

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MINDMIX: A MULTIMODAL FOUNDATION MODEL FOR AUDITORY PERCEPTION DECODING VIA DEEP NEURAL-ACOUSTIC ALIGNMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Decoding complex auditory experiences from non-invasive EEG is a rapidly emerging field that holds significant promise for advancing both fundamental neuroscience and human-machine interaction technologies. Recent developments in EEG foundation models have yielded powerful neural representations that are promising for auditory decoding. However, the effectiveness of these models remains fundamentally constrained by their limited integration with acoustic stimulus information. Specifically, the lack of deep coupling between neural signals and auditory inputs hampers the models' ability to generalize effectively across diverse auditory tasks. **To bridge this gap, we introduce MindMix, a multimodal foundation model designed to bridge the gap between unimodal EEG foundations and task-specific auditory decoders.** MindMix employs a two-stage training strategy: first, a high-capacity EEG encoder is pre-trained on over 3,000 hours of EEG data to learn generalized EEG features that can transfer across tasks and subjects. Second, the model learns the neural-acoustic mapping using over 100 hours of paired data, facilitated by our novel Cross-Attention Low-Rank Alignment module, which facilitates fine-grained, cross-modal information integration. Experimental results demonstrate that MindMix substantially surpassing existing baselines across a range of auditory decoding tasks, including auditory attention decoding, auditory emotion recognition, and cross-modal retrieval. This work thus establishes a foundation for future research in multimodal brain decoding and auditory brain-computer interfaces. Our code is available at <https://anonymous.4open.science/r/MindMix-654B/>.

1 INTRODUCTION

Auditory perception plays a central role in how humans interact with the world, shaping language understanding, environmental awareness, and social communication Opoku-Baah et al. (2021). Decoding the brain's representation of auditory experiences is a core pursuit in cognitive neuroscience and a key capability for brain-computer interface (BCI) systems Mahrooz et al. (2024). Recent advances show that brain signals contain rich acoustic and semantic information, enabling the direct interpretation of internal auditory experiences from neural activity Li et al. (2023); Chen et al. (2024); Mathis et al. (2024). Among available techniques, electroencephalography (EEG) is widely used for its non-invasiveness and high temporal resolution Défossez et al. (2023); Li et al. (2024); Liu et al. (2024). However, decoding rich, naturalistic auditory experiences is fundamentally hindered by EEG's inherent limitations: a low signal-to-noise ratio and high inter-subject variability Piastra et al. (2021); Bonetti et al. (2024); Oxenham & Kreft (2016).

Historically, these challenges were compounded by task-specific modeling strategies that showed poor generalization across tasks and subjects Crosse et al. (2016); Yan et al. (2024b;a). A recent paradigm shift towards EEG foundation models, such as EEGPT Wang et al. (2024b) and LaBrA M Jiang et al. (2024), has begun to address this by learning transferable representations from massive unlabeled EEG datasets. However, their effectiveness in auditory decoding is fundamentally limited by their unimodal nature. When trained exclusively on EEG signals, their representations are not optimized to align with the underlying structure of acoustic information, as they lack exposure to corresponding auditory stimuli. This highlights a critical research gap: the lack of a unified frame-

054 work capable of learning well-aligned multimodal representations for robust and versatile auditory
 055 neural decoding Poziomska et al. (2024).
 056

057 To bridge this gap, we introduce MindMix, the first multimodal foundation model specifically de-
 058 signed to learn a deeply aligned neural-acoustic representation from large-scale, paired EEG-audio
 059 data. The design of MindMix directly addresses the challenges of cross-modal learning. Its archi-
 060 tecture features two key innovations: (1) a high-capacity EEG encoder, trained from scratch with
 061 a multi-task objective to robustly capture complex neural dynamics from noisy signals, and (2) a
 062 novel Cross-Attention Low-Rank Alignment (CALRA) module, which enables fine-grained align-
 063 ment between neural patterns and acoustic features. CALRA moves beyond simple projection-based
 064 alignment to facilitate deep interaction between modalities. The entire framework is optimized end-
 065 to-end via a contrastive learning objective on over 100 hours of paired data, which explicitly forces
 066 the model to map corresponding EEG-audio pairs to nearby points in a shared embedding space.
 067 Our main contributions are summaris ed as follows:

- 068 • We introduce MindMix, the first multimodal foundation model designed to learn fine-
 069 grained and deeply aligned neural-acoustic representations, enabling robust performance
 070 across diverse auditory decoding tasks.
- 071 • We propose CALRA, a novel neural architecture for cross-modal alignment that enables
 072 fine-grained and auditory-type-aware interaction between neural and acoustic modalities.
- 073 • Extensive experimental results on MindMix demonstrate superior cross-modal alignment,
 074 leading to significantly improved neural decoding performance across a range of auditory
 075 perception tasks, including auditory attention decoding, auditory emotion recognition, and
 076 cross-modal music retrieval.

081 2 RELATED WORK

082 2.1 AUDITORY PERCEPTION DECODING FROM BRAIN SIGNALS

083 Early work on auditory decoding focused on reconstructing speech features from brain signals us-
 084 ing linear models like regression or temporal response functions O’Sullivan et al. (2015); Crosse
 085 et al. (2016); Ferrante et al. (2024); Dahan et al. (2025). While effective in controlled settings, these
 086 methods struggle with naturalistic scenarios due to their reliance on clean stimuli and long decision
 087 windows Mesgarani & Chang (2012). More recent deep learning models offer greater flexibility,
 088 with applications in auditory attention classification Su et al. (2022), speech/music discrimination
 089 Wang et al. (2024a); Niu et al. (2024), and affective state recognition Hu et al. (2024). However,
 090 these models remain predominantly task-specific. They are typically trained and evaluated in isola-
 091 tion, exhibit poor generalization across datasets or subjects Poziomska et al. (2024), and fail to scale
 092 to diverse, real-world listening conditions.

093 2.2 EEG FOUNDATION MODELS FOR NEURAL REPRESENTATION LEARNING

094 To address the limitations of task-specific models, recent work has explored EEG foundation models,
 095 which learn general-purpose representations from large-scale datasets. Using Transformer-based ar-
 096 chitectures and self-supervised objectives, models like EEGPT Wang et al. (2024b), LaBraM Jiang
 097 et al. (2024), Neuro-GPT Cui et al. (2024) and CBraMod Wang et al. (2025) have achieved strong
 098 performance on clinical benchmarks such as epilepsy detection or sleep staging. However, a funda-
 099 mental limitation of these models for auditory decoding is their lack of exposure to auditory stimuli.
 100 Pretrained exclusively on EEG signals, their representations are not optimized to align with acoustic
 101 structures, resulting in poor transferability to auditory decoding tasks. MindMix is explicitly de-
 102 signed to bridge this gap: by incorporating paired EEG-audio data during pretraining, it learns a
 103 shared embedding space that effectively aligns these modalities.

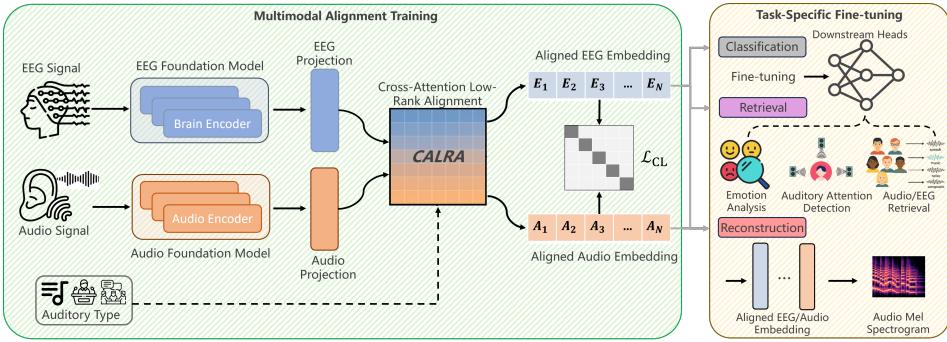


Figure 1: Overview of the proposed MindMix framework, which consists of an EEG encoder trained from scratch, a pretrained audio encoder, and our proposed CALRA module for fine-grained cross-modal alignment. Through large-scale pretraining with a contrastive objective, MindMix learns a unified EEG-audio representation space. This shared embedding facilitates strong generalization to a wide range of downstream auditory decoding tasks.

3 METHODOLOGY

3.1 OVERVIEW

We introduce MindMix, a multimodal foundation model that learns a unified embedding space to align EEG signals with corresponding auditory stimuli. As illustrated in Figure 1, given an input pair $(S_{\text{EEG}}, S_{\text{Audio}})$, MindMix uses a dual-stream architecture with two modality-specific encoders. These encoders produce feature embeddings (E_{proj} , A_{proj}), which are then processed by our core innovation, the CALRA module. CALRA performs deep interaction between the modalities, conditioned on the auditory type (e.g., speech, music), to produce the final aligned embeddings (E_{aligned} , A_{aligned}). The entire framework is optimized end-to-end via a contrastive learning objective, \mathcal{L}_{CL} Chen et al. (2020), which maximizes the similarity between true (E_{aligned} , A_{aligned}) pairs while minimizing it for non-corresponding pairs within each training batch.

3.2 MODALITY-SPECIFIC ENCODERS

EEG Encoder. To address the core challenges of EEG signals, high inter-subject variability and heterogeneous channel configurations, the EEG encoder, f_{EEG} , is designed as a novel high-capacity architecture. As illustrated in Figure 2, this encoder is developed during the unimodal pre-training stage using a multi-task, self-supervised objective.

Our approach employs a channel-independent patching strategy to robustly handle heterogeneous electrode configurations. Given a raw signal $S_{\text{EEG}} \in \mathbb{R}^{C \times T}$ (where the channel count C varies across datasets), we segment each channel independently into K fixed-length temporal patches. These patches are passed through a temporal 1D convolution to obtain the initial embeddings \tilde{X} . Crucially, to learn discrete neural representations, we first quantize these initial embeddings \tilde{X} into discrete neural tokens $v \in \mathcal{V}$ using a shared codebook. Following quantization, we construct the final input embedding E_{patch} by adding learnable positional information to these tokens:

$$E_{\text{patch}} = v + \bar{\mathcal{T}} + \bar{\mathcal{E}} \quad (1)$$

where $\bar{\mathcal{T}}$ represents the learnable temporal embedding, which is added to each patch to indicate its relative temporal position index (1 to K) within the epoch; and $\bar{\mathcal{E}}$ represents the spatial (channel) embedding, implemented as a learnable lookup table that maps standard 10-20 system electrode identities (e.g., 'Cz', 'Pz') to unique vectors. This spatial embedding $\bar{\mathcal{E}}$ allows the model to distinguish the anatomical source of each patch regardless of the varying channel count C .

