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ABSTRACT

Despite impressive progress in the last decade, it still remains an open challenge to
build models that generalize well across multiple tasks and datasets. One path to
achieve this is to learn meaningful and compact representations, in which different
semantic aspects of data are structurally disentangled. The focus of disentanglement
approaches has been on separating independent factors of variation despite the fact
that real-world observations are often not structured into meaningful independent
causal variables. In this work, we bridge the gap to real-world scenarios by
analyzing the behavior of most prominent methods and disentanglement scores
on correlated data in a large scale empirical study (including 4260 models). We
show that systematically induced correlations in the dataset are being learned and
reflected in the latent representations, while widely used disentanglement scores
fall short of capturing these latent correlations. Finally, we demonstrate how to
disentangle these latent correlations using weak supervision, even if we constrain
this supervision to be causally plausible. Our results thus support the argument to
learn independent mechanisms rather than independent factors of variations.

1 INTRODUCTION

Figure 1: While in princi-
ple we consider the pres-
ence of the objects (coffee
cup, table, chair) to be inde-
pendent mechanisms, they
tend to appear together in
observed data.

Due to the induced structure, disentangled representations promise
generalization to unseen scenarios (Higgins et al., 2017b), increased
interpretability (Adel et al., 2018; Higgins et al., 2018) and faster learn-
ing on downstream tasks (van Steenkiste et al., 2019; Locatello et al.,
2019a). While the advantages of disentangled representations have
been well established, they generally assume the existence of natural
factors that vary independently within the given dataset, which is rarely
the case in real-world settings. As an example, consider a scene with
a table and some chairs (see Fig. 1). The higher-level factors of this
representation are in fact correlated and what we actually want to infer
are independent (causal) mechanisms (Peters et al., 2017; Parascandolo
et al., 2018; Suter et al., 2019; Goyal et al., 2019).

A complex generative model can be thought of as the composition of
independent mechanisms or “causal” modules, which generate high-
dimensional observations (such as images or videos). In the causality
community, this is often considered a prerequisite to achieve represen-
tations which are robust to interventions upon variables determined by
such models (Peters et al., 2017). One particular instantiation of this idea in the machine learning
community is the notion of disentangled representations (Bengio et al., 2013). The goal of disentan-
glement learning is to find a representation of the data which captures all the ground-truth factors of
variation (FoV) independently.

Despite the recent growth of the field, the performance of state-of-the-art disentanglement learners
remains unknown for more realistic settings where FoV are correlated during training. Given the
potential societal impact in the medical domain (Chartsias et al., 2018) or fair decision making
(Locatello et al., 2019a; Madras et al., 2018; Creager et al., 2019), the evaluation of the usefulness of
disentangled representations trained on correlated data is of high importance.
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To go beyond the highly idealized settings considered thus far, we conducted a large scale empirical
study to systematically assess the effect of induced correlations between pairs of factors of variation
in training data on the learned representations. To provide a qualitative and quantitative evaluation,
we investigate multiple datasets with access to ground-truth labels. Moreover, we study the
generalization abilities of the representations learned on correlated data as well as their performance
in particular for the downstream task of fair decision making.

Contributions. Our main contributions can be summarized as follows:

• We present the first large-scale empirical study (4260 models)1 that examines how modern disen-
tanglement learners perform when ground truth factors of the observational data are correlated.

• We find that factorization-based inductive biases are insufficient to learn disentangled representa-
tions from observational data. Existing methods fail to disentangle correlated factors of variation,
resulting in correlated latent space dimensions. Moreover, standard disentanglement metrics do
not reveal these persisting correlations.

• We investigate the usefulness of semi-supervised and weakly-supervised approaches to resolve
latent entanglement. For the latter setting, we focus on multiple observational and interventional
distributions.

2 BACKGROUND AND RELATED WORK

Disentanglement. Current state-of-the-art disentanglement approaches use the framework of varia-
tional auto-encoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014). The (high-dimensional)
observations x are modelled as being generated from some latent features z with chosen prior p(z)
according to the probabilistic model pθ(x|z)p(z). The generative model pθ(x|z) as well as the proxy
posterior qφ(z|x) can be parameterized by neural networks, which are optimized by maximizing the
variational lower bound (ELBO) of log p(x1, . . . ,xN ).

LV AE =

N∑
i=1

Eqφ(z|x(i))[log pθ(x
(i)|z)]−DKL(qφ(z|x(i))‖p(z)) (1)

The above objective does not enforce any structure on the latent space, except for similarity (in
KL-divergence) to the prior p(z) (typically chosen as an isotropic Gaussian). However, the structure
and semantic meaning of latent representations can be relevant to study generation properties.
Consequently, various proposals for structure-imposing regularization and commonly used evaluation
metrics measuring different notions of disentanglement of the learned representations have been made
(Higgins et al., 2017a; Kim & Mnih, 2018; Burgess et al., 2018; Kumar et al., 2018; Chen et al., 2018;
Eastwood & Williams, 2018; Mathieu et al., 2018). Recently, it has been shown that unsupervised
disentangling by optimising marginal likelihood in a generative model is impossible without further
inductive bias (Locatello et al., 2019b). To address this theoretical limitation, methods have been
proposed that do not require explicitly labelled data but only some weak labeling information
(Locatello et al., 2020; Shu et al., 2019). Ideas related to disentangling the factors of variations
date back to the non-linear ICA literature (Bach & Jordan, 2002; Comon, 1994; Jutten & Karhunen,
2003; Hyvärinen & Pajunen, 1999; Hyvarinen et al., 2019; Hyvarinen & Morioka, 2016; Gresele
et al., 2019). Recent work combines non-linear ICA with disentanglement (Khemakhem et al., 2020;
Sorrenson et al., 2020; Klindt et al., 2020)

