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Abstract

Inspired by progress in large-scale language modeling, we apply a similar approach towards
building a single generalist agent beyond the realm of text outputs. The agent, which we
refer to as Gato, works as a multi-modal, multi-task, multi-embodiment generalist policy.
The same network with the same weights can play Atari, caption images, chat, stack blocks
with a real robot arm and much more, deciding based on its context whether to output text,
joint torques, button presses, or other tokens. In this report we describe the model and the
data, and document the current capabilities of Gato.
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Figure 1: A generalist agent. Gato can sense and act with different embodiments across a wide range of
environments using a single neural network with the same set of weights. Gato was trained on 604 distinct tasks
with varying modalities, observations and action specifications.
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Figure 2: Training phase of Gato. Data from different tasks and modalities is serialized into a flat sequence of
tokens, batched, and processed by a transformer neural network akin to a large language model. Masking is used
such that the loss function is applied only to target outputs, i.e. text and various actions.

1 Introduction

There are significant benefits to using a single neural sequence model across all tasks. It reduces the need
for hand crafting policy models with appropriate inductive biases for each domain. It increases the amount
and diversity of training data since the sequence model can ingest any data that can be serialized into a
flat sequence. Furthermore, its performance continues to improve even at the frontier of data, compute and
model scale (Kaplan et al., 2020; Hoffmann et al., 2022). Historically, generic models that are better at
leveraging computation have also tended to overtake more specialized domain-specific approaches (Sutton,
2019), eventually.

In this paper, we describe the current iteration of a general-purpose agent which we call Gato, instantiated
as a single, large, transformer sequence model. With a single set of weights, Gato can engage in dialogue,
caption images, stack blocks with a real robot arm, outperform humans at playing Atari games, navigate in
simulated 3D environments, follow instructions, and more.

While no agent can be expected to excel in all imaginable control tasks, especially those far outside of its
training distribution, we here test the hypothesis that training an agent which is generally capable on a large
number of tasks is possible; and that this general agent can be adapted with little extra data to succeed
at an even larger number of tasks. We hypothesize that such an agent can be obtained through scaling
data, compute and model parameters, continually broadening the training distribution while maintaining
performance, towards covering any task, behavior and embodiment of interest. In this setting, natural lan-
guage can act as a common grounding across otherwise incompatible embodiments, unlocking combinatorial
generalization to new behaviors.

We focus our training at the operating point of model scale that allows real-time control of real-world robots,
currently around 1.2B parameters in the case of Gato. As hardware and model architectures improve, this
operating point will naturally increase the feasible model size, pushing generalist models higher up the scaling
law curve. For simplicity Gato was trained offline in a purely supervised manner; however, in principle, there
is no reason it could not also be trained with either offline or online reinforcement learning (RL).
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2 Model

The guiding design principle of Gato is to train on the widest variety of relevant data possible, including
diverse modalities such as images, text, proprioception, joint torques, button presses, and other discrete and
continuous observations and actions. To enable processing this multi-modal data, we serialize all data into
a flat sequence of tokens. In this representation, Gato can be trained and sampled from akin to a standard
large-scale language model. During deployment, sampled tokens are assembled into dialogue responses,
captions, button presses, or other actions based on the context. In the following subsections, we describe
Gato’s tokenization, network architecture, loss function, and deployment.

2.1 Tokenization

There are infinite possible ways to transform data into tokens, including directly using the raw underlying
byte stream. Below we report the tokenization scheme we found to produce the best results for Gato at the
current scale using contemporary hardware and model architectures.

• Text is encoded via SentencePiece (Kudo & Richardson, 2018) with 32000 subwords into the integer
range [0, 32000).

• Images are first transformed into sequences of non-overlapping 16 × 16 patches in raster order, as
done in ViT (Dosovitskiy et al., 2020). Each pixel in the image patches is then normalized between
[−1, 1] and divided by the square-root of the patch size (i.e.

√
16 = 4).

• Discrete values, e.g. Atari button presses, are flattened into sequences of integers in row-major order.
The tokenized result is a sequence of integers within the range of [0, 1024).

• Continuous values, e.g. proprioceptive inputs or joint torques, are first flattened into sequences of
floating point values in row-major order. The values are mu-law encoded to the range [−1, 1] if not
already there (see Figure 14 for details), then discretized to 1024 uniform bins. The discrete integers
are then shifted to the range of [32000, 33024).

After converting data into tokens, we use the following canonical sequence ordering.

• Text tokens in the same order as the raw input text.

• Image patch tokens in raster order.

• Tensors in row-major order.

• Nested structures in lexicographical order by key.

• Agent timesteps as observation tokens followed by a separator, then action tokens.

• Agent episodes as timesteps in time order.

Further details on tokenizing agent data are presented in the supplementary material (Section B).

2.2 Embedding input tokens and setting output targets

After tokenization and sequencing, we apply a parameterized embedding function f(·; θe) to each token (i.e.
it is applied to both observations and actions) to produce the final model input. To enable efficient learning
from our multi-modal input sequence s1:L the embedding function performs different operations depending
on the modality the token stems from:
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• Tokens belonging to text, discrete- or continuous-valued observations or actions for any time-step are
embedded via a lookup table into a learned vector embedding space. Learnable position encodings
are added for all tokens based on their local token position within their corresponding time-step.

• Tokens belonging to image patches for any time-step are embedded using a single ResNet (He et al.,
2016a) block to obtain a vector per patch. For image patch token embeddings, we also add a
learnable within-image position encoding vector.

We refer to appendix Section C.3 for full details on the embedding function.

As we model the data autoregressively, each token is potentially also a target label given the previous tokens.
Text tokens, discrete and continuous values, and actions can be directly set as targets after tokenization.
Image tokens and agent nontextual observations are not currently predicted in Gato, although that may be
an interesting direction for future work. Targets for these non-predicted tokens are set to an unused value
and their contribution to the loss is masked out.

2.3 Training

Given a sequence of tokens s1:L and parameters θ, we model the data using the chain rule of probability:

log pθ(s1, . . . , sL) =
L∑

l=1
log pθ(sl|s1, . . . , sl−1), (1)

Let b index a training batch of sequences B. We define a masking function m such that m(b, l) = 1 if the
token at index l is either from text or from the logged action of an agent, and 0 otherwise. The training loss
for a batch B can then be written as

L(θ, B) = −
|B|∑
b=1

L∑
l=1

m (b, l) log pθ

(
s

(b)
l |s(b)

1 , . . . , s
(b)
l−1

)
(2)

As described above, Gato’s network architecture has two main components: the parameterized embedding
function which transforms tokens to token embeddings, and the sequence model which outputs a distribution
over the next discrete token. While any general sequence model can work for next token prediction, we chose
a transformer (Vaswani et al., 2017) for simplicity and scalability. Gato uses a 1.2B parameter decoder-only
transformer with 24 layers, an embedding size of 2048, and a post-attention feedforward hidden size of 8196
(more details in Section C.1).

Because distinct tasks within a domain can share identical embodiments, observation formats and action
specifications, the model sometimes needs further context to disambiguate tasks. Rather than providing e.g.
one-hot task identifiers, we instead take inspiration from (Sanh et al., 2022; Wei et al., 2021; Brown et al.,
2020) and use prompt conditioning. During training, for 25% of the sequences in each batch, a prompt
sequence is prepended, coming from an episode generated by the same source agent on the same task. Half
of the prompt sequences are from the end of the episode, acting as a form of goal conditioning for many
domains; and the other half are uniformly sampled from the episode. During evaluation, the agent can be
prompted using a successful demonstration of the desired task, which we do by default in all control results
that we present here.

Training of the model is performed on a 16x16 TPU v3 slice for 1M steps with batch size 512 and token
sequence length L = 1024, which takes about 4 days. Architecture details can be found in Section C. Because
agent episodes and documents can easily contain many more tokens than fit into context, we randomly
sample subsequences of L tokens from the available episodes. Each batch mixes subsequences approximately
uniformly over domains (e.g. Atari, MassiveWeb, etc.), with some manual upweighting of larger and higher
quality datasets (see Table 1 in Section 3 for details).
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Figure 3: Running Gato as a control policy. Gato consumes a sequence of interleaved tokenized observations,
separator tokens, and previously sampled actions to produce the next action in standard autoregressive manner.
The new action is applied to the environment – a game console in this illustration, a new set of observations is
obtained, and the process repeats.

2.4 Deployment

Deploying Gato as a policy is illustrated in Figure 3. First a prompt, such as a demonstration, is tokenized,
forming the initial sequence. By default, we take the first 1024 tokens of the demonstration. Next the
environment yields the first observation which is tokenized and appended to the sequence. Gato samples the
action vector autoregressively one token at a time. Once all tokens comprising the action vector have been
sampled (determined by the action specification of the environment), the action is decoded by inverting
the tokenization procedure described in Section 2.1. This action is sent to the environment which steps
and yields a new observation. The procedure repeats. The model always sees all previous observations and
actions in its context window of 1024 tokens. We found it beneficial to use transformer XL memory during
deployment, although it was not used during training (Dai et al., 2019).