The main innovation of this stage is our unique pretraining methodology, which integrates two carefully designed self-supervised tasks. First, patch embeddings are quantized into discrete neural tokens $v \in \mathcal{V}$ using a shared codebook, which is optimized via a quantization loss $\mathcal{L}_{\mathcal{Q}}$. Subsequently, we compute two pretraining objectives:

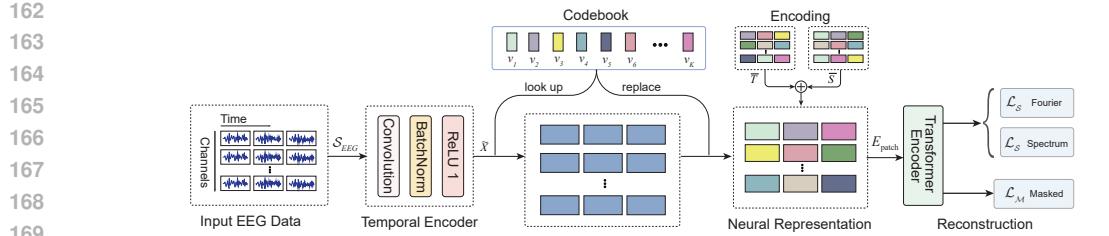


Figure 2: The multi-task pre-training architecture of the EEG encoder. The framework performs two tasks in parallel: one branch (top) reconstructs the Fourier spectrum from the full neural representations (\mathcal{L}_S), while the main branch (bottom) performs masked token prediction (\mathcal{L}_M) to learn robust features.

- **Masked Token Prediction:** A portion of the patch embeddings are randomly masked. A main Transformer encoder Vaswani et al. (2017) then predicts the original neural tokens of the masked patches from the visible ones, supervised by a masked modeling loss:

$$\mathcal{L}_M = - \sum_{j \in \mathcal{M}} \log p(v_j | \tilde{X}_{\text{visible}}) \quad (2)$$

where \mathcal{M} is the set of masked patch indices.

- **Spectrum Reconstruction:** Concurrently, the unmasked patch embeddings are passed through a separate, smaller Transformer encoder. Its output reconstructs the Fourier spectrum (amplitude A and phase ψ) of the original patches, supervised by a spectrum prediction loss:

$$\mathcal{L}_S = \mathbb{E}_j \left[\|\tilde{A}_j - A_j\|^2 + \|\tilde{\psi}_j - \psi_j\| \right] \quad (3)$$

The total pre-training loss is a weighted sum of these objectives. The main Transformer from the masking task serves as the backbone for f_{EEG} . For multimodal alignment, we apply mean pooling over its output sequence and project it to produce the initial EEG embedding, E_{proj} .

Audio Encoder. Motivated by the strong performance of self-supervised pre-trained speech processing models Wang et al. (2021); Kunešová et al. (2024), we utilize the pretrained Wav2Vec 2.0 model Baevski et al. (2020) as our audio encoder, f_{Audio} . For each audio clip, we extract the final hidden state sequence from the Transformer, apply mean-pooling to obtain a single vector representation, and pass it through a linear projection layer to produce the initial audio embedding, A_{proj} .

3.3 CROSS-ATTENTION LOW-RANK ALIGNMENT

The primary motivation for CALRA is to achieve a deep, robust semantic alignment capable of handling the unique challenges of auditory decoding. This task faces two specific hurdles: (1) the low signal-to-noise ratio and high non-linearity of EEG-audio mapping, for which standard “shallow projections” (like CLIP Radford et al. (2021)) are insufficient; and (2) the heterogeneity of stimuli (e.g., speech vs. music), where a uniform mapping fails to capture distinct neural response patterns. While “early fusion” methods (e.g., concatenation) could model these interactions, they break the dual-stream architecture required for efficient retrieval.

To bridge this gap, we propose CALRA, a global feature refinement module that implements a “refine-then-contrast” strategy. Instead of directly contrasting raw projections, CALRA injects deep, context-aware interactions into the embeddings before the loss calculation. Uniquely, it is designed to overcome the limitations of linear fusion by enforcing bilinear interactions in a shared bottleneck, allowing the model to capture fine-grained multiplicative dependencies that simple concatenation or co-attention cannot effectively model. The module consists of three synergistic components: a Type-specific Aligner to handle stimulus heterogeneity, a Bi-directional Cross-Attention mechanism for dynamic global context refinement, and a Shared Low-Rank Alignment to enforce deep bilinear fusion, which we detail below.

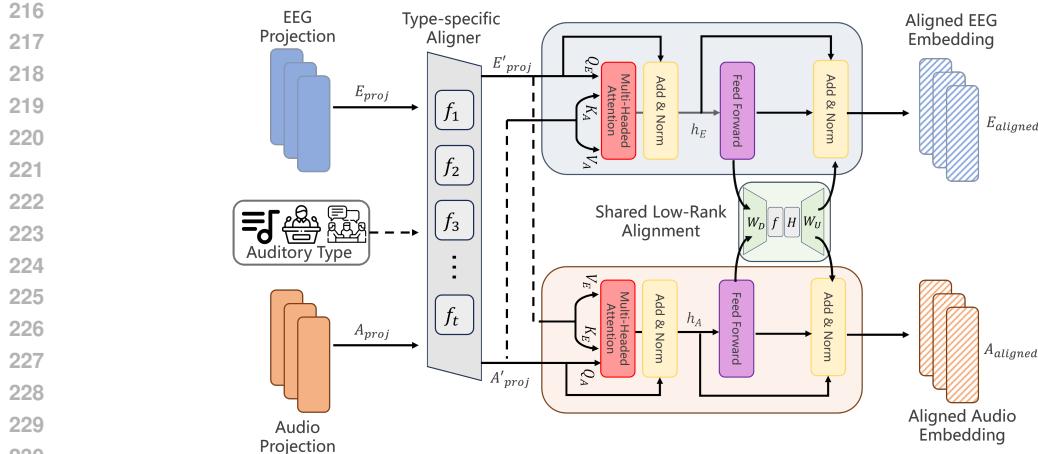


Figure 3: Overview of the proposed CALRA module. Given paired EEG and audio embeddings, CALRA performs auditory-type-specific alignment using multi-headed cross-attention and feed-forward networks. A shared low-rank bottleneck module further aligns the two modalities in a compact semantic space. The resulting aligned embeddings are used for contrastive pretraining, enabling robust cross-modal representation learning across diverse auditory conditions.

Type-specific Aligner. Given neural responses vary significantly for different types of auditory stimuli (e.g., speech vs. music), our aligner routes initial projections (E_{proj}, A_{proj}) through a learnable transformation f_k corresponding to the auditory type label k :

$$(E'_{proj}, A'_{proj}) = f_k(E_{proj}, A_{proj}) \quad (4)$$

This allows the model to adopt optimal alignment strategies for different auditory stimulus types.

Bi-directional Cross-Attention. Following type-specific alignment, CALRA utilizes a bi-directional cross-attention mechanism to enable each modality to dynamically integrate complementary global context from the other. **Unlike standard local token matching, we operate on the global projected embeddings to enforce holistic alignment.** Given the projected global vectors $E'_{proj} \in \mathbb{R}^{1 \times D}$ and $A'_{proj} \in \mathbb{R}^{1 \times D}$ (where D denotes the alignment dimension and the temporal dimension is aggregated via global pooling), this exchange occurs simultaneously:

- **Audio-to-EEG Alignment:** The EEG sequence (Q_E) retrieves relevant information from the audio sequence (K_A, V_A):

$$E'_{interacted} = \text{MultiHeadAttention}(Q_E, K_A, V_A) \quad (5)$$

- **EEG-to-Audio Alignment:** Symmetrically, the audio sequence (Q_A) retrieves neural features from the EEG sequence (K_E, V_E):

$$A'_{interacted} = \text{MultiHeadAttention}(Q_A, K_E, V_E) \quad (6)$$

Following standard practice in Transformer architecture Vaswani et al. (2017), residual connections and Layer Normalization are applied, yielding representations h_E and h_A . These are then passed to our Shared Low-Rank Alignment module.

Shared Low-Rank Alignment. To enforce semantic consistency, we employ a shared low-rank fusion mechanism. Unlike standard CLIP Radford et al. (2021) which relies on a shallow linear dot-product, we aim to capture the complex, non-linear dependencies between neural and acoustic features. By projecting h_E and h_A into a shared bottleneck and fusing them via an element-wise product (\odot), this module enforces a bilinear interaction:

$$E_{feedback} = W_{D,eeg}(H_{shared}(W_{U,eeg}(h_E) \odot W_{U,audio}(h_A))) \quad (7)$$

$$A_{feedback} = W_{D,audio}(H_{shared}(W_{U,eeg}(h_E) \odot W_{U,audio}(h_A))) \quad (8)$$

270 where $W_{U,\cdot}, W_{D,\cdot}$ are modality-specific projection layers, and H_{shared} is a shared non-linear layer.
 271 The final aligned embeddings are obtained by integrating this feedback via a residual connection:
 272

$$273 \quad E_{\text{aligned}}, A_{\text{aligned}} = \text{LayerNorm}(h_E + E_{\text{feedback}}), \text{LayerNorm}(h_A + A_{\text{feedback}}). \quad (9)$$

274 We chose this low-rank structure because it efficiently approximates computationally expensive tensor fusion operations Liu et al. (2018); Yu et al. (2017), enabling the model to capture rich multiplicative feature interactions Fukui et al. (2016); Zadeh et al. (2017). This is theoretically superior to simple linear combinations for disentangling the intricate correlations between brain signals and auditory stimuli. It also need to note that, this multiplicative fusion architecture differs fundamentally from parameter-efficient strategies like LoRA Hu et al. (2022), which employ low-rank matrices for additive weight adaptation rather than for modeling the joint distribution of multimodal features.
 275
 276
 277
 278
 279
 280

281 Finally, we distinguish our design from recent works like MGCA Wang et al. (2022) and CARZero
 282 Lai et al. (2024), which primarily focus on fine-grained local token matching or modifying the
 283 similarity scoring function. In contrast, CALRA operates as a pre-loss refinement step for global
 284 representations. By enhancing the embeddings themselves ($E_{\text{aligned}}, A_{\text{aligned}}$) rather than altering the
 285 loss mechanism, it preserves the training stability of standard contrastive learning while capturing
 286 deep, context-aware dependencies that simpler projections miss.
 287

288 3.4 PRE-TRAINING VIA CONTRASTIVE ALIGNMENT

289 We optimize the MindMix framework using a contrastive learning objective, inspired by CLIP Radford et al. (2021), on the final aligned embeddings. The goal is to maximize the cosine similarity of
 290 true EEG-audio pairs while minimizing it for incorrect pairs within a mini-batch. This is framed as
 291 a directed prediction problem where, for each EEG embedding, the model must identify its correct
 292 audio counterpart from all available options. This EEG-to-audio direction directly mirrors our down-
 293 stream decoding tasks and avoids the potential instability of aligning a single audio stimulus with its
 294 many possible neural responses. We use the InfoNCE loss, which is equivalent to a cross-entropy
 295 loss over the similarity scores, averaged over all samples in the batch:
 296

$$297 \quad \mathcal{L}_{\text{CL}} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\text{sim}(E_{\text{aligned},i}, A_{\text{aligned},i})/\tau)}{\sum_{j=1}^N \exp(\text{sim}(E_{\text{aligned},i}, A_{\text{aligned},j})/\tau)} \quad (10)$$

300 where $\text{sim}(u, v)$ is the cosine similarity and τ is a learnable temperature. Minimizing this objective
 301 jointly trains the entire framework (f_{EEG} , f_{Audio} , and CALRA), forcing the model to learn a seman-
 302 tically rich embedding space where neural activity is meaningfully aligned with auditory content.
 303

