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Color vision provides humans and animals with the
abilities to discriminate colors based on the wavelength
composition of light and to determine the location and
identity of objects of interest in cluttered scenes (e.g.,
ripe fruit among foliage). However, we argue that color
vision can inform us about much more than color alone.
Since a trichromatic image carries more information
about the optical properties of a scene than a
monochromatic image does, color can help us recognize
complex material qualities. Here we show that human
vision uses color statistics of an image for the perception
of an ecologically important surface condition (i.e.,
wetness). Psychophysical experiments showed that
overall enhancement of chromatic saturation, combined
with a luminance tone change that increases the
darkness and glossiness of the image, tended to make
dry scenes look wetter. Theoretical analysis along with
image analysis of real objects indicated that our image
transformation, which we call the wetness enhancing
transformation, is consistent with actual optical changes
produced by surface wetting. Furthermore, we found
that the wetness enhancing transformation operator
was more effective for the images with many colors
(large hue entropy) than for those with few colors (small
hue entropy). The hue entropy may be used to separate
surface wetness from other surface states having similar
optical properties. While surface wetness and surface
color might seem to be independent, there are higher
order color statistics that can influence wetness
judgments, in accord with the ecological statistics. The
present findings indicate that the visual system uses
color image statistics in an elegant way to help estimate
the complex physical status of a scene.

Introduction

The ability to discriminate and identify color is
fundamental to human vision. The evolutionary
importance of color is often stated in terms of color
identification, such as the ability to judge ripeness of
fruit (Mollon, 1989; Steward & Cole, 1989). The issues
surrounding color discrimination and identification,
including metamerism and color constancy, have been
central concerns of color science (Wyszecki & Stiles,
1982; Arend & Reeves, 1986; Maloney & Wandell,
1986; Brainard & Freeman, 1997; Zaidi, Spehar, &
DeBonet, 1997; Kraft & Brainard, 1999).

A surface has many important attributes beyond
color. One of these is whether it is wet or dry, a
question that is important when eating a piece food,
grasping a handrail, or taking a step. Since water is
colorless, one might not expect trichromatic vision to
be particularly helpful in estimating a surface’s wetness.
However, we show here that color statistics can be
informative even when color identification is not at
issue. In particular, when a surface becomes wet, the
colors tend to become more saturated. It is straight-
forward to show, both theoretically and empirically,
that this shift in statistics occurs at the physical level,
through the interaction of light and matter. It then
becomes interesting to ask whether the human visual
system ‘‘knows’’ about this shift, and uses it in
estimating wetness.

Many a child has gathered attractive wet pebbles
along the beach, only to find that their colors fade when
they are dry. Figure 1a shows a beach pebble, with one
half wet and one half dry. It is easy to see which side is
wet: The wet side looks darker and is adorned with
bright specular highlights. Less obvious is the fact that
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the color statistics have changed. The colors are
generally more saturated.

The change in color statistics with wetness is the
main topic of this paper. We discuss the physical
processes that lead to these changes, and show how
modifying image statistics with digital manipulation
can alter the perception of a surface’s wetness. In
addition to changing color statistics, wetness tends to
increase the skew of the luminance distribution, which
has been suggested to make surfaces apparently darker,
glossier (Motoyoshi, Nishida, Sharan, & Adelson,
2007), and fresher (Arce-Lopera, Masuda, Kimura,
Wada, & Okajima, 2012). We can bundle the color and
luminance cues together to form what we call the
wetness enhancing transformation (WET) that can
mimic the effects of wetness. We show that the WET
operator tends to increase the appearance of wetness
when applied to images of a variety of surfaces. The
WET operator is not all-powerful: It works well on
some images, and poorly on others. By studying the

conditions for its success and failure, we can better
understand how color information influences wetness
perception.

Optical aspects of wet and dry
materials

Among many visual effects caused by object wetting
(e.g., see Rungjiratananon, Kanamori, & Nishita, 2012,
for detailed computer simulation of the appearance of
wet hairs), the present study focuses on optical effects.

The refractive index of air is approximately 1, while
that of most common dielectric (nonmetal) solids (such
as plastic, wood, ceramics, and most rocks) is between
1.4 and 1.8. When light strikes a dielectric surface, some
of the light is refracted and enters the material, while
some undergoes Fresnel reflection at the surface. The
amount of reflection depends on the polarization
(which we will ignore), the angle of incidence, and the
relative refractive indices. The refractive index of water
is about 1.33, which is lower than most dielectrics but
higher than air. When water is in contact with a solid
surface, it offers partial index matching. The amount of
reflection is reduced, and the strength of refraction is
reduced. Thus, when a light ray enters a solid from
water, it is less likely to be reflected, and will be less
strongly refracted. The waterborne rays have a better
chance of penetrating the surface and traveling within
it.

Consider the case of a rough-surfaced solid material
consisting of a colored medium filled with scattering
particles, as shown in Figure 1b. A few light paths are
shown. (Note: In these illustrations we only show rays
that escape back to the air, since these are the ones that
can potentially be seen, but of course there are many
paths, not shown, that end in absorption.) The simplest
thing that can happen is a single reflection at the air
interface, shown by Path 1. Double reflections can also
occur, as in Path 2. Since the surface is rough, the
reflection may happen in any number of directions. In
the aggregate the reflections can be considered to be in
random directions, and from a modest distance the
rough surface acts as a diffuse reflector. Fresnel
reflection tends to be chromatically neutral, so the
rough surface provides a diffuse neutral haze that is
added to any light returning after penetrating the
surface. Path 3 shows a ray that penetrates into the
solid medium and is scattered twice before re-emerging.
Since the medium is colored, some wavelengths will be
more attenuated than others during this process, and
the emerging ray will therefore be colored. A ray that
travels a larger distance within the material will
undergo more absorption and so will be dimmer and
more saturated in color.

Figure 1. Optical properties of a surface largely change before

and after wetting. (a) Demonstration of the change in the

appearance of a surface by wetting. (b–e) Schematic diagrams

of optical properties of wet and dry surfaces. (b) Light paths on

a rough-surfaced solid material (dry). (c) Light paths on the

same material after wetting with water. (d) Light paths on a

porous material (dry). (e) Light paths on the same material after

wetting with water.
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Figure 1c shows the same material after wetting with
water. The water forms a film of some thickness.
Because of surface tension, the water’s surface is
smoother than that of the material. This means that the
Fresnel reflections from the water (Path 4) will tend to
appear as sharp highlights rather than as a diffuse haze
(Jensen, Legakis, & Dorsey, 1999). Path 5 shows a ray
that passes into the water and then penetrates a short
distance into the solid before being scattered out. The
water’s partial index matching enhances the ray’s
tendency to be refracted (rather than reflected) on the
way in as well as on the way out of the solid. Path 6
shows a case involving total internal reflection at the
air–water interface (Lekner & Dorf, 1988; Lu, Geor-
ghiades, Rushmeier, Dorsey, & Xu, 2006). This ray
enters and exits the solid medium, is reflected from the
water’s inner surface, and enters the solid a second time
before exiting into the water and the air. This kind of
ray can traverse a good distance inside the solid, and
can become strongly colored.

It is impossible to enumerate all the paths that light
can take in this situation, since there are so many
possible combinations of reflection, refraction, and
absorption. However, wetting the surface changes
distributions of the various kinds of paths.

