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ABSTRACT

Decoding complex auditory experiences from non-invasive EEG is a rapidly
emerging field that holds significant promise for advancing both fundamental
neuroscience and human-machine interaction technologies. Recent developments
in EEG foundation models have yielded powerful neural representations that are
promising for auditory decoding. However, the effectiveness of these models re-
mains fundamentally constrained by their limited integration with acoustic stim-
ulus information. Specifically, the lack of deep coupling between neural signals
and auditory inputs hampers the models’ ability to generalize effectively across
diverse auditory tasks. To bridge this gap, we introduce MindMix, a multimodal
foundation model designed to bridge the gap between unimodal EEG founda-
tions and task-specific auditory decoders. MindMix employs a two-stage train-
ing strategy: first, a high-capacity EEG encoder is pre-trained on over 3,000
hours of EEG data to learn generalized EEG features that can transfer across
tasks and subjects. Second, the model learns the neural-acoustic mapping us-
ing over 100 hours of paired data, facilitated by our novel Cross-Attention Low-
Rank Alignment module, which facilitates fine-grained, cross-modal information
integration. Experimental results demonstrate that MindMix substantially sur-
passing existing baselines across a range of auditory decoding tasks, including
auditory attention decoding, auditory emotion recognition, and cross-modal re-
trieval. This work thus establishes a foundation for future research in multimodal
brain decoding and auditory brain-computer interfaces. Our code is available at
https://anonymous.4open.science/r/MindMix-654B/.

1 INTRODUCTION

Auditory perception plays a central role in how humans interact with the world, shaping language
understanding, environmental awareness, and social communication |Opoku-Baah et al.| (2021). De-
coding the brain’s representation of auditory experiences is a core pursuit in cognitive neuroscience
and a key capability for brain-computer interface (BCI) systems |Mahrooz et al.|(2024). Recent ad-
vances show that brain signals contain rich acoustic and semantic information, enabling the direct in-
terpretation of internal auditory experiences from neural activity [Li et al.|(2023)); Chen et al.|(2024);
Mathis et al.| (2024). Among available techniques, electroencephalography (EEG) is widely used
for its non-invasiveness and high temporal resolution |Défossez et al.| (2023); |L1 et al.| (2024)); Liu
et al.| (2024). However, decoding rich, naturalistic auditory experiences is fundamentally hindered
by EEG’s inherent limitations: a low signal-to-noise ratio and high inter-subject variability Piastra
et al. (2021)); Bonetti et al.|(2024); Oxenham & Kreft (2016).

Historically, these challenges were compounded by task-specific modeling strategies that showed
poor generalization across tasks and subjects |Crosse et al. (2016)); |Yan et al.| (2024bja). A re-
cent paradigm shift towards EEG foundation models, such as EEGPT Wang et al. (2024b) and
LaBraM [Jiang et al.| (2024), has begun to address this by learning transferable representations from
massive unlabeled EEG datasets. However, their effectiveness in auditory decoding is fundamentally
limited by their unimodal nature. When trained exclusively on EEG signals, their representations are
not optimized to align with the underlying structure of acoustic information, as they lack exposure to
corresponding auditory stimuli. This highlights a critical research gap: the lack of a unified frame-
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work capable of learning well-aligned multimodal representations for robust and versatile auditory
neural decoding |Poziomska et al.| (2024)).

To bridge this gap, we introduce MindMix, the first multimodal foundation model specifically de-
signed to learn a deeply aligned neural-acoustic representation from large-scale, paired EEG-audio
data. The design of MindMix directly addresses the challenges of cross-modal learning. Its archi-
tecture features two key innovations: (1) a high-capacity EEG encoder, trained from scratch with
a multi-task objective to robustly capture complex neural dynamics from noisy signals, and (2) a
novel Cross-Attention Low-Rank Alignment (CALRA) module, which enables fine-grained align-
ment between neural patterns and acoustic features. CALRA moves beyond simple projection-based
alignment to facilitate deep interaction between modalities. The entire framework is optimized end-
to-end via a contrastive learning objective on over 100 hours of paired data, which explicitly forces
the model to map corresponding EEG-audio pairs to nearby points in a shared embedding space.
Our main contributions are summaris ed as follows:

* We introduce MindMix, the first multimodal foundation model designed to learn fine-
grained and deeply aligned neural-acoustic representations, enabling robust performance
across diverse auditory decoding tasks.

* We propose CALRA, a novel neural architecture for cross-modal alignment that enables
fine-grained and auditory-type-aware interaction between neural and acoustic modalities.

* Extensive experimental results on MindMix demonstrate superior cross-modal alignment,
leading to significantly improved neural decoding performance across a range of auditory
perception tasks, including auditory attention decoding, auditory emotion recognition, and
cross-modal music retrieval.

2 RELATED WORK

2.1 AUDITORY PERCEPTION DECODING FROM BRAIN SIGNALS

Early work on auditory decoding focused on reconstructing speech features from brain signals us-
ing linear models like regression or temporal response functions |O’Sullivan et al.| (2015)); |Crosse
et al.| (2016); [Ferrante et al.|(2024); Dahan et al.|(2025). While effective in controlled settings, these
methods struggle with naturalistic scenarios due to their reliance on clean stimuli and long decision
windows Mesgarani & Chang| (2012). More recent deep learning models offer greater flexibility,
with applications in auditory attention classification [Su et al.| (2022), speech/music discrimination
Wang et al.| (2024a)); N1u et al.| (2024), and affective state recognition |Hu et al.| (2024). However,
these models remain predominantly task-specific. They are typically trained and evaluated in isola-
tion, exhibit poor generalization across datasets or subjects Poziomska et al.| (2024)), and fail to scale
to diverse, real-world listening conditions.

2.2 EEG FOUNDATION MODELS FOR NEURAL REPRESENTATION LEARNING

To address the limitations of task-specific models, recent work has explored EEG foundation models,
which learn general-purpose representations from large-scale datasets. Using Transformer-based ar-
chitectures and self-supervised objectives, models like EEGPT Wang et al.|(2024b), LaBraM Jiang
et al.| (2024), Neuro-GPT |Cui et al.| (2024) and CBraMod Wang et al.| (2025) have achieved strong
performance on clinical benchmarks such as epilepsy detection or sleep staging. However, a funda-
mental limitation of these models for auditory decoding is their lack of exposure to auditory stimuli.
Pretrained exclusively on EEG signals, their representations are not optimized to align with acoustic
structures, resulting in poor transferability to auditory decoding tasks. MindMix is explicitly de-
signed to bridge this gap: by incorporating paired EEG-audio data during pretraining, it learns a
shared embedding space that effectively aligns these modalities.
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Figure 1: Overview of the proposed MindMix framework, which consists of an EEG encoder trained
from scratch, a pretrained audio encoder, and our proposed CALRA module for fine-grained cross-
modal alignment. Through large-scale pretraining with a contrastive objective, MindMix learns a
unified EEG-audio representation space. This shared embedding facilitates strong generalization to
a wide range of downstream auditory decoding tasks.

3 METHODOLOGY

3.1 OVERVIEW

We introduce MindMix, a multimodal foundation model that learns a unified embedding space to
align EEG signals with corresponding auditory stimuli. As illustrated in Figure [I] given an in-
put pair (SgeG, Saudio)» MindMix uses a dual-stream architecture with two modality-specific en-
coders. These encoders produce feature embeddings (Eproj, Aproj), Which are then processed by our
core innovation, the CALRA module. CALRA performs deep interaction between the modalities,
conditioned on the auditory type (e.g., speech, music), to produce the final aligned embeddings
(Eatigned> Aatignea). The entire framework is optimized end-to-end via a contrastive learning objec-
tive, Lcr [Chen et al.| (2020), which maximizes the similarity between true (Eiigned, Aalignea) Pairs
while minimizing it for non-corresponding pairs within each training batch.