304 4 EXPERIMENTS

305 4.1 EXPERIMENTAL SETUP

306 **Datasets and Tasks.** Our experiments follow a three-stage pipeline: unimodal pre-training, multi-
 307 modal alignment, and downstream task fine-tuning. For pre-training, we leverage large-scale public
 308 corpora, including over 3,500 hours of general EEG data and over 100 hours of paired EEG-audio
 309 data (summarized in Table 1 and detailed in Appendix A.1). We evaluate MindMix’s generalization
 310 capabilities on a diverse set of downstream auditory decoding tasks, including Auditory Attention
 311 Decoding (on KUL, DTU, and ESAA), Emotion Analysis (on PME4 and HR-EEG4EMO), and Mu-
 312 sic Retrieval (on MAD-EEG). To ensure a fair evaluation, all downstream task datasets were held
 313 out from unimodal pre-training and multimodal alignment stages. Standardized data preprocessing
 314 protocols are detailed in Appendix A.2. For reproducibility, specific implementation details and the
 315 full hyperparameter configurations for the EEG encoder, CALRA module, and optimization process
 316 as well as our rigorous negative sampling policy (in Appendix A.3).
 317

318 **Evaluation Protocol** To ensure a fair and rigorous comparison with existing SOTA methods, we
 319 adopt the widely established standard evaluation protocols. For all downstream tasks, we conduct
 320 experiments using a subject-specific (within-subject) protocol, implemented via a strict 5-fold cross-
 321 validation scheme. In this setup, the data for each subject are randomly partitioned into 5 folds,
 322 using a 70%/10%/20% split for training, validation and testing within each fold. We report the
 323

324
325 Table 1: Overview of all datasets used across three training stages in our study.
326

Stage	Dataset	Hours	Channels	Modality	Paradigm
Stage 1: Unimodal Pre-training					
	BCI-IV-2A Tangermann et al. (2012)	13.4h	22	EEG Signal	Motor Imagery
	HGD Schirrmacher et al. (2017)	28.7h	133	EEG Signal	Motor Imagery
	OpenBMI Lee et al. (2019)	91.6h	62	EEG Signal	Motor Imagery
	EEGMat Zyma et al. (2019)	2.4h	20	EEG Signal	Workload Analysis
	TUEV Veloso et al. (2017)	631.8h	14	EEG Signal	Epilepsy Detection
	TUEV Veloso et al. (2017)	148.7h	8	EEG Signal	Event Classification
	HMCSleep Alvarez (2021)	582.5h	8	EEG Signal	Sleep Detection
	CAPSleep Terzano et al. (2001)	1004.5h	20	EEG Signal	Sleep Detection
	CMBMIT Shoeb (2009)	1060.9h	8	EEG Signal	Sleep Detection
	Total Hours:		3564.5h		
Stage 2: Multimodal Alignment Training					
	ds004356 Singh et al. (2024)	38.9h	34	EEG + Audio	Music/Speech Listening
	zenodo.4518754 Mundanad et al. (2021)	11.6h	255	EEG + Audio	Speech AAD
	zenodo.10260082 Thornton et al. (2023)	12.0h	2	EEG + Audio	Speech AAD
	Brennan_2018 Brennan & Hale (2019)	10.1h	61	EEG + Audio	Story Listening
	Broderick_2018 Broderick et al. (2018)	19.1h	128	EEG + Audio	Story Listening
	Le_Petit_Prince Momenian et al. (2024)	17.3h	64	EEG + Audio	Story Listening
	Total Hours:		109.0h		
Stage 3: Downstream Task Fine-tuning					
	MAD-EEG Cantisani et al. (2019)	4.2h	20	EEG + Audio	Music Retrieval
	KUL Das et al. (2016)	19.2h	64	EEG + Audio	Speech AAD
	DTU Fuglsang et al. (2017)	15.0h	64	EEG + Audio	Speech AAD
	ESAA Li et al. (2022)	12.7h	64	EEG + Audio	Speech AAD
	PME4 Chen et al. (2022)	4.6h	8	EEG + Audio	Emotion Analysis
	HR-EEG4EMO Cantisani et al. (2019)	10.0h	128	EEG + Audio	Emotion Analysis

344
345
346 mean and standard deviation across these 5 folds. Crucially, all reported results utilize raw window-
347 level metrics (accuracy per 2-second segment) rather than aggregated trial-level scores, providing
348 a conservative and fine-grained assessment of decoding performance. Evaluation metrics include
349 Balanced Accuracy and Weighted F1-score for AAD and emotion analysis, and standard Duo/Trio
350 Accuracy for music retrieval. The detailed evaluation metrics can be found in Appendix A.4.

351 However, specifically regarding the Speech AAD task, we acknowledge that the mainstream within-
352 subject splitting may introduce potential data leakage risks due to temporal correlations, as high-
353 lighted by Puffay et al. (2023). To address this, we additionally introduce a rigorous between-trial
354 evaluation protocol, where training and testing segments are strictly drawn from disjoint trials (e.g.,
355 different stories or sessions) to prevent temporal overlap and artifact leakage. The detailed results of
356 this robust evaluation are provided in Appendix A.5.

357 4.2 DOWNSTREAM EXPERIMENT RESULTS

360 MindMix was evaluated against strong baselines, including task-specific SOTA models (e.g., DBP-
361 Net, AADNet) and powerful unimodal EEG foundation models (e.g., LaBraM, EEGPT). The de-
362 tailed information about the compared baseline is provided in Appendix A.6. As shown in Table 2,
363 MindMix substantially outperforms all baselines across all downstream tasks. It achieves near-
364 perfect performance in Speech AAD (e.g., 99.82% on KUL) and establishes a new SOTA in other
365 tasks with large margins (e.g., over 10 percentage points on PME4), underscoring the effectiveness
366 of our multimodal strategy. A deeper analysis of these results reveals two critical findings. **First**,
367 the unimodal EEG foundation models, such as LaBraM and CBraMod, consistently underperform
368 when compared to task-specific SOTA models like DBPNet and DARNet. For instance, on the
369 KUL dataset, LaBraM and CBraMod achieve accuracies of only 63.30% and 68.42%, respectively,
370 falling far short of the 94.81% achieved by DARNet. This exposes a key limitation of current foun-
371 dation models: they are predominantly pre-trained on non-auditory tasks, rendering their generic
372 representations suboptimal for decoding auditory perception. Furthermore, these large models are
373 often highly sensitive to the data format and preprocessing pipelines; any mismatch with their orig-
374 inal training configuration can lead to high performance variance and poor fine-tuning results (as
375 empirically quantified in Appendix A.2).

376 **Second**, and more importantly, our results highlight a crucial distinction in the effectiveness of
377 multimodal integration. For other task-specific multimodal models like MusicAAD (94.87% on
378 KUL) and AADNet (93.18% on KUL), the performance improvement over their strong unimodal
379 counterparts is relatively modest. In contrast, the performance leap demonstrated by MindMix to

378
379
380
381
382Table 2: Performance comparison of MindMix against SOTA baselines on various downstream tasks and datasets. The best values are highlighted in bold, and the second-best values in each block are underlined. **Based on the paired t-test with p-value correction ($\alpha = 0.05$), the * indicates the marked method is significantly better than the compared methods.**383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

Method	Speech AAD					
	KUL		DTU		ESAA	
	Balanced Acc.	Weighted F1	Balanced Acc.	Weighted F1	Balanced Acc.	Weighted F1
EEGNet Lawhern et al. (2018)	0.7514 \pm 0.097	0.7510 \pm 0.097	0.6112 \pm 0.042	0.6578 \pm 0.058	0.7742 \pm 0.132	0.7915 \pm 0.111
DBPNet Ni et al. (2024)	0.9357 \pm 0.042	0.9588 \pm 0.038	0.8251 \pm 0.061	0.8579 \pm 0.056	0.8418 \pm 0.121	0.7990 \pm 0.163
DARNet Yan et al. (2024b)	0.9481 \pm 0.036	0.9567 \pm 0.025	0.8391 \pm 0.048	0.8687 \pm 0.036	0.9089 \pm 0.054	0.9389 \pm 0.042
MusicAAD Niu et al. (2024)	0.9318 \pm 0.018	0.9487 \pm 0.016	0.8456 \pm 0.038	0.8874 \pm 0.032	0.8343 \pm 0.042	0.8442 \pm 0.038
AADNet Nguyen et al. (2025)	0.7258 \pm 0.057	0.7585 \pm 0.051	0.6875 \pm 0.057	0.7312 \pm 0.055	0.8237 \pm 0.061	0.8165 \pm 0.058
MindMix (Ours)	0.9982 \pm 0.008*	0.9991 \pm 0.004*	0.9993 \pm 0.009*	0.9996 \pm 0.005*	1.0000 \pm 0.000*	1.0000 \pm 0.000*
Method	Emotion Analysis			Music Retrieval		
	PME4		HR-EEG4EMO		MAD-EEG	
	Balanced Acc.	Weighted F1	Balanced Acc.	Weighted F1	Duo Acc.	Trio Acc.
EEGNet Lawhern et al. (2018)	0.5029 \pm 0.035	0.4920 \pm 0.046	0.6981 \pm 0.111	0.7681 \pm 0.071	0.5831 \pm 0.025	0.4521 \pm 0.037
DBPNet Ni et al. (2024)	0.5717 \pm 0.032	0.5321 \pm 0.053	0.8274 \pm 0.073	0.8458 \pm 0.064	0.7849 \pm 0.091	0.7152 \pm 0.078
DARNet Yan et al. (2024b)	0.5725 \pm 0.025	0.5425 \pm 0.061	0.8052 \pm 0.081	0.8178 \pm 0.077	0.7544 \pm 0.080	0.7185 \pm 0.082
MusicAAD Niu et al. (2024)	0.6142 \pm 0.062	0.6345 \pm 0.075	0.7648 \pm 0.084	0.7852 \pm 0.069	0.9425 \pm 0.028	0.8722 \pm 0.038
AADNet Nguyen et al. (2025)	0.6011 \pm 0.077	0.5986 \pm 0.065	0.7544 \pm 0.059	0.7832 \pm 0.054	0.8824 \pm 0.071	0.8916 \pm 0.065
BENDR Kostas et al. (2021)	0.5433 \pm 0.065	0.5218 \pm 0.059	0.6458 \pm 0.015	0.6855 \pm 0.017	0.6235 \pm 0.048	0.6498 \pm 0.045
BIOT Yang et al. (2023)	0.5224 \pm 0.071	0.5359 \pm 0.069	0.6352 \pm 0.023	0.6487 \pm 0.019	0.6485 \pm 0.052	0.6798 \pm 0.049
EEGPT Wang et al. (2024b)	0.5566 \pm 0.058	0.5478 \pm 0.061	0.7129 \pm 0.072	0.7698 \pm 0.077	0.7887 \pm 0.065	0.7582 \pm 0.068
LaBraM Jiang et al. (2024)	0.5868 \pm 0.056	0.5936 \pm 0.052	0.7295 \pm 0.082	0.7829 \pm 0.081	0.7582 \pm 0.082	0.7229 \pm 0.078
CBraMod Wang et al. (2025)	0.6052 \pm 0.072	0.5841 \pm 0.088	0.7285 \pm 0.078	0.7748 \pm 0.074	0.8011 \pm 0.069	0.7654 \pm 0.087
MindMix (Ours)	0.7256 \pm 0.123*	0.7089 \pm 0.135*	0.8878 \pm 0.045*	0.8869 \pm 0.046*	0.9475 \pm 0.025*	0.8824 \pm 0.042*

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

99.82% is dramatic, which directly validates our central hypothesis: a deep cross-modal alignment is paramount, and simply combining modalities is not enough. This substantial lead in performance underscores the efficacy of MindMix’s architectural design, which integrates powerful modality-specific encoders with an effective alignment strategy. Our framework enables deep interaction to capture the fine-grained relationship between brain activity and complex audio signals, which is crucial for robust neural decoding.