Another kind of material is porous and consists of
finely divided particles (or fibers) with fine air spaces.
Examples would be a porous rock like sandstone, and
fibrous materials such as paper or fabric. In the dry
state, these materials offer a plethora of air-dielectric
interfaces, which in turn offer many opportunities for
Fresnel reflections. This is shown in Figure 1d. Path 7 is
reflected directly from a particle. Path 8 undergoes two
Fresnel reflections, both of them at air interfaces. In
Path 9, the light enters a particle but cannot travel a
great distance before exiting.

Figure 1e shows some paths from a porous material
that has become saturated with water. The water offers
partial index matching it its interfaces with all the
particles. It also provides a smooth surface that
replaces the diffusely reflecting random surface of the
dry material. Path 10 shows specular reflection at the
air–water interface. Path 11 shows a ray that penetrates
the water and then, due to partial index matching, is
able to travel through multiple particles before exiting
(Twomey, Bohren, & Mergenthaler, 1986).

Image analysis

As reviewed in the last section, wetting the surface is
expected to cause a variety of changes in color and
luminance distributions. To investigate the actual
optical changes, we measured and analyzed images of
surfaces before and after wetting.

Methods

Surface materials

Thirty-two materials were used for the analysis:
clays, soils, cloths, wooden boards, and vegetables. We
first took a photograph of each dry material. Then we
dripped water onto the surface so that a thin water
layer covered it and took a photograph of the wet
surface. Thus, the spatial position in each wet and dry
photograph was similar, although the water dripped
onto the surface significantly changed its fine structure.
Figure 2 shows several image examples.

Camera settings

Photographs of dry and wet materials were taken
using a standard digital camera (Nikon D5100) with a
pixel resolution of 4928 3 3264 in a photography box
illuminated by two fluorescent lamps (Toshiba FL20S-
D-EDL-D65, Toshiba, Tokyo, Japan). The camera was
set at 908 above each material. The two lamps were set
so that they could produce natural ambient light.

To calibrate the color of the camera image, the
spectral sensitivities of the digital camera were mea-
sured by using a monochrometer (MINI-CHROM
DMC1-03, Edmund Optics, Barrington, NJ) and a
spectrometer (TOPCON SR-3, TOPCON, Tokyo,
Japan). Specifically, the standard white target was
illuminated by each monochromatic light, and the

Figure 2. Photographs of dry and wet materials used in the

image analysis. The color and luminance of the surface images

were measured and analyzed before and after wetting.
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reflected light was captured by the digital camera and
measured by the spectrometer. Since the spectral
radiance of each monochromatic light changed with
wavelength, we compensated for the difference using
the spectral radiance measured by the spectrometer.
The spectral sensitivities were measured across the
whole visible wavelength spectrum from 380 to 780 nm
with an interval of 5 nm. The relative sensitivities
across the camera RGB channels were corrected by

using the white checker in a Macbeth Color Checker.
On the basis of the spectral sensitivities of the camera
and the CIE-1931 two-degree color matching function,
we calculated a 3 3 3 transformation matrix that
converts the linear RGB to the XYZ coordinate.

Using the transformation matrix, we calculated the
color statistics of wet and dry surfaces. First, the linear
RGB images were extracted by de-mosaicing a raw
image of each photo, and the center regions of 1536 3
1536 were cropped. Then, the linear RGB was
converted to XYZ and to u0v0Y color coordinates to
calculate the saturation in an equal-color space. The
u0v0 saturation suv and hue Huv were defined as follows:

Suvði;jÞ ¼ 13fðu0ði;jÞ � u0nÞ
2 þ ðv0ði;jÞ � v0nÞ

2g1=2; ð1Þ

Huvði;jÞ ¼ tan�1fðv0ði;jÞ � v0nÞ=ðu0ði;jÞ � u0nÞg; ð2Þ

where u0ði;jÞ and v0ði;jÞ indicate the u0v0 chromaticity
coordinates of the pixel at position (i, j) . The u0v0

chromaticity coordinates of the white point (u0n, v
0
n)

were (0.2032, 0.4963), which corresponds to (0.3465,
0.3760) in the xy chromaticity coordinates. The white
point was measured using the white checker in the
Macbeth Color Checker positioned under the current
lighting condition.

Results

Figures 3 and 4 show the results of the image
analysis. Figure 3a shows the color changes between
the wet and dry surfaces. The horizontal axis indicates
the saturation of the dry surface, while the vertical axis

Figure 3. Color and luminance changes between the wet and

dry surfaces. (a) The mean u0v0 saturation (left) and the mean

hue (right) of each wet surface are plotted as a function of

those of each dry surface. The u0v0 saturation and the hue were

calculated using Equations 1 and 2, respectively. The mean hue

was calculated using circular statistics (Equation 14). Results

show that wetting a surface increases the saturation but has

little effect on the hue. (b) The luminance statistics of each wet

surface is plotted as a function of that of each dry surface.

Different panels indicate different statistics as in the legend. The

green line shows the relationship that there are no changes in

the statistics between dry and wet surfaces. Results show that

the mean luminance of the wet surface is lower than that of the

dry surface. In addition, the skew of the luminance distribution

tends to increase for wet surfaces in comparison with dry ones.

Figure 4. The color distribution of wet or dry surfaces in the u0v0

chromaticity coordinates is shown in each panel. Different dots

in the figure indicate different pixels of individual surfaces. The

chromaticity values of all 32 surfaces are plotted in each figure.

The white circle indicates the white point defined by the white

checker in the Macbeth Color Checker. For both dry and wet

surfaces, the mean chromaticity across all surfaces was close to

the white point. The mean saturation across all materials in the

wet condition, shown as the green line in each panel, was 1.43

times larger than that in the dry condition.
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indicates that of the wet surface. Different symbols
represent different surfaces. The results show that
saturation is generally higher for wet surfaces than for
dry ones (Figure 3a, left). On the other hand, surface
hue is affected little by wetting (Figure 3a, right). In
Figure 4, the color distribution in the u0v0 chromaticity
coordinates is separately shown for dry and wet
surfaces. The white circle indicates the white point, and
the distance between each dot and the white point
indicates how saturated the color of each dot is. The
green line in each figure indicates the distance averaged

across all materials. The mean saturation across all
materials in the wet condition is 1.43 times larger than
in the dry condition.

Figure 3b shows the luminance change between the
wet and dry surfaces. First, the mean luminance of the
wet surface is lower than that of the dry surface, which
is consistent with previous studies (Twomey et al.,
1986; Lekner & Dorf, 1988). In addition, the skew of
the luminance distribution tends to increase for wet
surfaces in comparison with dry ones, suggesting an
increase in surface specular reflection (Jensen et al.,
1999; Motoyoshi et al., 2007; Sharan, Li, Motoyoshi,
Nishida, & Adelson, 2008). Other moment statistics
(i.e., the standard deviation [SD] and kurtosis) are not
affected by wetting in a systematic way. These results
are consistent with the theoretical analysis described in
the previous section.

While we used surface images measured under
diffuse illumination in the main analysis, we conducted
an additional analysis where we strictly controlled the
angular relationship of a directional light source and
the surface orientation (Figure 5). By using a half
mirror, a dry or wet material (a brick) was illuminated
by a projector from the same direction with a color-
calibrated camera. The surface slant of the brick was 08
or 208. The camera was expected to receive strong
specular reflections at 08 but not at 208.