3 Datasets

Gato is trained on a large number of datasets comprising agent experience in both simulated and real world
environments, as well as a variety of natural language and image datasets. The datasets we use and their
attributes are listed in Table 1. The approximate number of tokens per control dataset is computed assuming
the tokenization mechanism described in Section 2.1.

3.1 Simulated control tasks

Our control tasks consist of datasets generated by specialist SoTA or near-SoTA reinforcement learning
agents trained on a variety of different environments. For each environment we record a subset of the
experience the agent generates (states, actions, and rewards) while it is training.

The simulated environments include Meta-World (Yu et al., 2020) introduced to benchmark meta-
reinforcement learning and multi-task learning, Sokoban (Racanière et al., 2017) proposed as a planning
problem, BabyAI (Chevalier-Boisvert et al., 2018) for language instruction following in grid-worlds, the DM
Control Suite (Tunyasuvunakool et al., 2020) for continuous control, as well as DM Lab (Beattie et al., 2016)
designed to teach agents navigation and 3D vision from raw pixels with an egocentric viewpoint. We also
use the Arcade Learning Environment (Bellemare et al., 2013) with classic Atari games (we use two sets of
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Table 1: Datasets. Left: Control datasets used to train Gato. Right: Vision & language datasets. Sample weight
means the proportion of each dataset, on average, in the training sequence batches.

Control environment Tasks Episodes Approx.
Tokens

Sample
Weight

DM Lab 254 16.4M 194B 9.35%
ALE Atari 51 63.4K 1.26B 9.5%
ALE Atari Extended 28 28.4K 565M 10.0%
Sokoban 1 27.2K 298M 1.33%
BabyAI 46 4.61M 22.8B 9.06%
DM Control Suite 30 395K 22.5B 4.62%
DM Control Suite Pixels 28 485K 35.5B 7.07%
DM Control Suite Random Small 26 10.6M 313B 3.04%
DM Control Suite Random Large 26 26.1M 791B 3.04%
Meta-World 45 94.6K 3.39B 8.96%
Procgen Benchmark 16 1.6M 4.46B 5.34%
RGB Stacking simulator 1 387K 24.4B 1.33%
RGB Stacking real robot 1 15.7K 980M 1.33%
Modular RL 38 843K 69.6B 8.23%
DM Manipulation Playground 4 286K 6.58B 1.68%
Playroom 1 829K 118B 1.33%
Total 596 63M 1.5T 85.3%

Vision / language dataset Sample
Weight

MassiveText 6.7%
M3W 4%
ALIGN 0.67%
MS-COCO Captions 0.67%
Conceptual Captions 0.67%
LTIP 0.67%
OKVQA 0.67%
VQAV2 0.67%
Total 14.7%

games that we call ALE Atari and ALE Atari Extended, see Section F.1 for details). We as well include the
Procgen Benchmark (Cobbe et al., 2020) and Modular RL (Huang et al., 2020). We also include four tasks
using a simulated Kinova Jaco arm from DM Manipulation Playground, as introduced in Zolna et al. (2020).
Section F includes a more in-depth description of these control tasks, along with what RL agent was used
to generate the data.

We found it effective to train on a filtered set of episodes with returns at least 80% of the expert return
for the task. The expert return measures the maximum sustained performance that the expert agent can
achieve. We define it as the maximum over the set of all windowed average returns calculated over all the
collected episodes for a task:

max
j∈[0,1,...,N−W ]

j+L−1∑
i=j

Ri

W


where N it the total number of collected episodes for the task, W is the window size, and Ri is the total
return for episode i. To obtain accurate estimates, in practice, we set W to be 10% of the total data amount
or a minimum of 1000 episodes (i.e. W = min(1000, 0.1 × N)).

3.2 Vision and language

Gato is trained on MassiveText (Rae et al., 2021), a collection of large English-language text datasets from
multiple sources: web pages, books, news articles, and code.

We also included several vision-language datasets in Gato’s training. ALIGN (Jia et al., 2021) consists of 1.8B
images and their alternative text (alt-text) annotations. LTIP (Long Text & Image Pairs), consists of 312
million images with captions (Alayrac et al., 2022). Conceptual captions (Sharma et al., 2018) and COCO
captions (Chen et al., 2015) are captioning datasets with 3.3M and 120k image-text pairs respectively. The
MultiModal MassiveWeb (M3W) dataset (Alayrac et al., 2022) includes 43M webpages where both text and
images were extracted. We also included visual question-answering datasets. In particular OKVQA (Marino
et al., 2019) and VQAv2 (Antol et al., 2015) with 9K and 443K triplets of images, questions, and answers.
To form a training episode from these, we sample five (image, text) pairs, tokenize them, concatenate, and
then pad or randomly crop to the required training sequence length.
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Figure 4: RGB Stacking environment with the Sawyer robot arm. Blocks vary along several shape axes,
with 5 held out test triplets. The goal is to stack red on blue, ignoring green.

3.3 Robotics - RGB Stacking Benchmark (real and sim)

As a testbed for taking physical actions in the real world, we chose the robotic block stacking environment
introduced by Lee et al. (2021). The environment consists of a Sawyer robot arm with 3-DoF cartesian
velocity control, an additional DoF for velocity, and a discrete gripper action. The robot’s workspace
contains three plastic blocks colored red, green and blue with varying shapes. The available observations
include two 128 × 128 camera images, robot arm and gripper joint angles as well as the robot’s end-effector
pose. Notably, ground truth state information for the three objects in the basket is not observed by the
agent. Episodes have a fixed length of 400 timesteps at 20 Hz for a total of 20 seconds, and at the end of an
episode block positions are randomly re-positioned within the workspace. The robot in action is shown in
Figure 4. There are two challenges in this benchmark: Skill Mastery (where the agent is provided data from
the 5 test object triplets it is later tested on) and Skill Generalization (where data can only be obtained
from a set of training objects that excludes the 5 test sets).

We used several sources of training data for these tasks. In Skill Generalization, for both simulation and
real, we use data collected by the best generalist sim2real agent from Lee et al. (2021). We collected data
only when interacting with the designated RGB-stacking training objects (this amounts to a total of 387k
successful trajectories in simulation and 15k trajectories in real). For Skill Mastery we used data from the
best per group experts from Lee et al. (2021) in simulation and from the best sim2real policy on the real
robot (amounting to 219k trajectories in total). Note that this data is only included for specific Skill Mastery
experiments in Section 5.4.

4 Capabilities of the generalist agent

In this section, we summarize the performance of Gato when trained on the above described data. That is,
all results across all tasks are derived from a single pretrained model with a single set of weights. Results
with fine-tuning will be presented in Section 5.

4.1 Simulated control tasks

Figure 5 shows the number of distinct control tasks for which Gato performs above a given score threshold,
relative to expert performance demonstrated in Gato’s training data.

We report performance as a percentage, where 100% corresponds to the per-task expert and 0% to a random
policy. For each simulated control task we trained our model on, we roll out the Gato policy on the
corresponding environment 50 times and average the defined scores. As shown in Figure 5, Gato performs
over 450 out of 604 tasks at over a 50% expert score threshold.
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Figure 5: Gato’s performance on simulated control tasks. Number of tasks where the performance of the
pretrained model is above a percentage of expert score, grouped by domain. Here values on the x-axis represent a
specific percentage of expert score, where 0 corresponds to random agent performance. The y-axis is the number of
tasks where the pretrained model’s mean performance is equal to or above that percentage. That is, the width of
each colour band indicates the number of tasks where Gato’s mean performance is above a percentage of the
maximum score obtained by a task-specific expert.

In ALE Atari (Bellemare et al., 2013) Gato achieves the average human (or better) scores for 23 Atari games1,
achieving over twice human score for 11 games. While the single-task online RL agents which generated the
data still outperform Gato, this may be overcome by adding capacity or using offline RL training rather than
purely supervised (see Section 5.5 where we present a specialist single domain ALE Atari agent achieving
better than human scores for 44 games).

On BabyAI (Chevalier-Boisvert et al., 2018) Gato achieves over 80% of expert score for nearly all levels2.
For the most difficult task, called BossLevel, Gato scores 75%. The two other published baselines we could
find, BabyAI 1.0 and BabyAI 1.1 (Hui et al., 2020), scored 77% and 90%, respectively, having trained on
this single task alone using a million demonstrations.

On Meta-World (Yu et al., 2020) Gato achieves more than 50% for all 44 out of 45 tasks that we trained
on, over 80% for 35 tasks, and over 90% for 3 tasks. On canonical DM Control Suite (Tassa et al., 2018),
Gato achieves better than 50% of the expert score on 21 out of 30 tasks from state, and more than 80% for
18 tasks.

4.2 Robotics

First person teleoperation enables the collection of expert demonstrations. However, such demonstrations
are slow and costly to collect. Data-efficient behavior cloning methods are therefore desirable for training a
generalist robot manipulator and offline pretraining is thus a well-motivated area of research. To that end,
we evaluated Gato on the established RGB Stacking benchmark for robotics.