Correlations. A set of random variables Xi=1,...,n is not independent, if and only if their joint
distribution does not factorize

P (X1, X2, . . . , Xn) 6=
n∏
i=1

P (Xi). (2)

In this case, we speak of dependence between the random variables, also commonly referred to as
correlation.2 Correlation between two variables can either stem from a direct causal relationship (one

1Each model has been trained for 300,000 iterations on Tesla V100 GPUs. Reproducing these experiments
requires approximately 0.79 GPU years.

2We use the term correlation here in a broad sense of any statistical association, not just linear dependencies.
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Figure 2: Disentanglement metrics show no clear trend along different correlation strengths (each
violin represents 180 models, higher σ indicates less correlation).

variable affects the other), but can also be due to different unobserved circumstances (confounders)
affecting both. Real-world datasets display many of these (“spurious” and often a priori unknown)
correlations (Geirhos et al., 2020). However, most work on learning disentangled representations
assumes that there is an underlying set of independent ground truth variables that govern the generative
process of observable data. These methods are hence predominantly evaluated on data that obey
independence in the true factors of variation, which we then consider to be the correct factorization.
In the real world, the observation generating process is likely not always as clearly “disentangled”
and we do expect correlations in the collected datasets. It is thus an open question to what degree
existing inductive biases from the encoder/decoder architecture, but more importantly the dataset
biases, affect the learned representation. In our experiments, we introduce dataset correlations in
a controlled manner to understand to what degree state-of-the-art approaches can cope with such
correlations. We believe these correlations to reflect a major feature of more realistic environments.

Other Related Work. Most popular datasets in the disentanglement literature exhibit perfect
independence in their FoV. At some level this is sensible as it reflects the underlying assumption in
the inductive bias being studied. However, this assumption is unlikely to hold in practice as shown
by Li et al. (2019), who propose methods based on a pairwise independence assumption instead.
The literature so far has not thoroughly measured how popular inductive biases such as factorized
priors behave when learning from correlated datasets, although several smaller experiments along
these lines can be acknowledged. Chen et al. (2018) studied correlated 3DFaces (Paysan et al., 2009)
by fixing all except three factors in which the authors conclude that the β-TC-VAE regularizer can
help to disentangle imposed correlations. Brekelmans et al. (2019) show that Echo noise results in
superior disentanglement compared to standard betaVAE in a small experiment on a downsampled
dSprites variant where randomly selected factor pairs are excluded. However, the latent structure
was not studied in detail; our findings suggest that global disentanglement metrics are insufficient to
diagnose issues when models learn from correlated data. Creager et al. (2019) based some of the
evaluations of a proposed new autoencoder architecture in the fairness context on a biased dSprites
variant and Yang et al. (2020) study a linear SCM in a VAE architecure on datasets with dependent
variables. However, their studies focused on representation learners that require strong supervision
via FoV labels at train time.

3 THE EFFECT OF CORRELATED DATA ON DISENTANGLEMENT LEARNERS

In this section, we want to present the key findings from our empirical study of unsupervised disen-
tanglement learning on a particular variant of correlated data. We start by outlining the experimental
design of our study in Section 3.1. Based on this, we analyze the latent spaces in Section 3.2 and find
that factorization-based inductive biases are insufficient to learn disentangled representations from
observational data. Persisting pairwise correlations in the latent space are not sufficiently revealed
by standard disentanglement metrics that might be particularly relevant and problematic for fairness
applications. Finally, in Section 3.3, we show extrapolation and generalization capabilities of the
learned representations towards unseen factor combinations due to the induced correlations.

3.1 EXPERIMENTAL DESIGN

For our first experiments we introduce correlations between single pairs of factors of variation
on the following three datasets: Shapes3D with object size and azimuth (denoted “A”), dSprites
with orientation and X-position (“B”) and finally the real-world observations dataset MPI-3D with
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Figure 3: We show latent traversals (left) of the best DCI score model among all 180 trained models
with strongest correlation (σ = 0.2) on Shapes3D (A). The traversals in latent code dimensions 4 and
8 (highlighted in black), suggest that these dimensions encode a mixture of azimuth and object size,
reflecting one major axis along the correlation line of the joint distribution and one smaller, locally
orthogonal axis. This is supported by a heat map of the GBT feature importance matrix of this model
(right) indicating an entanglement of azimuth and object size encoded into both latent codes.