Figure 5a and b show scatter plots of luminance
values for the wet and dry surfaces. The results show
that when the surface slant was 08 (Figure 5a), surface
wetting darkened some pixels and brightened others,
making the luminance histogram heavily skewed in the
positive direction. On the other hand, when we nearly
eliminated specular highlights at 208 (Figure 5b),
surface wetting simply darkened most of the pixels,
making the luminance histogram slightly skewed in the
negative direction. These results agree with the theory
that wetting a surface increases the specular highlights
and darkens the diffuse reflections. Interestingly, a wet
image that includes few specular highlights (Figure 5,
lower) does not appear wet despite its being physically
wet.

With the same apparatus, we further analyzed the
physical mechanism of the optical effects of wetting a
surface through the method developed by Nayar,
Krishnan, Grossberg, and Raskar (2006), which
separates the direct and global reflection components of
a scene using high-spatial-frequency illumination (see
Appendix A for details).

Wetness enhancing transformation

The image analysis showed that a wet surface tends
to have higher saturation, lower mean luminance, and a

Figure 5. Effects of specular highlights on luminance distribu-

tions of a wet surface. By using a half mirror, a dry or wet

material (a brick) was illuminated by a projector from the same

direction that images were taken with the color-calibrated

camera (see also Appendix A for the detailed camera setting.)

(a) The pixel luminance on the wet surface is plotted as a

function of that on the dry surface under the condition that the

surface normal was parallel to the illumination/camera

direction (Slant¼ 08). In this condition, the specular reflection

from the wet surface directly returns to the camera because the

illumination direction was the same as the camera direction.

The luminance distribution of the wet surface was more

positively skewed than that of the dry surface. (b) The pixel

luminance on the wet surface is plotted as a function of that on

the dry surface under the condition that the surface normal was

slanted 208, where the specular reflection was almost

completely excluded. In this case, surface wetting simply

darkened most of the pixels, making the luminance histogram

slightly skewed in the negative direction.
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more positively skewed luminance distribution than a
dry one. To ascertain whether the human visual system
uses these changes in the image features as cues to wet
surface perception, we examined how they affect a
natural dry scene. As shown in Figure 6, the right
image was produced from the left one by (a) enhancing
the saturation of pixel colors and (b) tone-remapping of
luminance signals with an accelerating nonlinear
function, which makes the intensity histogram posi-
tively skewed and decreases the mean luminance. We
refer to these image changes as WET. Given that the
image in Figure 6 is properly reproduced, we expect the
dry scene on the left to appear wet on the right to many
observers. To investigate the perceptual mechanism of
surface wetness, we carried out a series of psycho-
physical experiments using this WET operator.

Psychophysical experiments

Experiment 1a

First, we applied the WET operator to a variety of
natural textures and evaluated how it affects the
apparent image wetness in psychophysical experiments.
We show some examples in Figure 7a and the more
examples in Appendix B.

Methods

Unless otherwise stated, the methods used in the
subsequent experiments were the same as described in
this section.
Participants: Thirteen paid volunteers participated. All
had normal or corrected-to-normal vision. The partic-

ipants were naive to the purpose and methods of the
experiment. The experiments were approved by the
Ethical Committees at NTT Communication Science
Laboratories and were conducted in accordance with
the Declaration of Helsinki.
Apparatus: The experimental stimuli were displayed
using Matlab R2013b in conjunction with the Psycho-
physics Toolbox 3 (Brainard, 1997; Pelli, 1997). They
were displayed on a calibrated 30-in. LCD monitor
(EIZO, ColorEdge CG303W) controlled with an
NVIDIA video card (Quadro 600) with a pixel
resolution of 2560 3 1600. The intensity of each
phosphor was linearly corrected and could be varied
with 10-bit resolution. The maximum luminance of the
monitor was 150.6 cd/m2. The xy coordinates of the
white point were (0.3331, 0.3615). A participant viewed
the stimuli in a dark room at a viewing distance of 57
cm.
Stimuli: Eighty-eight images were used in Experiment
1a. These images were taken from the Textures
category of the McGill Calibrated Colour Image
Database (Olmos & Kingdom, 2004; Figure 7a). The
stimulus examples are also shown in Appendix B. The
WET operator changed the luminance of the original
image Yoriginal (which had been normalized in the range
from 0 to 1) into Ywet as follows:

Ywetði;jÞ ¼ Yoriginalði;jÞ
gamma; ð3Þ

where (i, j) indicates the pixel position. The coordinates
of white (u0n, v

0
n) for calculating the saturation suv in

Equation 1 were (0.1998, 0.4874). To increase the
luminance skew, we set gamma¼ 3. To enhance the
saturation of the texture, we added 0.26 to the suv of
each pixel. In deciding these parameters of the WET
transformation, we preliminary explored a range of
parameters and chose ones that did not disturb the
apparent naturalness of all the images used in
Experiment 1a.
Procedures: In the experiments, images selected from
the stimulus set were presented one by one. The image
sizes were 18.68 3 14.28 in Experiments 1a and 1c
(Figures 7 and 9) and 128 3 128 in Experiment 1b
(Figure 8). Observers rated how wet the surface image
appeared on a 5-point scale. At the beginning of the
experiment, we showed the observers sample pictures of
wet postrain outdoor scenes together with the pictures
of dry scenes. Most of the wet scenes included direct
evidence of water such as puddles or water drops.
Using these ‘‘strongly wet’’ pictures as the reference for
the score ‘‘5’’ and dry pictures as that for the score ‘‘1,’’
we instructed the observers to evaluate the magnitude
of wetness in the presented stimulus image. Each
stimulus condition was tested 10 times in total for each
observer.

Figure 6. Demonstration of the WET (wetness enhancing

transformation) operator. The right image was produced from

the left one by i) enhancing the saturation of pixel colors, and ii)

tone-remapping of luminance signals with an accelerating

nonlinear function, which makes the intensity histogram

positively skewed, and decreases the mean luminance. This

WET operator tends to make a dry surface look wetter.
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Results

Figure 7b shows the results of Experiment 1a. The
horizontal axis indicates the wetness rating for the
original surface image, and the vertical axis indicates the
rating for the transformed image. A one-way repeated-
measures analysis of variance (ANOVA) with the WET
operator (original or transformed) as the within-subjects
variable showed a significant main effect, F(1, 12)¼
71.384, p , 0.0001). The results show that the perceived
wetness was on average much stronger for the trans-
formed images than for the original ones (Figure 7b). In
this experiment, the wet rating score of the transformed
images was not very high. One reason may be that we
used ‘‘mild’’ WET parameters to warrant the naturalness
of all the transformed images. Another reason may be
that the WET operator does not create the water drops
or puddles included in the reference images for the
highest score.

Experiment 1b

The luminance transformation of WET is exponen-
tial; therefore, the operator not only increases the skew
of the luminance distribution but also decreases the
mean. To clarify what factor was critical for the wetness
perception, we used a histogram-matching method to
change the luminance skew of an image by while keeping
the luminance mean constant (Figure 8a). In addition, to
separately evaluate the contribution of chromatic/
achromatic factors of the WET operator, we continu-
ously and independently manipulated the color satura-
tion and the luminance skew of a natural texture.