1The full list of games: Assault, Atlantis, Bank heist, Battle zone, Bowling, Crazy climber, Defender, Fishing derby, Gopher,
Hero, Ice hockey, Jamesbond, Kangaroo, Kung fu master, Name this game, Pong, Road runner, Robotank, Tennis, Time pilot,
Up n down, Wizard of wor, Zaxxon.

2The only three tasks below 80% success rate are GoToImpUnlock (59%), Unlock (74%), and BossLevel (75%).
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Figure 6: Image captions generated by Gato. Gato prompted to be an image captioner, describing the first
several held-out images from MS-COCO. We report the first three captions sampled using temperature 0.9, without
cherry-picking. The prompt is shown in the appendix.

G

G

G

G

G

G

G

G

G

G

G

G

G

Figure 7: Chitchat with Gato. Dialogues with Gato when it is prompted to be a chat bot. Usually Gato replies
with a relevant response, but is often superficial or factually incorrect, which could likely be improved with further
scaling. We used the same prompt as in Rae et al. (2021).
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Table 2: Gato real robot Skill Generalization results. In addition to performing hundreds of other tasks,
Gato also stacks competitively with the comparable published baseline.

Agent Group 1 Group 2 Group 3 Group 4 Group 5 Average
Gato 24.5% 33% 50.5% 76.5% 66.5% 50.2%
BC-IMP (Lee et al., 2021) 23% 39.3% 39.3% 77.5% 66% 49%

Skill Generalization Performance

The Skill Generalization challenge from the RGB Stacking robotics benchmark tests the agent’s ability to
stack objects of previously unseen shapes. The agent is trained on a dataset consisting of episodes of the
robot stacking objects with a variety of different shapes. Five triplets of object shapes are, however, not
included in the training data and serve as test triplets. We evaluated the trained generalist for 200 episodes
per test triplet on the real robot. Table 2 shows that our generalist agent’s success rate on each test triplet
is comparable to the single task BC-IMP (filtered BC) baseline in Lee et al. (2021).

4.3 Text samples

The model demonstrates rudimentary dialogue and image captioning capabilities. Figure 6 contains a rep-
resentative sample of Gato’s image captioning performance. Figure 7 shows some hand-picked examples of
plain text dialogue exchange.

5 Analysis

5.1 Scaling Laws Analysis

In Figure 8, we analyze the aggregate in-distribution performance of the pretrained model as a function of
the number of parameters in order to get insight into how performance could improve with increased model
capacity. We evaluated 3 different model sizes (measured in parameter count): a 79M model, a 364M model,
and a 1.18B model (Gato). We refer to Section C for details on the three model architectures.

Here, for all three model sizes we plot the normalized return as training progresses. To get this single value,
for each task we calculate the performance of the model as a percentage of expert score (the same as done
in Section 4.1). Then for each domain listed in Table 1 we average the percentage scores across all tasks for
that domain. Finally, we mean-aggregate the percentage scores across all domains. We can see that for an
equivalent token count, there is a significant performance improvement with increased scale.

Figure 8: Model size scaling laws results. In-distribution performance as a function of tokens processed for 3
model scales. Performance is first mean-aggregated within each separate control domain, and then mean-aggregated
across all domains. We can see a consistent improvement as model capacity is increased for a fixed number of tokens.
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Figure 9: Few-shot performance, ablating over various pretraining settings. Orange corresponds to the
base Gato pretrained on all data. Red is trained from scratch only on the few-shot data. 364M parameter variants of
Gato were used for this experiment to save compute.

5.2 Out of distribution tasks

In this section we want to answer the following question: Can our agent be used to solve a completely new task
efficiently? For this reason, we held-out all data for four tasks from our pre-training set: cartpole.swingup
(DM Control Suite domain), assembly-v2 (Meta-World domain), order_of_apples_forage_simple (DM
Lab domain), and boxing (ALE Atari domain). These four tasks will serve as testbeds for evaluating the
out-of-distribution capabilities of Gato.

Ideally, the agent could potentially learn to adapt to a new task via conditioning on a prompt including
demonstrations of desired behaviour. However, due to accelerator memory constraints and the extremely
long sequence lengths of tokenized demonstrations, the maximum context length possible does not allow
the agent to attend over an informative-enough context. Therefore, to adapt the agent to new tasks or
behaviours, we choose to fine-tune the agent’s parameters on a limited number of demonstrations of a single
task, and then evaluate the fine-tuned model’s performance in the environment. Fine-tuning is very similar
to pretraining with minor changes, such as different learning rate schedule; see Section E for details.

We want to measure how choice of data used during pretraining influences post-fine-tuning performance. To
this end, we compare Gato (trained on all data) to variants trained on ablated datasets:

1. A model pretrained only on data from the same domain as the task to be fine-tuned on, same domain
only data.

2. A model pretrained only on non-control data, no control data.

3. A model fine-tuned from scratch, i.e. no pretraining at all, scratch.

Considering as all these experiments require training a new model from scratch and then also fine-tuning,
we present results using the less compute-intensive 364M parameter architecture described in Section 5.1.
Results are shown in Figure 9.

Fine-tuning performance on both cartpole.swingup and assembly-v2 tasks, both of which do not require
image processing, present similar trends. Pretraining on all the datasets yields the best results, followed by
pretraining on the same domain only. This difference is smaller for assembly-v2 but consistent for all few
shot datasets. For these non-image-based environments, we see either no benefit (cartpole.swingup) or
even negative transfer (assembly-v2) when pretraining on no control datasets, which only contain images
and text data.

Results for DM Lab order_of_apples_forage_simple are slightly different. Pretraining on DM Lab data
only is already enough to approach the maximum reward of 19 and hence there is no observable benefit of
adding data from different environments. What is different when compared to previously analysed no-vision
environments is that pretraining on no control data helps, which can be possibly explained by the fact that
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Figure 10: Robotics fine-tuning results. Left: Comparison of real robot Skill Generalization success rate
averaged across test triplets for Gato, expert, and CRR trained on 35k expert episodes (upper bound). Right:
Comparison of simulated robot Skill Generalization success rate averaged across test triplets for a series of ablations
on the number of parameters, including scores for expert and a BC baseline trained on 5k episodes.

agents in the DM Lab environment are fed images which, despite being simulated, are natural looking.
Therefore, transfer from image captioning or visual grounded question answering tasks is possible.

We were not able to observe any benefit from pretraining on boxing. The randomly initialized model seems
to work better than any of the pretrained variants considered. We hypothesise that this is caused by the
game’s input images being visually very distinct from the other data, suggesting transfer is difficult. We
discuss this Atari challenge further in our related work section.

5.3 Fine-tuning on Robotic Stacking Tasks

Section 4.2 demonstrates that the base Gato capable of a diverse array of tasks can perform competitively
on the RGB Stacking Skill Generalization benchmark. In this section, we would like to answer the following
question: How does our agent improve on robotics tasks when allowed to fine-tune similarly to how we fine-
tune on new tasks in Section 5.2? We consider different model sizes and analyse the impact of pretraining
datasets on the Skill Generalization benchmark, as well as a novel out of distribution task. Further analysis
of fine-tuning with dataset ablations is in Appendix I.

Skill Generalization

First, we would like to show that fine-tuning on object-specific data, similarly to what was done by Lee et al.
(2022), is beneficial. Therefore, we fine-tuned Gato separately on five subsets of demonstrations from the test
dataset. Each subset was obtained by random partitioning of a test dataset consisting of demonstrations
gathered by a generalist sim-to-real agent stacking real test objects. We consider this setting, which is
comparable to the fine-tuning baselines on RGB stacking tasks from (Lee et al., 2022); and use the 5k
dataset that their behavior cloning 5k results are obtained with. To best match their experiments, we
change our return filtering scheme during training: instead of using only successful stacks, we condition on
the normalized return of the episode.

Figure 10 compares the success rate of Gato across different fine-tuning data regimes to the sim-to-real
expert and a Critic-Regularized Regression (CRR) (Wang et al., 2020) agent trained on 35k episodes of all
test triplets. Gato, in both reality and simulation (red curves on the left and right figure, respectively),
recovers the expert’s performance with only 10 episodes, and peaks at 100 or 1000 episodes of fine-tuning
data, where it exceeds the expert. After this point (at 5000), performance degrades slightly but does not
drop far below the expert’s performance.
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Figure 11: Comparing training/test task goal variations. Top: the standard “stack red on blue” task tested
in the Skill Generalization benchmark. Bottom: the novel “stack blue on green” task demonstrating Gato’s out of
distribution adaptation to perceptual variations.