3.2 MODALITY-SPECIFIC ENCODERS

EEG Encoder. To address the core challenges of EEG signals, high inter-subject variability and
heterogeneous channel configurations, the EEG encoder, fggg, is designed as a novel high-capacity
architecture. As illustrated in Figure[2] this encoder is developed during the unimodal pre-training
stage using a multi-task, self-supervised objective.

Our approach employs a channel-independent patching strategy to robustly handle heterogeneous
electrode configurations. Given a raw signal Sppe € RE*T (where the channel count C' varies
across datasets), we segment each channel independently into K fixed-length temporal patches.
These patches are passed through a temporal 1D convolution to obtain the initial embeddings X .
Crucially, to learn discrete neural representations, we first quantize these initial embeddings X into
discrete neural tokens v € ) using a shared codebook. Following quantization, we construct the
final input embedding E,q.., by adding learnable positional information to these tokens:

E‘patch:'U"V‘T"V‘g (D

where T represents the learnable temporal embedding, which is added to each patch to indicate its
relative temporal position index (1 to K') within the epoch; and £ represents the spatial (channel)
embedding, implemented as a learnable lookup table that maps standard 10-20 system electrode
identities (e.g., "Cz’, "Pz’) to unique vectors. This spatial embedding £ allows the model to distin-
guish the anatomical source of each patch regardless of the varying channel count C.

The main innovation of this stage is our unique pretraining methodology, which integrates two
carefully designed self-supervised tasks. First, patch embeddings are quantized into discrete neural
tokens v € V using a shared codebook, which is optimized via a quantization loss Lg. Subsequently,
we compute two pretraining objectives:
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Figure 2: The multi-task pre-training architecture of the EEG encoder. The framework performs
two tasks in parallel: one branch (top) reconstructs the Fourier spectrum from the full neural repre-
sentations (Ls), while the main branch (bottom) performs masked token prediction (£ ) to learn
robust features.

* Masked Token Prediction: A portion of the patch embeddings are randomly masked. A
main Transformer encoder|Vaswani et al.|(2017) then predicts the original neural tokens of
the masked patches from the visible ones, supervised by a masked modeling loss:

La=—="Y_ logp(v;| Xuisibre) )
JEM

where M is the set of masked patch indices.

* Spectrum Reconstruction: Concurrently, the unmasked patch embeddings are passed
through a separate, smaller Transformer encoder. Its output reconstructs the Fourier spec-
trum (amplitude A and phase ) of the original patches, supervised by a spectrum predic-
tion loss:

Ls=E; [||flj—Aj||2+\|sz—wj\|} 3)

The total pre-training loss is a weighted sum of these objectives. The main Transformer from the
masking task serves as the backbone for fggg. For multimodal alignment, we apply mean pooling
over its output sequence and project it to produce the initial EEG embedding, Epy;.

Audio Encoder. Motivated by the strong performance of self-supervised pre-trained speech pro-
cessing models Wang et al.[(2021); Kunesova et al.[(2024), we utilize the pretrained Wav2Vec 2.0
model Baevski et al.| (2020) as our audio encoder, faugo- For each audio clip, we extract the final
hidden state sequence from the Transformer, apply mean-pooling to obtain a single vector represen-
tation, and pass it through a linear projection layer to produce the initial audio embedding, Apro;.

3.3 CROSS-ATTENTION LOW-RANK ALIGNMENT

The primary motivation for CALRA is to achieve a deep, robust semantic alignment capable of
handling the unique challenges of auditory decoding. This task faces two specific hurdles: (1) the
low signal-to-noise ratio and high non-linearity of EEG-audio mapping, for which standard ‘““shallow
projections” (like CLIP |Radford et al.[(2021))) are insufficient; and (2) the heterogeneity of stimuli
(e.g., speech vs. music), where a uniform mapping fails to capture distinct neural response patterns.
While “early fusion” methods (e.g., concatenation) could model these interactions, they break the
dual-stream architecture required for efficient retrieval.

To bridge this gap, we propose CALRA, a global feature refinement module that implements a
“refine-then-contrast” strategy. Instead of directly contrasting raw projections, CALRA injects deep,
context-aware interactions into the embeddings before the loss calculation. Uniquely, it is designed
to overcome the limitations of linear fusion by enforcing bilinear interactions in a shared bottleneck,
allowing the model to capture fine-grained multiplicative dependencies that simple concatenation
or co-attention cannot effectively model. The module consists of three synergistic components: a
Type-specific Aligner to handle stimulus heterogeneity, a Bi-directional Cross-Attention mechanism
for dynamic global context refinement, and a Shared Low-Rank Alignment to enforce deep bilinear
fusion, which we detail below.
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Figure 3: Overview of the proposed CALRA module. Given paired EEG and audio embeddings,
CALRA performs auditory-type-specific alignment using multi-headed cross-attention and feed-
forward networks. A shared low-rank bottleneck module further aligns the two modalities in a
compact semantic space. The resulting aligned embeddings are used for contrastive pretraining,
enabling robust cross-modal representation learning across diverse auditory conditions.

Type-specific Aligner. Given neural responses vary significantly for different types of auditory
stimuli (e.g., speech vs. music), our aligner routes initial projections (Epy,j, Aproj) through a learnable
transformation f corresponding to the auditory type label k:

(Elgrop A;roj) = fk (Eproja Aproj) (4)

This allows the model to adopt optimal alignment strategies for different auditory stimulus types.

Bi-directional Cross-Attention. Following type-specific alignment, CALRA utilizes a bi-
directional cross-attention mechanism to enable each modality to dynamically integrate comple-
mentary global context from the other. Unlike standard local token matching, we operate on the
global projected embeddings to enforce holistic alignment. Given the projected global vectors
E[/ij € R'™P and A’ . € R'P (where D denotes the alignment dimension and the temporal
dimension is aggregated via global pooling), this exchange occurs simultaneously:

* Audio-to-EEG Alignment: The EEG sequence (() g) retrieves relevant information from
the audio sequence (K 4, V4):

E/ MultiHeadAttention(Q g, K 4, Va) 5)

interacted —

* EEG-to-Audio Alignment: Symmetrically, the audio sequence (Q) 4) retrieves neural fea-
tures from the EEG sequence (K g, Vg):

Al MultiHeadAttention(Q 4, Kg, VE) (6)

interacted —

Following standard practice in Transformer architecture [Vaswani et al.|(2017), residual connections
and Layer Normalization are applied, yielding representations hr and h 4. These are then passed to
our Shared Low-Rank Alignment module.

Shared Low-Rank Alignment. To enforce semantic consistency, we employ a shared low-rank
fusion mechanism. Unlike standard CLIP Radford et al.| (2021)) which relies on a shallow linear
dot-product, we aim to capture the complex, non-linear dependencies between neural and acoustic
features. By projecting hg and h4 into a shared bottleneck and fusing them via an element-wise
product (®), this module enforces a bilinear interaction:

FEteedback = Wb eeg (Hshared Wi eeq(hE) © W audio(ha))) (7
Afeedback = Wb ,qudio (Hshared Wt ,eeq(hE) © Wi qudio(Ra))) ¥
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where Wy ., Wp . are modality-specific projection layers, and Hgpareq i a shared non-linear layer.
The final aligned embeddings are obtained by integrating this feedback via a residual connection:

Ealigned7 Aaligned = LayerNOTm(hE + Efeedback)a LayerNorIn(hA + Afeedback)~ (9)

We chose this low-rank structure because it efficiently approximates computationally expensive ten-
sor fusion operations |[Liu et al.|(2018)); [Yu et al.| (2017)), enabling the model to capture rich multi-
plicative feature interactions [Fukui et al.|(2016)); Zadeh et al.| (2017). This is theoretically superior to
simple linear combinations for disentangling the intricate correlations between brain signals and au-
ditory stimuli. It also need to note that, this multiplicative fusion architecture differs fundamentally
from parameter-efficient strategies like LORA (2022), which employ low-rank matrices for
additive weight adaptation rather than for modeling the joint distribution of multimodal features.