first and second degree of freedom (“C”). We focus on linear correlations with Gaussian noise
between the two variables, which we denote by c1, c2. The ground truth factors for c1, c2 take values
zc1 ∈ {0, . . . , zmax

c1 } and zc2 ∈ {0, . . . , zmax
c2 } respectively. We then parameterize correlations by

sampling the training dataset from the joint P (zc1, zc2) ∝ N (zc2−αzc1, σ) where α = zmaxc2 /zmaxc1 .
The strength of the correlations can be tuned by σ, for which we choose 0.2, 0.4, 0.7 in normalized
units with respect to the range of values in zc1,c2. Lower σ indicates stronger correlation. See Fig. 5
for an example of P (zc1, zc2) for correlating azimuth and object size in Shapes3D with σ = 0.2.
Additionally, we study the uncorrelated limit (σ =∞), which amounts to the case typically studied
in the literature. We train the same six VAE methods as discussed in Locatello et al. (2019b),
including β-VAE, FactorVAE, AnnealedVAE, DIP-VAE-I, DIP-VAE-II and β-TC-VAE, each with
six hyperparameter settings. Each method has been trained using five different random seeds. All
remaining factors of variation are sampled uniformly at random. This first study sums up to a total
of 2160 trained models, or 180 models per dataset and correlation strength3. Appendix A describes
additional implementation details.

3.2 CAN UNSUPERVISED METHODS ACHIEVE DISENTANGLEMENT OF CORRELATED DATA?

Shortcomings of existing metrics. Following recent studies, we evaluate the trained models with
the help of a broad range of disentanglement metrics that aim at quantifying overall success by a
single scalar measure. Perhaps surprisingly, Fig. 2 shows no clear trend among all implemented
disentanglement scores w.r.t. correlation strength (see Fig. 9 in the Appendix for the full result across
all datasets and metrics). The metrics have been evaluated by sampling from the correlated data
distribution although they do not differ substantially when evaluated on the uncorrelated distribution.
However, as we will demonstrate along the following analysis, the latent spaces in this setting show
some characteristic differences when trained on a strongly correlated pair of FoVs. We thus argue that
common disentanglement metrics are limited when correlations are introduced into the training data.
To conduct a more careful analysis of the inductive data bias applied on the learned representations
we will instead evaluate pairwise metrics. Note that regarding BetaVAE and FactorVAE this observed
trend is to some degree expected as they would yield perfect disentanglement scores even if we would
take the correlated ground truth factors or a linear transformation in the case of BetaVAE as the
representation.

Latent structure and pairwise entanglement. We start by analysing latent traversals of some
trained models on Shapes3D (A). For strong correlations (σ = 0.2 and σ = 0.4), we typically
observe trained models with two latent codes encoding the two correlated variables simultaneously.
In these cases, one of the latent codes corresponds to data along the major axis of the correlation
line whereas the other latent code dimension manifests in an orthogonal change of the two variables
along the minor axis. Still, a full traversal of the code corresponding to the minor axis often seems
to cover only observations within the correlation line. Fig. 3 (left) shows this effect for the latent
space of a model trained on Shapes3D (A) with strongest correlation (σ = 0.2).

3Code for all experiments will be released after publication
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Correlation strength σ = 0.2 σ = 0.4 σ = 0.7 σ =∞ (uc)

Shapes3d (A) object size - azimuth 0.38 0.26 0.13 0.08
median uncorrelated pairs 0.09 0.09 0.09 0.08

dSprites (B) orientation - position x 0.17 0.16 0.14 0.11
median uncorrelated pairs 0.13 0.13 0.13 0.13

MPI3D (C) First DOF - Second DOF 0.2 0.19 0.17 0.16
median uncorrelated pairs 0.16 0.16 0.15 0.15

Figure 4: Left: Pairwise entanglement scores help to uncover still existent correlations in the latent
representation. Left: Mean of the pairwise entanglement scores for the correlated pair (red) and the
median of the uncorrelated pairs. We see that stronger correlation leads to statistically more entangled
latents compared to the baseline score without correlation (blue). Right: The same behavior can be
seen for the unfairness score between the correlated pair of factors.

To quantify this observation, we analyze the importance of individual latent codes in predicting the
value of a given ground truth FoV. An importance weight for each pair of {FoV, latent dimension}
is computed by training a gradient boosting trees (GBT) classifier to predict the ground truth labels
from the latents (10,000 samples). In the right panel of Fig. 3, we compute these importance weights
for the model used to generate traversals in the left panel. The corresponding evaluation for a model
trained on the same dataset with weak correlation does not reveal this feature visually (see Fig. 10 in
the Appendix).

To support this claim for a larger set of models, we calculate a pairwise entanglement score that
allows us to measure how difficult it is to separate two factors of variation from their latent codes.
This computation involves grouping FoV into pairs based on an ordering of their pairwise mutual
information or GBT feature importance between latents and FoV; we defer to Appendix A for a
detailed description of this procedure. Figure 4 (left) shows that across all datasets the pair of
correlated FoV has a higher score than the median of all other pairs, indicating that they are harder
to disentangle. This threshold decreases with weaker correlation and the pair becomes easier to
disentangle for weaker correlations (σ ≥ 0.7). These findings suggest that the models still manage to
disentangle correlated factors if the correlation is not too strong.