Fine-tuning and Model Size

To better understand the benefit of large models for few-shot adaptation in robotics domains, we conducted
an ablation on model parameter size. This section focuses on in-simulation evaluation. Figure 10 compares
the full 1.18B parameter Gato with the smaller 364M and 79M parameter variants for varying amounts of
fine-tuning data. Although the 364M model overfits on one episode, causing performance to drop, there is
a clear trend towards better adaptation with fewer episodes as the number of parameters is scaled up. The
79M model performs clearly worse than its bigger counterparts. The results suggest that the model’s greater
capacity allows the model to use representations learned from the diverse training data at test time.

Adaptation to Perceptual Variations

While the Skill Generalization task is an effective benchmark for motor Skill Generalization to shape varia-
tions, it does not test the agent’s ability to adapt to perceptual variations and permutations in the objective
specification. To further evaluate Gato’s generalization capabilities, we devised a new task in the RGB
stacking benchmark where the goal is to stack the blue object on the green object, for test triplet 1 (see
Figure 11). First, we used a 3D mouse to collect 500 demonstrations of this task on the real robot, for a
total of 2 hours and 45 minutes of demonstration data, and fine-tuned Gato on these episodes. Notably,
all of the simulated and real robotics data in the pretraining set shows the robot successfully stacking the
red object on the blue object, and the data does not include the object shapes in the test set. We found
that additionally adding simulated demonstrations of the stack blue on green task to the fine-tuning dataset
improved performance, and 10% was an ideal sampling ratio for this data.

We achieved a final 60% success rate after evaluating fine-tuned Gato on the real robot, while a BC baseline
trained from scratch on the blue-on-green data achieved only 0.5% success (1/200 episodes). Qualitatively,
the BC baseline would consistently move towards the blue object and occasionally pick it up and place it on
top of the green object, but a full, stable stack was almost never achieved.
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Table 3: Real robot Skill Mastery results. Gato is competitive with the filtered BC baseline.

Agent Group 1 Group 2 Group 3 Group 4 Group 5 Average
Gato 58% 57.6% 78.5% 89 % 95.1% 75.6%
BC-IMP (Lee et al., 2021) 75.6% 60.8% 70.8% 87.8% 78.3% 74.6%

5.4 Robotics: Skill Mastery

Similarly to the Skill Generalization challenge discussed in Section 4.2, the Skill Mastery challenge consists
in training a robotic arm to stack blocks of different shapes. However, the Skill Mastery allows the agent
to train on data involving the object shapes used for evaluation, i.e. the test set in Skill Generalization
becomes a part of the Skill Mastery training set. Thus, this challenge serves to measure Gato’s performance
on in-distribution tasks (possibly with initial conditions not seen in the training demonstrations). Our Skill
Mastery results use an earlier version of the Gato architecture described in Appendix H, with no fine-tuning.

Table 3 compares the group-wise success percentage and the average success across object groups for Gato
and the established BC-IMP baseline. Gato exceeds or closely matches BC-IMP’s performance on all but
one training triplet.

5.5 Specialist single-domain multi-task agents

In this section we show results obtained with two specialist (rather than generalist) agents. Both of them
were trained on data from a single domain only and rolled out 500 times for each training task without any
per-task fine-tuning.

Meta-World

The first agent uses the smallest architecture introduced in Section 5.1, i.e. 79M parameters, and is trained
on all 50 Meta-World tasks. While Gato has access to the state of the MuJoCo physics engine and unlimited
task seeds, the agent presented here has no access to any extra features or tasks and uses the canonical
API as in (Yu et al., 2020). This experiment is to show that the architecture proposed in our paper can be
used to obtain state-of-the-art agents also at small scale. The training procedure was to train single-task
MPO (Abdolmaleki et al., 2018) experts on each of the MT-50 tasks individually, recording the trajectories
produced while training. This experience is then combined, or distilled, into a single agent, which achieves
96.6% success rate averaged over all 50 tasks. To the best of our knowledge this agent is the first one to
accomplish nearly 100% average success rate simultaneously (multi-task) for this benchmark. See Table 7
in the supplementary material (Section K) for the full list of tasks and corresponding success rates of our
agent.

ALE Atari

We also trained a specialist agent on all 51 ALE Atari tasks. As the Atari domain is much more challenging
than Meta-World, we used the Gato architecture with 1.18B parameters.

The resulting agent performs better than the average human for 44 games (see Section 4.1 for details on our
evaluation and scoring). We want to note that the performance of online experts used to generate training
data for the other 7 games were also below the average human. Hence, the specialist Atari agent achieved
better than human performance for all games where data contained super-human episodes.

The specialist Atari agent outperforms our generalist agent Gato, which achieved super-human performance
on 23 games. It suggests that scaling Gato may result in even better performance. We, however, purposely
restricted Gato’s size such that it can be run in real-time on the real robot.
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Figure 12: Attention maps. Time-lapse attention maps from selected heads at the first layer for Atari Breakout
and RGB Stacking.

5.6 Attention Analysis

We rendered the transformer attention weights over the image observations for various tasks, to gain a
qualitative sense of how Gato attends to different regions of the image across tasks (see Figure 12). Further
details and visualizations for more tasks can be found in Appendix J. These visualizations clearly show that
attention tracks the task-relevant objects and regions.

5.7 Embedding Visualization

To understand how Gato encodes differently information per task, we visualized per-task embeddings.

We analysed 11 tasks. For each task, we randomly sample 100 episodes and tokenize each of them. Then,
from each episode we take a subsequence of 128 tokens, compute their embeddings (at layer 12, which is half
the total depth of the transformer layers) and average them over the sequence. The averaged embeddings
for all tasks are used as input to PCA, which reduces their dimensionality to 50. Then, T-SNE is used to
get the final 2D embeddings.

Figure 13 shows the final T-SNE embeddings plotted in 2D, colorized by task. Embeddings from the same
tasks are clearly clustered together, and task clusters from the same domain and modality are also located
close to each other. Even held-out task (cartpole.swingup) is clustered correctly and lays next to another
task from DM Control Suite Pixels.

6 Related Work

The most closely related architectures to that of Gato are Decision Transformers (Chen et al., 2021b; Reid
et al., 2022; Zheng et al., 2022; Furuta et al., 2021) and Trajectory Transformer (Janner et al., 2021),
which showed the usefulness of highly generic LM-like architectures for a variety of control problems. Gato
also uses an LM-like architecture for control, but with design differences chosen to support multi-modality,
multi-embodiment, large scale and general purpose deployment. Pix2Seq (Chen et al., 2022) also uses an
LM-based architecture for object detection. Perceiver IO (Jaegle et al., 2021) uses a transformer-derived
architecture specialized for very long sequences, to model any modality as a sequence of bytes. This and
similar architectures could be used to expand the range of modalities supported by future generalist models.

Gato was inspired by works such as GPT-3 (Brown et al., 2020) and Gopher (Rae et al., 2021), pushing the
limits of generalist language models; and more recently the Flamingo (Alayrac et al., 2022) generalist visual
language model. Chowdhery et al. (2022) developed the 540B parameter Pathways Language Model (PalM)
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Figure 13: Embedding visualization. T-SNE visualization of embeddings from different tasks. A large part of
the vision-language embeddings (M3W) overlaps with the language cluster (MassiveText). Other tasks involving
actions fall in their own cluster.

explicitly as a generalist few-shot learner for hundreds of text tasks. Future work should consider how to
unify these text capabilities into one fully generalist agent that can also act in real time in the real world,
in diverse environments and embodiments.

Gato also takes inspiration from recent works on multi-embodiment continuous control. Huang et al. (2020)
used message passing graph networks to build a single locomotor controller for many simulated 2D walker
variants. Kurin et al. (2020) showed that transformers can outperform graph based approaches for incom-
patible (i.e. varying embodiment) control, despite not encoding any morphological inductive biases. Devin
et al. (2017) learn a modular policy for multi-task and multi-robot transfer in simulated 2D manipulation
environments. Chen et al. (2018) train a universal policy conditioned on a vector representation of robot
hardware, showing successful transfer both to simulated held out robot arms, and to a real world sawyer
robot arm.

A variety of earlier generalist models have been developed that, like Gato, operate across highly distinct
domains and modalities. NPI (Reed & De Freitas, 2016) trained a single LSTM (Hochreiter & Schmidhuber,
1997) to execute diverse programs such as sorting an array and adding two numbers, such that the network is
able to generalize to larger problem instances than those seen during training. Kaiser et al. (2017) developed
the MultiModel that trains jointly on 8 distinct speech, image and text processing tasks including classifica-
tion, image captioning and translation. Modality-specific encoders were used to process text, images, audio
and categorical data, while the rest of the network parameters are shared across tasks. Schmidhuber (2018)
proposed “one big net for everything”, describing a method for the incremental training of an increasingly
general problem solver. Keskar et al. (2019) proposed controllable multi-task language models that can
be directed according to language domain, subdomain, entities, relationships between entities, dates, and
task-specific behavior.

