMILES conversion failures
we believe this enables fairer comparisons for the rest of the evaluations.

Figures 7 and 8 show the molecular property distributions when using top-p = 0.9 for small and large
MAMBA models, respectively. As expected, these distributions slightly deviate from their respective
training distributions due to the more conservative sampling strategy, but they demonstrate fewer
decoding errors compared to using top-p = 1.0. This trade-off between distribution matching and
generation stability warrants further investigation.

Further research should evaluate SAFE’s robustness across different model architectures without the
retry mechanism to comprehensively assess its architecture-specific performance.

C Example Molecules

This appendix presents representative molecules generated by each model, showcasing the longest,
shortest, most diverse, and highest QED molecules from the 10k generated.
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Figure 7: Molecular property distributions using top-p = 0.9 for small MAMBA models. While these
distributions show slight deviations from the MOSES dataset compared to top-p = 1.0, they exhibit
improved generation stability with fewer decoding errors.
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Figure 8: Molecular property distributions using top-p = 0.9 for large MAMBA models. While these
distributions show slight deviations from the ZINC dataset compared to top-p = 1.0, they exhibit
improved generation stability with fewer decoding errors.
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Figure 9: Representative molecules generated by the Mamba_Large model

Figure 10: Representative molecules generated by the Mamba_Small model

Figure 11: Representative molecules generated by the SAFE_Large model
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Figure 12: Representative molecules generated by the SAFE_Small model
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D Supplemental Materials

To ensure reproducibility and facilitate further research, we provide open access to both the code
used in our experiments and the datasets employed in our study.

D.1 Code Availability

The code used to implement and train the models is available in two separate repositories:

D.1.1 MAMBA Model Implementation

The implementation of the State Space Model (MAMBA) architecture adapted for molecular gen-
eration tasks is available in a public GitHub repository: https://github.com/Anri-Lombard/
Mamba-SAFE This repository contains the necessary scripts and configuration files to reproduce our
results for the MAMBA models.

D.1.2 SAFE-GPT Model Implementation

The Transformer-based SAFE-GPT model implementation and associated code can be found in the
official SAFE repository: https://github.com/datamol-io/safe This repository provides the
complete implementation of the SAFE-GPT models used in our comparative study.

D.2 Model Weights

Pre-trained model weights for all configurations are available on Hugging Face:

• Large Models (90M parameters):
– SAFE-GPT: https://huggingface.co/anrilombard/safe-100m
– MAMBA: https://huggingface.co/anrilombard/ssm-100m

• Small Models (20M parameters):
– SAFE-GPT: https://huggingface.co/anrilombard/safe-20m
– MAMBA: https://huggingface.co/anrilombard/ssm-20m

D.3 Datasets

We used two primary datasets in our study, both of which are openly accessible:

D.3.1 MOSES Dataset

The Molecular Sets (MOSES) dataset, comprising approximately 1.6 million drug-like molecules, is
available at:

https://github.com/molecularsets/moses

This dataset serves as our primary benchmark and is widely used in molecular generation tasks.

D.3.2 ZINC Dataset

We used a canonicalized subset of the ZINC database, containing 23 million molecules. This dataset
is accessible via Hugging Face:

https://huggingface.co/datasets/sagawa/ZINC-canonicalized

This larger dataset allowed us to assess the scalability of our models and findings.

D.4 Usage Instructions

Detailed instructions for using the provided code and datasets to reproduce our experiments are
included in the README files of the respective GitHub repositories. These instructions cover
environment setup, data preprocessing, model training, and evaluation procedures for both the
MAMBA and SAFE-GPT models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state our main contributions: comparing Trans-
former and MAMBA architectures for molecular generation using SAFE-GPT representation,
evaluating models with 20M and 90M parameters, and assessing computational efficiency.
These claims are supported by the results presented in Sections 3 and 4.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in Section 4, acknowledging the limited range of model
sizes explored (20M and 90M parameters) and the need for further research on larger scales
and more complex molecular structures. We also acknowledge the limitation in validity
calculation, where to reduce variables we maintained the same validity

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper focuses on empirical comparisons and does not present new the-
oretical results requiring formal proofs. We provide an overview of existing theoretical
foundations in Section 2.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed methodology in Section 3, including dataset preparation,
model architectures, training procedures, and evaluation metrics. Appendix A contains
model architecture parameters and training details. This information, combined with the
open-source code and datasets, enables result reproduction.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to code through two repositories: the MAMBA
implementation at https://github.com/Anri-Lombard/Mamba-SAFE and the SAFE-GPT im-
plementation at https://github.com/datamol-io/safe. Pre-trained model weights are available
on Hugging Face. The MOSES dataset (https://github.com/molecularsets/moses) and ZINC
subset (https://huggingface.co/datasets/sagawa/ZINC-canonicalized) are openly accessible.
Instructions for reproducing results are included in the respective repositories.

6. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We provide detailed methodology in Section 3, including dataset preparation,
model architectures, training procedures, and evaluation metrics. Appendix A contains
model architecture parameters and training details. This information enables result repro-
duction.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars or statistical significance tests for the main results
due to computation and time constraints. We acknowledge this as a limitation of our current
study.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify in Section 3 that models were trained on NVIDIA A100 GPUs.
Table 2 in Section 4 provides GPU utilization, power consumption, and training times for
different model sizes.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to ethical guidelines. We use publicly available datasets
and standard machine learning practices. Our study does not involve human subjects or raise
ethical concerns related to data collection or model application.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential impacts in the Introduction and Conclusion. We highlight
potential benefits in drug discovery and materials science, and address computational
efficiency considerations related to energy consumption in AI research.

11. SAFE-GPTguards
Question: Does the paper describe SAFE-GPTguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models and data do not pose high risks for misuse. The research focuses
on molecular generation for scientific applications and does not involve sensitive information
or high-risk AI applications.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the sources of datasets and existing models used in the study, including
the MOSES dataset, ZINC database, and SAFE-GPT representation. The use of these
resources complies with their respective licenses and terms of use.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new datasets or pre-trained models. Our research focuses
on comparing existing architectures using established datasets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing or human subjects. The study is
computational, focusing on machine learning architectures for molecular generation.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve human subjects. The study focuses on computa-
tional experiments comparing machine learning models for molecular generation, which
does not require IRB approval.
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