Finally, correlations between variables are of crucial importance in fairness applications motivating
an additional investigation on ramifications of these entangled latent spaces. In this setting we are
interested in the unfairness of predicting the second correlated variable while the first correlated
variable is considered being a protected or sensitive attribute. In the following, we use a variant of
demographic parity (Dwork et al., 2012) that computes pairwise mutual information between latents
and FoV (Locatello et al., 2019a). In Fig. 4 (right) we evaluate this score when correlations are present
within the data in the case of Shapes3D (A). Unfairness tracks correlation strength in this scenario.
These results suggest that we cannot expect disentangled representations learned unsupervisedly to
help reduce unfairness beyond the benefits discussed in Locatello et al. (2019a). More comprehensive
results, that support the finding that the correlated pair is statistically more entangled in the latent
representations across all unsupervised experiments and datasets is provided in Appendix B.1.
Summary. We find that existing methods fail to learn disentangled representations of correlated
factors of variation, and moreover that standard disentanglement metrics are insufficient to reveal
these troublesome pairwise entanglements in the latent space.

3.3 GENERALIZATION PROPERTIES

In this Section, we aim to understand how the trained models perform on unseen training data far
away from the correlation line; out-of-distribution (OOD) w.r.t. the train distribution. We analyse this
capability for the model from Fig. 3. In this model, the remaining factors seem to be disentangled
well enough to only focus on the two latent dimensions encoding the entangled variables.
As a first test, we sample observations from the FoV then set object size and azimuth to six distinct
configurations of zero probability, see Fig. 5 (left). The trained model is capable of reconstructing
these observations despite never having encountered these configurations or neighbors thereof during
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Figure 5: Generalization to out-of-distribution (OOD) test data. Left: Reconstructions of observations
the model has never seen during training. Right: Latent space distribution of the two entangled
dimensions. Circles without edges indicates encoded data from the (correlated) training distribution,
while circles with edges indicate encoded OOD data where the correlation pattern is broken.

training. This suggests that the encoder maps representations to a meaningful point in the latent
space from which the decoder is equally capable of generating expected observations. To test this
hypothesis further, we analysed latent traversals originating from these OOD points and observe that
changes in the remaining factors reliably yield the expected reconstructions. Traversals with respect
to the two entangled latent codes continue to encode object size and azimuth.
To fully understand this models’ generalization properties we visualise the occupied latent space
spanned by the two identified dimensions encoding both correlated factors in Fig. 5 (right). We
are particularly interested in where these points are located with respect to the ground truth value
of each correlated variable, depicted via color. The two sets of depicted points are (1) latent codes
sampled from the correlated training data and (2) latent codes sampled with a (object size, azimuth)
configuration that has zero probability under the correlated training distribution. We observe that
contours of equal color (ground truth) are not aligned with the latent axes. This indicates that the two
latent dimensions encode both FoV at the same time. Likewise, we can understand the generalization
capabilities of this model far away from the trained data. Extreme configurations such as small
azimuth and large object size are encoded to space regions corresponding to the intersections of the
manifolds with constant value for each correlated variable. This shows that all out-of-distribution
points are encoded in this representation space in a way that obeys the natural ordering of each
respective factor. This behaviour remains even in cases where the trained latent space does not mirror
the default value ordering as stored in our ground truth table. For this we additionally trained 360
models on two additional Shapes3D variants each, where we strongly correlated object color - object
size (“D”) and object color - azimuth (“E”) respectively (σ = 0.2 and σ = 0.4). As the color values
do not allow for a unique natural ordering, the trained models do often encode a different color
manifold ordering into the latent space. In Appendix B.1, we show some of their characteristic latent
space visualizations with similar extrapolation and generalization capabilities. We conclude from
these results that disentanglement methods can generalize towards unseen FoV configurations as long
as each factor value is contained in the training data within a different configuration.

4 FINDING THE RIGHT FACTORIZATION

The results from Section 3 illustrate the limitations of state-of-the-art unsupervised methods on
correlated data (and thus real-world observational data). We now investigate the usefulness of several
approaches for mitigating pairwise correlations in the latent code. We begin with a post-hoc procedure
in Section 4.1 that uses limited label information on the ground truth factors and show that it achieves
a substantial correction of the pairwise latent correlation. We then consider a recently proposed
approach leveraging recent advances in weakly supervised disentanglement learning that applies
directly at train time. As will be seen in Section 4.2, this method results in substantially more
disentangled representations, even when applied on correlated data from different sampling scenarios.
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# Labels 0 100 1000 10000

Shapes3D (A) σ = 0.2 object size - azimuth 0.38 0.17 0.15 0.15
Shapes3D (A) σ = 0.2 median uncorrelated pairs 0.09 0.08 0.07 0.07

Shapes3D (A) σ = 0.4 object size - azimuth 0.26 0.1 0.1 0.1
Shapes3D (A) σ = 0.4 median uncorrelated pairs 0.09 0.08 0.08 0.08

Figure 6: Fast adaption with few labels: Pairwise entanglement scores for correlated FoV pair in
Shapes3D (A). The correlated pair is highlighted (red). Zero labels reflects the unsupervised baseline
without any fast adaptation. Growing number of labels show that fast adaption using linear regression
reduces these correlations with as little as 100 labels (blue). Reported pairwise scores are averaged
over 180 models per correlation strength.