Finally, we distinguish our design from recent works like MGCA Wang et al | (2022)) and CARZero
(2024), which primarily focus on fine-grained local token matching or modifying the
similarity scoring function. In contrast, CALRA operates as a pre-loss refinement step for global
representations. By enhancing the embeddings themselves (Eajigned; Aaligned) Tather than altering the
loss mechanism, it preserves the training stability of standard contrastive learning while capturing
deep, context-aware dependencies that simpler projections miss.

3.4 PRE-TRAINING VIA CONTRASTIVE ALIGNMENT

We optimize the MindMix framework using a contrastive learning objective, inspired by CLIP Rad-|
(2021)), on the final aligned embeddings. The goal is to maximize the cosine similarity of
true EEG-audio pairs while minimizing it for incorrect pairs within a mini-batch. This is framed as
a directed prediction problem where, for each EEG embedding, the model must identify its correct
audio counterpart from all available options. This EEG-to-audio direction directly mirrors our down-
stream decoding tasks and avoids the potential instability of aligning a single audio stimulus with its
many possible neural responses. We use the InfoNCE loss, which is equivalent to a cross-entropy
loss over the similarity scores, averaged over all samples in the batch:

N .
1 exp(sim(Earigned,ir Aatigned,i)/T)
£CL:_N;10g ZN (10)

j=1 eXp(Sim(Ealigned,iv Aaligned,j)/T)

where sim(u, v) is the cosine similarity and 7 is a learnable temperature. Minimizing this objective
jointly trains the entire framework (fggg, faudio» and CALRA), forcing the model to learn a seman-
tically rich embedding space where neural activity is meaningfully aligned with auditory content.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Tasks. Our experiments follow a three-stage pipeline: unimodal pre-training, multi-
modal alignment, and downstream task fine-tuning. For pre-training, we leverage large-scale public
corpora, including over 3,500 hours of general EEG data and over 100 hours of paired EEG-audio
data (summarized in Table[T]and detailed in Appendix A.1). We evaluate MindMix’s generalization
capabilities on a diverse set of downstream auditory decoding tasks, including Auditory Attention
Decoding (on KUL, DTU, and ESAA), Emotion Analysis (on PME4 and HR-EEG4EMO), and Mu-
sic Retrieval (on MAD-EEG). To ensure a fair evaluation, all downstream task datasets were held
out from unimodal pre-training and multimodal alignment stages. Standardized data preprocessing
protocols are detailed in Appendix A.2. For reproducibility, specific implementation details and the
full hyperparameter configurations for the EEG encoder, CALRA module, and optimization process
as well as our rigorous negative sampling policy (in Appendix A.3).

Evaluation Protocol To ensure a fair and rigorous comparison with existing SOTA methods, we
adopt the widely established standard evaluation protocols. For all downstream tasks, we conduct
experiments using a subject-specific (within-subject) protocol, implemented via a strict 5-fold cross-
validation scheme. In this setup, the data for each subject are randomly partitioned into 5 folds,
using a 70%/10%/20% split for training, validation and testing within each fold. We report the
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Table 1: Overview of all datasets used across three training stages in our study.

Stage Dataset Hours Channels Modality Paradigm

Stage 1: Unimodal Pre-training
BCI-IV-2A[Tangermann et al. |(2012) 13.4h 22 EEG Signal Motor Imagery
HGD |Schirrmeister et al.|(2017) 28.7h 133 EEG Signal Motor Imagery
OpenBMI|Lee et al.|[(2019) 91.6h 62 EEG Signal Motor Imagery
EEGMat|Zyma et al.|(2019) 2.4h 20 EEG Signal Workload Analysis
TUEP|Veloso et al.[(2017) 631.8h 14 EEG Signal Epilepsy Detection
TUEV |Veloso et al.|(2017) 148.7h 8 EEG Signal Event Classification
HMCSleep|Alvarez|(2021) 582.5h 8 EEG Signal Sleep Detection
CAPSleep|Terzano et al.|(2001) 1004.5h 20 EEG Signal Sleep Detection
CMBMIT |Shoeb|(2009) 1060.9h 8 EEG Signal Sleep Detection

Total Hours: 3564.5h
Stage 2: Multimodal Alignment Training

ds004356|Singh et al.|(2024) 38.9h 34 EEG+ Audio Music/Speech Listening
zenodo_4518754|Mundanad et al.|(2021) 11.6h 255 EEG + Audio  Speech AAD
zenodo_10260082 Thornton et al.|(2023) 12.0h 2 EEG+ Audio Speech AAD
Brennan_2018|Brennan & Hale|(2019) 10.1h 61 EEG + Audio Story Listening
Broderick_2018|Broderick et al.|(2018) 19.1h 128 EEG + Audio  Story Listening
Le_Petit_Prince|Momenian et al.|(2024) 17.3h 64 EEG + Audio  Story Listening

Total Hours: 109.0h

Stage 3: Downstream Task Fine-tuning

MAD-EEG|Cantisani et al.|(2019) 4.2h 20 EEG + Audio Music Retrieval
KUL Das et al.|(2016) 19.2h 64 EEG + Audio  Speech AAD
DTU Fuglsang et al.|(2017) 15.0h 64 EEG + Audio Speech AAD
ESAAI]LI et al.|(2022) 12.7h 64 EEG + Audio  Speech AAD
PME4|Chen et al.|(2022) 4.6h 8 EEG + Audio Emotion Analysis
HR-EEG4EMO|Cantisani et al.|(2019) 10.0h 128 EEG + Audio  Emotion Analysis

mean and standard deviation across these 5 folds. Crucially, all reported results utilize raw window-
level metrics (accuracy per 2-second segment) rather than aggregated trial-level scores, providing
a conservative and fine-grained assessment of decoding performance. Evaluation metrics include
Balanced Accuracy and Weighted F1-score for AAD and emotion analysis, and standard Duo/Trio
Accuracy for music retrieval. The detailed evaluation metrics can be found in Appendix A.4.

However, specifically regarding the Speech AAD task, we acknowledge that the mainstream within-
subject splitting may introduce potential data leakage risks due to temporal correlations, as high-
lighted by [Puffay et al|(2023). To address this, we additionally introduce a rigorous between-trial
evaluation protocol, where training and testing segments are strictly drawn from disjoint trials (e.g.,
different stories or sessions) to prevent temporal overlap and artifact leakage. The detailed results of
this robust evaluation are provided in Appendix A.5.

4.2 DOWNSTREAM EXPERIMENT RESULTS

MindMix was evaluated against strong baselines, including task-specific SOTA models (e.g., DBP-
Net, AADNet) and powerful unimodal EEG foundation models (e.g., LaBraM, EEGPT). The de-
tailed information about the compared baseline is provided in Appendix A.6. As shown in Table[2]
MindMix substantially outperforms all baselines across all downstream tasks. It achieves near-
perfect performance in Speech AAD (e.g., 99.82% on KUL) and establishes a new SOTA in other
tasks with large margins (e.g., over 10 percentage points on PME4), underscoring the effectiveness
of our multimodal strategy. A deeper analysis of these results reveals two critical findings. First,
the unimodal EEG foundation models, such as LaBraM and CBraMod, consistently underperform
when compared to task-specific SOTA models like DBPNet and DARNet. For instance, on the
KUL dataset, LaBraM and CBraMod achieve accuracies of only 63.30% and 68.42%, respectively,
falling far short of the 94.81% achieved by DARNet. This exposes a key limitation of current foun-
dation models: they are predominantly pre-trained on non-auditory tasks, rendering their generic
representations suboptimal for decoding auditory perception. Furthermore, these large models are
often highly sensitive to the data format and preprocessing pipelines; any mismatch with their orig-
inal training configuration can lead to high performance variance and poor fine-tuning results (as
empirically quantified in Appendix A.2).