4.3 ABLATION STUDY AND ANALYSIS

To validate our architectural choices and quantify the contribution of each component, we perform comprehensive ablation studies, the results of which are summarized in Table 3.

Effectiveness of the CALRA Module. We first investigate the importance of our core contribution, CALRA, by comparing it against simpler alignment strategies. As shown in Table 3, replacing CALRA with a standard co-attention block or reverting to a simple CLIP-style projection (‘w/o Alignment’) leads to substantial performance degradation. **Besides, to rigorously validate the structural advantage of our bilinear fusion, we further compare against a “Standard Concatenation-based Fusion (Concat-MLP)” baseline, which is the dominant strategy for vector-level integration. CALRA consistently outperforms this strong baseline (e.g., 0.8878 vs. 0.8574 on EEG4EMO). This empirical evidence confirms that the multiplicative interaction within CALRA captures complex cross-modal dependencies that simple concatenation cannot effectively model.**

While Table 2 reports standard metrics for fair comparison, we further validated our model’s robustness using the strict between-trial protocol defined in Section 4.1. As detailed in Appendix A.5, MindMix maintains a substantial and leading performance advantage under this challenging setting, although the absolute accuracy is lower as expected. This confirms that the model’s superiority stems from genuine neuro-acoustic alignment rather than the exploitation of trial-specific artifacts.

Impact of Modality Encoders. To validate our encoder choice, we substituted our specialized EEG encoder with several alternatives. Both SOTA foundation models (LaBraM and CBraMod) and the classic EEGNet resulted in a significant performance drop, confirming the advantage of our custom pre-training strategy. Specifically, even when adapting the strong CBraMod backbone with our alignment module, the performance (96.37% on KUL) still falls short of our full MindMix

432
 433 Table 3: Ablation studies on the main components of MindMix. All experiments are evaluated on
 434 two downstream tasks: emotion recognition on HR-EEG4EMO and auditory attention decoding on
 435 KUL. **Note:** For the “w/ LaBraM” and “w/ CBraMod” entries, we initialized the EEG encoder using
 436 their official pretrained weights and subjected them to our full multimodal alignment training before
 437 fine-tuning, ensuring a rigorous comparison of backbone capabilities.

Model Configuration	EEG Encoder	Audio Encoder	Alignment Module	Emotion Acc.	AAD Acc.
MindMix (Full Model)	Ours	Wav2Vec 2.0	CALRA (Ours)	0.8878 ± 0.045	0.9982 ± 0.008
<i>Ablation on Alignment</i>					
w/ Co-Attention	Ours	Wav2Vec 2.0	Co-Attention	0.8629 ± 0.053	0.9785 ± 0.021
w/ Concat-MLP	Our	Wav2Vec 2.0	Concat-MLP	0.8574 ± 0.035	0.9593 ± 0.017
w/o Alignment	Ours	Wav2Vec 2.0	Standard CLIP	0.8483 ± 0.038	0.9535 ± 0.015
<i>Ablation on EEG Encoder</i>					
w/ LaBraM	LaBraM	Wav2Vec 2.0	CALRA (Ours)	0.8588 ± 0.041	0.9744 ± 0.012
w/ EEGNet	EEGNet	Wav2Vec 2.0	CALRA (Ours)	0.8555 ± 0.047	0.9442 ± 0.011
w/ CBraMod	CBraMod	Wav2Vec 2.0	CALRA (Ours)	0.8642 ± 0.039	0.9637 ± 0.010
<i>Ablation on Audio Encoder</i>					
w/ HuBERT	Ours	HuBERT	CALRA (Ours)	0.8687 ± 0.037	0.9883 ± 0.010
w/ Mel-spectrogram	Ours	Mel-spectrogram	CALRA (Ours)	0.8432 ± 0.035	0.9448 ± 0.015
<i>Dissection of the CALRA</i>					
w/o Type-specific Aligner	Ours	Wav2Vec 2.0	CALRA (Ours)	0.8675 ± 0.035	0.9853 ± 0.010
w/o Shared Low-Rank	Ours	Wav2Vec 2.0	CALRA (Ours)	0.8557 ± 0.040	0.9742 ± 0.012
w/o Cross-Attention	Ours	Wav2Vec 2.0	CALRA (Ours)	0.8482 ± 0.036	0.9435 ± 0.013

449
 450 model (99.82%). For the audio stream, substituting the powerful Wav2Vec 2.0 with traditional Mel-
 451 spectrogram features causes a steep decline of up to 5.45% in AAD accuracy. This highlights that
 452 rich, pre-trained representations are essential for both the neural and acoustic modalities.
 453

454 **Dissection of CALRA’s Components.** Finally, we dissect the CALRA module to quantify the
 455 contribution of its three key innovations. The bi-directional cross-attention mechanism proves to
 456 be the most critical element, as its removal (‘w/o Cross-Attention’) causes the largest performance
 457 drop (up to 5.58% in AAD). The shared low-rank alignment also provides a vital contribution,
 458 with its removal (‘w/o Shared Low-Rank’) leading to a significant drop. The w/o Type-specific
 459 Aligner ablation, which simulates the absence of auditory type information at test time, causes
 460 only a minor performance drop. This indicates that while the type-specific routing is beneficial,
 461 our model does not critically rely on it and remains highly effective even when stimulus type is
 462 unknown. Together, these results confirm that all three components of CALRA are integral to its
 463 success, working synergistically to achieve a superior cross-modal alignment.

464 Finally, we also investigated the trade-off between decoding accuracy and temporal resolution (win-
 465 dow size sensitivity), these additional results and detailed analyses are provided in Appendix A.7.
 466

467 4.4 QUANTIFYING THE SYNERGY OF MULTIMODAL ALIGNMENT

469 To isolate and quantify the benefit of our multimodal approach, we conduct a critical analysis com-
 470 paring the full MindMix model against its EEG-only counterpart. The results, presented in Figure 4,
 471 are striking and reveal a deep synergy fostered by the alignment of brain signals and audio. Not-
 472 ably, even this EEG-only counterpart is highly competitive on its own, demonstrating performance
 473 comparable to the SOTA unimodal baselines reported in Table 2. For instance, it outperforms the
 474 LaBraM baseline on the ESAA and MAD-EEG tasks. Furthermore, to validate its broader gen-
 475 eralization capabilities, we benchmarked the encoder on standard non-auditory tasks (TUAB and
 476 BCIC-IV-2B). As detailed in Appendix A.8, our model achieves top-tier performance (e.g., ranking
 477 1st on BCIC-IV-2B among foundation models), confirming its robustness as a general-purpose EEG
 478 encoder. This demonstrates that MindMix’s success stems not just from learning robust EEG repre-
 479 sentations but from learning the relationship between the neural signal and the auditory stimulus.

480 4.5 NEUROSCIENTIFIC INTERPRETATION OF CROSS-MODAL ALIGNMENT

482 To provide a comprehensive assessment of the learned representations and validate their biolog-
 483 ical plausibility, we employ the “Stimulus Reconstruction” method Mesgarani & Chang (2012), a
 484 foundational approach in auditory neuroscience to quantify neural encoding. We adopt the pseudo-
 485 reconstruction framework from Défossez et al. (2023) to reconstruct audio Mel spectrograms from
 the aligned EEG embeddings (E_{aligned}), analyzing the results both qualitatively and quantitatively.

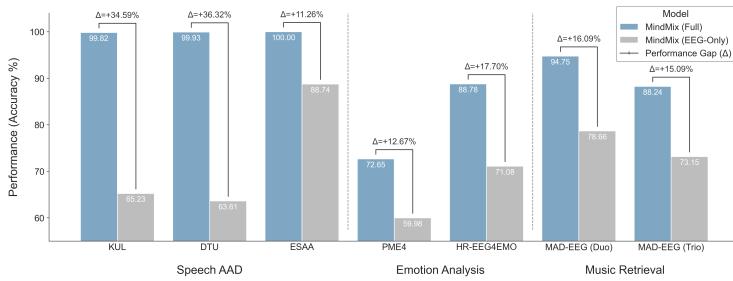


Figure 4: This figure compares the performance of the full MindMix model with its unimodal (EEG-Only) counterpart to isolate the performance gain from our cross-modal alignment strategy.

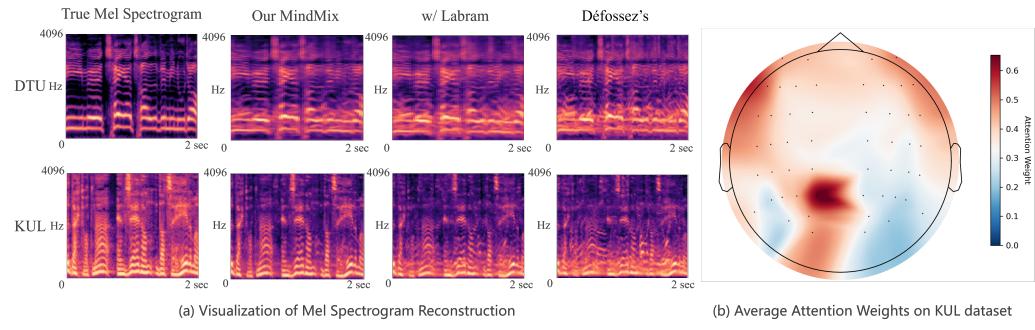


Figure 5: Neuroscientific Interpretability Analysis. (a) Mel Spectrogram Reconstruction. (b) Spatial Attention Topography.

As illustrated in Figure 5(a), MindMix reconstructions faithfully capture fine-grained harmonic structures, whereas these details are blurred in the LaBram variant and the baseline method. Quantitatively, MindMix achieves PCC scores of 0.88 (DTU) and 0.91 (KUL), substantially outperforming baselines (e.g., 0.67 and 0.61). Crucially, this high fidelity provides direct evidence that MindMix successfully encodes the spectro-temporal receptive fields of the auditory cortex, mapping neural activity accurately back to acoustic features.

To further investigate the physiological basis of these reconstructions, we visualized the spatial attention weights of the EEG encoder. As shown in Figure 5(b), the model exhibits a distinct, high-intensity activation cluster in the left temporal region. This distribution is neuroscientifically significant: it corresponds precisely to the primary auditory cortex and aligns with the well-established left-hemisphere lateralization for speech processing Défossez et al. (2023). The absence of high weights in the frontal pole further confirms that the model prioritizes genuine neural signatures over ocular artifacts.

5 CONCLUSION

This paper presents the first large-scale investigation into multimodal auditory brain decoding using paired EEG and audio data. We introduce MindMix, a novel foundation model featuring our CALRA module, which enables deep alignment between neural signals and sound. Our extensive experiments demonstrate that MindMix consistently and significantly outperforms SOTA baselines across a diverse set of downstream tasks, establishing a new and robust benchmark for the field. By successfully learning generalizable representations, this work significantly advances the capabilities of non-invasive BCIs and lays a critical foundation for understanding the interplay between neural and audio signals. While our results highlight the immense potential of this approach, we also underscore that the current scarcity of large-scale paired EEG-audio corpora is a primary bottleneck for the field, precluding a full investigation into the scaling laws of such foundation models. Future research will focus on scaling the MindMix framework to leverage increasingly larger datasets, with the goal of further advancing this field.