4.1 POST-HOC ALIGNMENT CORRECTION WITH FEW LABELS

When a limited number of FoV labels {yi} can be accessed, a reasonable option for resolving entan-
gled dimensions of the latent code is by fast adaptation. To identify the two entangled dimensions
(zi, zj) we look at the maximum feature importance for a given FoV from a GBT trained using these
labels only. We then train a substitution function using supervised learning to replace these two
dimensions with the predicted ground truth label. Crucially, both steps of this procedure rely on the
same FoV labels, which should be as few as possible. In Fig. 6 we show the pairwise entanglement
score of the correlated FoVs under this fast adaptation with a linear regression as the substitution
function, which succeeds with as few as 100 labels, corresponding to less than 0.02% of all data
points in Shapes3D. However, fast adaptation with linear regression substitution fails in some settings:
when no two latent dimensions encode the applied correlation isolated from the other latent codes,
or when the correlated variables do not have a unique natural ordering (e.g. color or categorical
variables). To address this, a nonlinear substitution function such as a MLP can reduce this pairwise
entanglement to a certain degree (see additional results in Appendix B.2).

We find that the efficacy of fast adaptation depends on the level of disentanglement of the representa-
tions with respect to all the other factors. This implies that if the representation is well disentangled
at the start of the fast adaption procedure, it is possible to achieve a perfectly disentangled model
(according to our previous visual and quantitative evaluations). However, if all FoV are entangled at
the beginning, the fast adaption method will have little effect. Finally, we note that model selection is
impossible in a purely unsupervised manner based on any of the used disentanglement metrics, as
they all require labeled ground truth data. These shortcomings shall be resolved by the following
method capable of disentangling the correlated factors of variation much more reliably.

4.2 ALIGNMENT DURING TRAINING USING WEAK SUPERVISION

Since the unsupervised disentangling by optimising marginal likelihood in a generative model
is impossible (Locatello et al., 2019b, Theorem 1), inductive biases like grouping information
(Bouchacourt et al., 2018) or access to labels (Locatello et al., 2019c) is required. Changes in natural
environments, which typically correspond to changes of only a few underlying factors of variation,
provide a weak supervision signal for representation learning algorithms (Goyal et al., 2019; Földiák,
1991; Schmidt et al., 2007; Bengio et al., 2019). Without correlations it has been shown that this
weak supervision helps in learning much more disentangled representations (Locatello et al., 2020;
Shu et al., 2019). Locatello et al. (2020) showed access to observations which display differences in
a known number of factors of variation (without knowing which ones specifically) is sufficient to
learn disentangled representation. These additional weak assumptions render the generative model
identifiable in contrast to unsupervised disentanglement. This kind of extra knowledge might be
available in certain settings 4, e.g., in temporarily close frames from a video of a moving robot
arm where some factors remain unchanged. Hence, we want to investigate the usefulness of such a
weakly-supervised method applied in various scenarios when training data is correlated. Specifically
we implement the Ada-GVAE variant of Locatello et al. (2020) that was shown to allow for model

4On the other hand, in applications with fairness concerns it may be impossible to intervene on FoV
representing sensitive and immutable attributes of individuals (gender, race, etc.); we refer to Madras et al.
(2019) for a more complete discussion.
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Figure 7: Weak supervision: Left: With weak supervision trained models on Shapes3D correlation
object size and azimuth learn consistently improved, often perfect, disentangled representations
across all correlation strengths. Middle: Unfairness scores between correlated FoVs are much
smaller (see scale). Right: Latent dimensions of a best DCI model with strong correlation (σ = 0.2).
Representations are axis-aligned with respect to both of the correlated variables ground truth values
(right). Below: Traversals of a model trained with strong correlation (σ = 0.2)

selection via the (unsupervised) reconstruction loss. The method requires a pair of observations that
differs in a known number of factors, without knowing which in particular.

Weak supervision mitigates pairwise latent entanglement. We trained the three correlated
Shapes3D variants (A, D, E) with pairwise correlations between object color, object size and azimuth
with the same correlation strength settings. Due to the definition of the regularizer we limit this
study to the β-VAE models with the same 6 hyperparameters and use 5 random seeds, yielding
360 additional models. For the generation of pairs we study the case where the difference in the
observation pairs is present in one random FoV. Whenever we sample the difference to be in one
of the correlated FoV, its respective value in each pair is drawn from the probability distribution
conditioned on the other correlated FoV. This means the difference in this factor is typically very
small and depends on the correlation strength. Note that this procedure assures that constructed
pairs are consistent with the observational data such that the correlation is never broken. Fig. 7
summarizes the weak supervision results when imposing correlations in object size and azimuth. We
consistently observe much better disentangled models, often achieving perfect DCI score irrespective
of correlations in the dataset. The latent spaces tend to strongly align their coordinates with the
ground truth label axis. Finally, weak-supervision reduces unfairness relative to the unsupervised
baseline, and occasionally achieves zero unfairness score.