Second, and more importantly, our results highlight a crucial distinction in the effectiveness of
multimodal integration. For other task-specific multimodal models like MusicAAD (94.87% on
KUL) and AADNet (93.18% on KUL), the performance improvement over their strong unimodal
counterparts is relatively modest. In contrast, the performance leap demonstrated by MindMix to
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Table 2: Performance comparison of MindMix against SOTA baselines on various downstream tasks
and datasets. The best values are highlighted in bold, and the second-best values in each block are
underlined. Based on the paired t-test with p-value correction (a = 0.05), the * indicates the marked
method is significantly better than the compared methods.

Task Speech AAD
Method \ KUL DTU ESAA
| Balanced Acc. Weighted F1 | Balanced Acc. Weighted F1 | Balanced Acc. Weighted F1
EEGNet|Lawhern et al. 0.7514 £0.097  0.7510 £0.097 | 0.6112+0.042  0.6578 £0.058 | 0.7742+0.132  0.7915 +0.111
DBPNet 0.9357 £ 0.042 0.9588 + 0.038 0.8251 £ 0.061 0.8579 £ 0.056 | 0.8418 £+ 0.121 0.7990 £ 0.163

0.9481 £0.036  0.9567 £0.025 | 0.8391+£0.048  0.8687 £0.036 | 0.9089 £ 0.054  0.9389 £ 0.042
0.9318 £0.018  0.9487+£0.016 | 0.8456 +£0.038  0.8874 £0.032 | 0.8343 £0.042  0.8442 £ 0.038
0.7258 £0.057  0.7585 4 0.051 | 0.6875+0.057  0.7312£0.055 | 0.8237 £0.061  0.8165 £ 0.058

0.5879 £0.045  0.6033 £0.040 | 0.5886 £0.032  0.6289 £0.040 | 0.7983 £0.078  0.8245 £ 0.069
0.5538 £0.051  0.5941 4 0.047 | 0.6233+£0.029  0.6588 +0.032 | 0.7588 +£0.077  0.7895 £ 0.072
0.6642 £0.042  0.7083 £0.045 | 0.6538 £0.038  0.6789 £0.042 | 0.8385+0.065  0.8688 £ 0.060
0.6330 £0.052  0.6498 +0.043 | 0.6582 +£0.046  0.6821 4 0.048 | 0.8568 £0.070  0.8544 £ 0.071
0.6842 £ 0.038  0.7252 4 0.041 | 0.6478 £0.052  0.6701 £0.046 | 0.8423 £0.067  0.8325 £ 0.075

MindMix (Ours) | 0.9982 4 0.008"  0.9991 + 0.004" | 0.9993 £ 0.009"  0.9996 = 0.005" | 1.0000 == 0.000"  1.0000 -+ 0.000"

AD|Nuu et al. |(2024]
AADNet|Nguyen et al. [(2025]

Task Emotion Analysis Music Retrieval
Method ‘ PME4 HR-EEG4EMO MAD-EEG
| Balanced Acc. Weighted F1 | Balanced Acc. Weighted F1 | Duo Acc. Trio Acc.

0.5029 £0.035  0.4920 £ 0.046 | 0.6981 +£0.111  0.7681 £ 0.071 | 0.5831+0.025  0.4521 £ 0.037
0.5717£0.032  0.5321 £0.053 | 0.8274 £0.073  0.8458 £0.064 | 0.7849 £0.091  0.7152 £0.078
0.5725 £0.025  0.5425 £0.061 | 0.8052+£0.081  0.8178 £0.077 | 0.7544 £0.080  0.7185 £ 0.082
0.6142 £ 0.062  0.6345 4 0.075 | 0.7648 £0.084  0.7852 £ 0.069 | 0.9425+0.028  0.8722 £ 0.038
0.6011 £0.077  0.5986 & 0.065 | 0.7544 +£0.059  0.783240.054 | 0.8824+0.071  0.8916 £ 0.065

0.5433 £0.065  0.5218 £0.059 | 0.6458 £0.015  0.6855 4 0.017 | 0.6235+0.048  0.6498 & 0.045
0.5224 £0.071  0.5359 £0.069 | 0.6352£0.023  0.6487 £0.019 | 0.6485£0.052  0.6798 £ 0.049
0.5566 £ 0.058  0.5478 +0.061 | 0.7129+£0.072  0.7698 £0.077 | 0.7887 £0.065  0.7582 & 0.068
0.5868 £0.056  0.5936 & 0.052 | 0.7295+0.082  0.7829 £ 0.081 | 0.7582+0.082  0.7229 £ 0.078
0.6052 £ 0.072  0.5841 4 0.088 | 0.7285+£0.078  0.7748 +0.074 | 0.8011+0.069  0.7654 - 0.087

MindMix (Ours) | 07256 4 0.123"  0.7089 + 0.135" | 0.8878 1 0.045"  0.8869 + 0.046" | 0.9475 + 0.025"  0.8824 -+ 0.042"

99.82% is dramatic, which directly validates our central hypothesis: a deep cross-modal alignment
is paramount, and simply combining modalities is not enough. This substantial lead in performance
underscores the efficacy of MindMix’s architectural design, which integrates powerful modality-
specific encoders with an effective alignment strategy. Our framework enables deep interaction to
capture the fine-grained relationship between brain activity and complex audio signals, which is
crucial for robust neural decoding.

4.3 ABLATION STUDY AND ANALYSIS

To validate our architectural choices and quantify the contribution of each component, we perform
comprehensive ablation studies, the results of which are summarized in Table El

Effectiveness of the CALRA Module. We first investigate the importance of our core contri-
bution, CALRA, by comparing it against simpler alignment strategies. As shown in Table [3] re-
placing CALRA with a standard co-attention block or reverting to a simple CLIP-style projection
(‘w/o Alignment’) leads to substantial performance degradation. Besides, to rigorously validate the
structural advantage of our bilinear fusion, we further compare against a “Standard Concatenation-
based Fusion (Concat-MLP)” baseline, which is the dominant strategy for vector-level integration.
CALRA consistently outperforms this strong baseline (e.g., 0.8878 vs. 0.8574 on EEG4EMO). This
empirical evidence confirms that the multiplicative interaction within CALRA captures complex
cross-modal dependencies that simple concatenation cannot effectively model.

While Table |Z| reports standard metrics for fair comparison, we further validated our model’s ro-
bustness using the strict between-trial protocol defined in Section 4.1. As detailed in Appendix A.5,
MindMix maintains a substantial and leading performance advantage under this challenging setting,
although the absolute accuracy is lower as expected. This confirms that the model’s superiority
stems from genuine neuro-acoustic alignment rather than the exploitation of trial-specific artifacts.

Impact of Modality Encoders. To validate our encoder choice, we substituted our specialized
EEG encoder with several alternatives. Both SOTA foundation models (LaBraM and CBraMod)
and the classic EEGNet resulted in a significant performance drop, confirming the advantage of
our custom pre-training strategy. Specifically, even when adapting the strong CBraMod backbone
with our alignment module, the performance (96.37% on KUL) still falls short of our full MindMix
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Table 3: Ablation studies on the main components of MindMix. All experiments are evaluated on
two downstream tasks: emotion recognition on HR-EEG4EMO and auditory attention decoding on
KUL. Note: For the “w/ LaBraM” and “w/ CBraMod” entries, we initialized the EEG encoder using
their official pretrained weights and subjected them to our full multimodal alignment training before
fine-tuning, ensuring a rigorous comparison of backbone capabilities.