540 **6 ETHIC STATEMENT**
541542 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal expec-
543 tions were included. All data sets used were sourced in accordance with relevant usage guidelines,
544 to ensure no privacy violation. We have taken care not to achieve bias or discriminatory results in
545 our research process. No personally identifiable information was used and no experiments were con-
546 ducted that could raise privacy or security concerns. We are committed to maintaining transparency
547 and integrity throughout the research process.
548549 **7 REPRODUCIBILITY STATEMENT**
550551 We have made every effort to ensure that the results presented in this paper are reproducible. All code
552 and model have been made publicly available in an anonymous repository to facilitate replication and
553 verification, the experimental setup, including training steps, model configurations, and hardware
554 details, is described in detail in the paper. We have also provided a full description of implementation
555 description, to assist others in reproducing our experiments.
556557 Additionally, all EEG datasets used in the paper, such as KUL, DUT, and ESAA etc, are publicly
558 available, ensuring consistent and reproducible evaluation results.
559560 We believe these measures will allow other researchers to reproduce our work and further advance
561 the field.
562563 **REFERENCES**
564565 Rijsman Roselyne M Alvarez, Diego. Inter-database validation of a deep learning approach for
566 automatic sleep scoring. *PloS one*, 16(8):e0256111, 2021.
567568 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
569 work for self-supervised learning of speech representations. *Advances in neural information
570 processing systems*, 33:12449–12460, 2020.
571572 Hanna Becker, Julien Fleureau, Philippe Guillotel, Fabrice Wendling, Isabelle Merlet, and Laurent
573 Albera. Emotion recognition based on high-resolution eeg recordings and reconstructed brain
574 sources. *IEEE Transactions on Affective Computing*, 11(2):244–257, 2017.
575576 L Bonetti, G Fernández-Rubio, F Carlomagno, M Dietz, D Pantazis, P Vuust, and ML Kringelbach.
577 Spatiotemporal brain hierarchies of auditory memory recognition and predictive coding. *Nature
578 Communications*, 15(1):4313, 2024.
579580 Jonathan R Brennan and John T Hale. Hierarchical structure guides rapid linguistic predictions
581 during naturalistic listening. *PloS one*, 14(1):e0207741, 2019.
582583 Michael P Broderick, Andrew J Anderson, Giovanni M Di Liberto, Michael J Crosse, and Edmund C
584 Lalor. Electrophysiological correlates of semantic dissimilarity reflect the comprehension of nat-
585 ural, narrative speech. *Current Biology*, 28(5):803–809, 2018.
586587 Giorgia Cantisani, Gabriel Trégoat, Slim Essid, and Gaël Richard. Mad-eeg: an eeg dataset for
588 decoding auditory attention to a target instrument in polyphonic music. In *Speech, Music and
589 Mind (SMM), Satellite Workshop of Interspeech 2019*, 2019.
590591 Jin Chen, Tony Ro, and Zhigang Zhu. Emotion recognition with audio, video, eeg, and emg: a
592 dataset and baseline approaches. *IEEE Access*, 10:13229–13242, 2022.
593594 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
595 contrastive learning of visual representations. In *International conference on machine learning*,
596 pp. 1597–1607. PMLR, 2020.
597598 Xupeng Chen, Ran Wang, Amirhossein Khalilian-Gourtani, Leyao Yu, Patricia Dugan, Daniel Fried-
599 man, Werner Doyle, Orrin Devinsky, Yao Wang, and Adeen Flinker. A neural speech decoding
600 framework leveraging deep learning and speech synthesis. *Nature Machine Intelligence*, 6(4):
601 467–480, 2024.
602

594 Michael J Crosse, Giovanni M Di Liberto, Adam Bednar, and Edmund C Lalor. The multivariate
 595 temporal response function (mtrf) toolbox: a matlab toolbox for relating neural signals to contin-
 596 uous stimuli. *Frontiers in human neuroscience*, 10:604, 2016.

597

598 Wenhui Cui, Woojae Jeong, Philipp Thölke, Takfarinas Medani, Karim Jerbi, Anand A Joshi, and
 599 Richard M Leahy. Neuro-gpt: Towards a foundation model for eeg. In *Proceedings of the IEEE*
 600 *International Symposium on Biomedical Imaging (ISBI)*, 2024. doi: 10.1109/ISBI56570.2024.
 601 10635453. URL <https://arxiv.org/abs/2311.03764>.

602

603 Simon Dahan, Gabriel Bénédic, Logan Zane John Williams, Yourong Guo, Daniel Rueckert, Robert
 604 Leech, and Emma Claire Robinson. Sim: Surface-based fmri analysis for inter-subject multi-
 605 modal decoding from movie-watching experiments. In *The Thirteenth International Conference*
 606 *on Learning Representations*, 2025.

607

608 Neetha Das, Wouter Biesmans, Alexander Bertrand, and Tom Francart. The effect of head-related
 609 filtering and ear-specific decoding bias on auditory attention detection. *Journal of neural engi-
 610 neering*, 13(5):056014, 2016.

611

612 Alexandre Défossez, Charlotte Caucheteux, Jérémie Rapin, Ori Kabeli, and Jean-Rémi King. De-
 613 coding speech perception from non-invasive brain recordings. *Nature Machine Intelligence*, 5
 614 (10):1097–1107, 2023.

615

616 Matteo Ferrante, Tommaso Boccato, and Nicola Toschi. Towards neural foundation models for
 617 vision: Aligning eeg, meg and fmri representations to perform decoding, encoding and modality
 618 conversion. In *ICLR 2024 Workshop on Representational Alignment*, 2024.

619

620 Søren Asp Fuglsang, Torsten Dau, and Jens Hjortkjær. Noise-robust cortical tracking of attended
 621 speech in real-world acoustic scenes. *NeuroImage*, 156:435–444, 2017.

622

623 Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach.
 624 Multimodal compact bilinear pooling for visual question answering and visual grounding. In
 625 *Conference on Empirical Methods in Natural Language Processing*, 2016. URL <https://api.semanticscholar.org/CorpusID:2840197>.

626

627 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 628 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

629

630 Yongquan Hu, Shuning Zhang, Ting Dang, Hong Jia, Flora D Salim, Wen Hu, and Aaron J Quigley.
 631 Exploring large-scale language models to evaluate eeg-based multimodal data for mental health.
 632 In *Companion of the 2024 on ACM International Joint Conference on Pervasive and Ubiquitous*
 633 *Computing*, pp. 412–417, 2024.

634

635 Weibang Jiang, Liming Zhao, and Bao liang Lu. Large brain model for learning generic represen-
 636 tations with tremendous EEG data in BCI. In *The Twelfth International Conference on Learning*
 637 *Representations*, 2024. URL <https://openreview.net/forum?id=QzTpTRVtrP>.

638

639 Demetres Kostas, Stephane Aroca-Ouellette, and Frank Rudzicz. Bendr: Using transformers and a
 640 contrastive self-supervised learning task to learn from massive amounts of eeg data. *Frontiers in*
 641 *Human Neuroscience*, 15:653659, 2021.

642

643 Marie Kunešová, Zbyněk Zajíć, Luboš Šmíd, and Martin Karafiát. Comparison of wav2vec 2.0
 644 models on three speech processing tasks. *International Journal of Speech Technology*, 27(4):
 645 847–859, 2024.

646

647 Haoran Lai, Qingsong Yao, Zihang Jiang, Rongsheng Wang, Zhiyang He, Xiaodong Tao, and
 648 S Kevin Zhou. Carzero: Cross-attention alignment for radiology zero-shot classification. In *Pro-
 649 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11137–
 650 11146, 2024.

651

652 Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
 653 Brent J Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer
 654 interfaces. *Journal of neural engineering*, 15(5):056013, 2018.

648 Min-Ho Lee, O-Yeon Kwon, Yong-Jeong Kim, Hong-Kyung Kim, Young-Eun Lee, John
 649 Williamson, Siamac Fazli, and Seong-Whan Lee. Eeg dataset and openbmi toolbox for three
 650 bci paradigms: An investigation into bci illiteracy. *GigaScience*, 8(5):giz002, 2019.

651

652 Dongyang Li, Chen Wei, Shiying Li, Jiachen Zou, and Quanying Liu. Visual decoding and recon-
 653 struction via eeg embeddings with guided diffusion. In *Advances in Neural Information Process-
 654 ing Systems*, volume 37, pp. 102822–102864, 2024.

655 Peiwen Li, Enze Su, Jia Li, Siqi Cai, Longhan Xie, and Haizhou Li. Esaa: An eeg-speech auditory
 656 attention detection database. In *2022 25th Conference of the Oriental COCOSDA International
 657 Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Tech-
 658 niques (O-COCOSDA)*, pp. 1–6. IEEE, 2022.

659 Yuanning Li, Gopala K Anumanchipalli, Abdelrahman Mohamed, Peili Chen, Laurel H Carney,
 660 Junfeng Lu, Jinsong Wu, and Edward F Chang. Dissecting neural computations in the human
 661 auditory pathway using deep neural networks for speech. *Nature Neuroscience*, 26(12):2213–
 662 2225, 2023.

663

664 Xuan-Hao Liu, Yan-Kai Liu, Yansen Wang, Kan Ren, Hanwen Shi, Zilong Wang, Dongsheng Li,
 665 Bao-Liang Lu, and Wei-Long Zheng. Eeg2video: Towards decoding dynamic visual perception
 666 from eeg signals. *Advances in Neural Information Processing Systems*, 37:72245–72273, 2024.

667

668 Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshminarasimhan, Paul Pu Liang, Amir Zadeh,
 669 and Louis philippe Morency. Efficient low-rank multimodal fusion with modality-specific
 670 factors. *ArXiv*, abs/1806.00064, 2018. URL <https://api.semanticscholar.org/CorpusID:44131945>.

671

672 Mohammad H Mahrooz, Farrokh Fattahzadeh, and Shahriar Gharibzadeh. Decoding the debate:
 673 a comparative study of brain-computer interface and neurofeedback. *Applied Psychophysiology
 and Biofeedback*, 49(1):47–53, 2024.

674

675 Mackenzie Weygandt Mathis, Adriana Perez Rotondo, Edward F Chang, Andreas S Tolias, and
 676 Alexander Mathis. Decoding the brain: From neural representations to mechanistic models. *Cell*,
 677 187(21):5814–5832, 2024.

678

679 Nima Mesgarani and Edward F. Chang. Selective cortical representation of attended speaker in
 680 multi-talker speech perception. *Nature*, 485(7397):233–236, 2012.

681

682 Mohammad Momenian, Zhengwu Ma, Shuyi Wu, Chengcheng Wang, Jonathan Brennan, John Hale,
 683 Lars Meyer, and Jixing Li. Le petit prince hong kong (lpphk): Naturalistic fmri and eeg data from
 684 older cantonese speakers. *Scientific data*, 11(1):992, 2024.

685

686 Abhijith Mundanad, Rob Zink, and Alexander Bertrand. Ultra high-density 255-channel eeg-aad
 687 dataset, February 2021. URL <https://doi.org/10.5281/zenodo.4518754>.

688

689 Nhan Duc Thanh Nguyen, Huy Phan, Simon Geirnaert, Kaare Mikkelsen, and Preben Kidmose.
 690 Adnet: an end-to-end deep learning model for auditory attention decoding. *IEEE Transactions
 691 on Neural Systems and Rehabilitation Engineering*, 2025.

692

693 Qinke Ni, Hongyu Zhang, Cunhang Fan, Shengbing Pei, Chang Zhou, and Zhao Lv. Dbpnet: Dual-
 694 branch parallel network with temporal-frequency fusion for auditory attention detection. In *Pro-
 695 ceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2024)*, 2024.