These results suggest that weak supervision can provide a strong inductive bias capable of finding the
right factorization and resolving spurious correlations for datasets of unknown degree of correlation.
As a prominent example, this is an issue in the fairness context where real-world datasets often
display unknown discriminatory correlations. Additional results on the other datasets can be found in
Appendix B.2 including two additional scenarios where one has intervening capabilities to generate
the pair. We consistently observe the same strong trends regarding disentangled correlations in all of
the above studies using weak supervision.
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5 CONCLUSION

We have presented the first large-scale empirical study examining how modern disentanglement
learners cope with correlated observational data. We find that existing methods fail to learn disentan-
gled representations of correlated factors of variation, and moreover that standard disentanglement
metrics are insufficient to reveal these pairwise entanglements. We discussed practical implications
for downstream tasks like fair decision making. Finally, we demonstrate how to correct for these
latent correlations via various weakly supervised training scenarios. Our results thus support the
importance and usefulness of learning independent mechanisms rather than independent factors of
variations (Schölkopf, 2019; Parascandolo et al., 2018; Suter et al., 2019; Goyal et al., 2019). Besides
the simple correlations studied in this work, future work is needed to address the open question
whether these results extend to more complex nonlinear correlations and settings where many more
variables are correlated simultaneously.
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A IMPLEMENTATION DETAILS

Unsupervised Disentanglement methods. For reasons of comparison, the considered disen-
tanglement methods in this work cover the full collection of state-of-the-art approaches in
disentanglement_lib from Locatello et al. (2019b) based on representations learned by VAEs.
The set contains six different methods that enforce disentanglement of the representation by equipping
the loss with different regularizers that aim at enforcing the special structure of the posterior aggregate
encoder distribution. A detailed description of the regularizer forms used in this work, specifically
β-VAE (Higgins et al., 2017a), FactorVAE (Kim & Mnih, 2018), AnnealedVAE (Burgess et al.,
2018), DIP-VAE-I, DIP-VAE-II (Kumar et al., 2018) and β-TC-VAE (Chen et al., 2018) is provided
in (Locatello et al., 2019b). We use the same encoder architecture with 10 latent dimensions for every
model.

Evaluation metrics. To measure disentanglement of a learned representation, various metrics have
been proposed, each requiring access to the ground truth labels. The BetaVAE score is based upon
the prediction of a fixed factor from the disentangled representation using a linear classifier (Higgins
et al., 2017a). The FactorVAE score is intended to correct for some failures of the former by utilizing
majority vote classifiers based on a normalized variance of each latent dimension (Kim & Mnih,
2018). The SAP score represents the mean distance between the classification errors of the two latent
dimensions that are most predictable (Kumar et al., 2018). For the MIG score, one computes the
mutual information between the latent representation and the ground truth factors and calculates the
final score using a normalized gap between the two highest MI entries for each factor. Finally, a
disentanglement score proposed by Eastwood & Williams (2018), often referred to as DCI score,
is calculated from a dimension-wise entropy reflecting the usefulness of the dimension to predict a
single factor of variation.

Unfairness between a pair of FoV: The scores reported are based on a notion of demographic parity
for predicting a target variable y given a protected and sensitive variable s. Both y and s can be
associated with a factor of variation here. Rather than using the global total variation average as
defined in Locatello et al. (2019a), we report the individual demographic parities for the correlated
factors specifically.

Pairwise entanglement metric: In order to further analyze the differences between the GBT feature
importance matrices between latent code and encoded factor of variation, we view them as weights
on the edges of a bipartite graph encoding the statistical relation between each factor of variation
and code. We can now delete all edges with weight smaller than some threshold and count (i) how
many factors of variation are connected with at least a latent code and (ii) the number of connected
components with size larger than one. We can then compute which factors are merged at which
threshold. Factors that are merged at lower threshold are more entangled in the sense that are more
statistically related to a shared latent dimension. This computation can be not only based on the GBT
feature importances but likewise on weight matrices inferred from the Mutual Information.

Joint distributions of correlated factors in datasets: In Fig. 8 we show the joint probability
distributions of the correlated pair of FoV for all datasets and correlation strengths considered in this
study. Dataset A, B and C were designed with correlated factors of variation that are ordinal for a
natural visual interpretation of the traversals. In contrast, datasets D and E contain a correlated factor
of variation that has no such natural ordering.

B ADDITIONAL RESULTS

B.1 SECTION 3

Shortcomings of existing metrics. Following recent studies, we evaluate the trained models with
the help of a broad range of disentanglement metrics that aim at quantifying overall success by the
help of a single scalar measure. Perhaps surprisingly, as can be seen in Fig. 9, there is no clear trend
among all implemented disentanglement scores w.r.t. correlation strength. The metrics have been
evaluated by sampling from the correlated data distribution although they do not differ substantially
when evaluated on the uncorrelated distribution. We thus argue that commonly used methods are
insufficient to provide insight into the latent space learned.
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Figure 8: Probability distributions for sampling training data in the correlated pair of FoVs in the
respective datasets (A, B, C, D, E) considering correlation strengths of σ = 0.2, σ = 0.4, σ = 0.7
and σ =∞, the uncorrelated limit (from left to right).
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Figure 9: Standard disentanglement metrics evaluated on the correlated and uncorrelated (uc) training
set showing no clear trend for different correlation strengths.
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Figure 10: We show latent traversals (left) of the best DCI score model among all 180 trained models
with weak correlation (σ = 0.7) in object size and azimuth. The traversals in latent code no 3 and 7/8
(highlighted in black), suggest that these dimensions encode no mixture of azimuth and object size
compared to the models with stronger correlation. This is supported by the GBT feature importance
matrix of this model (right).