Model Configuration | EEG Encoder  Audio Encoder  Alignment Module | Emotion Acc. AAD Ace.
MindMix (Full Model) | Ours Wav2Vec 2.0 CALRA (Ours) | 0.8878 +0.045 0.9982 + 0.008
Ablation on Alignment

w/ Co-Attention Ours ‘Wav2Vec 2.0 Co-Attention 0.8629 £0.053  0.9785 £ 0.021

w/ Concat-MLP Our Wav2Vec 2.0 Concat-MLP 0.8574 £ 0.035  0.9593 4 0.017

w/o Alignment Ours Wav2Vec 2.0 Standard CLIP 0.8483 £ 0.038  0.9535 & 0.015
Ablation on EEG Encoder

w/ LaBraM LaBraM Wav2Vec 2.0 CALRA (Ours) 0.8588 £ 0.041  0.9744 + 0.012

w/ EEGNet EEGNet Wav2Vec 2.0 CALRA (Ours) 0.8555 £ 0.047  0.9442 £+ 0.011

w/ CBraMod CBraMod Wav2Vec 2.0 CALRA (Ours) 0.8642 £ 0.039  0.9637 = 0.010
Ablation on Audio Encoder

w/ HuBERT Ours HuBERT CALRA (Ours) 0.8687 £ 0.037  0.9883 & 0.010

w/ Mel-spectrogram Ours Mel-spectrogram CALRA (Ours) 0.8432 £ 0.035 0.9448 +0.015
Dissection of the CALRA

w/o Type-specific Aligner Ours ‘Wav2Vec 2.0 CALRA (Ours) 0.8675 £+ 0.035 0.9853 + 0.010

w/o Shared Low-Rank Ours Wav2Vec 2.0 CALRA (Ours) 0.8557 £ 0.040 0.9742 +0.012

w/o Cross-Attention Ours ‘Wav2Vec 2.0 CALRA (Ours) 0.8482 +0.036  0.9435 + 0.013

model (99.82%). For the audio stream, substituting the powerful Wav2Vec 2.0 with traditional Mel-
spectrogram features causes a steep decline of up to 5.45% in AAD accuracy. This highlights that
rich, pre-trained representations are essential for both the neural and acoustic modalities.

Dissection of CALRA’s Components. Finally, we dissect the CALRA module to quantify the
contribution of its three key innovations. The bi-directional cross-attention mechanism proves to
be the most critical element, as its removal (‘w/o Cross-Attention’) causes the largest performance
drop (up to 5.58% in AAD). The shared low-rank alignment also provides a vital contribution,
with its removal (‘w/o Shared Low-Rank’) leading to a significant drop. The w/o Type-specific
Aligner ablation, which simulates the absence of auditory type information at test time, causes
only a minor performance drop. This indicates that while the type-specific routing is beneficial,
our model does not critically rely on it and remains highly effective even when stimulus type is
unknown. Together, these results confirm that all three components of CALRA are integral to its
success, working synergistically to achieve a superior cross-modal alignment.

Finally, we also investigated the trade-off between decoding accuracy and temporal resolution (win-
dow size sensitivity), these additional results and detailed analyses are provided in Appendix A.7.

4.4 QUANTIFYING THE SYNERGY OF MULTIMODAL ALIGNMENT

To isolate and quantify the benefit of our multimodal approach, we conduct a critical analysis com-
paring the full MindMix model against its EEG-only counterpart. The results, presented in Figure[d}
are striking and reveal a deep synergy fostered by the alignment of brain signals and audio. No-
tably, even this EEG-only counterpart is highly competitive on its own, demonstrating performance
comparable to the SOTA unimodal baselines reported in Table 2} For instance, it outperforms the
LaBraM baseline on the ESAA and MAD-EEG tasks. Furthermore, to validate its broader gen-
eralization capabilities, we benchmarked the encoder on standard non-auditory tasks (TUAB and
BCIC-IV-2B). As detailed in Appendix A.8, our model achieves top-tier performance (e.g., ranking
Ist on BCIC-IV-2B among foundation models), confirming its robustness as a general-purpose EEG
encoder. This demonstrates that MindMix’s success stems not just from learning robust EEG repre-
sentations but from learning the relationship between the neural signal and the auditory stimulus.

4.5 NEUROSCIENTIFIC INTERPRETATION OF CROSS-MODAL ALIGNMENT

To provide a comprehensive assessment of the learned representations and validate their biologi-
cal plausibility, we employ the “Stimulus Reconstruction” method Mesgarani & Chang| (2012), a
foundational approach in auditory neuroscience to quantify neural encoding. We adopt the pseudo-
reconstruction framework from |Défossez et al.| (2023) to reconstruct audio Mel spectrograms from
the aligned EEG embeddings (Eaignea), analyzing the results both qualitatively and quantitatively.
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Figure 4: This figure compares the performance of the full MindMix model with its unimodal (EEG-
Only) counterpart to isolate the performance gain from our cross-modal alignment strategy.
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Figure 5: Neuroscientific Interpretability Analysis. (a) Mel Spectrogram Reconstruction. (b) Spatial
Attention Topography.

As illustrated in Figure [5fa), MindMix reconstructions faithfully capture fine-grained harmonic
structures, whereas these details are blurred in the LaBraM variant and the baseline method. Quanti-
tatively, MindMix achieves PCC scores of 0.88 (DTU) and 0.91 (KUL), substantially outperforming
baselines (e.g., 0.67 and 0.61). Crucially, this high fidelity provides direct evidence that MindMix
successfully encodes the spectro-temporal receptive fields of the auditory cortex, mapping neural
activity accurately back to acoustic features.

To further investigate the physiological basis of these reconstructions, we visualized the spatial
attention weights of the EEG encoder. As shown in Figure[5|b), the model exhibits a distinct, high-
intensity activation cluster in the left temporal region. This distribution is neuroscientifically signif-
icant: it corresponds precisely to the primary auditory cortex and aligns with the well-established
left-hemisphere lateralization for speech processing |[Défossez et al.| (2023). The absence of high
weights in the frontal pole further confirms that the model prioritizes genuine neural signatures over
ocular artifacts.

5 CONCLUSION

This paper presents the first large-scale investigation into multimodal auditory brain decoding us-
ing paired EEG and audio data. We introduce MindMix, a novel foundation model featuring our
CALRA module, which enables deep alignment between neural signals and sound. Our extensive
experiments demonstrate that MindMix consistently and significantly outperforms SOTA baselines
across a diverse set of downstream tasks, establishing a new and robust benchmark for the field. By
successfully learning generalizable representations, this work significantly advances the capabilities
of non-invasive BCIs and lays a critical foundation for understanding the interplay between neural
and audio signals. While our results highlight the immense potential of this approach, we also un-
derscore that the current scarcity of large-scale paired EEG-audio corpora is a primary bottleneck
for the field, precluding a full investigation into the scaling laws of such foundation models. Future
research will focus on scaling the MindMix framework to leverage increasingly larger datasets, with
the goal of further advancing this field.
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6 ETHIC STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal expreci-
sions were included. All data sets used were sourced in accordance with relevant usage guidelines,
to ensure no privacy violation. We have taken care not to achieve bias or discriminatory results in
our research process. No personally identifiable information was used and no experiments were con-
ducted that could raise privacy or security concerns. We are committed to maintaining transparency
and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and model have been made publicly available in an anonymous repository to facilitate replication and
verification, the experimental setup, including training steps, model configurations, and hardware
details, is described in detail in the paper, We have also provided a full description of implementation
description, to assist others in reproducing our experiments.

Additionally, all EEG datasets used in the paper, such as KUL, DUT, and ESAA etc, are publicly
available, ensuring consistent and reproducible evaluation results.