Methods

Twelve paid volunteers participated. The luminance
skew of an image was changed while the luminance mean
was kept constant by using a histogram-matching

Figure 7. The WET operator tends to make the original image look wetter, while the effect size varies depending on the image. (a)

Stimulus examples of the original and the transformed images. The figure below each stimulus shows the hue histogram of the

stimulus. The effect of the WET operator was strong for the upper two examples but weak for the lower one. (b) Results of the

wetness-rating experiment. The horizontal axis indicates the rating for the original image, and the vertical axis indicates the rating for

the transformed image. Each symbol indicates individual images. Error bars indicate 6 1 SEM across observers.
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Figure 8. Contributions of color saturation and luminance distribution skew to wet perception. (a) Stimulus examples used in

Experiment 1b, where we continuously and independently manipulated the color saturation and the luminance histogram skew of a

natural surface using histogram matching. (b) Results of Experiment 1b. The horizontal axis indicates the mean saturation defined by

Equation 1, and the vertical axis indicates the skew of the luminance histogram. The size of the red circles in each panel indicates the

mean rating averaged across observers. The width of the blue contour in each panel indicatesþ 1 SEM across observers. The results

indicate that both saturation and luminance skew contribute to enhancing the wetness impression by the WET operator. (c) Separate

plots for the effects of the luminance skew and the color saturation. In the left panel, the mean wetness ratings averaged across color

saturation conditions are plotted as a function of the luminance skew. In the right panel, the mean wetness ratings averaged across

the luminance skew conditions are plotted as a function of the color saturation. Error bars indicate 6 1 SEM across observers.
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method (Heeger & Bergen, 1995). The reference distri-
bution for the matching was a beta distribution, and the
skew of the distribution was set from�1.5 to 1.5 in 0.5
steps. Themean luminance and the standard deviation of
the surface were set to 0.3 and 0.1, respectively. The
saturation distribution of each surface was replaced with
a Gaussian distribution using the histogram-matching
method. The mean saturation of the Gaussian distribu-
tion ranged from 0.026 to 0.36 in 0.026 steps. The
standard deviation was set to 0.013. In addition, a
monochromatic surface (suv¼ 0) was also used. In the
experiment, a surface image taken with a standard digital
camera (Nikon D5100) was used (Figure 8).

Results

Figure 8b shows the results. The horizontal axis
indicates the mean saturation, and the vertical axis
indicates the skew of the luminance histogram. The size
of the red circle in each panel indicates the mean rating

averaged across observers. Figure 8c shows the main
effect of the luminance skew and that of the mean
saturation separately. We conducted a two-way re-
peated-measures ANOVA with the skew and saturation
conditions as factors. The main effects of the skew and
saturation conditions and the interaction were statisti-
cally significant, F(6, 66)¼ 28.504, p , 0.0001; F(14,
154)¼ 35.741, p , 0.0001; and F(84, 924)¼ 2.3671, p ,
0.0001, respectively). The results show that the skew
modulation was effective for the wetness perception
even without the mean luminance change. Further-
more, over the whole range we tested, an increase in the
luminance skew, or in the color saturation, monoton-
ically increased the wetness impression (Figure 8c). It is
noteworthy that the wetness rating approached the
highest score (5) when the luminance skew was the
most positive and the color saturation was the highest.

Experiment 1c

There is more than one definition of color saturation.
The u0v0 saturation, the one we used, is independent of
luminance, whereas another definition, chroma C*

uv, is
luminance-dependent as follows:

C�uvði;jÞ ¼ fðu�ði;jÞÞ
2 þ ðv�ði;jÞÞ2g1=2 ð4Þ

u�ði;jÞ ¼ 13L�ði;jÞðu0ði;jÞ � u0nÞ; ð5Þ

v�ði;jÞ ¼ 13L�ði;jÞðv0ði;jÞ � v0nÞ; ð6Þ

L�ði;jÞ ¼ 116ðYði;jÞ=YnÞ1=3 � 16; ð7Þ

where u�ði;jÞ and v�ði;jÞ are the chromaticity in the CIE
L*u*v* color space and L�ði;jÞ indicates lightness in the
space. Yði;jÞ and Yn are the luminance values of each
pixel and the white point, respectively. Chroma C*uv is
defined as the distance of each pixel chromaticity in the
u*v* plane from the white point (0, 0). Since the
definitions of u* and v* are luminance-dependent,
chroma C*

uv is also luminance-dependent. By combin-
ing Equations 4–7 with Equation 1, chroma C*

uv can be
described as follows:

C�uvði;jÞ ¼ L�ði;jÞSuvði;jÞ: ð8Þ

The WET operator used in Experiment 1a decreased
the mean luminance and thus worked to decrease
chroma C*

uv. Therefore, one might argue that the
saturation enhancement was needed only to compen-
sate for the decrease in chroma due to the luminance
modulation. To confirm whether an increase in chroma
is necessary to obtain a wetting effect, we continuously
changed the saturation of the original image more
widely than we did in Experiment 1b.

Figure 9. The effect of chroma, another definition of the color

saturation. For the two images used in Experiment 1a (Surface 1

and 2), we continuously modulated the u0v0 saturation and

measured the perceived wetness. The results are plotted as a

function of the mean chroma of each stimulus. The vertical

orange line indicates the mean chroma of the original image.

The horizontal green line indicates the mean rating in

Experiment 1a for the original image. Different symbols in each

panel indicate different skew conditions. Error bars indicate 6 1

SEM across observers. The results indicate that the wetting

impression increases with color saturation even when chroma is

used as the definition of saturation.
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Methods

Eight paid volunteers participated. The u0v0 satura-
tion of two surface images in McGill textures was
continuously modulated by a histogram-matching
method. The methods of the transformation were the
same as in Experiment 1b. The mean u0v0 saturation of
each image ranged from 0.065 to 0.52 in 0.065 steps.
The standard deviation was set to 0.013. In addition,
the skew of each luminance distribution was set to�0.8
and 0.8. The mean luminance of the surface image was
set to 0.33. The standard deviation of the two surfaces
was set to 0.09 and 0.07, respectively.

Results

Figure 9 shows the results. The horizontal axis
indicates the mean chroma C*

uv of each stimulus, and
the vertical axis indicates the wetness rating averaged
across observers. The vertical orange line in each panel
shows the chroma C*

uv of the original image. The
results show that when the mean chroma of the
transformed image was around the original chroma, a
strong wetting impression could not be obtained even if
the luminance skew was modulated. In addition, the
wetting impression increased even when the mean
chroma of the transformed image was higher than that
of the original image. These findings suggest that an
increase in chroma is necessary to obtain a strong
wetting effect.

Why is the WET operator more effective on
some images than on others?

We have emphasized an explanation of the WET
operator based on ecological optics. That is, human
vision implicitly knows characteristic optical changes
produced by surface wetting. Since the WET operator
simulates these changes, it makes surface images look
wetter to human observers. However, this is only half
of what we can learn about wet processing from the
present data. In Experiment 1a, we found a significant
variation in the effect size of the WET operator (Figure
7b). The image transformation greatly increased the
wetness rating for some images but not for others.
What image factor determines the effect size of the
WET operator? Using a multiple regression analysis,
we evaluated the contribution of a wide range of image
statistics of the original (untransformed) images.

Methods

We performed a multiple regression analysis for the
ratings. To avoid overfitting, we used the stepwise
method, along with the Lasso regression, a multiple
linear regression with a shrinkage and selection

constraint, to select critical variables (Tibshirani, 1996).
In both cases, we regressed a variety of image statistics
of the original image to explain the effect sizes of the
transformation (i.e., the differences between wetness
ratings of the transformed and original images). As the
predictor variables, we used the mean, standard
deviation, skew, kurtosis, and global entropy of
luminance, saturation, or hue in the u0v0 chromaticity
coordinates.