696

697 Yixiang Niu, Ning Chen, Hongqing Zhu, Jing Jin, and Guangqiang Li. Music-oriented auditory
 698 attention detection from electroencephalogram. *Neuroscience Letters*, 818:137534, 2024.

699

700 Collins Opoku-Baah, Adriana M Schoenhaut, Sarah G Vassall, David A Tovar, Ramnarayan Ra-
 701 machandran, and Mark T Wallace. Visual influences on auditory behavioral, neural, and per-
 702 ceptual processes: a review. *Journal of the Association for Research in Otolaryngology*, 22(4):
 703 365–386, 2021.

704

J. A. O’Sullivan, A. J. Power, N. Mesgarani, S. Rajaram, J. J. Foxe, B. G. Shinn-Cunningham,
 M. Slaney, S. A. Shamma, and E. C. Lalor. Attentional selection in a cocktail party environment
 can be decoded from single-trial eeg. *Cerebral Cortex*, 25(7):1697–1706, 2015.

702 Andrew J Oxenham and Heather A Kreft. Speech masking in normal and impaired hearing: Inter-
 703 actions between frequency selectivity and inherent temporal fluctuations in noise. In *Physiology,*
 704 *Psychoacoustics and Cognition in Normal and Impaired Hearing*, pp. 125–132. Springer Interna-
 705 tional Publishing, 2016.

706 Maria Carla Piastra, Andreas Nüßing, Johannes Vorwerk, Maureen Clerc, Christian Engwer, and
 707 Carsten H Wolters. A comprehensive study on electroencephalography and magnetoencephalog-
 708 raphy sensitivity to cortical and subcortical sources. *Human Brain Mapping*, 42(4):978–992,
 709 2021.

710 Martyna Poziomska, Marian Dovgialo, Przemysław Olbratowski, Paweł Niedbalski, Paweł Og-
 711 niewski, Joanna Zych, Jacek Rogala, and Jarosław Żygierek. Quantity versus diversity:
 712 Influence of data on detecting eeg pathology with advanced ml models. *arXiv preprint*
 713 *arXiv:2411.17709*, 2024.

714 Corentin Puffay, Bernd Accou, Lies Bollens, Mohammad Jalilpour Monesi, Jonas Vanthornhout,
 715 Tom Francart, et al. Relating eeg to continuous speech using deep neural networks: a review.
 716 *Journal of Neural Engineering*, 20(4):041003, 2023.

717 A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
 718 J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
 719 supervision. *International Conference on Machine Learning (ICML)*, 2021.

720 Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin
 721 Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and
 722 Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualization.
 723 *Human brain mapping*, 38(11):5391–5420, 2017.

724 Tong Shan, Madeline S. Cappelloni, and Ross K. Maddox. "subcortical responses to music and
 725 speech are alike while cortical responses diverge", 2024.

726 Ali Hossam Shoeb. *Application of machine learning to epileptic seizure onset detection and treat-
 727 ment*. PhD thesis, Massachusetts Institute of Technology, 2009.

728 Prajwal Singh, Dwip Dalal, Gautam Vashishtha, Krishna Miyapuram, and Shanmuganathan Raman.
 729 Learning robust deep visual representations from eeg brain recordings. In *Proceedings of the
 730 IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 7553–7562, 2024.

731 Enze Su, Siqi Cai, Longhan Xie, Haizhou Li, and Tanja Schultz. Stanet: A spatiotemporal attention
 732 network for decoding auditory spatial attention from eeg. *IEEE Transactions on Biomedical
 733 Engineering*, 69(7):2233–2242, 2022.

734 Michael Tangermann, Klaus-Robert Müller, Ad Aertsen, Niels Birbaumer, Christoph Braun,
 735 Clemens Brunner, Robert Leeb, Carsten Mehring, Kai J Miller, Gernot R Müller-Putz, et al.
 736 Review of the bci competition iv. *Frontiers in neuroscience*, 6:55, 2012.

737 Mario Giovanni Terzano, Liborio Parrino, Adriano Sherieri, Ronald Chervin, Sudhansu
 738 Chokroverty, Christian Guilleminault, Max Hirshkowitz, Mark Mahowald, Harvey Moldofsky,
 739 Agostino Rosa, et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating
 740 pattern (cap) in human sleep. *Sleep medicine*, 2(6):537–553, 2001.

741 Michael Thornton, Tobias Reichenbach, and Danilo Mandic. Imperial college ear-eeg dataset for au-
 742 ditory attention decoding, December 2023. URL [https://doi.org/10.5281/zenodo.
 743 10260082](https://doi.org/10.5281/zenodo.10260082).

744 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 745 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 746 tion processing systems*, 30, 2017.

747 L Veloso, J McHugh, Eva von Weltin, Sebas Lopez, I Obeid, and Joseph Picone. Big data resources
 748 for eegs: Enabling deep learning research. In *2017 IEEE signal processing in medicine and
 749 biology symposium (SPMB)*, pp. 1–3. IEEE, 2017.

756 Christopher Wang, Adam Yaari, Aaditya Singh, Vighnesh Subramaniam, Dana Rosenfarb, Jan De-
 757 Witt, Pranav Misra, Joseph Madsen, Scellig Stone, Gabriel Kreiman, et al. Brain treebank: Large-
 758 scale intracranial recordings from naturalistic language stimuli. *Advances in Neural Information
 759 Processing Systems*, 37:96505–96540, 2024a.

760 Fuying Wang, Yuyin Zhou, Shujun Wang, Varut Vardhanabuti, and Lequan Yu. Multi-granularity
 761 cross-modal alignment for generalized medical visual representation learning. *Advances in neural
 762 information processing systems*, 35:33536–33549, 2022.

763 Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pretrained
 764 transformer for universal and reliable representation of eeg signals. *Advances in Neural Informa-
 765 tion Processing Systems*, 37:39249–39280, 2024b.

766 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and Gang
 767 Pan. Cbramod: A criss-cross brain foundation model for eeg decoding. In *The Thirteenth Inter-
 768 national Conference on Learning Representations*, 2025.

769 Yingzhi Wang, Abdelmoumene Boumadane, and Abdelwahab Heba. A fine-tuned wav2vec 2.0/hu-
 770 bert benchmark for speech emotion recognition, speaker verification and spoken language under-
 771 standing. *arXiv preprint arXiv:2111.02735*, 2021.

772 Ruofan Yan, Shu Peng, Zhige Chen, Zhi-An Huang, Rui Liu, Kay Chen Tan, and Jibin Wu. Enhanc-
 773 ing spatio-temporal auditory attention decoding with st-aadnet. In *2024 IEEE 14th International
 774 Symposium on Chinese Spoken Language Processing (ISCSLP)*, pp. 334–338. IEEE, 2024a.

775 Sheng Yan, Cunhang Fan, Hongyu Zhang, Xiaoke Yang, Jianhua Tao, and Zhao Lv. Darnet: Dual
 776 attention refinement network with spatiotemporal construction for auditory attention detection.
 777 *Advances in Neural Information Processing Systems*, 37:31688–31707, 2024b.

778 Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
 779 the wild. *Advances in Neural Information Processing Systems*, 36:78240–78260, 2023.

780 Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. Multi-modal factorized bilinear pooling with
 781 co-attention learning for visual question answering. *2017 IEEE International Conference on
 782 Computer Vision (ICCV)*, pp. 1839–1848, 2017. URL <https://api.semanticscholar.org/CorpusID:3005731>.

783 Amir Zadeh, Minghai Chen, Soujanya Poria, E. Cambria, and Louis philippe Morency. Tensor fu-
 784 sion network for multimodal sentiment analysis. In *Conference on Empirical Methods in Natural
 785 Language Processing*, 2017. URL <https://api.semanticscholar.org/CorpusID:950292>.

786 Igor Zyma, Sergii Tukaev, Ivan Seleznev, Ken Kiyono, Anton Popov, Mariia Chernykh, and Oleksii
 787 Shpenkov. Electroencephalograms during mental arithmetic task performance. *Data*, 4(1):14,
 788 2019.

789

790

791

792

793

794

795

796

797 **A APPENDIX**

798

799 **A.1 DATASET DESCRIPTION**

800

801 **Stage 1: Unimodal Pre-training Corpus.** For the initial unimodal pre-training stage, designed
 802 to build a robust EEG encoder, we assembled a large-scale and diverse corpus totaling over 3,500
 803 hours of EEG data from nine public datasets. These datasets span a wide range of BCI paradigms
 804 and clinical applications, ensuring that the learned representations are generalizable and not biased
 805 towards a specific task. The collection includes:

806

- 807 • **BCI-IV-2A** Tangermann et al. (2012) and **HGD** Schirrmeister et al. (2017): Widely used
 808 motor imagery datasets.
- 809 • **OpenBMI** Lee et al. (2019): A large-scale dataset for various BCI paradigms.
- **EEGMat** Zyma et al. (2019): A benchmark for mental workload analysis.

- **TUEP** and **TUEV** Veloso et al. (2017): The Temple University Hospital EEG Corpus, containing extensive clinical data for epilepsy and event detection.
- **HMCSleep** Alvarez (2021), **CAPSleep** Terzano et al. (2001), and **CMBMIT** Shoeb (2009): Large public corpora for sleep stage analysis.

The unimodal pre-training of our EEG encoder utilizes over 3,500 hours of data, establishing a substantial foundation in terms of scale. For context, this exceeds the pre-training corpus of several notable EEG foundation models, such as LaBrA (2,500 hours) and EEGPT (200 hours), underscoring the large-scale nature of our unimodal representation learning.

Stage 2: Multimodal Alignment Corpus. In the second stage, we focused on learning the crucial alignment between neural and acoustic representations. For this, we curated a multimodal corpus of over 100 hours of paired EEG and audio data from seven distinct datasets. This corpus features diverse auditory stimuli, including music, attended speech, and naturalistic story listening. The datasets include:

- **ds004356** Shan et al. (2024) and **zenodo_4518754** Mundanad et al. (2021): Publicly available datasets featuring subjects listening to music or competing speech streams in AAD paradigms.
- **zenodo_10260082** Thornton et al. (2023): An additional EEG-audio dataset for speech AAD tasks.
- **Brennan 2018** Brennan & Hale (2019), **Broderick 2018** Broderick et al. (2018), and **Le Petit Prince** Momenian et al. (2024): Datasets containing EEG recordings of subjects listening to naturalistic stories, providing rich, continuous audio stimuli.

Stage 3: Downstream Task Datasets. We evaluate our model on three distinct task families:

- **Auditory Attention Decoding (AAD):** Identifying which of two competing speech streams a person is attending to. Datasets: **KUL** Das et al. (2016), **DTU** Fuglsang et al. (2017), and **ESAA** Li et al. (2022).
- **Emotion Analysis:** Recognizing emotional states from EEG while listening to affective stimuli. Datasets: **PME4** Chen et al. (2022) and **HR-EEG4EMO** Becker et al. (2017).
- **Music Retrieval:** A cross-modal task designed to test the ability to identify the correct music piece corresponding to an EEG segment. Dataset: **MAD-EEG** Cantisani et al. (2019).

We strictly enforced subject independence across all three stages of our training pipeline to prevent any form of data leakage. The subjects in the downstream test sets (e.g., KUL, DTU, ESAA) were never seen during the Unimodal Pre-training (Stage 1) or Multimodal Alignment (Stage 2) stages. The datasets used in Stages 1 and 2 contain entirely distinct participant cohorts from those in the downstream evaluation datasets.