correlation strength σ 0.2 0.4 0.7 ∞ (uc)

Shapes3D (A) object size - azimuth 0.38 0.26 0.13 0.08
median other pairs 0.09 0.09 0.09 0.08

dSprites (B) orientation - position x 0.17 0.16 0.14 0.11
median other pairs 0.13 0.13 0.13 0.13

MPI3D (C) First DOF - Second DOF 0.2 0.19 0.17 0.16
median other pairs 0.16 0.16 0.15 0.15

0.2 0.4 0.7 ∞ (uc)

0.28 0.25 0.2 0.17
0.2 0.2 0.19 0.18

0.34 0.31 0.24 0.14
0.16 0.18 0.19 0.15

0.54 0.52 0.5 0.49
0.25 0.25 0.26 0.25

correlation strength σ 0.2 0.4

Shapes3D (D) object color - object size 0.29 0.28
median uncorrelated pairs 0.07 0.07

Shapes3D (E) object color - azimuth 0.25 0.23
median uncorrelated pairs 0.1 0.09

0.2 0.4

0.38 0.31
0.11 0.11

0.43 0.3
0.15 0.15

Figure 11: Pairwise entanglement scores help to uncover still existent correlations in the latent
representation. Left: Mean of the pairwise entanglement scores for the correlated pair (red) and
the median of the uncorrelated pairs. We see that stronger correlation leads to statistically more
entanglement latents across all datasets studied compared to their baseline pairwise entanglement
where the data exhibits no correlations (blue). Each pairwise score is the mean across 180 models for
each dataset and correlation strength. Scores in the left table are based on GBT feature importance
and scores presented in the right table are based on Mutual Information.

Latent structure and pairwise entanglement. Our hypothesis that the latent representations are
less correlated if the correlation strength is weaker is shown for a model on Shapes3D (A) with
weak correlation in Fig. 10. Here the latent traversals do not mirror the major and minor axis of
the correlated joint distribution. This conclusion is being backed by the thresholds of the pairwise
entanglement metrics for the correlated pair vs. the median of all other pairs across all datasets, either
when computing them using the GBT feature importances or the mutual information. See Fig. 11 for
these respective results. Another pairwise metric that tracks the correlation strength in our scenario is
the unfairness score between the correlated pair of factors that is being shown for datasets A, B and C
in Fig. 12.

Generalization Properties In order to support our conclusion from these results that disentangle-
ment methods can generalize towards unseen FoV configurations we show in Fig. 13 latent traversals
originating from these OOD point with smallest object size and largest azimuth. We observe that
changes in the remaining factors reliably yield the expected reconstructions. Additionally, we are
interested in where samples from correlated models are located with respect to the ground truth value
of each correlated variable. For this, we are visualizing the latent spaces with similar extrapolation
and generalization capabilities of four models from the two strongest correlation dataset variants of
Shapes3d (D) and Shapes3d (E) in Fig. 14.
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Figure 12: Disentangled representations trained on correlated data are anti-correlated with higher
fairness properties. The plots show the mean unfairness scores between the correlated factors with
decreasing correlation strength for Shapes3D (A), dSprites (B) and MPI3D-real (C).

Figure 13: Generalization capabilities towards out-of-distribution test data. Latent traversals from
an observations the model has never seen during training. The starting point corresponds to a factor
configuration in point 1 from Fig. 5. Shown are the results of the model with highest DCI score
among all 180 trained models on Shapes3d (A) with a very restricted correlation strength σ = 0.2 in
object size and azimuth

B.2 SECTION 4

Post-hoc alignment correction with few labels In Fig. 15, we see the axis alignment of the
correlated latent space after fast adaptation using linear regression on a model trained on Shapes3D
(A). Fast adaptation with linear regression substitution fails in some settings: when no two latent
dimensions encode the applied correlation isolated from the other latent codes, or when the correlated
variables do not have a unique natural ordering (e.g. color or categorical variables). Additionally, the
functional form of the latent manifolds beyond the training distribution is unknown and in general
expected to be nonlinear. We test the possibility of fast adaptation in this case using as substitution
function a one-hidden layer MLP classifier of size 100 on the correlated Shapes3D variants. Under
this method, we sample the FoV from a uniform independent distribution. A small number of such
samples could practically be labeled manually. Using only 1000 labeled data points for our fast
adaptation method shows a significant reduction in disentanglement-thresholds for the correlated pair
(Fig. 16).

Alignment during training using weak supervision Using the studied weakly supervision Ada-
GVAE method with k = 1 from Locatello et al. (2020), we showed that weak supervision can provide
a strong inductive bias capable of finding the right factorization and resolving spurious correlations
for datasets of unknown degree of correlation. Despite the results shown on Shapes3D (A) in the
main paper, results across all three correlation variants in Shapes3D (A, D, E) are shown in Fig. 17 as
well as some representative latent space visualizations that show strong axis alignment in Fig. 18.
This study contains a total of 360 trained models.