For luminance and saturation, the statistics are
defined as follows:

Mean ¼ 1

Np

XNp

p¼1
I pð Þ; ð9Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

p¼1
I pð Þ �Mean
� �2

vuut ; ð10Þ

Skew ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NpSD3

XNp

p¼1
I pð Þ �Mean
� �3

vuut ; ð11Þ

Kurtosis ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NpSD4

XNp

p¼1
I pð Þ �Mean
� �4

vuut ; ð12Þ

Entropy ¼ �
XG�1
g¼0

PðgÞ logPðgÞ; ð13Þ

where I(p) is the pixel value at the pixel position p and
Np is the number of pixels. The g is the discrete pixel
level, which ranges from 0 to (G-1), and P(g) is the
probability density of the level g on the pixel histogram.

Since hue is a circular variable, we used circular
statistics (Berens, 2009) as follows:

Mean circular ¼ 1

Np

XNp

p¼1
r pð Þ; r pð Þ ¼

cos a pð Þ
sin a pð Þ

� �

ð14Þ

SD circular ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� kMean circularkð Þ

p
; ð15Þ

Skew circular ¼ 1

Np

XNp

p¼1
sin 2 a pð Þ � �a

� �
; ð16Þ

Kurtosis circular ¼ 1

Np

XNp

p¼1
cos 2 a pð Þ � �a

� �
; ð17Þ

where a(p) is the pixel hue at the pixel position p and Np

is the number of pixels. The hue entropy is calculated
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using Equation 13 because it is not affected by circular
variables.

Since the entropy in Equation 13 ignores the spatial
component of an image, we also used the spatial
entropy (Brink, 1995; Razlighi & Kehtarnavaz, 2009)
of luminance, saturation, or hue image as the predictor
variable. For the spatial entropy, the joint probability
distribution function Pgg0(k,l) between samples of Iði;jÞ
and Iðiþk;jþlÞ was used to compute

Pgg0ðk;lÞ ¼ PrfIði;jÞ 2 g&Iðiþk;jþlÞ 2 g0g; g; g0;
¼ 0; . . . ;G� 1; ð18Þ

which corresponds to the probability that a pixel value
g occurs at distance (k, l) from another pixel value g0.
In the present analysis, the distance (k, l) is within the
33 3 neighborhood of the pixel position (i, j). For each
(k, l), an entropy value H(k,l) is defined as follows:

Hðk;lÞ ¼ �
XG�1
g¼0

XG�1
g0¼0

Pgg0ðk;lÞlogPgg0ðk;lÞ: ð19Þ

Since H(k,l) ranges from H(0,0) to 2H(0, 0), which
corresponds to the entropy defined in Equation 13 and
twice the entropy, respectively, relative entropy Hrðk; lÞ
is defined as follows.

Hrðk;lÞ ¼
Hðk;lÞ �Hð0;0Þ

Hð0;0Þ
2 ½0; 1� ð20Þ

By simply summing the entropy values for all (k, l),
the spatial entropy value Hspatial was obtained. To see
the spatial entropy on multiple scales, we computed
Hspatial for images scaled down to 1/1, 1/2, 1/4, 1/8, 1/
16, and 1/32. For all the entropy computations, the
number of histogram bins (i.e., the resolution of I) was
set to 512.

Thus, 33 of the predictor variables in total were used
in the present regression. Before the regression analy-
ses, each predictor variable was normalized to z scores.

Results

Figure 10 shows the results of the single regression
for each feature, stepwise multiple regression, and
Lasso regression. The results of the stepwise multiple
regression analysis show significant contributions of
luminance histogram skew, luminance spatial entropy,
hue (global) entropy, and hue spatial entropy. The
results of the Lasso regression (Tibshirani, 1996)
support strong positive contributions of hue entropy
and luminance spatial entropy (Figure 10).

Entropy tells us how much information there is in an
image. Specifically, hue entropy is related to the
variation of the hue distribution. A large value
indicates that the hue histogram has a nearly uniform
distribution (Figure 7a, upper), while a small value

indicates that it has a biased distribution (Figure 7a,
lower). On the other hand, luminance spatial entropy is
related to the spatial variation of the luminance
pattern. The positive contributions of the hue entropy
and luminance spatial entropy to the effect size of the
WET operator suggests that it is more effective for
images with a larger number of hues and a larger
magnitude of spatial variation. It should be noted that
the WET operator itself does not change the hue and
luminance entropies. The results suggest that the role of
the entropy is to modulate the effects of color
saturation and luminance skew on the wet perception,
rather than to directly alter the wet perception.

Experiment 2

Motivated by the results in Figure 10, we experi-
mentally explored the genuine contribution of the hue
entropy to the wetness perception. We synthesized
artificial Mondrian-like three-dimensional (3-D) scenes
using a physically based renderer (Jakob, 2010) and
investigated their appearance.

Methods

Stimuli: The original 3-D Mondrian images were made
by using the physically based renderer Mitsuba (Jakob,
2010). In a 3-D space, a camera was set 1.5 m from a
plain gray surface 3 3 3 m in size, and 750 small cubes
were randomly placed in front of it. The width, height,
and depth of each cube were randomly selected in a
range from 0.01 to 0.1 m. The bidirectional reflectance
distribution function (BRDF) of each cube was Lam-
bertian, and its reflectance was defined in the spectral
domain. The mean reflectance of each cube was
randomly modulated. However, to control the hue
entropy of the output image, we used three entropy
conditions—small, intermediate, and large entropy—for
the peak in the reflectance spectra of the cube (Figure
11a, upper). For all the conditions, the reflectance
spectra R(k) of each cube were defined as follows:

RðkÞ ¼ a1 þ a2expf�
k� kp
2r
g ð21Þ

where the k is the wavelength of the light, which ranged
from 380 to 780 nm, kp is a peak in reflectance spectra,
and r is the standard deviation, which was set to 20 nm.
The a2 is a contrast factor, and it was set to 0.3. The a1 is
pedestal reflectance, and it was randomly selected from
0.3 to 0.5. For the small entropy condition, the peak in
reflectance spectra kp of each cube was always 700 nm.
For the middle entropy condition, a peak in reflectance
spectra kp of each cube was randomly selected from 546
or 700 nm. For the large entropy condition, the peak
was randomly selected from 400 to 700 nm. The scenes
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Figure 10. Regression analysis as to which image features contribute to the effect size of WET. (a) Results of the single regression

analysis. Red characters indicate that these predictor variables had statistically significant correlations with the effect size (p , 0.05).

(a) Results of the stepwise multiple regression analysis. Red characters indicate that these predictor variables had statistically

significant weights (p , 0.05). The results indicate significant contributions of luminance histogram skew, luminance spatial entropy,

hue (global) entropy, and hue spatial entropy. (b) Results of the lasso regression analysis. The results support strong positive

contributions of hue entropy and luminance spatial entropy.
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were rendered by using the photon-mapping algorithm

(Jensen, 2001). We used as the environment emitter an

environment map downloaded from Bernhard Vogl’s

website (‘‘At the Window (Wells, UK)’’, http://dativ.at/

lightprobes/), with the color converted to grayscale. The

hue global entropy of the output image (Equation 13) in

the small, intermediate, or large entropy condition was

2.8, 4.8, or 6.6, respectively. The transformed images

were made (Figure 11a, lower) by applying the WET

operator to the original images. Each luminance signal

of the original image, which had been normalized in the

range from 0 to 1, was transformed by using Equation 3.

Each saturation signal of the image was defined as in

Equation 1 and multiplied by a factor of three.