In this discussion, it is important to distinguish between one single multi-task network architecture versus one
single neural network with the same weights for all tasks. Several poplar RL agents achieve good multi-task
RL results within single domains such as Atari57 and DMLab (Espeholt et al., 2018; Song et al., 2020; Hessel
et al., 2019). However, it is much more common to use the same policy architecture and hyper-parameters
across tasks, but the policy parameters are different in each task (Mnih et al., 2015; Tassa et al., 2018). This
is also true of state-of-the-art RL methods applied to board games (Schrittwieser et al., 2020). Moreover,
this choice has been adopted by off-line RL benchmarks (Gulcehre et al., 2020; Fu et al., 2020) and recent
works on large sequence neural networks for control, including decision transformers (Chen et al., 2021b;
Reid et al., 2022; Zheng et al., 2022) and the Trajectory Transformer of Janner et al. (2021). In contrast, in
this work we learn a single network with the same weights across a diverse set of tasks.
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Recent position papers advocate for highly generalist models, notably Schmidhuber (2018) proposing one
big net for everything, and Bommasani et al. (2021) on foundation models. However, to our knowledge there
has not yet been reported a single generalist trained on hundreds of vision, language and control tasks using
modern transformer networks at scale.

“Single-brain”-style models have interesting connections to neuroscience. Mountcastle (1978) famously stated
that “the processing function of neocortical modules is qualitatively similar in all neocortical regions. Put
shortly, there is nothing intrinsically motor about the motor cortex, nor sensory about the sensory cortex”.
Mountcastle found that columns of neurons in the cortex behave similarly whether associated with vision,
hearing or motor control. This has motivated arguments that we may only need one algorithm or model to
build intelligence (Hawkins & Blakeslee, 2004).

Sensory substitution provides another argument for a single model (Bach-y Rita & Kercel, 2003). For
example, it is possible to build tactile visual aids for blind people as follows. The signal captured by a
camera can be sent via an electrode array on the tongue to the brain. The visual cortex learns to process
and interpret these tactile signals, endowing the person with some form of “vision”. Suggesting that, no
matter the type of input signal, the same network can process it to useful effect.

Our work is based on deep autoregressive models, which have a long history and can be found in generative
models of text, images, video and audio. Combining autoregressive generation with transformers (Vaswani
et al., 2017; Devlin et al., 2018) has been of enormous impact in language modelling (Brown et al., 2020;
Rae et al., 2021), protein folding (Jumper et al., 2021), vision-language models (Tsimpoukelli et al., 2021;
Wang et al., 2021; Alayrac et al., 2022), code generation (Chen et al., 2021c; Li et al., 2022b), dialogue
systems with retrieval capabilities (Nakano et al., 2021; Thoppilan et al., 2022), speech recognition (Pratap
et al., 2020), neural machine translation (Johnson et al., 2019) and more (Bommasani et al., 2021). Recently
researchers have explored task decomposition and grounding with language models (Huang et al., 2022; Ahn
et al., 2022).

Li et al. (2022a) construct a control architecture, consisting of a sequence tokenizer, a pretrained language
model and a task-specific feed-forward network. They apply it to VirtualHome and BabyAI tasks, and
find that the inclusion of the pretrained language model improves generalisation to novel tasks. Similarly,
Parisi et al. (2022) demonstrate that vision models pretrained with self-supervised learning, especially crop
segmentations and momentum contrast (He et al., 2020), can be effectively incorporated into control policies.

As mentioned earlier, transfer in Atari is challenging. Rusu et al. (2016) researched transfer between ran-
domly selected Atari games. They found that Atari is a difficult domain for transfer because of pronounced
differences in the visuals, controls and strategy among the different games. Further difficulties that arise
when applying behaviour cloning to video games like Atari are discussed by Kanervisto et al. (2020).

There has been great recent interest in data-driven robotics (Cabi et al., 2019; Chen et al., 2021a). However,
Bommasani et al. (2021) note that in robotics “the key stumbling block is collecting the right data. Unlike
language and vision data, robotics data is neither plentiful nor representative of a sufficiently diverse array
of embodiments, tasks, and environments”. Moreover, every time we update the hardware in a robotics lab,
we need to collect new data and retrain. We argue that this is precisely why we need a generalist agent that
can adapt to new embodiments and learn new tasks with few data.

Generating actions using an autoregressive model can lead to causal “self-delusion” biases when there are
confounding variables (Ortega et al., 2021). For example, sampling actions can condition the model to solve
the wrong task when multiple tasks share similar observation and actions specifications. As explained in
Section 2, we use prompt engineering in ambiguous tasks, conditioning our model on a successful demon-
stration. This screens off confounding variables, reducing self-delusions. Another solution which we did not
explore in this work is to use counterfactual teaching, where we train a model online using instantaneous
expert feedback. We leave this for future investigation.
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7 Broader Impact

Although generalist agents are still only an emerging area of research, their potential impact on society
calls for a thorough interdisciplinary analysis of their risks and benefits. For the sake of transparency, we
document the intended use cases of Gato in the model card in Appendix A. However, the tools for mitigating
harms of generalist agents are relatively underdeveloped, and require further research before these agents
are deployed.

Since our generalist agent can act as a vision-language model, it inherits similar concerns as discussed in (Wei-
dinger et al., 2021; Bommasani et al., 2021; Rae et al., 2021; Alayrac et al., 2022). In addition, generalist
agents can take actions in the the physical world; posing new challenges that may require novel mitigation
strategies. For example, physical embodiment could lead to users anthropomorphizing the agent, leading to
misplaced trust in the case of a malfunctioning system, or be exploitable by bad actors. Additionally, while
cross-domain knowledge transfer is often a goal in ML research, it could create unexpected and undesired
outcomes if certain behaviors (e.g. arcade game fighting) are transferred to the wrong context. The ethics
and safety considerations of knowledge transfer may require substantial new research as generalist systems
advance.

Technical AGI safety (Bostrom, 2017) may also become more challenging when considering generalist agents
that operate in many embodiments. For this reason, preference learning, uncertainty modeling and value
alignment (Russell, 2019) are especially important for the design of human-compatible generalist agents.
It may be possible to extend some of the value alignment approaches for language (Ouyang et al., 2022;
Kenton et al., 2021) to generalist agents. However, even as technical solutions are developed for value
alignment, generalist systems could still have negative societal impacts even with the intervention of well-
intentioned designers, due to unforeseen circumstances or limited oversight (Amodei et al., 2016). This
limitation underscores the need for a careful design and a deployment process that incorporates multiple
disciplines and viewpoints.

Understanding how the models process information, and any emergent capabilities, requires significant ex-
perimentation. External retrieval (Borgeaud et al., 2021; Menick et al., 2022; Nakano et al., 2021; Thoppilan
et al., 2022) has been shown to improve both interpretability and performance, and hence should be consid-
ered in future designs of generalist agents.

Although still at the proof-of-concept stage, the recent progress in generalist models suggests that safety
researchers, ethicists, and most importantly, the general public, should consider their risks and benefits. We
are not currently deploying Gato to any users, and so anticipate no immediate societal impact. However,
given their potential impact, generalist models should be developed thoughtfully and deployed in a way that
promotes the health and vitality of humanity.

8 Limitations and Future work

8.1 RL data collection

Gato is a data-driven approach, as it is derived from imitation learning. While natural language or image
datasets are relatively easy to obtain from the web, a web-scale dataset for control tasks is not currently
available. This may seem at first to be problematic, especially when scaling Gato to a higher number of
parameters.

That being said, there has already been extensive investigation into this issue. Offline RL aims at leveraging
existing control datasets, and its increasing popularity has already resulted in the availability of more diverse
and larger datasets. Richer environments and simulations are being built (e.g. Metaverse), and increasing
numbers of users already interact with them among thousands of already deployed online games (e.g. there
exists a large dataset of Starcraft 2 games). Real-life data has also been already stored for ML research
purposes; for example, data for training self-driving cars is acquired from recording human driver data.
Finally, while Gato uses data consisting of both observations and corresponding actions, the possibility of
using large scale observation-only data to enhance agents has been already studied (Baker et al., 2022).
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Thanks to online video sharing and streaming platforms such as Youtube and Twitch, observation-only
datasets are not significantly more difficult to collect than natural language datasets, motivating a future
research direction to extend Gato to learn from web data.

While the previous paragraph focuses on alleviating drawbacks of data collection from RL agents, it is
important to note that this approach presents a different set of tradeoffs compared to scraping web data
and can be actually more practical in some situations. Once the simulation is set up and near SOTA agent
trained, it can be used to generate massive amounts of high quality data. That is in contrast to the quality
of web data which is notorious for its low quality.

In short, we believe that acquiring suitable data is another research question on its own, and this is an active
area of research with growing momentum and importance.

8.2 Prompt and short context

Gato is prompted with an expert demonstration, which aids the agent to output actions corresponding to
the given task. This is particularly useful since there is otherwise no task identifier available to the agent
(that is in contrast to many multi-task RL settings). Gato infers the relevant task from the observations
and actions in the prompt.