We believe these measures will allow other researchers to reproduce our work and further advance
the field.
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A APPENDIX

A.1 DATASET DESCRIPTION

Stage 1: Unimodal Pre-training Corpus. For the initial unimodal pre-training stage, designed
to build a robust EEG encoder, we assembled a large-scale and diverse corpus totaling over 3,500
hours of EEG data from nine public datasets. These datasets span a wide range of BCI paradigms
and clinical applications, ensuring that the learned representations are generalizable and not biased
towards a specific task. The collection includes:

¢ BCI-IV-2A [Tangermann et al.| (2012) and HGD |Schirrmeister et al.| (2017): Widely used
motor imagery datasets.

* OpenBMI Lee et al.|(2019): A large-scale dataset for various BCI paradigms.
« EEGMat Zyma et al.|(2019): A benchmark for mental workload analysis.
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e TUEP and TUEYV [Veloso et al.| (2017): The Temple University Hospital EEG Corpus,
containing extensive clinical data for epilepsy and event detection.

* HMCSleep |Alvarez] (2021), CAPSleep [Terzano et al.| (2001), and CMBMIT |Shoeb
(2009): Large public corpora for sleep stage analysis.

The unimodal pre-training of our EEG encoder utilizes over 3,500 hours of data, establishing a sub-
stantial foundation in terms of scale. For context, this exceeds the pre-training corpus of several
notable EEG foundation models, such as LaBraM ( 2,500 hours) and EEGPT ( 200 hours), under-
scoring the large-scale nature of our unimodal representation learning.

Stage 2: Multimodal Alignment Corpus. In the second stage, we focused on learning the crucial
alignment between neural and acoustic representations. For this, we curated a multimodal corpus
of over 100 hours of paired EEG and audio data from seven distinct datasets. This corpus features
diverse auditory stimuli, including music, attended speech, and naturalistic story listening. The
datasets include:

* ds004356 Shan et al.|(2024) and zenodo_4518754 Mundanad et al.[(2021): Publicly avail-
able datasets featuring subjects listening to music or competing speech streams in AAD
paradigms.

* zenodo_10260082 Thornton et al. (2023): An additional EEG-audio dataset for speech
AAD tasks.

¢ Brennan 2018 Brennan & Hale| (2019), Broderick 2018 |Broderick et al.| (2018)), and Le
Petit Prince Momenian et al| (2024): Datasets containing EEG recordings of subjects
listening to naturalistic stories, providing rich, continuous audio stimuli.

Stage 3: Downstream Task Datasets. We evaluate our model on three distinct task families:

* Auditory Attention Decoding (AAD): Identifying which of two competing speech
streams a person is attending to. Datasets: KUL |Das et al.[(2016), DTU [Fuglsang et al.
(2017), and ESAA |Li et al.| (2022]).

* Emotion Analysis: Recognizing emotional states from EEG while listening to affective
stimuli. Datasets: PME4 |Chen et al.|(2022) and HR-EEG4EMO Becker et al.[(2017).

* Music Retrieval: A cross-modal task designed to test the ability to identify the correct mu-
sic piece corresponding to an EEG segment. Dataset: MAD-EEG |Cantisani et al.|(2019).

We strictly enforced subject independence across all three stages of our training pipeline to prevent
any form of data leakage. The subjects in the downstream test sets (e.g., KUL, DTU, ESAA) were
never seen during the Unimodal Pre-training (Stage 1) or Multimodal Alignment (Stage 2) stages.
The datasets used in Stages 1 and 2 contain entirely distinct participant cohorts from those in the
downstream evaluation datasets.

A.2 DATA PREPROCESSING

A standardized preprocessing pipeline was applied across all datasets for consistency. The specific
steps and justifications are detailed below:

* EEG Data Preprocessing:

— Filtering: Raw EEG signals were bandpass-filtered between 1.0 Hz and 40.0 Hz using
a zero-phase (forward-backward) 4th-order Butterworth filter to isolate neural activity
in relevant frequency bands and reduce high-frequency noise and slow drifts.

— Resampling: The filtered signals were then downsampled to a uniform sampling rate
of 200 Hz.

— Epoching: Continuous data were segmented into non-overlapping 2-second epochs.

— Normalization: Each 2-second epoch was normalized independently on a per-
channel basis using z-score standardization (subtracting the epoch’s mean and dividing
by its standard deviation). This segment-wise normalization prevents any data leakage
between training and test sets.
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Table Al: Pipeline Sensitivity Analysis. Comparison of baseline performance when fine-tuned
using our preprocessing pipeline (1-40 Hz) versus their native pipelines. The drop in performance
using our pipeline confirms the distribution shift, justifying our choice to use native pipelines for
baselines in the main comparison.

Model Dataset

Acc. (Our Pipeline) Acc. (Native Pipeline)

Task: Emotion Analysis (Metric: Accuracy)

BENDR EEG4EMO 0.6051 £0.019 0.6458 £ 0.015
BIOT EEG4EMO 0.5615 £ 0.027 0.6352 £ 0.023
EEGPT EEG4EMO 0.6527 £ 0.064 0.7129 £0.072
CBraMod EEG4EMO 0.6680 £+ 0.083 0.7295 £ 0.082
LaBraM EEG4EMO 0.6701 £+ 0.085 0.7285 £ 0.078
Task: Music Retrieval (Metric: Duo Accuracy)
BENDR MAD-EEG 0.5844 + 0.054 0.6235 £ 0.048
BIOT MAD-EEG 0.6042 4+ 0.042 0.6485 £ 0.052
EEGPT MAD-EEG 0.7311 £0.074 0.7887 £ 0.065
CBraMod MAD-EEG 0.7007 £ 0.075 0.7582 £ 0.082
LaBraM MAD-EEG 0.7554 £+ 0.066 0.8011 £ 0.069

— Artifact Handling: We relied on the dataset-level denoising (e.g., EOG/EMG artifact
removal) provided by the original authors of the public datasets we used (see Table 1)
and did not apply additional artifact removal algorithms (e.g., ICA).

— Bad-Channel Policy: We used all channels provided in the original datasets. Our
channel-independent patching strategy combined with learnable spatial embeddings
allows the model to handle heterogeneous channel configurations robustly, without
the need for explicit bad-channel detection or interpolation.

¢ Audio Data Preprocessing:

— Resampling: Raw audio waveforms were resampled to 16 kHz (mono).

— Epoching & Normalization: To match the EEG segments, audio was segmented into
2-second epochs. Each audio epoch was normalized by its peak absolute value to
ensure a consistent amplitude scale.

Justification for Pipeline: We intentionally chose the 1-40 Hz bandpass to isolate relevant neural
components. As shown in Table [AT] applying this pipeline to foundation models pretrained on
different distributions causes a significant performance drop. Thus, to ensure a rigorous comparison:

* Foundation Model Baselines (e.g., LaBraM, CBraMod) were fine-tuned using their native
preprocessing pipelines (e.g., 0.1-70 Hz for LaBraM, 0.3-75 Hz for CBraMod) to avoid
unfair penalties from distribution shift.

e MindMix and Task-Specific Models (e.g., DARNet, DBPNet), which are trained from
scratch or adapted to our domain, utilized our standardized 1-40 Hz pipeline.

A.3 IMPLEMENTATION DETAILS

Implementation Details. All experiments were conducted in PyTorch on a cluster of 8 NVIDIA
A6000 GPUs. We used the AdamW optimizer (8; = 0.9, 82 = 0.95, weight decay=0.05) with
a cosine learning rate schedule and a 10-epoch linear warmup. The peak learning rate was set to
1 x 10~* for the pre-training and alignment stages, and 1 x 10~° for the downstream fine-tuning
stage. For complete reproducibility, detailed hyperparameter configurations for the EEG encoder,
CALRA module, and the optimization process are listed in Table A2. Batch sizes for the three stages
were 512, 256 and 64, respectively; The temperature parameter 7 in contrastive loss was a learnable
logit scale, initialized to correspond to 7 = 0.07. All models were trained until convergence based
on the performance of the validation set. To assess practical feasibility, we also benchmarked model
complexity and inference latency, summarized in Table A3.
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Computational Cost Analysis. We detail the pre-training budget to address concerns regarding
resource usage. Our training was conducted on NVIDIA RTX A6000 GPUs. The total computa-
tional budget for the foundation model phases was approximately 240 GPU hours:

e Stage 1 (Unimodal Pre-training): Utilized 8 GPUs for ~20 hours (= 160 GPU hours).
e Stage 2 (Multimodal Alignment): Utilized 4 GPUs for ~20 hours (=~ 80 GPU hours).