Procedure: The observers’ task (eight paid volunteers)
was to judge wetness (or darkness). In each trial, the
observers viewed a pair of the scene images in Figure
11a. The size of each image was 12.68 3 12.68. The
observers were asked to select the surface images that
looked wetter (or darker) using a 5-point scale: A rating
of 0 indicated no difference between the pair in
perceived wetness (or darkness); a rating of 61
indicated that the left/right image is slightly wetter (or
darker) than the right/left one; a rating of 62 indicated
that the left/right image is much wetter (or darker) than
the right/left one. Each stimulus condition was tested
20 times for each observer.
Analysis of the results: Following Scheffé (1952), we
calculated the perceived scale values Q(m) for each

Figure 11. Effects of the WET operator depend on the hue entropy. (a) Stimulus examples used in Experiment 2. We used a physically

based renderer to make the original images. By modulating the peak in reflectance spectra of each object, we controlled the hue

entropy of the image. The hue entropy of each image under the small, middle, or large hue entropy conditions was 2.8, 4.8, or 6.6,

respectively. To make the transformed image, we applied the WET operator to the original image. (b) Results of the wetness judgment

(left) and darkness judgment (right). Ratings of the pairwise comparison were converted into a one-dimensional perceptual scale. The

results indicate that the wetness perception of a scene image increases with the hue entropy of the image without changes in the

luminance spatial entropy or in other factors.
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stimulus condition using the following formulas:

Pðm;nÞ ¼
1

2
ðMðm;nÞ �Mðn;mÞÞ;m; n ¼ 1; . . . 6; ð22Þ

QðmÞ ¼
PS

n¼1 Pðm;nÞ
S

; ð23Þ

whereM indicates the mean rating for the stimulus pair
(m, n) or (n, m) and P(m,n) is the mean rating for m over
n, averaged over the two orders. Q(m) is the perceived
scale value of stimulus condition m. We calculated the
perceived scale values for each observer in the wetness
rating and the darkness rating (Figure 11b).

Results

The ratings for the stimulus pairs within each
observer were analyzed by using Equations 22 and 23.
The calculated value of the perceived wetness or
darkness is shown in the Figure 11b. Different symbols
indicate different stimulus conditions. We conducted a
two-way repeated-measures ANOVA for the wetness
rating, with entropy condition (small, intermediate, or
large) and WET condition (original or transformed) as
factors. The main effects of the entropy and WET
conditions and the interaction were statistically signif-
icant, F(2, 14)¼ 11.942, p , 0.0001, F(1, 7)¼ 189.766, p
, 0.0001, and F(2, 14)¼ 8.244, p¼ 0.004, respectively.
The results show that the wetness perception of a scene

image increased with the hue entropy of the image
without changes in the luminance spatial entropy or in
other factors. Specifically, the perceived wetness of the
transformed image in the large entropy condition
(Figure 11, open blue circle) was statistically higher
than in the small and intermediate entropy conditions
(Figure 11, open red circle and open green circle), t(7)¼
4.988, p¼ 0.005 for small entropy, and t(7)¼ 3.338, p¼
0.038 for intermediate entropy (Bonferroni-corrected
paired t test), but there was no significant difference
between the wetness values of the transformed image in
the small and intermediate entropy conditions, t(7) ¼
0.2494, p ¼ 0.748 (Bonferroni-corrected paired t test).

Furthermore, the transformed images were generally
perceived as wetter than the original ones. The results
can be understood by considering the spatial com-
plexity of the luminance distribution. As in the results
of Experiment 1a, the spatial entropy of the luminance
distribution can contribute to the perceived wetness
(Figure 10). The stimulus used in Experiment 2 was
highly cluttered and had higher spatial entropy.

In addition, using the same stimulus set, we found
that the hue entropy did not affect the darkness rating
(Figure 11b, right). The dissociation of wetness and
darkness ratings excludes the possibility that the
observers simply judged the darkness of a surface to
estimate its wetness.

While we used 3-D Mondrian patterns in the main
experiment, we also tested two-dimensional (2-D) ones
(Figure 12) in a preliminary experiment. Some observ-
ers showed results similar to those obtained with 3-D
patterns, but others had trouble judging wetness for the
2-D patterns. Although wetness is a surface/object
property, the 2-D patterns did not look like collections
of surfaces/objects to the latter group of observers. We
therefore used 3-D patterns, for which all observers
could easily make judgments on the wetness dimension.

Experiment 3

Wetting a surface doesmainly three things: It increases
color saturation, increases luminance skew, and de-
creases mean luminance (Figure 3). We have shown that
the first two factors effectively change apparent wetness
without any changes in the mean luminance (see
Experiments 1b), but how much impact the mean
luminance reduction has on apparent wetness remains
unclear. The final experiment investigated this issue using
the 3-D Mondrian stimuli used in Experiment 2.

Methods

The original image was a high-hue entropy scene
(Figure 13a, upper left). In one condition, the mean
luminance was decreased by multiplying the pixel

Figure 12. Two-dimensional (2-D) Mondrian patterns used in a

preliminary test of Experiment 2. Some observers showed

results similar to those obtained with 3-D patterns, but others

had trouble judging wetness for the 2-D patterns.
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intensities by a constant factor of 0.2 while the luminance
skew was held constant (Figure 13a, upper center). In the
other condition, the luminance gamma was increased to
simultaneously reduce the mean luminance and increase
the luminance skew (upper right), as in the original WET
operator. The mean luminance was equated between the
two conditions. The color saturation was equated either
to the original image or to a saturation-doubled image.
The observers’ task (eight paid volunteers) was to judge
wetness (or darkness). The other methods were the same
as in Experiment 2.

Results

The perceived wetness or darkness, calculated in the
same way as in Experiment 2, is shown in the Figure
13b. Different symbols indicate different stimulus
conditions. We conducted a two-way repeated-mea-
sures ANOVA for the wetness and darkness ratings,
with luminance condition (original, mean decreased, or

gamma modulated) and saturation condition (original
or highly saturated) as factors. For the wetness rating,
the main effects of the luminance condition was
statistically significant, F(2, 14)¼ 26.440, p , 0.0001,
while the main effect of the saturation condition and
the interaction were not, F(1, 7)¼ 2.665, p¼ 0.147, and
F(2, 14) ¼ 1.519, p¼ 0.253, respectively. For the
darkness rating, the main effects of the luminance and
the saturation conditions were statistically significant,
F(2, 14)¼ 73.534, p , 0.0001 and F(1, 7)¼ 15.078, p¼
0.006, respectively), while the interaction was not, F(2,
14)¼ 0.382, p¼ 0.689. The results show that decreasing
the mean luminance (Figure 13, green) was not enough
to significantly increase the wetting impression. Spe-
cifically, regardless of the magnitude of color satura-
tion, the apparent darkness did, t(7)¼ 6.938, p¼ 0.0006
(Bonferroni-corrected paired t test), but the apparent
wetness did not, t(7)¼ 2.130, p ¼ 0.21 (Bonferroni-
corrected paired t test) show significant differences
between the original image (Figure 13, red) and the

Figure 13. (a) Stimulus examples used in Experiment 3. (b) Results of Experiment 3. The results indicate that decreasing the mean

luminance (green) is not sufficient for significantly increasing the wetting impression.
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mean-decreased image (Figure 13, green). In contrast,
the original WET operator (Figure 13, blue) produced
a strong wetting effect, t(7) ¼ 5.341, p¼ 0.003
(Bonferroni-corrected paired t test).