However, the context length of our agent is limited to 1024 tokens which translates to the agent sometimes
attending to only a few environment timesteps in total. This is especially the case for environments with
image observations, where depending on the resolution each observation can result in more than one hundred
tokens each. Hence for certain environments only a short chunk of a demonstration episode fits in the
transformer memory.

Due to this limited prompt context, preliminary experiments with different prompt structures resulted in
very similar performance. Similarly, early evaluations of the model using prompt-based in-context learning on
new environments did not show a significant performance improvement compared to prompt-less evaluation
in the same setting.

Context-length is therefore a current limitation of our architecture, mainly due to the quadratic scaling of
self-attention. Many recently proposed architectures enable a longer context at greater efficiency and these
innovations could potentially improve our agent performance. We hope to explore these architectures in
future work.

9 Conclusions

Transformer sequence models are effective as multi-task multi-embodiment policies, including for real-world
text, vision and robotics tasks. They show promise as well in few-shot out-of-distribution task learning. In
the future, such models could be used as a default starting point via prompting or fine-tuning to learn new
behaviors, rather than training from scratch.

Given scaling law trends, the performance across all tasks including dialogue will increase with scale in
parameters, data and compute. Better hardware and network architectures will allow training bigger models
while maintaining real-time robot control capability. By scaling up and iterating on this same basic approach,
we can build a useful general-purpose agent.
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Supplementary Material
A Model card

We present a model card for Gato in Table 4.

Table 4: Gato Model Card. We follow the framework proposed in (Mitchell et al., 2019).

Model details
Organization DeepMind
Model Date May 2022
Model Type Transformer with ResNet patch embedding for multi-task, multi-modal

behavior cloning.
Model Version Initial release.
Feedback on the Model reedscot@google.com

Intended Uses
Primary Intended Uses Learn to accomplish a wide variety of tasks from expert demonstra-

tions, such as playing video games, controlling simulated embodiments,
and real world block stacking.

Primary Intended Users DeepMind Researchers.
Out-of-Scope Uses Not intended for commercial or production use. Military uses are

strictly prohibited.
Factors

Relevant Factors Salient factors that may alter model performance are: agent embodi-
ment in control data, training data token amount and diversity, per-
formance of expert in training data and prompts (filtered by success
rate), and any factors inherited by vision & language datasets described
in Section 3.2. See Section 5.2, in particular Figure 9, for a detailed
discussion of factors relating to training data diversity.

Evaluation Factors Reported factors are: number of input tokens, proportion of data from
different domains, agent performance. Many relevant factors are left
for future work as use cases develop.

Metrics
Model Performance Measures We chose to report episode return for our control tasks. We decided

not to report validation loss over held-out data because we found that
it did not correlate well with episode return on the held-out tasks.

Decision thresholds N/A
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Approaches to Uncertainty and
Variability

The reported values do not take into consideration model uncertainty
as they are evaluations of a single model. It is prohibitive for us to col-
lect the full suite of results with multiple models, however we have not
observed statistically significant variations between different models
evaluated on subsets of our benchmarks. We account for environment
noise in the control tasks we use for evaluation by averaging returns
across multiple episodes. To reduce variance introduced when select-
ing datasets of the limited demonstrations used during fine-tuning we
generate 3 independent sets of datasets. The model is fine-tuned sepa-
rately on each set of datasets and we take the mean performance across
all of them.

Evaluation Data
Datasets Gato is evaluated on in and out of distribution simulated control tasks,

see Section 4.1 and Section 5.2 for further details about these tasks.
We also evaluated on the Skill Generalization challenge from the RGB
Stacking robotics benchmark, see Section 4.2 and Section 5.3 for de-
tails.

Motivation We evaluated on the in-distribution simulated control and robotics
tasks to understand on how well Gato handles multi-modal and multi-
task learning. We evaluated on out of distribution simulated control
and robotics tasks to understand how well Gato can adapt to entirely
new tasks.

Preprocessing Observations from evaluation tasks are tokenized into a stream of dis-
crete embeddings before being input to Gato. Section 2.1 and Sec-
tion 2.2 go into details of how different modalities are tokenized and
combined.

Training Data
Datasets We use a diverse and large number of datasets for training Gato. These

include data from agent experience on both simulated and real world
environments, along with a variety of natural language and image
datasets. See Table 1 for details on our training datasets.

Motivation To create a multi-modal, multi-task, multi-embodiment generalist pol-
icy we collected as much, diverse, data as possible. Joint training on
all the datasets has produced a single network, Gato, which is capable
of playing Atari, captioning images, chat, stacking blocks with a real
robot arm, and more. See Section 3 for a more detailed discussion of
our training datasets.

Preprocessing The multi-modal training data is tokenized into a stream of discrete
embeddings. Section 2.1 and Section 2.2 go into details of how different
modalities are tokenized and combined.

Quantitative Analyses
Unitary Results We present several evaluations of Gato against different benchmarks.

See Figure 5 for an analysis of Gato’s performance on in distribution
control tasks. Sections 5.2, 5.3, and 5.4 analyze performance on out of
distribution control tasks. Finally, see Section 5.1 for a discussion on
how model scale affects in-distribution performance.

Ethical Considerations
Data The vision and language datasets used include racist, sexist, and oth-

erwise harmful context.
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Risks and Harms In addition to the potential harms of toxic image and language training
data, Gato’s real world embodiment introduces physical safety harms
due to misuse or malfunctioning.

Mitigations No mitigation of bias introduced by vision and language data beyond
the filtering of sexually explicit content, as in Alayrac et al. (2022).
Physical risk is mitigated through safety measures implemented by
robotics environment designers.
Caveats and Recommendation

Future work The interaction of diverse training data domains and the different affor-
dances faced in evaluation is poorly understood, and potential ethical
and safety risks arise as the generalist’s capabilities grow.
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B Agent Data Tokenization Details

In this section we provide additional details on our tokenization schemes. Our agent data is sequenced as
follows:

• Episodes are presented to the agent in order of time (timesteps).

• Timesteps in turn are presented in the following order:

– Observations ([y1:k, x1:m, z1:n]) are ordered lexicographically by key, each item is sequenced
as follows:
∗ Text tokens (y1:k) are in the same order as the raw input text.
∗ Image patch tokens (x1:m) are in raster order.
∗ Tensors (z1:n) (such as discrete and continuous observations) are in row-major order.

– Separator (′|′); a designated separator token is provided after observations.
– Actions (a1:A) are tokenized as discrete or continuous values and in row-major order.

A full sequence of tokens is thus given as the concatenation of data from T timesteps:

s1:L = [[y1
1:k, x1

1:m, z1
1:n,′ |′, a1

1:A], . . . , [yT
1:k, xT

1:m, zT
1:n,′ |′, aT

1:A]],

where L = T (k + m + n + 1 + A) is the total number of tokens.

Each floating point element of tensors in the observation sequence is mu-law companded as in WaveNet (Oord
et al., 2016):

F (x) = sgn(x) log(|x|µ + 1.0)
log(Mµ + 1.0) (3)

with parameters µ = 100 and M = 256. (If the floating-point tensor is in the action set, we do not need
to compand the elements in the sequence because actions are only defined in the range [−1, 1] for all our
environments.) All the elements are subsequently clipped so that they fall in the set [−1, 1]. Finally, they
are discretized using bins of uniform width on the domain [−1, 1]. We use 1024 bins and shift the resulting
integers so they are not overlapping with the ones used for text tokens. The tokenized result is therefore a
sequence of integers within the range of [32000, 33024).

See Figure 14 and Figure 15 for visualizations of tokenizing and sequencing values (both discrete and con-
tinuous) and images. See Section C for details about local position encodings referenced in the figures.
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Figure 14: A visualization of tokenizing and sequencing continuous values, e.g. proprioception.

Figure 15: A visualization of tokenizing and sequencing images and discrete values.
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Figure 16: Architecture of the ResNet block used to convert tokenized image patches into token
embeddings. This block uses the v2 ResNet architecture (He et al., 2016b), GroupNorm (Wu & He, 2018)
(instead of LayerNorm (Ba et al., 2016)) normalization, and GELU (Hendrycks & Gimpel, 2016) (instead of RELU)
activation functions.

C Model Architecture

C.1 Transformer Hyperparameters

Table 5: Gato transformer hyperparameters.

Hyperparameter Gato
1.18B 364M 79M

Transformer blocks 24 12 8
Attention heads 16 12 24
Layer width 2048 1536 768
Feedforward hidden size 8192 6144 3072
Key/value size 128 128 32
Shared embedding True
Layer normalization Pre-norm
Activation Function GEGLU (Shazeer, 2020)

The transformer hyperparameters of Gato are presented in Table 5. We also list the hyperparameters of
smaller architecture variants used in Section 5.

C.2 Embedding Function

The ResNet block uses the v2 architecture (He et al., 2016b), contains GroupNorm (Wu & He, 2018) with 32
groups instead of LayerNorm (Ba et al., 2016), and GELU (Hendrycks & Gimpel, 2016) activation functions
instead of RELU. The block is diagrammed in Figure 16.