A.2 DATA PREPROCESSING

A standardized preprocessing pipeline was applied across all datasets for consistency. The specific steps and justifications are detailed below:

- **EEG Data Preprocessing:**
 - **Filtering:** Raw EEG signals were bandpass-filtered between 1.0 Hz and 40.0 Hz using a zero-phase (forward-backward) 4th-order Butterworth filter to isolate neural activity in relevant frequency bands and reduce high-frequency noise and slow drifts.
 - **Resampling:** The filtered signals were then downsampled to a uniform sampling rate of 200 Hz.
 - **Epoching:** Continuous data were segmented into non-overlapping 2-second epochs.
 - **Normalization:** Each 2-second epoch was normalized independently on a per-channel basis using z-score standardization (subtracting the epoch’s mean and dividing by its standard deviation). This segment-wise normalization prevents any data leakage between training and test sets.

864
 865 Table A1: **Pipeline Sensitivity Analysis.** Comparison of baseline performance when fine-tuned
 866 using our preprocessing pipeline (1-40 Hz) versus their native pipelines. The drop in performance
 867 using our pipeline confirms the distribution shift, justifying our choice to use native pipelines for
 868 baselines in the main comparison.

869 Model	870 Dataset	871 Acc. (Our Pipeline)	872 Acc. (Native Pipeline)
<i>Task: Emotion Analysis (Metric: Accuracy)</i>			
873 BENDR	874 EEG4EMO	875 0.6051 ± 0.019	876 0.6458 ± 0.015
877 BIOT	878 EEG4EMO	879 0.5615 ± 0.027	880 0.6352 ± 0.023
881 EEGPT	882 EEG4EMO	883 0.6527 ± 0.064	884 0.7129 ± 0.072
885 CBraMod	886 EEG4EMO	887 0.6680 ± 0.083	888 0.7295 ± 0.082
889 LaBraM	890 EEG4EMO	891 0.6701 ± 0.085	892 0.7285 ± 0.078
<i>Task: Music Retrieval (Metric: Duo Accuracy)</i>			
893 BENDR	894 MAD-EEG	895 0.5844 ± 0.054	896 0.6235 ± 0.048
897 BIOT	898 MAD-EEG	899 0.6042 ± 0.042	900 0.6485 ± 0.052
901 EEGPT	902 MAD-EEG	903 0.7311 ± 0.074	904 0.7887 ± 0.065
905 CBraMod	906 MAD-EEG	907 0.7007 ± 0.075	908 0.7582 ± 0.082
909 LaBraM	910 MAD-EEG	911 0.7554 ± 0.066	912 0.8011 ± 0.069

884
 885 – **Artifact Handling:** We relied on the dataset-level denoising (e.g., EOG/EMG artifact
 886 removal) provided by the original authors of the public datasets we used (see Table 1)
 887 and did not apply additional artifact removal algorithms (e.g., ICA).
 888 – **Bad-Channel Policy:** We used all channels provided in the original datasets. Our
 889 channel-independent patching strategy combined with learnable spatial embeddings
 890 allows the model to handle heterogeneous channel configurations robustly, without
 891 the need for explicit bad-channel detection or interpolation.

892 • **Audio Data Preprocessing:**

893 – **Resampling:** Raw audio waveforms were resampled to 16 kHz (mono).
 894 – **Epoching & Normalization:** To match the EEG segments, audio was segmented into
 895 2-second epochs. Each audio epoch was normalized by its peak absolute value to
 896 ensure a consistent amplitude scale.

897 **Justification for Pipeline:** We intentionally chose the 1–40 Hz bandpass to isolate relevant neural
 898 components. As shown in Table A1, applying this pipeline to foundation models pretrained on
 899 different distributions causes a significant performance drop. Thus, to ensure a rigorous comparison:

900 • **Foundation Model Baselines** (e.g., LaBraM, CBraMod) were fine-tuned using their native
 901 preprocessing pipelines (e.g., 0.1–70 Hz for LaBraM, 0.3–75 Hz for CBraMod) to avoid
 902 unfair penalties from distribution shift.
 903 • **MindMix and Task-Specific Models** (e.g., DARNet, DBPNet), which are trained from
 904 scratch or adapted to our domain, utilized our standardized 1–40 Hz pipeline.

905 A.3 IMPLEMENTATION DETAILS

906 **Implementation Details.** All experiments were conducted in PyTorch on a cluster of 8 NVIDIA
 907 A6000 GPUs. We used the AdamW optimizer ($\beta_1 = 0.9, \beta_2 = 0.95$, weight decay=0.05) with
 908 a cosine learning rate schedule and a 10-epoch linear warmup. The peak learning rate was set to
 909 1×10^{-4} for the pre-training and alignment stages, and 1×10^{-5} for the downstream fine-tuning
 910 stage. For complete reproducibility, detailed hyperparameter configurations for the EEG encoder,
 911 CALRA module, and the optimization process are listed in Table A2. Batch sizes for the three stages
 912 were 512, 256 and 64, respectively; The temperature parameter τ in contrastive loss was a learnable
 913 logit scale, initialized to correspond to $\tau = 0.07$. All models were trained until convergence based
 914 on the performance of the validation set. To assess practical feasibility, we also benchmarked model
 915 complexity and inference latency, summarized in Table A3.

918 **Computational Cost Analysis.** We detail the pre-training budget to address concerns regarding
 919 resource usage. Our training was conducted on NVIDIA RTX A6000 GPUs. The total computa-
 920 tional budget for the foundation model phases was approximately 240 GPU hours:
 921

- 922 • **Stage 1 (Unimodal Pre-training):** Utilized 8 GPUs for \sim 20 hours (\approx 160 GPU hours).
- 923 • **Stage 2 (Multimodal Alignment):** Utilized 4 GPUs for \sim 20 hours (\approx 80 GPU hours).

925 For comparison, the recent strong baseline CBraMod Wang et al. (2025) reports using 4 NVIDIA
 926 RTX A5000 GPUs for approximately 5 days, equating to \approx 480 GPU hours. MindMix achieves
 927 superior performance while requiring only \sim 50% of the pre-training duration of this SOTA baseline,
 928 demonstrating significant training efficiency.

929 **Negative Sampling Policy.** We uniformly utilize In-Batch Negative Sampling throughout our
 930 training. However, the composition of the batches differs between stages to address specific goals:
 931

- 932 • **Stage 2 (Multimodal Alignment):** We utilize Global Shuffling across the entire 100-
 933 hour corpus. This means that within any given batch, the negatives (other samples in the
 934 batch) are naturally drawn from all subjects and all distinct auditory materials. This strictly
 935 satisfies your criteria during the alignment phase, forcing the model to learn robust, subject-
 936 invariant features.
- 937 • **Stage 3 (Downstream Fine-tuning):** We construct batches using data from the same sub-
 938 ject but across different trials. This allows the model to optimize for individual neural
 939 distributions. Even here, the negative sampling is rigorous: for Retrieval tasks, negatives
 940 are drawn from different trials (different stories/music); for the AAD task, the negative is
 941 implicitly the simultaneous unattended stream (a "hard negative" with identical recording
 942 conditions but different semantic content).

943 **Model Complexity and Stage-wise Training Dynamics.** To provide transparency regarding
 944 model scale and computational cost, we detail the parameter breakdown of MindMix across its
 945 three training stages in Table A4.

- 946 • **Stage 1 (Unimodal Pre-training):** We focus exclusively on training the EEG Encoder (\approx
 947 6M params) to learn generic neural representations.
- 948 • **Stage 2 (Multimodal Alignment):** This stage involves end-to-end fine-tuning of the entire
 949 framework (EEG Encoder + CALRA + Audio Encoder), bringing the total trainable
 950 parameters to \approx 97M. This allows for deep adaptation of both modalities.
- 951 • **Stage 3 (Downstream Fine-tuning):** We perform comprehensive fine-tuning of the full
 952 model (including the Task Head) to ensure optimal adaptation to specific downstream tasks.

955 A.4 EVALUATION METRICS

956 In this section, we introduce the details of the metrics used in our evaluation.

- 957 • **Balanced Accuracy** is a performance metric suitable for imbalanced datasets, defined as
 958 the average of recall (sensitivity) obtained on each class. We use it for classification tasks
 959 (AAD and Emotion Analysis).
- 960 • **Weighted F1-score** is the weighted average of the F1-score for each class, where the score
 961 for each class is weighted by the number of true instances for that class. This metric
 962 accounts for class imbalance.
- 963 • **Duo/Trio Accuracy** is used for the music retrieval task. It measures the standard classi-
 964 fication accuracy in a forced-choice task where the model must select the correct audio
 965 stimulus from two (Duo) or three (Trio) options.

966 A.5 ROBUSTNESS ANALYSIS: RIGOROUS BETWEEN-TRIAL EVALUATION

967 **Motivation and Protocol.** While the standard within-trial evaluation protocol (randomly splitting
 968 segments from the same trial) is widely used for benchmarking Yan et al. (2024b); Ni et al. (2024),

972
 973 Table A2: **Detailed Hyperparameter Configuration.** Specific architectural and training hyperpa-
 974 rameters used for MindMix fine-tuning.

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994	975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994	975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
Category	Hyperparameter	Value
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994	Transformer Layers	12
	Embedding Dimension	200
	Attention Heads	10
	Feed-forward Dimension	800
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994	Patch Encoder Type	3-layer 1D CNN
	Patch Dimension	200
	Output Channels	8
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994	CALRA Module Input/Output Dimension	256
	Low-Rank Dimension	128
	Attention Heads	4
	FFN Hidden Dimension	512
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994	Optimizer Type	AdamW
	Fine-tuning Learning Rate	1×10^{-5}
	Weight Decay	0.01
	Adam Betas	(0.9, 0.95)
	Warmup Epochs	3

995
 996 Table A3: **Efficiency Analysis.** Model complexity and inference latency benchmarked on a single
 997 NVIDIA A6000 GPU (Batch Size=1).

999 1000 1001 1002 1003	Model	Params (M)	FLOPs (G)	Latency (ms)
EEGNet	0.003	~ 0.01	~ 1.9	
LaBraM-Base	5.8	~ 0.83	~ 10.4	
MindMix (Ours)	97	~ 7.71	~ 39.6	

1004
 1005 recent studies suggest it may introduce data leakage due to temporal correlations in EEG signals
 1006 Puffay et al. (2023). To rigorously evaluate the robustness of MindMix and rule out potential over-
 1007 fitting to trial-specific artifacts, we implemented a strict Between-Trial Protocol. In this setting,
 1008 the training and testing sets are constructed from disjoint trials (e.g., different stories or recording
 1009 sessions), ensuring zero temporal overlap.

1010
 1011 **Results and Analysis.** We re-evaluated MindMix and key baselines (DBPNet, DARNet, LaBraM,
 1012 CBraMod) under this rigorous protocol on the KUL, DTU, and ESAA datasets. The results are
 1013 summarized in Table A5. As expected, the absolute performance metrics for all models decrease
 1014 compared to the within-trial setting (Table 2) due to the increased difficulty of generalizing to un-
 1015 seen trials. However, MindMix consistently maintains a significant performance advantage over all
 1016 baselines. For instance, on the KUL dataset, while the strong baseline CBraMod drops to 77.01%,
 1017 MindMix achieves 98.76%, demonstrating that our model’s superiority stems from genuine neuro-
 1018 acoustic alignment rather than artifact exploitation.

1019
 1020 **A.6 BASELINE MODELS**

1021
 1022 Here, we introduce the details of the baselines for performance evaluation. We include both task-
 1023 specific state-of-the-art models and state-of-the-art unimodal EEG foundation models.