General discussion

The present study investigated human perception of
surface wetness by analyzing the physical processes
related to surface wetting and the image features
sensitive to the visual processing of wetness. The image
analysis using photographs of dry and wet surfaces
showed that the latter tended to have higher saturation
and more positively skewed luminance distribution
than the former. Psychophysical experiments showed
that the WET operator that modulated the color and
luminance statistics as in a wet surface tended to make
a dry surface look wetter in general. These findings
suggest that to some degree human wetness perception
relies on the ecological optics underlying surface
wetting. In addition, these experiments suggest that the
effect size of the WET operator depends on the hue

entropy of the image, or a similar measure of the spread
of color distribution.

The effect of hue entropy cannot be explained by
ecological optics, since wet-related changes in color
saturation and luminance histograms take place
regardless of the number of colors in the scene. Instead,
hue entropy may reflect the perceptual computation the
brain adopts to evaluate surface wetness. Even when
wet image features are recognized in the image, the
observers cannot tell whether they are indeed caused by
surface wetness (Figure 14a). This is because similar
image features could be caused by other events—for
instance, when the visual scene happens to include
objects with highly color-saturated glossy surfaces. In
addition, as shown by Figures 3 and 4, wet-related
changes in color and luminance statistics are small
relative to their variances. Since there is a significant
overlap in the distribution of color saturation between
dry and wet samples, it seems it was hard for observers
to tell whether one color sample is taken from a dry
image or a wet image. The key to resolving these
ambiguities is to increase the number of samples. When
wet-related image features are shared by many different
parts in the scene, the image features are likely to be

Figure 14. Hue entropy can reduce the ambiguity of physical events. (a) Schematic explanations of the relationship between physical

events and image features. Besides surface wetness, other factors, such as the existence of highly color-saturated glossy surfaces, can

produce similar image features. This is why the optical image features of luminance and saturation are not sufficient for estimating

that the surface is wet. (b) Explanation of a framework that can explain the effects of hue entropy. Each colored panel indicates the

probabilities of the occurrence of a wet or dry scene. As in Figure 4, we here assume that the probabilities of the occurrence for wet

colors spread 1.43 times more widely than that for dry colors. The upper and lower panels indicate the small and large hue entropy

conditions, respectively. For the large hue entropy, the posterior probability for the wet scene can be larger than that for the dry

scene, while it tends to be smaller for the small hue entropy.
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produced by a global common factor such as wetting.
In other words, the more independent colors the scene
contains, the more reliably the visual system can judge
the scene wetness.

This explanation may have a relationship with a
Bayesian inference model (Figure 14b; e.g., Knill &
Richards, 1996; Weiss, Simoncelli, & Adelson, 2002).
The problem the observer has to solve is to classify a
scene into dry or wet on the basis of the difference in
the color saturation distribution. The saturation is
generally higher for wet scenes than for dry ones. The
probability distributions of the saturation for the dry
and wet scenes, P(SjDry) and P(SjWet), are something
like those shown in Figure 4. With regard to the prior
probability, we assume that the scene is more likely to
be dry than wet: P(Dry) . P(Wet). The scene S is judge
as wet when P(DryjS) , P(WetjS):

P DryjSð Þ}P Dryð Þ
YN
x¼1

P SxjDryð Þ; ð24Þ

P WetjSð Þ}P Wetð Þ
YN
x¼1

P SxjWetð Þ; ð25Þ

where N is the number of independent colors present in
the scene, which usually increases with the hue entropy.

According to this model, when the number of
independent colors is small (the hue entropy of the
image or the amount of color information is low) and
the sampled colors are saturated, the scene is judged to
be dry because of the difference in the prior probability.
On the other hand, when the number of independent
colors is large (hue entropy is high) and sampled colors
are all saturated, the scene is judged to be wet because
of the increased contribution of the likelihood. For
instance, let us consider a simple situation where (a)
there are only two color saturation states, low and high;
(b) the likelihood of high saturation is higher in the wet
condition than in the dry condition, P(ShighjDry)¼ 0.4,
P(SlowjDry) ¼ 0.6, P(ShighjWet) ¼ 0.5, P(SlowjWet) ¼
0.5; and (c) the prior probability is higher for the dry
condition than for the wet condition, P(Dry)¼ 0.7 and
P(Wet)¼ 0.3. When there is only one color sample and
it has high saturation, the model predicts dry, since
P(DryjShigh)¼0.28 . P(WetjShigh)¼0.15. On the other
hand, when there are five samples and all of them have
high saturation, the model predicts wet, since P(Dry-
Shigh) ¼ 0.0072 , P(WetjShigh) ¼ 0.0094.

Figure 15. The results of a simulation of the model in Figure 14 under an assumption that the probability distribution of color is

approximated by a Gaussian function, with the spread’s being 31.43 wider for the wet condition than for the dry condition. A

diagonal view (a) and a top view (b) of the frequency distribution histogram of the combination of PP(SxjDry) and PP(SxjWet). The

blue histogram was obtained when N color samples were randomly taken from the wet color distribution; the red histogram was

obtained when they were randomly taken from the dry color distribution. The dotted line is the boundary above which the likelihood

is higher for wet than for dry.When the number of samples is one (N¼1), blue and red histograms significantly overlap each other. As

the number of samples is increased, however, the blue and red distributions are gradually separated from each other, making it easier

to tell whether the color samples are from the wet or dry distribution.

Journal of Vision (2017) 17(5):7, 1–24 Sawayama, Adelson, & Nishida 17

Downloaded from jov.arvojournals.org on 05/25/2024



We also consider the model behavior under a more
realistic assumption: (a) the probability distribution of
color is widely spread and approximated by a Gaussian
function centered around the white point; and (b) the
standard deviation of the Gaussian distribution is
31.43 larger (the average saturation is31.43 higher) for
the wet condition than for the dry one. For a given dry/
wet image, N independent colors are randomly sampled
from the dry/wet distribution. By repeating this 1,024
times, we obtained the frequency distribution histo-
gram of the combination of PP(SxjDry) and
PP(SxjWet) as shown in Figure 15. The blue histogram
was obtained when N color samples were randomly
taken from the wet color distribution; the red one when
they were randomly taken from the dry color distri-
bution. Both histograms are aligned on a single line for
each N. The dotted line is the boundary above which
the likelihood is higher for wet than for dry. When the
number of samples is one (N¼ 1), the blue and red
histograms significantly overlap with each other. It is
hard for the observer to tell whether the sample is from
the wet or dry distribution only from the likelihood
terms (and the prior produces a decision bias for dry).
As the number of samples is increased, however, the
blue and red distributions are gradually separated from
each other, making it easier to tell whether the color
samples are from the wet or dry distribution (unless a
strong prior bias in favor of dry overrides the difference
in the likelihood terms). The model nicely explains how
an increase in hue entropy, or in the number of
different color samples, elevates the reliability of color
saturation as a cue to judge surface wetness.

However, it should be noted that we propose this
model only for the purpose of giving insight into the
effect of hue entropy on wetness perception. We do not
expect the model, at least the current version, to be able
to precisely predict human wetness perception. One

limitation is that it assumes an ideal observer who
perfectly knows the natural color statistics. In addition,
the model does not take into account the contribution
of many other cues to wetness perception.