In addition to the experiment from the main paper where pairs are constructed solely from the
correlated observational data, we want to study two scenarios where we have limited intervention
capabilities on the FoV to generate training pairs. The resulting distribution of FoVs (still exhibiting
correlations) in these pairs depends on whether the correlation between two pairs is due to a causal
link or due to a common confounder.

Scenario I-1: We assume there is a confounder causing a spurious correlation between the factors,
such that correlation is broken whenever we constraint the change to be in one of the correlations.
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Figure 14: Latent space distribution of the two entangled dimensions of the best DCI model in
Shapes3d (E) with σ = 0.2 (first column), in Shapes3d (E) with σ = 0.4 (second column), in
Shapes3d (D) with σ = 0.2 (third column) and in Shapes3d (D) with σ = 0.4 (fourth column). Latent
codes sampled from correlated observations (circle without edge) and (2) latent codes sampled with
an object size-azimuth configuration not encountered during training(squares with black edge). Each
column shows the ground truth values of the two correlated factors by color.

Figure 15: Latent space distribution of the two entangled dimensions of the best DCI model in
Shapes3D (A). Latent codes sampled from correlated observations (circle without edge) and (2) latent
codes sampled with an object size-azimuth configuration not encountered during training (squares
with black edge). Left column shows the ground truth values of the two correlated factors by color.
Middle and right column show the fast adapted space using linear regression and 100 or 1000 labels
respectively.
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dataset labels 0 1000

Shapes3D (D) σ = 0.2 object color - object size 0.3 0.16
Shapes3D (D) σ = 0.2 median uncorrelated pairs 0.07 0.07

Shapes3D (E) σ = 0.2 object color - azimuth 0.25 0.2
Shapes3D (E) σ = 0.2 median uncorrelated pairs 0.1 0.11

Shapes3D (A) σ = 0.2 object size - azimuth 0.37 0.26
Shapes3D (A) σ = 0.2 median uncorrelated pairs 0.09 0.1

Figure 16: Mean of the pairwise entanglement scores for the correlated pair (red) and the median
of the uncorrelated pairs (based on GBT feature importance) for all pairs of variables in Shapes3D
(D) (top), Shapes3D (E) (middle) and Shapes3D (A) (bottom) all with correlation strength σ = 0.2.
Each pairwise score is the mean across 180 models for each dataset and correlation strength. First
column is the unsupervised baseline without any fast adaptation and the second column shows that
fast adaption using a one-hidden layer MLP reduces these correlations with as little as 1000 labels
when sampled from the uncorrelated dataset.

The value of the changing variable is then sampled uniformly in the second observation. Note that
this still means that the vast majority of sampled pairs exhibit correlated FoV. This is depicted in the
substantially lifted disentanglement scores shown in Fig. 19 as well as some selected latent space
visualizations that show strong axis alignment in Fig. 20. We consistently observe much better
disentangled models, often achieving perfect DCI score irrespective of correlations in the data set.
The latent spaces tend to strongly align their coordinates with the ground truth label axis. We chose
10 random seeds per configuration in this study, yielding 720 models in total.

Scenario I-2: Let us assume C1 causes C2 in our examples, which manifests as the studied linear
correlations. Within this setting we cannot sample uniformly in C2 if we intervene (or “fix”) all
factors except for this causal factor. Intervening on all factors but C1, however, allows us to sample
any value in C1 as it is not causally affected by C2. To test the hypothesis that this constraint still
allows for disentangling the correlation, we trained on Shapes3D (A) and sample pairs consistent with
this causal model. Besides observing visually disentangled factors in the latent traversals, we show a
summary of our results in Fig. 21 with the same significant improvements regarding disentangling the
correlated FoVs. Besides the above correlation strengths, we additionally trained the same models
using a very strong correlation of σ = 0.1, yielding 300 models trained in this study.
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Figure 17: Standard disentanglement metrics evaluated for the weakly supervised scenario using
correlated observational data.
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Figure 18: Left: For the weakly supervised scenario using correlated observational data trained models
on Shapes3D (A), (D) and (E) correlating object color and azimuth learn consistently improved, often
perfect, disentangled representation across all correlation strengths. Right: Latent dimensions of
a best DCI model trained on strongly correlated observational data. Representations are perfectly
axis-aligned with respect to both of the correlated variables ground truth values (right).
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Figure 19: Standard disentanglement metrics evaluated on the correlated training sets for the weakly
supervised scenario with intervening capabilities (I-1).
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Figure 20: Left: For the weakly supervised scenario with intervening capabilities (I-1) trained models
on Shapes3D (A), (D) and (E) correlating object color and azimuth learn consistently improved, often
perfect, disentangled representation across all correlation strengths. Right: Latent dimensions of a
best DCI model with strong correlation (0.2). Representations are perfectly axis-aligned with respect
to both of the correlated variables ground truth values (right).
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Figure 21: Disentanglement metrics (top), unfairness scores (middle) and latent spaces (bottom) show
strong disentanglement using weak supervision with intervening capabilities (I-2) - even under the
stronger assumption that sampling of observation pairs follow its causal generative model. We show
the learnt latent space encoding of the two correlated factors of variation for a model with σ = 0.1
and low reconstruction loss.
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