For comparison, the recent strong baseline CBraMod |Wang et al.| (2025) reports using 4 NVIDIA
RTX A5000 GPUs for approximately 5 days, equating to ~ 480 GPU hours. MindMix achieves
superior performance while requiring only ~50% of the pre-training duration of this SOTA baseline,
demonstrating significant training efficiency.

Negative Sampling Policy. We uniformly utilize In-Batch Negative Sampling throughout our
training. However, the composition of the batches differs between stages to address specific goals:

» Stage 2 (Multimodal Alignment): We utilize Global Shuffling across the entire 100+
hour corpus. This means that within any given batch, the negatives (other samples in the
batch) are naturally drawn from all subjects and all distinct auditory materials. This strictly
satisfies your criteria during the alignment phase, forcing the model to learn robust, subject-
invariant features.

o Stage 3 (Downstream Fine-tuning): We construct batches using data from the same sub-
ject but across different trials. This allows the model to optimize for individual neural
distributions. Even here, the negative sampling is rigorous: for Retrieval tasks, negatives
are drawn from different trials (different stories/music); for the AAD task, the negative is
implicitly the simultaneous unattended stream (a "hard negative” with identical recording
conditions but different semantic content).

Model Complexity and Stage-wise Training Dynamics. To provide transparency regarding
model scale and computational cost, we detail the parameter breakdown of MindMix across its
three training stages in Table A4.

» Stage 1 (Unimodal Pre-training): We focus exclusively on training the EEG Encoder (=~
6M params) to learn generic neural representations.

* Stage 2 (Multimodal Alignment): This stage involves end-to-end fine-tuning of the en-
tire framework (EEG Encoder + CALRA + Audio Encoder), bringing the total trainable
parameters to =~ 97M. This allows for deep adaptation of both modalities.

» Stage 3 (Downstream Fine-tuning): We perform comprehensive fine-tuning of the full
model (including the Task Head) to ensure optimal adaptation to specific downstream tasks.

A.4 EVALUATION METRICS
In this section,we introduce the details of the metrics used in our evaluation.

» Balanced Accuracy is a performance metric suitable for imbalanced datasets, defined as
the average of recall (sensitivity) obtained on each class. We use it for classification tasks
(AAD and Emotion Analysis).

* Weighted F1-score is the weighted average of the F1-score for each class, where the score
for each class is weighted by the number of true instances for that class. This metric
accounts for class imbalance.

* Duo/Trio Accuracy is used for the music retrieval task. It measures the standard classi-
fication accuracy in a forced-choice task where the model must select the correct audio
stimulus from two (Duo) or three (Trio) options.

A.5 ROBUSTNESS ANALYSIS: RIGOROUS BETWEEN-TRIAL EVALUATION

Motivation and Protocol. While the standard within-trial evaluation protocol (randomly splitting
segments from the same trial) is widely used for benchmarking |Yan et al.| (2024b)); N1 et al.| (2024)),
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Table A2: Detailed Hyperparameter Configuration. Specific architectural and training hyperpa-

rameters used for MindMix fine-tuning.

Category Hyperparameter Value
Transformer Layers 12
Embedding Dimension 200
EEG Encoder Attention Heads 10
Feed-forward Dimension 800
Type 3-layer 1D CNN
Patch Encoder Patch Dimension 200
Output Channels 8
Input/Output Dimension 256
Low-Rank Dimension 128
CALRA Module Attention Heads 4
FFN Hidden Dimension 512
Type AdamW
Fine-tuning Learning Rate 1x107°
Optimizer Weight Decay 0.01
Adam Betas (0.9, 0.95)
Warmup Epochs 3

Table A3: Efficiency Analysis. Model complexity and inference latency benchmarked on a single
NVIDIA A6000 GPU (Batch Size=1).

Model Params (M) FLOPs (G) Latency (ms)
EEGNet 0.003 ~ 0.01 ~1.9
LaBraM-Base 5.8 ~ 0.83 ~ 10.4
MindMix (Ours) 97 ~ 7.71 ~ 39.6

recent studies suggest it may introduce data leakage due to temporal correlations in EEG signals
Puffay et al.|(2023). To rigorously evaluate the robustness of MindMix and rule out potential over-
fitting to trial-specific artifacts, we implemented a strict Between-Trial Protocol. In this setting,
the training and testing sets are constructed from disjoint trials (e.g., different stories or recording
sessions), ensuring zero temporal overlap.

Results and Analysis. We re-evaluated MindMix and key baselines (DBPNet, DARNet, LaBraM,
CBraMod) under this rigorous protocol on the KUL, DTU, and ESAA datasets. The results are
summarized in Table AS. As expected, the absolute performance metrics for all models decrease
compared to the within-trial setting (Table 2) due to the increased difficulty of generalizing to un-
seen trials. However, MindMix consistently maintains a significant performance advantage over all
baselines. For instance, on the KUL dataset, while the strong baseline CBraMod drops to 77.01%,
MindMix achieves 98.76%, demonstrating that our model’s superiority stems from genuine neuro-
acoustic alignment rather than artifact exploitation.

A.6 BASELINE MODELS

Here, we introduce the details of the baselines for performance evaluation. We include both task-
specific state-of-the-art models and state-of-the-art unimodal EEG foundation models.

¢ EEGNet|Lawhern et al.| (2018) is a compact convolutional neural network for EEG-based
BClIs, utilizing depthwise and separable convolutions for efficient feature extraction.
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Table A4: Parameter Breakdown and Stage-wise Training Strategy. The table details the static
parameter count for each module and specifies the trainable status across the three pipeline stages.

Module Component Static Params Stage 1 Stage 2 Stage 3
EEG Encoder 12-layer Transformer 6 M Trained Fine-tuned Fine-tuned
CALRA Alignment Module 1M N/A Trained Fine-tuned
Audio Encoder Wav2Vec 2.0 (Base) 95 M N/A Fine-tuned Fine-tuned
Task Head Classifier <1M N/A N/A Trained
Total Trainable ~6M ~97TM ~97TM

Table AS5: Robustness Evaluation under Between-Trial Protocol. Comparison of MindMix
against SOTA baselines using strict trial-disjoint splitting to prevent data leakage. Despite the chal-
lenging setting, MindMix maintains superior performance across all datasets.

Method KUL DTU ESAA
Balanced Acc. Weighted F1 Balanced Acc.  Weighted F1 Balanced Acc. Weighted F1
DBPNet 0.6829 +0.092 0.6620 +0.104 0.6141 +£0.074 0.5887 +£0.077 0.5758 +0.071  0.5220 4 0.075
DARNet  0.6536 +0.097 0.6167 +0.112 0.5918 +0.089 0.5420 +0.104 0.5676 +0.076  0.5454 4+ 0.078
LaBraM 0.7521 £0.085 0.7293 £0.096 0.6475+0.092 0.6214 +0.085 0.6789 +0.082 0.6918 + 0.072
CBraMod 0.7701 £0.091 0.7356 £0.101 0.6321 £0.097 0.6079 £0.099 0.6932 £0.091 0.6901 £+ 0.095
MindMix 0.9876 +0.049 0.9613 +£0.054 0.9543 £0.035 0.9351 +0.032 0.9774 +£0.025 0.9719 4+ 0.031

* DBPNet|Ni et al|(2024) is a dual-branch parallel network designed specifically for auditory

attention detection, fusing temporal and frequency features.