Although the present study focused on the role of
color and luminance statistics of the image in human
wetness perception, we do not claim that the visual
system can evaluate the wetness of an image only by
using those image statistics, nor that those statistics are
powerful enough to predict human wet/dry judgments
regardless of other stimulus conditions. Our claim is
that, all else being equal, changing the statistics tends to
change the wetness in a predictable way. The idea is
easy to understand when we consider the example of
classical cues. For instance, height in visual field does
not, by itself, predict apparent depth. However, in a
given picture, increasing an object’s in height in visual
field tends to increase its apparent distance. The
angular subtense of an object on the page does not, by
itself, predict its apparent 3-D size. However, increas-
ing on object’s angular subtense tends to increase its
apparent 3-D size. Analogously, the color saturation of
an image may not, by itself, predict the apparent
magnitude of wetness, but increasing it tends to make a
dry surface look wet. Therefore, color saturation is a
cue to perceive wetness, as an object’s height is a cue to
perceive depth.

Wetting real objects often produces a characteristic
shape change. For instance, when a hair-like object is
wet, the absorbed water makes the object heavier and
alters its chemical properties (Rungjiratananon et al.,
2012). The resulting shape change should be an
effective cue for the wetness perception. Wet scenes
often contain direct visual evidence of water, such as
drops and puddles. For a fuller understanding of
human wetness perception, the contribution of the
nonoptical factors should be taken into account.

The present case study for wetness perception
demonstrates how useful color image statistics could be
for estimating physical surface conditions or other
events that alter the spectral characteristics of light
reflectance. In this regard, the present finding is related
to the effects of color on intrinsic image decomposition.
It is known that human observers tend to interpret
luminance spatial changes accompanied by color
changes as material changes, while they tend to
interpret those orthogonal to color changes as illumi-
nation changes (Kingdom, 2003). This suggests that the
visual system ‘‘knows’’ that color changes are usually
caused by material changes, but that luminance
changes can be caused be either material or illumina-
tion changes. Human observers also use color infor-
mation to segregate highlights from body color,
apparently exploiting the differences in the spectral
properties of diffuse and specular reflections (Nishida,
Motoyoshi, & Maruya, 2011). Together with these

Figure 16. Examples of the DET operator. The DET can tend to

make the original images look dryer.
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previous findings, the present finding suggests that the
brain makes use of color information not only for
perceiving color but also for decoding the optics of the
external world embedded in the retinal image.

The WET operator is a practically useful image-
processing tool. It can quickly change a dry scene into a
wet one by a simple image manipulation. One might
then wonder if an inverse function of the WET
operator can make a wet surface look dryer. The results
of Experiment 1b suggest that changing the parameters
of the WET operator in the opposite direction enhances
apparent dryness. Furthermore, as shown in Figure 16,
we observed that the dryness enhancing transformation
(DET) was able to make some real wet scenes look
dryer. However, the DET would be more limited than
the WET because it cannot undo/remove nonoptical
changes produced by actual wetting, such as shape
changes and water drops.

To conclude, the human visual system tends to
perceive surface wetness when the color saturations are
high, the luminance histogram is positively skewed, and
the hue entropy is high. The first two conditions agree
with actual image changes produced by surface wetting
(ecological optics), while the last condition can be
explained by a Bayesian-like inference that takes into
account the probability of dry or wet surfaces in the
environment. The present findings not only provide a
novel view of human wetness perception, but also
reveal how elegantly human vision uses low-level color
statistics to estimate complex optical properties in the
real world. A scientific understanding of the strategies
the human visual system takes to estimate surface
wetness (see also Sawayama & Kimura, 2015) will lead
to the development of techniques to synthesize, edit,
and recognize wet scenes that are much simpler than
physics-based ones (Jensen et al., 1999; Lenaerts,
Adams, & Dutré, 2008; Chen, Thalmann, & Allen,
2012; Rungjiratananon et al., 2012).

Keywords: material perception, surface wetness, color
vision
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Appendix A

Several optical factors contribute to producing the
color and luminance changes when a surface is wetted.
Some are related to multiple reflections or subsurface
scattering (Path 6 in Figure 1), while others are related
to direct reflection, such as the physical cause of index
matching (Path 5 in Figure 1).

To explore the contributions of different optical
factors, we measured the color of a dry or wet brick
(rough dielectric material), which was illuminated by a
projector (Epson EH-TW6600W, Espon, Tokyo, Ja-
pan) from the same direction with a color-calibrated
camera (Pointgrey Flea 3, Richmond, BC, Canada)
using a half mirror (Figure A1a). The surface was
slanted 208 to attain the condition without the specular
reflection. We separated the direct component of the
brick from the global one using high-frequency
illumination (Nayar et al., 2006). In theory, the method
should work when only two images are used. However,
as mentioned in the paper, we used 25 images of the
brick illuminated by different checkerboard illumina-
tions (Figure A1b) and extracted the on-(light checker)
and off-(dark checker) images of the brick from the
sequences. The off-image mainly included the global
component from neighboring activated regions, al-
though there were weak direct and global components
because of the brightness of the deactivated light
source. In contrast, the on-image strongly included the
direct component and also included the global com-
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ponent from neighboring regions. If the spatial ratio of
the activated and deactivated pixels (i.e., the ratio of
the light and dark checkers) and the brightness of the
deactivated source are given, these on- and off-images
can be transformed to the direct and global compo-
nents by a linear transformation. By using this method,
the global component image (Figure A1c, lower)
should arise from indirect factors, including multiple
interreflection, subsurface scattering, volumetric scat-
tering, or translucency. In contrast, the direct compo-
nent image (Figure A1c, middle) arises mainly from the
direct reflection from the brick, which is affected by
index matching.

Results of the color analyses between the wet and
dry objects are shown in Figure A2. They show that
under the direct component condition the color
saturation of the wet object was higher than that of the

dry one (Figure A2a). Under the global component
condition the saturation of the wet object was also
higher than that of the dry one as a whole (Figure
A2b). The results suggest that both index matching
(Path 5) and multiple reflections (Path 6) contribute to
the optical changes produced by wetting a brick
surface.

Appendix B

In Experiment 1a, the WET operator was effective
for some textures but not for others. Some of the
examples used in Experiment 1a are shown in Figures
B1 and B2 with the mean rating averaged across
observers.

Figure A1. Separation of direct and global reflectance components to analyze optical factors producing the color and luminance

changes. We measured the color of a dry or wet brick (rough dielectric material), which was illuminated with a projector from the

same direction as a color-calibrated camera using a half mirror (a). The surface normal was slanted 208 from the illumination/viewing

axis to reduce specular reflections. We separated the direct component of the brick from the global one using high-frequency

illumination (b) and extracted the on-(light checker) and off-(dark checker) images of the brick from the sequences. From these

images, the direct (c, middle) and global (c, lower) components were extraced. The direct image (c, middle) should arise only from the

direct reflection of the brick. In contrast, the global component image (c, lower) should arise from interreflection, subsurface

scattering, volumetric scattering, or translucency.
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Figure A2. Luminance and color differences between the wet and dry images for the direct and global reflectance components. (a) For

the direct component images, the difference in color or luminance between the wet and dry images within the region-of-interest

(ROI) is plotted in the right graphs. There are a clear luminance reduction and a saturation increase. Most of the image changes of the

direct component can be ascribed to index matching (i.e., a decrease in the refractive index difference between air and the brick due

to the brick’s having a water film). (b) The results for the global component condition. Under the global component condition, the

saturation of the wet object was also higher than that of the dry one as a whole, but the amount of the increase was smaller than

that under the direct component condition.
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Figure B1a. Stimulus examples on which the WET operator was

effective in Experiment 1a.

Figure B1b. Stimulus examples on which the WET operator was

effective in Experiment 1a.
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Figure B2a. Stimulus examples on which the WET operator was

ineffective in Experiment 1a.

Figure B2b. Stimulus examples on which the WET operator was

ineffective in Experiment 1a.
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