C.3 Position Encodings

After tokens are mapped into token embeddings, two position encodings are added to the token embeddings
(when applicable) to provide temporal and spatial information to the model. These are described below.
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Figure 17: Patch position encodings. Calculating patch position encodings (red) within the global image (far
left). The relative row and column positions (i.e. positions normalized between [0, 1]) are first discretized using
uniform binning and used to index a learnable row and column position encoding. These two encodings are then
added to the token embedding corresponding to the patch.

Patch Position Encodings

These position encodings convey information about a patch’s global position within the image from which the
patch was extracted. First, the relative row and column intervals of the patch are calculated by normalizing
the patch’s pixel intervals by the image resolution. The row and column normalized intervals are then
quantized into a vocabulary size (we use 128) and are used to index a row and column table of learnable
position encodings. The method in which the quantized row and column intervals are converted into indices
depends on whether we are training or evaluating the model: during training a random index is uniformly
sampled from the quantized interval, while during evaluation we deterministically take the (rounded) mean
of the interval. Once row and column position encoding are retrieved from the embedding table, they are
added onto the token embedding produced by the resnet embedding function, as described previously.

To more concretely demonstrate this process, we provide an example in Figure 17. We will follow the process
with the patch highlighted in red on the left of the subfigure. The image is of resolution 80 × 64 and each
patch is 16 × 16, meaning there are 5 × 4 = 20 patches total. The highlighted patch starts at pixel row
interval [16, 32] and pixel column interval [32, 64]. Normalized, the row interval is therefore [0.25, 0.5] and
the column interval is [0.4, 0.6]. We then separately quantize the intervals into 128 uniformly spaced bins,
with the resulting quantized row interval being [32, 64] and the quantized column interval being [51, 77].
During training, we uniformly sample integers between the quantized row intervals, whereas during testing
we would use the means, which are index 48 for row position and index 64 for column position. The row
and column positions are finally used to index separate row and column position encoding tables to produce
learnable embeddings which are added onto the corresponding patch token embedding.

Local Observation Position Encodings

The local observation position encoding adds positional information about where observation tokens are
positioned within the local time-step they were an element of. First, we reiterate that, during tokenization,
for each time-step all elements of the observation set are tokenized into sequences and concatenated into an
observation sequence. Each token in this observation sequence is given an index which corresponds to the
sequence order, i.e. the first token is 0 and the last is the length of the observation sequence minus one.
After embedding, for any tokens that were a part of an observation set, the corresponding observation token
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Figure 18: Local position encodings. An example demonstrating how local position encodings are defined within
each time-step’s observation and action token subsequences. Note that no position encodings are added to action
tokens.

index is used to index an embedding table of learnable position encodings, with one embedding for every
possible observation token index (in practice we simply set the table size to a large value like 512). The
position encoding is then added onto the observation token embedding to produce the final token embedding.
Note that all action tokens are given the same position encoding regardless of their position in the time-step
sequence. We illustrate an example of this process in Figure 18.

D Pretraining Setup

Optimizer: For all models we use the AdamW (Loshchilov & Hutter, 2017) optimizer with a linear warm-
up and cosine schedule decay. The linear warmup lasts for 15, 000 steps, starting from a learning rate of
1e-7 and ending at a different maximum learning rate depending on the model (see Table 6). This learning
rate is then cosine decayed by a factor 10x over 1,000,000 steps. The AdamW optimizer has parameters
β1 = 0.9, β2 = 0.95 and ϵ = 1e-8. We use a batch size of 512 and a sequence length of 1024 tokens for all
models.

Regularization: We train with an AdamW weight decay parameter of 0.1. Additionally, we use stochastic
depth (Huang et al., 2016) during pretraining, where each of the transformer sub-layers (i.e. each Multi-Head
Attention and Dense Feedforward layer) is skipped with a probability of 0.1.

Table 6: Learning rate schedule hyperparameters for the different model scales.

Hyperparameter Gato
1.18B 364M 79M

Maximum Learning Rate 1e-4 2e-4 1e-4
Minimum Learning Rate 1e-5 2e-5 1e-5
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E Fine-tuning Setup

Optimizer: For all models we use the Adam (Kingma & Ba, 2014) optimizer with a constant learning rate
of 1e-5. The Adam optimizer has parameters β1 = 0.9, β2 = 0.95 and ϵ = 1e-8. We use a batch size of 64
and a sequence length of 1024 tokens for all models. We train for 10,000 gradient steps.

Regularization: We use dropout (Srivastava et al., 2014) with a rate of 0.1.

Evaluation: We evaluate agent every 100 learning steps. Each evaluation reports the average of 10 runs
of a given checkpoint. The moving average of 5 such scores is computed (to gather 50 runs together). The
final fine-tuning performance is defined as the maximum of these smoothed scores.

Datasets: We generated data for the fine-tuning tasks the same way we did for the other tasks (see Section
3.1 for details). Instead of using all the data for a fine-tuning task, we discarded all but 2000 best episodes
(leading to the highest returns). The fine-tuning datasets were created in the following way. We randomly
took 1000 episodes (out of 2000 preselected episodes), then a subset of 100 episodes from the selected episodes,
then 10, 5, 3, and finally a single episode. We repeated this procedure 3 times to obtain 3 series of cascading
subsets for each task. Each subset is used to conduct one fine-tuning experiment, and each is reported on
our plots in Section 5.2 as a separate point.

Task settings: We have not altered any of the tasks and used their canonical versions. As 3 out
of 4 tasks are open sourced, they do not need further explanation. For the fourth task, DMLab
order_of_apples_forage_simple, the goal is to collect apples in the right order, green ones first followed
by the gold one.

F Data Collection Details

F.1 Atari

We collect two separate sets of Atari environments. The first (that we refer to as ALE Atari) consists of 51
canonical games from the Arcade Learning Environment (Bellemare et al., 2013). The second (that we refer
to as ALE Atari Extended) is a set of alternative games3 with their game mode and difficulty randomly set
at the beginning of each episode.

For each environment in these sets we collect data by training a Muesli (Hessel et al., 2021) agent for 200M
total environment steps. We record approximately 20,000 random episodes generated by the agent during
training.

F.2 Sokoban

Sokoban is a planning problem (Racanière et al., 2017), in which the agent has to push boxes to target
locations. Some of the moves are irreversible and consequently mistakes can render the puzzle unsolvable.
Planning ahead of time is therefore necessary to succeed at this puzzle. We use a Muesli (Hessel et al., 2021)
agent to collect training data.

F.3 BabyAI

BabyAI is a gridworld environment whose levels consist of instruction-following tasks that are described by
a synthetic language. We generate data for these levels with the built-in BabyAI bot. The bot has access to
extra information which is used to execute optimal solutions, see Section C in the appendix of (Chevalier-
Boisvert et al., 2018) for more details about the bot. We collect 100,000 episodes for each level.

3Basic Math, Breakout, Crossbow, Darkchambers, Entombed, ET, Flag Capture, Human Cannonball, Klax, Laser Gates,
Ms. Pac-Man, Solaris, Space War.
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F.4 DeepMind Control Suite

The DeepMind Control Suite (Tunyasuvunakool et al., 2020; Tassa et al., 2018) is a set of physics-based
simulation environments. For each task in the control suite we collect two disjoint sets of data, one using
only state features and another using only pixels. We use a D4PG (Barth-Maron et al., 2018) agent to collect
data from tasks with state features, and an MPO (Abdolmaleki et al., 2018) based agent to collect data
using pixels.

We also collect data for randomized versions of the control suite tasks with a D4PG agent. These versions
randomize the actuator gear, joint range, stiffness, and damping, and geom size and density. There are
two difficulty settings for the randomized versions. The small setting scales values by a random number
sampled from the union of intervals [0.9, 0.95] ∪ [1.05, 1.1]. The large setting scales values by a random
number sampled from the union of intervals [0.6, 0.8] ∪ [1.2, 1.4].

F.5 DeepMind Lab

DeepMind Lab (Beattie et al., 2016) is a first-person 3D environment designed to teach agents 3D vision
from raw pixel inputs with an egocentric viewpoint, navigation, and planning.

We trained an IMPALA (Espeholt et al., 2018) agent jointly on a set of 18 parent DM Lab levels that
generate maps procedurally for each new episode. Data was collected by executing the agent on these 18
levels, as well as an additional set of 237 levels handcrafted to test a diverse set of skills.

The 18 parent levels are characterized by high diversity of generated maps. The difference between the
levels is rooted in hyper-parameters used in a generation process. These hyper-parameters control high-level
characteristics such as types of structures spawned, difficulty of language instructions, or presence of specific
tools. The parent levels were developed to improve performance of RL agents trained online on them.

In contrast to the parent levels, each of the additional handcrafted 237 levels uses almost the same map, and
the main differences between instances of the same level map are aesthetics such as colors of walls or lighting
conditions. The maps are not procedurally generated and were designed to test a diverse set of skills such
as walking up stairs or using specific tools. They are similar to levels presented in Figure 3, Figure 7 and
Figure 8 in aforementioned paper by Beattie et al. (2016).