1024
 1025 • **EEGNet** Lawhern et al. (2018) is a compact convolutional neural network for EEG-based
 BCIs, utilizing depthwise and separable convolutions for efficient feature extraction.

1026
 1027 **Table A4: Parameter Breakdown and Stage-wise Training Strategy.** The table details the static
 1028 parameter count for each module and specifies the trainable status across the three pipeline stages.

Module	Component	Static Params	Stage 1	Stage 2	Stage 3
EEG Encoder	12-layer Transformer	6 M	Trained	Fine-tuned	Fine-tuned
CALRA	Alignment Module	1 M	N/A	Trained	Fine-tuned
Audio Encoder	Wav2Vec 2.0 (Base)	95 M	N/A	Fine-tuned	Fine-tuned
Task Head	Classifier	$\ll 1$ M	N/A	N/A	Trained
Total Trainable			≈ 6 M	≈ 97 M	≈ 97 M

1035
 1036
 1037 **Table A5: Robustness Evaluation under Between-Trial Protocol.** Comparison of MindMix
 1038 against SOTA baselines using strict trial-disjoint splitting to prevent data leakage. Despite the chal-
 1039 lenge setting, MindMix maintains superior performance across all datasets.

Method	KUL		DTU		ESAA	
	Balanced Acc.	Weighted F1	Balanced Acc.	Weighted F1	Balanced Acc.	Weighted F1
DBPNet	0.6829 ± 0.092	0.6620 ± 0.104	0.6141 ± 0.074	0.5887 ± 0.077	0.5758 ± 0.071	0.5220 ± 0.075
DARNNet	0.6536 ± 0.097	0.6167 ± 0.112	0.5918 ± 0.089	0.5420 ± 0.104	0.5676 ± 0.076	0.5454 ± 0.078
LaBraM	0.7521 ± 0.085	0.7293 ± 0.096	0.6475 ± 0.092	0.6214 ± 0.085	0.6789 ± 0.082	0.6918 ± 0.072
CBraMod	0.7701 ± 0.091	0.7356 ± 0.101	0.6321 ± 0.097	0.6079 ± 0.099	0.6932 ± 0.091	0.6901 ± 0.095
MindMix	0.9876 ± 0.049	0.9613 ± 0.054	0.9543 ± 0.035	0.9351 ± 0.032	0.9774 ± 0.025	0.9719 ± 0.031

1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

- **DBPNet** Ni et al. (2024) is a dual-branch parallel network designed specifically for auditory attention detection, fusing temporal and frequency features.
- **DARNNet** Yan et al. (2024b) is a dual attention refinement network with spatiotemporal construction for auditory attention detection.
- **MusicAAD** Niu et al. (2024) is a recent model designed for music-oriented auditory attention detection from EEG.
- **AADNet** Nguyen et al. (2025) is an end-to-end deep learning model specifically proposed for the auditory attention decoding task.
- **BENDR** Kostas et al. (2021) is an early EEG foundation model that uses a Transformer architecture and a contrastive self-supervised learning task.
- **BIOT** Yang et al. (2023) is a biosignal Transformer model for cross-data learning, pre-trained on a diverse set of biosignal datasets.
- **EEGPT** Wang et al. (2024b) is a pretrained transformer for universal representation of EEG signals based on a masked reconstruction objective.
- **LaBraM** Jiang et al. (2024) is a large brain model that learns generic representations by predicting neural tokens of masked EEG patches.
- **CBraMod** Wang et al. (2025) is a criss-cross brain foundation model for EEG decoding that models spatial and temporal dependencies separately.

A.7 WINDOW SIZE SENSITIVITY ANALYSIS

As shown in Table A6, performance consistently improves with longer windows (integrating more context) and decreases with shorter ones. While 5s windows yield marginally higher accuracy, we retain the 2s window as the optimal trade-off for system responsiveness.

A.8 GENERALIZATION ON NON-AUDITORY TASKS

To verify the generalization capability of our EEG-Only encoder beyond the auditory domain, we benchmarked it on two standard non-auditory BCI tasks: **TUAB** Veloso et al. (2017) (abnormal detection) and **BCI Competition IV-2b** Tangermann et al. (2012) (motor imagery). We followed the standard evaluation protocols for both tasks and compared our model against reported SOTA baselines.

1080
 1081 **Table A6: Window Size Sensitivity Analysis.** Performance comparison across different decision
 1082 window lengths (1s, 2s, 5s). Longer windows generally improve performance due to increased
 1083 context, but the 2s window offers the best efficiency-accuracy trade-off.

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Dataset	1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Window Size	1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Balanced Accuracy	1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Standard Deviation
HR-EEG4EMO	1 second	0.8535	± 0.099
	2 seconds	0.8878	± 0.045
	5 seconds	0.8917	± 0.062
PME4	1 second	0.6998	± 0.107
	2 seconds	0.7256	± 0.123
	5 seconds	0.7290	± 0.112

1093
 1094 **Table A7: Generalization on Non-Auditory Tasks.** Performance comparison on TUAB (Abnormal
 1095 Detection) and BCIC-IV-2B (Motor Imagery). MindMix (Encoder-only) demonstrates SOTA-level
 1096 generalization capabilities.

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Model	1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Dataset	1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Balanced Acc.	1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Weighted F1
BENDR	TUAB	0.7915 ± 0.007	0.8522 ± 0.004
BIOT	TUAB	0.7844 ± 0.005	0.8854 ± 0.003
EEGPT	TUAB	0.8833 ± 0.002	0.9432 ± 0.001
LaBraM	TUAB	0.8210 ± 0.003	0.8979 ± 0.002
CBraMod	TUAB	0.8289 ± 0.005	0.9018 ± 0.002
MindMix (Encoder-only)	TUAB	0.8545 ± 0.004	0.9113 ± 0.005
BENDR	BCIC-IV-2B	0.6806 ± 0.007	0.6801 ± 0.007
BIOT	BCIC-IV-2B	0.5524 ± 0.010	0.5516 ± 0.010
EEGPT	BCIC-IV-2B	0.6893 ± 0.009	0.6890 ± 0.009
LaBraM	BCIC-IV-2B	0.6610 ± 0.011	0.6608 ± 0.011
CBraMod	BCIC-IV-2B	0.6910 ± 0.008	0.6898 ± 0.008
MindMix (Encoder-only)	BCIC-IV-2B	0.6943 ± 0.010	0.6921 ± 0.010

1110 **Results and Analysis.** The results are summarized in Table A5.

- 1111 • On the TUAB dataset, our encoder achieves a Balanced Accuracy of 0.8545, securing the
 1112 second-best performance among all comparison models, surpassing LaBraM (0.8210) and
 1113 CBraMod (0.8289).
- 1114 • On the BCIC-IV-2B dataset, our encoder achieves the highest performance (0.6943) among
 1115 all listed foundation models, outperforming EEGPT (0.6893) and CBraMod (0.6910).

1116 These results confirm that while MindMix is specialized for auditory decoding, its underlying EEG
 1117 encoder learns highly robust and generalizable features effective for diverse BCI paradigms.

1118 A.9 ROBUSTNESS AND EFFICIENCY ANALYSIS

1119 To comprehensively assess the practical feasibility of MindMix in real-world scenarios, we con-
 1120 ducted two critical analyses: (1) Cross-Dataset Generalization to evaluate robustness against se-
 1121 vere domain shifts, and (2) Data Efficiency Analysis to determine performance stability in low-data
 1122 regimes.

1123 **Cross-Dataset Generalization (Zero-shot Transfer).** To assess robustness to domain shifts with-
 1124 out task-specific adaptation, we performed a cross-dataset evaluation. Specifically, we trained the
 1125 model on the KUL dataset (Dutch stimuli) and evaluated it directly on the DTU dataset (Danish
 1126 stimuli) without any fine-tuning. This represents an extremely challenging setting involving shifts
 1127 in subjects, acquisition devices, and languages.

1128 The results are summarized in Table A8. As expected, all models exhibit a performance drop
 1129 compared to within-dataset training. However, MindMix achieves an accuracy of 56.55%, which is sig-
 1130

1134 significantly higher than the random chance level (50%) and outperforms both the EEGNet (53.16%)
 1135 and LaBraM (51.16%) baselines under the same protocol. This indicates that MindMix learns more
 1136 robust and transferable neuro-acoustic representations than unimodal baselines, likely benefiting
 1137 from its explicit spatial encoding strategy (\mathcal{E}) that effectively handles heterogeneous electrode vari-
 1138 ations.

1139

1140 **Table A8: Cross-Dataset Generalization (KUL \rightarrow DTU).** Zero-shot transfer performance where
 1141 models trained on KUL are tested on DTU without fine-tuning. MindMix demonstrates superior
 1142 robustness to domain shifts compared to baselines.

1143

Model	Transfer Task	Accuracy	F1 Score
EEGNet	KUL \rightarrow DTU	0.5316	0.5281
LaBraM-Base	KUL \rightarrow DTU	0.5116	0.4987
MindMix (Ours)	KUL \rightarrow DTU	0.5655	0.5492

1144

1145

1146 **Data Scaling and Efficiency Analysis.** To evaluate data efficiency, we analyzed performance
 1147 degradation on the HR-EEG4EMO dataset by varying the training set size from 25% to 100%, while
 1148 keeping the validation and test sets fixed. We employed a rigorous subject-specific stratified sam-
 1149 pling protocol: for every subject, we randomly sampled subsets (25%, 50%, 75%) of their specific
 1150 training trials.

1151

1152 As shown in Table A9, MindMix demonstrates exceptional data efficiency. Notably, with only 50%
 1153 of the training data, MindMix (0.6942) effectively matches the full-data (100%) performance of
 1154 EEGNet (0.6981). With 75% data, MindMix (0.7855) significantly surpasses the full-data perfor-
 1155 mance of the strongest unimodal baseline, LaBraM (0.7295). This flatness in the degradation curve
 1156 confirms that the robust cross-modal priors learned during our alignment stage significantly reduce
 1157 the dependency on large-scale subject-specific calibration data.

1158

1159

1160 **Table A9: Data Efficiency Analysis on HR-EEG4EMO.** Performance (Balanced Accuracy) with
 1161 varying percentages of per-subject training data. MindMix outperforms full-data baselines even with
 1162 significantly reduced training samples.

1163

1164

Training Data %	EEGNet	LaBraM	MindMix (Ours)
25%	0.6245 ± 0.146	0.6184 ± 0.126	0.6307 ± 0.109
50%	0.6429 ± 0.131	0.6296 ± 0.113	0.6942 ± 0.127
75%	0.6875 ± 0.120	0.6769 ± 0.114	0.7855 ± 0.121
100%	0.6981 ± 0.111	0.7295 ± 0.082	0.8878 ± 0.045

1165

1166

B THE USE OF LARGE LANGUAGE MODELS

1167

1168

1169 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
 1170 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
 1171 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
 1172 grammar checking, and enhancing the overall flow of the text.

1173

1174

1175 It is important to note that the LLM was not involved in the ideation, research methodology, or
 1176 experimental design. All research concepts, ideas, and analyses were developed and conducted by
 1177 the authors. The contributions of the LLM were solely focused on improving the linguistic quality
 1178 of the paper, with no involvement in the scientific content or data analysis.

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189 The authors take full responsibility for the content of the manuscript, including any text generated
 1190 or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
 1191 and does not contribute to plagiarism or scientific misconduct.