DARNet |Yan et al.| (2024b) is a dual attention refinement network with spatiotemporal
construction for auditory attention detection.

MusicAAD Niu et al.|(2024) is a recent model designed for music-oriented auditory atten-
tion detection from EEG.

AADNet|Nguyen et al.|(2025) is an end-to-end deep learning model specifically proposed
for the auditory attention decoding task.

BENDR [Kostas et al.|(2021) is an early EEG foundation model that uses a Transformer
architecture and a contrastive self-supervised learning task.

BIOT |Yang et al.| (2023)) is a biosignal Transformer model for cross-data learning, pre-
trained on a diverse set of biosignal datasets.

EEGPT Wang et al| (2024b) is a pretrained transformer for universal representation of
EEG signals based on a masked reconstruction objective.

LaBraM Jiang et al.| (2024)) is a large brain model that learns generic representations by
predicting neural tokens of masked EEG patches.

CBraMod [Wang et al.| (2025) is a criss-cross brain foundation model for EEG decoding
that models spatial and temporal dependencies separately.

A.7 WINDOW SIZE SENSITIVITY ANALYSIS

As shown in Table A6, performance consistently improves with longer windows (integrating more

context)

and decreases with shorter ones. While 5s windows yield marginally higher accuracy, we

retain the 2s window as the optimal trade-off for system responsiveness.

A.8 GENERALIZATION ON NON-AUDITORY TASKS

To verify the generalization capability of our EEG-Only encoder beyond the auditory domain, we
benchmarked it on two standard non-auditory BCI tasks: TUAB |Veloso et al.| (2017) (abnormal
detection) and BCI Competition IV-2b [Tangermann et al.| (2012) (motor imagery). We followed
the standard evaluation protocols for both tasks and compared our model against reported SOTA
baselines.
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Table A6: Window Size Sensitivity Analysis. Performance comparison across different decision
window lengths (1s, 2s, 5s). Longer windows generally improve performance due to increased
context, but the 2s window offers the best efficiency-accuracy trade-off.

Dataset Window Size Balanced Accuracy Standard Deviation

1 second 0.8535 =+ 0.099
HR-EEG4EMO 2 seconds 0.8878 + 0.045

5 seconds 0.8917 + 0.062

1 second 0.6998 + 0.107
PME4 2 seconds 0.7256 +0.123

5 seconds 0.7290 +0.112

Table A7: Generalization on Non-Auditory Tasks. Performance comparison on TUAB (Abnormal
Detection) and BCIC-IV-2B (Motor Imagery). MindMix (Encoder-only) demonstrates SOTA-level

generalization capabilities.

Model Dataset Balanced Acc. Weighted F1

BENDR TUAB 0.7915 + 0.007  0.8522 4+ 0.004
BIOT TUAB 0.7844 +0.005 0.8854 4+ 0.003
EEGPT TUAB 0.8833 = 0.002  0.9432 4+ 0.001
LaBraM TUAB 0.8210 +0.003  0.8979 4+ 0.002
CBraMod TUAB 0.8289 +0.005 0.9018 4 0.002
MindMix (Encoder-only) TUAB 0.8545 4+ 0.004 0.9113 £ 0.005
BENDR BCIC-IV-2B  0.6806 £+ 0.007  0.6801 £ 0.007
BIOT BCIC-IV-2B  0.5524 £ 0.010  0.5516 £ 0.010
EEGPT BCIC-IV-2B  0.6893 £+ 0.009  0.6890 £ 0.009
LaBraM BCIC-IV-2B  0.6610 £ 0.011  0.6608 £ 0.011
CBraMod BCIC-IV-2B  0.6910 £+ 0.008  0.6898 £ 0.008
MindMix (Encoder-only) BCIC-IV-2B  0.6943 +£0.010 0.6921 + 0.010

Results and Analysis. The results are summarized in Table AS.

* On the TUAB dataset, our encoder achieves a Balanced Accuracy of 0.8545, securing the
second-best performance among all comparison models, surpassing LaBraM (0.8210) and
CBraMod (0.8289).

* On the BCIC-1V-2B dataset, our encoder achieves the highest performance (0.6943) among
all listed foundation models, outperforming EEGPT (0.6893) and CBraMod (0.6910).

These results confirm that while MindMix is specialized for auditory decoding, its underlying EEG
encoder learns highly robust and generalizable features effective for diverse BCI paradigms.

A.9 ROBUSTNESS AND EFFICIENCY ANALYSIS

To comprehensively assess the practical feasibility of MindMix in real-world scenarios, we con-
ducted two critical analyses: (1) Cross-Dataset Generalization to evaluate robustness against se-
vere domain shifts, and (2) Data Efficiency Analysis to determine performance stability in low-data
regimes.

Cross-Dataset Generalization (Zero-shot Transfer). To assess robustness to domain shifts with-
out task-specific adaptation, we performed a cross-dataset evaluation. Specifically, we trained the
model on the KUL dataset (Dutch stimuli) and evaluated it directly on the DTU dataset (Danish
stimuli) without any fine-tuning. This represents an extremely challenging setting involving shifts
in subjects, acquisition devices, and languages.

The results are summarized in Table A8. As expected, all models exhibit a performance drop com-
pared to within-dataset training. However, MindMix achieves an accuracy of 56.55%, which is sig-
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nificantly higher than the random chance level (50%) and outperforms both the EEGNet (53.16%)
and LaBraM (51.16%) baselines under the same protocol. This indicates that MindMix learns more
robust and transferable neuro-acoustic representations than unimodal baselines, likely benefiting
from its explicit spatial encoding strategy (&) that effectively handles heterogeneous electrode vari-
ations.

Table AS8: Cross-Dataset Generalization (KUL — DTU). Zero-shot transfer performance where
models trained on KUL are tested on DTU without fine-tuning. MindMix demonstrates superior
robustness to domain shifts compared to baselines.

Model Transfer Task Accuracy F1 Score
EEGNet KUL — DTU 0.5316 0.5281
LaBraM-Base KUL — DTU 0.5116 0.4987

MindMix (Ours) KUL — DTU 0.5655 0.5492

Data Scaling and Efficiency Analysis. To evaluate data efficiency, we analyzed performance
degradation on the HR-EEG4EMO dataset by varying the training set size from 25% to 100%, while
keeping the validation and test sets fixed. We employed a rigorous subject-specific stratified sam-
pling protocol: for every subject, we randomly sampled subsets (25%, 50%, 75%) of their specific
training trials.

As shown in Table A9, MindMix demonstrates exceptional data efficiency. Notably, with only 50%
of the training data, MindMix (0.6942) effectively matches the full-data (100%) performance of
EEGNet (0.6981). With 75% data, MindMix (0.7855) significantly surpasses the full-data perfor-
mance of the strongest unimodal baseline, LaBraM (0.7295). This flatness in the degradation curve
confirms that the robust cross-modal priors learned during our alignment stage significantly reduce
the dependency on large-scale subject-specific calibration data.

Table A9: Data Efficiency Analysis on HR-EEG4EMO. Performance (Balanced Accuracy) with
varying percentages of per-subject training data. MindMix outperforms full-data baselines even with
significantly reduced training samples.

Training Data % EEGNet LaBraM MindMix (Ours)
25% 0.6245 +£0.146 0.6184 £0.126 0.6307 =0.109
50% 0.6429 £0.131 0.6296 £ 0.113 0.6942 +0.127
75% 0.6875 £0.120 0.6769 +0.114 0.7855 +0.121
100% 0.6981 £0.111 0.7295 4+ 0.082 0.8878 4+ 0.045

B THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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