Additional information on the 18 parent levels (and their relation to the other levels) is presnted in details
in the NeurIPS Workshop talk A Methodology for RL Environment Research by Daniel Tanis4.

In total, we collected data for 255 levels from the DeepMind Lab (18 parent levels and 237 handcrafted
levels), 254 of which were used while training Gato. The remaining level was used for out of distribution
evaluation.

F.6 Procgen Benchmark

Procgen (Cobbe et al., 2020) is a suite of 16 procedurally generated Atari-like environments, which was
proposed to benchmark sample efficiency and generalization in reinforcement learning. Data collection was
done while training a R2D2 (Kapturowski et al., 2018) agent on each of the environments. We used the hard
difficulty setting for all environments except for maze and heist, which we set to easy.

F.7 Modular RL

Modular RL (Huang et al., 2020) is a collection of MuJoCo (Todorov et al., 2012) based continuous control
environments, composed of three sets of variants of the OpenAI Gym (Brockman et al., 2016) Walker2d-v2,
Humanoid-v2, and Hopper-v2. Each variant is a morphological modification of the original body: the set of

4Available at https://neurips.cc/virtual/2021/workshop/21865#wse-detail-22801.
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morphologies is generated by enumerating all possible subsets of limbs, and keeping only those sets that a)
contain the torso, and b) still form a connected graph. This results in a set of variants with different input
and output sizes, as well as different dynamics than the original morphologies. We collected data by training
a single morphology-specific D4PG agent on each variant for a total of 140M actor steps, this was done for
30 random seeds per variant.

F.8 DeepMind Manipulation Playground

The DeepMind Manipulation Playground (Zolna et al., 2021) is a suite of MuJoCo based simulated robot
tasks. We collect data for 4 of the Jaco tasks (box, stack banana, insertion, and slide) using a Critic-
Regularized Regression (CRR) agent (Wang et al., 2020) trained from images on human demonstrations.
The collected data includes the MuJoCo physics state, which is we use for training and evaluating Gato.

F.9 Meta-World

Meta-World (Yu et al., 2020) is a suite of environments5 for benchmarking meta-reinforcement learning and
multi-task learning. We collect data from all train and test tasks in the MT50 mode by training a MPO
agent (Abdolmaleki et al., 2018) with unlimited environment seeds and with access to state of the MuJoCo
physics engine. The collected data also contains the MuJoCo physics engine state.

G Real robotics evaluation details

In the real world, control is asynchronous; physics does not wait for computations to finish. Thus, inference
latency is a concern for evaluating a large model for real world tasks. In robotics, a fast control rate is
thought to be critical for reacting to dynamic phenomena. The robot setup for RGB stacking has a 20Hz
control rate (0.05 second timestep) by design. In order to reach an acceptable margin of latency, we modified
inference at evaluation time by shortening the context length to 1. We also implemented a parallel sampling
scheme where all the action tokens are zeroed out in the input sequences during training so we can sample
all tokens corresponding to a robot action in a single model inference step instead of autoregressively as
it’s done in other domains. We found that the 1.18B parameter model was able to run on the hardware
accelerators in our robots (NVidia GeForce RTX 3090s), but still overran the 20Hz control rate by a small
amount (~0.01 seconds).

We use the sparse reward function described in Lee et al. (2021) for data filtering. We only select trajectories
with final task success; that is, a sparse reward of 1 on the final timestep.

H Skill Mastery architecture

The numbers reported for the Skill Mastery benchmark were collected by executing a model zero-shot
that used an earlier version of the Gato architecture. Instead of the ResNet patch embedding, a similar
architecture using a local transformer was used to embed image patch tokens. The local position embeddings
and patch position embeddings were not used. These changes were implemented and found to improve Gato’s
performance after the pretraining data was changed (as we decided to focus on Skill Generalization instead
of Skill Mastery challenge), which is why they are presented as the final architecture of our full model.

5We used a version from July 23rd 2021, specifically the following version: https://github.com/rlworkgroup/metaworld/
commit/a0009ed9a208ff9864a5c1368c04c273bb20dd06.
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Figure 19: Few-shot performance of Gato for Skill Generalization in simulation. Each test set object is
plotted separately. We ablate over different pretraining datasets.

I Additional robotics ablations

We conducted a series of ablations in simulation to better understand the effect of diverse pretraining data
in the robotics domain (see Figure 19). We included the same baselines as in Section 5.2, selecting the
364M parameter size variant, as well as an additional baseline trained with control suite data only. The
DM Control-only agent is superior to the base Gato at zero-shot transfer and with a lot of fine-tuning
data, suggesting that Gato may not be using the representations learned from the text-based datasets when
adapting to robotics tasks. The same domain only agent performs the best overall, matching the CRR
baseline at 1 fine-tuning episode and outperforming it with more data, suggesting that Gato at current scale
can trade its generalization capacity for data-efficient and effective few-shot adaptation.

J Attention visualization

To render the transformer attention weights, we retrieved the cross-attention logits, a tensor with dimension
(H, T, T ) where H is the number of heads and T is the number of tokens in a sequence. The (h, i, j)th entry
of this matrix can be interpreted as the amount that head h attends to token j from token i. Due to Gato’s
image tokenization scheme, there are multiple tokens per timestep. Therefore to render the attention for a
particular timestep, we took the sub-matrix that corresponds to that timestep. We then applied a softmax
over the rows of this matrix to normalize the relevant values. Because we are only interested in attention to
the previous tokens, we excluded the diagonal by setting it to negative infinity before softmax.

To measure the importance of each patch, we averaged the attention weights over the corresponding column.
Because Gato uses a causal transformer, the attention matrix is lower triangular, so the mean was only
considered over the sub-column below the diagonal of the matrix. This corresponds to the average attention
paid to particular patch over a whole timestep.

Using this method, we found the attention maps at the first layer the transformer to be most interpretable,
agreeing with the findings of Abnar & Zuidema (2020). Certain heads clearly track task-specific entities and
regions of the image. Figure 20 shows the attention maps for manually selected heads at the first layer for
several tasks.
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Figure 20: Attention maps. Time-lapse attention maps from selected heads at the first layer for Atari Breakout,
Boxing, Pong, Freeway, Procgen CoinRun, Bossfight, RGB Stacking, and DM Control Suite Cheetah.
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K Detailed results for specialist Meta-World agent

The specialist Meta-World agent described in Section 5.5 achieves 96.6% success rate averaged over all 50
Meta-World tasks. The detailed success rates are presented in Table 7. We evaluated agent 500 times for
each task.

Table 7: Success rates of specialist Meta-World agent. Averaged over 500 evaluations.

Task name Success rate
assembly-v2 0.980
basketball-v2 0.964
bin-picking-v2 0.954
box-close-v2 0.958
button-press-topdown-v2 0.996
button-press-topdown-wall-v2 0.998
button-press-v2 0.996
button-press-wall-v2 1.000
coffee-button-v2 1.000
coffee-pull-v2 0.980
coffee-push-v2 0.974
dial-turn-v2 0.916
disassemble-v2 0.924
door-close-v2 0.994
door-lock-v2 0.986
door-open-v2 1.000
door-unlock-v2 0.994
drawer-close-v2 1.000
drawer-open-v2 0.992
faucet-close-v2 0.982
faucet-open-v2 0.996
hammer-v2 0.998
hand-insert-v2 0.960
handle-press-side-v2 0.972
handle-press-v2 0.946
handle-pull-side-v2 0.992
handle-pull-v2 0.992
lever-pull-v2 0.980
peg-insert-side-v2 0.992
peg-unplug-side-v2 0.994
pick-out-of-hole-v2 0.966
pick-place-v2 0.990
pick-place-wall-v2 0.986
plate-slide-back-side-v2 1.000
plate-slide-back-v2 0.994
plate-slide-side-v2 1.000
plate-slide-v2 0.984
push-back-v2 0.984
push-v2 0.944
push-wall-v2 0.784
reach-v2 0.796
reach-wall-v2 0.802
shelf-place-v2 0.958
soccer-v2 0.968
stick-pull-v2 0.882
stick-push-v2 0.966
sweep-into-v2 0.962
sweep-v2 0.948
window-close-v2 1.000
window-open-v2 1.000
Average 0.966
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L Per-domain results for Gato

We describe performance of Gato for simulated control tasks in Section 4.1. In Table 8, we present normalized
per-domain results. We evaluated agent 50 times for each task.

Table 8: Normalized Gato per-domain scores. Averaged over 50 evaluations.

Control environment Normalized Score (in %)
DM Lab 91.4
ALE Atari 30.9
ALE Atari Extended 57.8
Sokoban 68.0
BabyAI 93.2
DM Control Suite 63.6
DM Control Suite Pixels 26.3
Meta-World 87.0
Procgen Benchmark 60.8
RGB Stacking simulator 58.0
Modular RL 62.9
DM Manipulation Playground 83.8
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